
Simulink®
Reference

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Reference
© COPYRIGHT 2002–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
July 2002 Online only Revised for Simulink 5 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Online only Revised for Simulink 6 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Online only Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 Online only Revised for Simulink 6.6 (Release 2007a)
September 2007 Online only Revised for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)
October 2008 Online only Revised for Simulink 7.2 (Release 2008b)
March 2009 Online only Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Online only Revised for Simulink 7.8 (Release 2011b)
March 2012 Online only Revised for Simulink 7.9 (Release 2012a)
September 2012 Online only Revised for Simulink 8.0 (Release 2012b)
March 2013 Online only Revised for Simulink 8.1 (Release 2013a)
September 2013 Online only Revised for Simulink 8.2 (Release 2013b)
March 2014 Online only Revised for Simulink 8.3 (Release 2014a)
October 2014 Online only Revised for Simulink 8.4 (Release 2014b)
March 2015 Online only Revised for Simulink 8.5 (Release 2015a)
September 2015 Online only Revised for Simulink 8.6 (Release 2015b)
October 2015 Online only Rereleased for Simulink 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Simulink 8.7 (Release 2016a)
September 2016 Online only Revised for Simulink 8.8 (Release 2016b)
March 2017 Online only Revised for Simulink 8.9 (Release 2017a)
September 2017 Online only Revised for Simulink 9.0 (Release 2017b)
March 2018 Online only Revised for Simulink 9.1 (Release 2018a)

Blocks — Alphabetical List
1

Functions — Alphabetical List
2

Mask Icon Drawing Commands
3

Simulink Debugger Commands
4

Simulink Classes
5

Model and Block Parameters
6

Model Parameters . 6-2
About Model Parameters . 6-2

v

Contents

Examples of Setting Model Parameters 6-109

Common Block Properties . 6-111
About Common Block Properties . 6-111
Examples of Setting Block Properties 6-128

Block-Specific Parameters . 6-130
Programmatic Parameters of Blocks and Models 6-130
Block-Specific Parameters and Programmatic Equivalents . 6-131

Mask Parameters . 6-280
About Mask Parameters . 6-280

Fixed-Point Tool
7

Fixed-Point Tool Parameters and Dialog Box 7-2
Main Toolbar . 7-2
Model Hierarchy Pane . 7-5
Contents Pane . 7-5
Customizing the Contents Pane View 7-8
Dialog Pane . 7-10
Fixed-Point Advisor . 7-12
Configure model settings . 7-13
Run name . 7-14
Simulate . 7-15
Merge instrumentation results from multiple simulations . . . 7-15
Derive ranges for selected system . 7-16
Propose . 7-16
Propose for . 7-17
Default fraction length . 7-17
Default word length . 7-18
When proposing types use . 7-18
Safety margin for simulation min/max (%) 7-18

Advanced Settings . 7-20
Advanced Settings Overview . 7-20
Fixed-point instrumentation mode . 7-20
Data type override . 7-21
Data type override applies to . 7-23

vi Contents

Name of shortcut . 7-25
Allow modification of fixed-point instrumentation settings . . . 7-25
Allow modification of data type override settings 7-26
Allow modification of run name . 7-27
Run name . 7-27
Capture system settings . 7-27
Fixed-point instrumentation mode . 7-27
Data type override . 7-28
Data type override applies to . 7-29

Model Advisor Checks
8

Simulink Checks . 8-2
Simulink Check Overview . 8-4
Migrating to Simplified Initialization Mode Overview 8-5
Identify unconnected lines, input ports, and output ports 8-5
Check root model Inport block specifications 8-6
Check optimization settings . 8-7
Check diagnostic settings ignored during accelerated model

reference simulation . 8-9
Check for parameter tunability information ignored for

referenced models . 8-10
Check for implicit signal resolution . 8-11
Check for optimal bus virtuality . 8-12
Check for Discrete-Time Integrator blocks with initial condition

uncertainty . 8-12
Identify disabled library links . 8-13
Check for large number of function arguments from virtual bus

across model reference boundary 8-14
Identify parameterized library links 8-15
Identify unresolved library links . 8-16
Identify model reference variants and variant subsystems that

override variant choice . 8-17
Identify configurable subsystem blocks for converting to variant

subsystem blocks . 8-18
Identify Variant Model blocks and convert those to Variant

Subsystem containing Model block choices 8-18
Check usage of function-call connections 8-19
Check model for upgradable Simulink Scope blocks 8-20

vii

Check Data Store Memory blocks for multitasking, strong
typing, and shadowing issues . 8-20

Check if read/write diagnostics are enabled for data store
blocks . 8-22

Check data store block sample times for modeling errors . . . 8-23
Check for potential ordering issues involving data store

access . 8-24
Check structure parameter usage with bus signals 8-25
Check Delay, Unit Delay and Zero-Order Hold blocks for rate

transition . 8-27
Check for calls to slDataTypeAndScale 8-28
Check bus signals treated as vectors 8-30
Check for potentially delayed function-call subsystem return

values . 8-31
Identify block output signals with continuous sample time and
non-floating point data type . 8-32

Check usage of Merge blocks . 8-33
Check usage of Outport blocks . 8-36
Check usage of Discrete-Time Integrator blocks 8-48
Check model settings for migration to simplified

initialization mode . 8-49
Check S-functions in the model . 8-51
Check for non-continuous signals driving derivative ports . . . 8-52
Runtime diagnostics for S-functions 8-53
Check model for foreign characters 8-54
Identify unit mismatches in the model 8-55
Identify automatic unit conversions in the model 8-55
Identify disallowed unit systems in the model 8-56
Identify undefined units in the model 8-56
Check model for block upgrade issues 8-57
Check model for block upgrade issues requiring compile time

information . 8-58
Check that the model is saved in SLX format 8-59
Check model for SB2SL blocks . 8-60
Check Model History properties . 8-60
Identify Model Info blocks that can interact with external source

control tools . 8-61
Identify Model Info blocks that use the Configuration

Manager . 8-62
Check model for legacy 3DoF or 6DoF blocks 8-63
Check model and local libraries for legacy Aerospace Blockset

blocks . 8-64
Check model for Aerospace Blockset navigation blocks 8-64

viii Contents

Check and update masked blocks in library to use promoted
parameters . 8-65

Check and update mask image display commands with
unnecessary imread() function calls 8-66

Check and update mask to affirm icon drawing commands
dependency on mask workspace . 8-67

Identify masked blocks that specify tabs in mask dialog using
MaskTabNames parameter . 8-68

Identify questionable operations for strict single-precision
design . 8-69

Check get_param calls for block CompiledSampleTime 8-70
Check model for parameter initialization and tuning issues . . 8-72
Check for virtual bus across model reference boundaries . . . 8-73
Check model for custom library blocks that rely on frame status

of the signal . 8-75
Check model for S-function upgrade issues 8-76
Check Rapid accelerator signal logging 8-77
Check virtual bus inputs to blocks . 8-78
Check for root outports with constant sample time 8-82
Analyze model hierarchy and continue upgrade sequence . . . 8-83
Check Access to Data Stores . 8-85

Model Reference Conversion Advisor
9

Model Reference Conversion Advisor . 9-2
Check Conversion Input Parameters . 9-2

Performance Advisor Checks
10

Simulink Performance Advisor Checks 10-2
Simulink Performance Advisor Check Overview 10-3
Baseline . 10-3
Checks that Require Update Diagram 10-3
Checks that Require Simulation to Run 10-3
Check Simulation Modes Settings . 10-3

ix

Check Compiler Optimization Settings 10-4
Create baseline . 10-4
Identify resource-intensive diagnostic settings 10-4
Check optimization settings . 10-5
Identify inefficient lookup table blocks 10-5
Check MATLAB System block simulation mode 10-5
Identify Interpreted MATLAB Function blocks 10-6
Identify simulation target settings . 10-6
Check model reference rebuild setting 10-7
Identify Scope blocks . 10-7
Identify active instrumentation settings on the model 10-7
Check model reference parallel build 10-8
Check Delay block circular buffer setting 10-10
Check continuous and discrete rate coupling 10-10
Check zero-crossing impact on continuous integration 10-11
Check discrete signals driving derivative port 10-11
Check solver type selection . 10-12
Select multi-thread co-simulation setting on or off 10-13
Identify co-simulation signals for numerical compensation . 10-13
Select simulation mode . 10-14
Select compiler optimizations on or off 10-15
Final Validation . 10-15

Simulink Limits
11

Maximum Size Limits of Simulink Models 11-2

Block Reference Page Examples
12

Create Bus Ports in a Subsystem . 12-5

Convert Bus Signal to a Vector . 12-8

Assign Signal Values to a Bus . 12-9

x Contents

Initialize Your Model Using the Callback Button Block 12-10

Control a Parameter Value with Callback Button Blocks . . . 12-12

Solve a Linear System of Algebraic Equations 12-15

Model a Planar Pendulum . 12-16

Improved Linearization with Transfer Fcn Blocks 12-20

View Dead Zone Output on Sine Wave 12-21

View Backlash Output on Sine Wave 12-23

Prelookup With External Breakpoint Specification 12-25

Prelookup with Evenly Spaced Breakpoints 12-26

Configure the Prelookup Block to Output Index and Fraction as
a Bus . 12-27

Approximating the sinh Function Using the Lookup Table
Dynamic Block . 12-29

Create a Logarithm Lookup Table . 12-31

Providing Table Data as an Input to the Direct Lookup Table
Block . 12-32

Specifying Table Data in the Direct Lookup Table Block Dialog
Box . 12-33

Using the Quantizer and Saturation blocks in
sldemo_boiler . 12-34

Scalar Expansion with the Coulomb and Viscous Friction
Block . 12-35

Sum Block Reorders Inputs . 12-36

Iterated Assignment with the Assignment Block 12-38

xi

View Sample Time Using the Digital Clock Block 12-39

Bit Specification Using a Positive Integer 12-40

Bit Specification Using an Unsigned Integer Expression . . 12-41

Track Running Minimum Value of Chirp Signal 12-42

Horizontal Matrix Concatenation . 12-44

Vertical Matrix Concatenation . 12-45

Multidimensional Matrix Concatenation 12-46

Unary Minus of Matrix Input . 12-47

Sample Time Math Operations Using the Weighted Sample
Time Math Block . 12-48

Construct Complex Signal from Real and Imaginary
Parts . 12-49

Construct Complex Signal from Magnitude and Phase
Angle . 12-50

Find Nonzero Elements in an Array . 12-51

Calculate the Running Minimum Value with the MinMax
Running Resettable Block . 12-52

Find Maximum Value of Input . 12-54

Permute Array Dimensions . 12-56

Multiply Inputs of Different Dimensions with the
Product Block . 12-57

Multiply and Divide Inputs Using the Product Block 12-58

Divide Inputs of Different Dimensions Using the
Divide Block . 12-59

xii Contents

Complex Division Using the Product of Elements Block . . . 12-60

Element-Wise Multiplication and Division Using the Product of
Elements Block . 12-61

sin Function with Floating-Point Input 12-62

sincos Function with Fixed-Point Input 12-63

Trigonometric Function Block Behavior for Complex
Exponential Output . 12-64

Output a Bus Object from the Constant Block 12-65

Control Algorithm Execution Using Enumerated Signal . . . 12-66

Integer and Enumerated Data Type Support in the Ground
Block . 12-67

Fixed-Point Data Type Support in the Ground Block 12-68

Read 1-D Array and Structure From Workspace 12-69

Read Structure From Workspace Using Model Sample
Time . 12-70

Read 2-D Signals in Structure Format From Workspace . . . 12-72

From File Block Loading Timeseries Data 12-73

Eliminate Singleton Dimension with the Squeeze Block . . . 12-74

Difference Between Time- and Sample-Based Pulse
Generation . 12-75

Specify a Waveform with the Repeating Sequence Block . . 12-77

Tune Phase Delay on Pulse Generator During Simulation . . 12-79

Difference Sine Wave Signal . 12-80

Discrete-Time Derivative of Floating-Point Input 12-82

xiii

First-Order Sample-and-Hold of a Sine Wave 12-84

Calculate and Display Simulation Step Size using Memory and
Clock Blocks . 12-86

Capture the Velocity of a Bouncing Ball with the Memory
Block . 12-87

Implement a Finite-State Machine with the Combinatorial
Logic and Memory Blocks . 12-89

Discrete-Time Integration Using the Forward Euler Integration
Method . 12-90

Signal Routing with the From, Goto, and Goto Tag Visibility
Blocks . 12-91

Zero-Based and One-Based Indexing with the Index Vector
Block . 12-94

Noncontiguous Values for Data Port Indices of Multiport
Switch Block . 12-95

Using Variable-Size Signals on the Delay Block 12-96

Bus Signals with the Delay Block for Frame-Based
Processing . 12-98

Control Execution of Delay Block with Enable Port 12-99

Zero-Based Indexing for Multiport Switch Data Ports 12-101

One-Based Indexing for Multiport Switch Data Ports 12-102

Enumerated Names for Data Port Indices of the Multiport
Switch Block . 12-104

Prevent Block Wind-Up in Multiloop Control Approaches 12-105

Bumpless Control Transfer . 12-106

Using a Bit Set block . 12-107

xiv Contents

Using a Bit Clear block . 12-108

Two-Input AND Logic . 12-109

Circuit Logic . 12-110

Unsigned Inputs for the Bitwise Operator Block 12-111

Signed Inputs for the Bitwise Operator Block 12-112

Merge Block with Input from Atomic Subsystems 12-113

Index Options with the Selector Block 12-114

Switch Block with a Boolean Control Port Example 12-116

Merge Block with Unequal Input Widths Example 12-117

Detect Rising Edge of Signals . 12-120

Detect Falling Edge Using the Detect Fall Nonpositive
Block . 12-122

Detect Increasing Signal Values with the Detect Increase
Block . 12-124

Extract Bits from Stored Integer Value 12-126

Detect Signal Values Within a Dynamically Specified
Interval . 12-127

Model a Digital Thermometer Using the Polynomial
Block . 12-129

Model Parameter Configuration Dialog Box
13

Model Parameter Configuration Dialog Box 13-2
Source list . 13-3

xv

Refresh list . 13-3
Add to table . 13-3
New . 13-3
Storage class . 13-3
Storage type qualifier . 13-3

xvi Contents

Blocks — Alphabetical List

1

Abs
Output absolute value of input
Library: Simulink / Math Operations

Description
The Abs block outputs the absolute value of the input.

For signed-integer data types, the absolute value of the most negative value is not
representable by the data type. In this case, the Saturate on integer overflow check
box controls the behavior of the block.

If you... The block... And...
Select this check
box

Saturates to the most
positive value of the
integer data type

• For 8-bit signed integers, -128 maps to
127.

• For 16-bit signed integers, -32768
maps to 32767.

• For 32-bit signed integers,
-2147483648 maps to 2147483647.

Do not select this
check box

Wraps to the most
negative value of the
integer data type

• For 8-bit signed integers, -128 remains
-128.

• For 16-bit signed integers, -32768
remains -32768.

• For 32-bit signed integers,
-2147483648 remains -2147483648.

The Abs block supports zero-crossing detection. However, when you select Enable zero-
crossing detection on the dialog box, the block does not report the simulation minimum
or maximum in the Fixed-Point Tool. If you want to use the Fixed-Point Tool to analyze a
model, disable zero-crossing detection for all Abs blocks in the model first.

1 Blocks — Alphabetical List

1-2

Ports
Input
Port_1 — Input signal
scalar | vector

Input signal to the absolute value block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Absolute value output signal
scalar | vector

Absolute value of the input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Main
Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.
Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

 Abs

1-3

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

1 Blocks — Alphabetical List

1-4

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Same as input (default) | Inherit: Inherit via back propagation |
double | single | int8 | int32 | uint32 | fixdt(1,16,2^0,0) | <data type
expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

 Abs

1-5

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input', 'Inherit: Inherit via back
propagation', 'single', 'int8', 'uint8', int16, 'uint16', 'int32', 'uint32',
fixdt(1,16,0), fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type
expression>'
Default: 'Inherit: Same as input'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB® rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Choose the behavior when integer overflow
occurs
off (default) | on

1 Blocks — Alphabetical List

1-6

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Action Reason for Taking This
Action

What Happens Example

Select this
check box.

Your model has possible
overflow and you want
explicit saturation
protection in the
generated code.

Overflows saturate to the
maximum value that the
data type can represent.

The number 130 does not
fit in a signed 8-bit integer
and saturates to 127.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not
fit in a signed 8-bit integer
and wraps to -126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 Abs

1-7

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Abs.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Sign | Sum

Introduced before R2006a

1 Blocks — Alphabetical List

1-8

Action Port
Add control port for action signal to subsystem
Library: Ports & Subsystems

Description
The Action Port block controls the execution of these subsystem blocks:

• If Action Subsystem blocks connected to If blocks.
• Switch Case Action Subsystem blocks connected to Switch Case blocks.
• Simulink based states in Stateflow®charts. See “Create and Edit Simulink Based

States” (Stateflow).

Parameters
States when execution is resumed — Select handling of internal states
held (default) | reset

Select how to handle internal states when a subsystem with an Action Port block
reenables.

held
When the subsystem reenables, retain the previous state values of the subsystem.
Previous state values between calls are retained even if you call other subsystem
blocks connected to the If or Switch Case block.

reset
When the subsystem reenables, reinitialize the state values.

A subsystem reenables when the logical expression for its action port evaluates to
true after having been previously false. In the following example, the Action Port
blocks for both subsystems A and B have the States when execution is resumed
parameter set to reset.

 Action Port

1-9

When case[1] is true, subsystem A is executed. Because the condition of case[1]
was not previously false, repeated calls to subsystem A, while case [1] continues to
be true, does not reset its state values. . The same behavior applies to subsystem B.

Programmatic Use
Block Parameter: InitializeStates
Type: character vector
Value: 'held' | 'reset'
Default: 'held'

Propagate sizes of variable-size signals — Select when to propagate a
variable-size signal
Only when execution is resumed (default) | During execution

Select when to propagate a variable-size signal.

Only when execution is resumed
Propagate variable-size signals only when reenabling the subsystem containing the
Action Port block.

During execution
Propagate variable-size signals at each time step.

Programmatic Use
Block Parameter: PropagateVarSize

1 Blocks — Alphabetical List

1-10

Type: character vector
Values: 'Only when execution is resumed' | 'During execution'
Default: 'Only when execution is resumed'

See Also
If | If Action Subsystem | Switch Case | Switch Case Action Subsystem

Topics
Select Subsystem Execution

Introduced before R2006a

 Action Port

1-11

Algebraic Constraint
Constrain input signal
Library: Simulink / Math Operations

Description
The Algebraic Constraint block constrains the input signal f(z) to z or 0 and outputs an
algebraic state z. The block outputs a value that produces 0 or z at the input. The output
must affect the input through a direct feedback path. In other words, the feedback path
only contains blocks with direct feedthrough. For example, you can specify algebraic
equations for index 1 differential-algebraic systems (DAEs).

Ports

Input
f(z) — Input signal
real scalar or vector

Signal is subjected to the constraint f(z) = 0 or f(z) = z to solve the algebraic loop.
Data Types: double

Output
z — Output state
real scalar or vector

Solution to the algebraic loop when the input signal f(z) is subjected to the constraint f(z)
= 0 or f(z) = z.
Data Types: double

1 Blocks — Alphabetical List

1-12

Parameters
Constraint — Constraint on input signal
f(z) = 0 (default) | f(z) = z

Type of constraint for which to solve. You can solve for f(z) = 0 or f(z) = z

Solver — Algebraic Loop Solver
auto (default) | Trust Region | Line Search

Choose between the Trust Region [1], [2] or Line Search [3] algorithms to solve the
algebraic loop. By default this value is set to auto, which selects the solver based on the
model configuration

Tolerance — Solver Tolerance
auto (default) | positive scalar

This option is visible when you explicitly specify a solver to be used (Trust region or Line
Search) in the Solver dropdown menu. Specify a smaller value for higher accuracy or a
larger value for faster execution. By default it is set to auto.

Initial Guess — Initial guess of solution value
0 (default) | scalar

Initial guess for the algebraic state z that is close to the expected solution value to
improve the efficiency of the algebraic loop solver. By default, this value is set to 0

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

 Algebraic Constraint

1-13

References
[1] Garbow, B. S., K. E. Hillstrom, and J. J. Moré. User Guide for MINPACK-1. Argonne, IL:

Argonne National Laboratory, 1980.

[2] Rabinowitz, P. H. Numerical Methods for Nonlinear Algebraic Equations. New York:
Gordon and Breach, 1970.

[3] Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations. Society for
Industrial and Applied Mathematics, Philadelphia, PA: 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code

See Also
“Algebraic Loops”

Introduced before R2006a

1 Blocks — Alphabetical List

1-14

Argument Inport
Argument input port for Simulink Function block

Description

This block is an input argument port for a function that you define in the Simulink
Function block.

Data Type Support
The Argument Inport block accepts complex or real signals of any data type that Simulink
supports, including fixed-point and enumerated data types. The Argument Inport block
also accepts a bus object as a data type.

The numeric and data types of the block output are the same as those of its input. You can
specify the signal type and data type of an input argument to an Argument Inport block
using the Signal type and Data type parameters. For more information, see “Data Types
Supported by Simulink”.

Parameters
• “Port number” on page 1-16
• “Argument Name” on page 1-16
• “Minimum” on page 1-17
• “Maximum” on page 1-17

 Argument Inport

1-15

• “Data type” on page 1-18
• “Show data type assistant” on page 1-19
• “Mode” on page 1-19
• “Data type override” on page 1-20
• “Signedness” on page 1-21
• “Word length” on page 1-21
• “Scaling” on page 1-22
• “Fraction length” on page 1-23
• “Slope” on page 1-23
• “Bias” on page 1-23
• “Output as nonvirtual bus” on page 1-24
• “Lock data type settings against changes by the fixed-point tools” on page 1-24
• “Port dimensions” on page 1-25
• “Signal type” on page 1-25

Port number
Specify the port number of the block.

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
in the parent subsystem or model block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Argument Name

Default: u

This parameter provides the name of the input argument in the function prototype of the
Simulink Function block.

1 Blocks — Alphabetical List

1-16

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Minimum
Specify the minimum value for the block to output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Maximum
Specify the maximum value for the block to output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

 Argument Inport

1-17

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Data type
Specify the output data type of the argument input.

Default: double

double
Data type is double.

single
Data type is single.

int8
Data type is int8.

uint8
Data type is uint8.

int16
Data type is int16.

uint16
Data type is uint16.

int32
Data type is int32.

uint32
Data type is uint32.

boolean
Data type is boolean.

fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).

1 Blocks — Alphabetical List

1-18

fixdt(1,16,2^0,0)
Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Data type is enumerated, for example, Enum: Basic Colors.

Bus: <object name>
Data type is a bus object.

<data type expression>
The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode
Select the category of data to specify.

Default: Built in

Built in
Built-in data types. Selecting Built in enables a second text box to the right. Select
one of the following:

• double (default)
• single
• int8

 Argument Inport

1-19

• uint8
• int16
• uint16
• int32
• uint32
• boolean

Fixed point
Fixed-point data types.

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus object
Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details, see “Create Bus Objects with the
Bus Editor”.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

For more information, see “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

1 Blocks — Alphabetical List

1-20

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that holds the quantized integer.

 Argument Inport

1-21

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias

1 Blocks — Alphabetical List

1-22

• Calculate Best-Precision Scaling

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

 Argument Inport

1-23

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Output as nonvirtual bus
Output a nonvirtual bus.

Default: Off

 On
Output a nonvirtual bus.

 Off
Output a virtual bus.

• Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

• All signals in a nonvirtual bus must have the same sample time, even if the elements of
the associated bus object specify inherited sample times. Any bus operation that would
result in a nonvirtual bus that violates this requirement generates an error. Therefore,
if you select this option all signals in the bus must have the same sample time. You can
use a Rate Transition block to change the sample time of an individual signal, or of all
signals in a bus, to allow the signal or bus to be included in a nonvirtual bus.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Lock data type settings against changes by the fixed-point
tools
Select to lock data type settings of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor.

Default: Off

1 Blocks — Alphabetical List

1-24

On
Locks all data type settings for this block.

Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings
for this block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Port dimensions
Specify the dimensions of the input signal to the block.

Default: 1

Valid values are:

n Vector signal of width n accepted
[m n] Matrix signal having m rows and n columns accepted

Signal type
Specify the numeric type of the argument input.

Default: real

real
Specify the numeric type as a real number.

complex
Specify the numeric type as a complex number.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Argument Inport

1-25

Characteristics
Dimensionalized Yes
Multidimensionalized Yes
Zero-Crossing Detection No

See Also
Argument Outport

Simulink Function

Introduced in R2014b

1 Blocks — Alphabetical List

1-26

Argument Outport
Argument output port for Simulink Function block

Description
This block is an output argument port for a function that you define in the Simulink
Function block.

Data Type Support
The Argument Outport block accepts real or complex signals of any data type that
Simulink supports. An Argument Outport block can also accept fixed-point and
enumerated data types when the block is not a root-level output port. The complexity and
data type of the block output are the same as those of its input. The Argument Outport
block also accepts a bus object as a data type.

For more information, see “Data Types Supported by Simulink”.

Parameters
• “Port number” on page 1-28
• “Argument Name” on page 1-28
• “Minimum” on page 1-29
• “Maximum” on page 1-29
• “Data type” on page 1-30

 Argument Outport

1-27

• “Show data type assistant” on page 1-31
• “Mode” on page 1-31
• “Data type override” on page 1-32
• “Signedness” on page 1-33
• “Word length” on page 1-33
• “Scaling” on page 1-34
• “Fraction length” on page 1-35
• “Slope” on page 1-35
• “Bias” on page 1-35
• “Lock output data type setting against changes by the fixed-point tools” on page 1-36
• “Output as nonvirtual bus” on page 1-36
• “Port dimensions” on page 1-37
• “Signal type” on page 1-37

Port number
Specify the port number of the block.

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
on the parent subsystem or model block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Argument Name

Specify the name of the output argument.

Default: y

This parameter provides the name of the output argument in the function prototype of the
Simulink Function block.

1 Blocks — Alphabetical List

1-28

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Minimum
Specify the minimum value for the block to output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Maximum
Specify the maximum value for the block to output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

 Argument Outport

1-29

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Data type
Specify the output data type of the external input.

Default: double

double
Data type is double.

single
Data type is single.

int8
Data type is int8.

uint8
Data type is uint8.

int16
Data type is int16.

uint16
Data type is uint16.

int32
Data type is int32.

uint32
Data type is uint32.

boolean
Data type is boolean.

fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).

1 Blocks — Alphabetical List

1-30

fixdt(1,16,2^0,0)
Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Data type is enumerated, for example, Enum: BasicColors.

Bus: <object name>
Data type is a bus object.

<data type expression>
The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode
Select the category of data to specify.

Default: Built in

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following:

• double (default)
• single
• int8

 Argument Outport

1-31

• uint8
• int16
• uint16
• int32
• uint32
• boolean

Fixed point
Fixed-point data types.

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus object
Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details, see “Create Bus Objects with the
Bus Editor”.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

1 Blocks — Alphabetical List

1-32

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that holds the quantized integer.

 Argument Outport

1-33

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias

1 Blocks — Alphabetical List

1-34

• Calculate Best-Precision Scaling

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

 Argument Outport

1-35

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Lock output data type setting against changes by the fixed-
point tools
Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor.

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Output as nonvirtual bus
Output a nonvirtual bus.

Default: Off

 On
Output a nonvirtual bus.

1 Blocks — Alphabetical List

1-36

 Off
Output a virtual bus.

• Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

• All signals in a nonvirtual bus must have the same sample time, even if the elements of
the associated bus object specify inherited sample times. Any bus operation that would
result in a nonvirtual bus that violates this requirement generates an error. Therefore,
if you select this option all signals in the bus must have the same sample time. You can
use a Rate Transition block to change the sample time of an individual signal, or of all
signals in a bus, to allow the signal or bus to be included in a nonvirtual bus.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Port dimensions
Specify the dimensions that a signal must have to connect to this Outport block.

Default: 1

Valid values are:

N The signal connected to this port must be a vector of size N.
[R C] The signal connected to this port must be a matrix having R rows

and C columns.

Clearing via bus object enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Signal type
Specify the numeric type of the signal output by this block.

 Argument Outport

1-37

Default: real

real
Output a real-valued signal. The signal connected to this block must be real. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

complex
Output a complex signal. The signal connected to this block must be complex. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Characteristics
Dimensionalized Yes
Multidimensionalized Yes
Zero-Crossing Detection No

See Also
Argument Inport

Simulink Function

Introduced in R2014b

1 Blocks — Alphabetical List

1-38

ASCII to String
Uint8 vector signal to string signal
Library: Simulink / String

Description
The ASCII to String block converts uint8 vector signals to string signals. The block treats
each element in the input vector as an ASCII value during the conversion. For example,
the block converts an input vector of [72 101 108 108 111] to the string "Hello".

Ports

Input
Port_1 — ASCII signal
vector

ASCII signal, specified as a vector.

While using dynamic strings, if the length of the input vector exceeds the number of
characters specified in the configuration parameter Buffer size of dynamically-sized
string (bytes) (256 by default), the ASCII to String block truncates the string output to
the buffer size-1 (for example, 255), for generated code. To avoid truncation, increase the
value of the Buffer size of dynamically-sized string (bytes) configuration parameter.
Example: [088 099]
Data Types: uint8

Output
Port_1 — Converted string signal
scalar

 ASCII to String

1-39

Converted string signal from input ASCII signal, specified as a scalar. The block converts
each ASCII element in the vector into its alphanumeric equivalent and outputs all
elements concatenated into one string.
Data Types: string

Block Characteristics
Data Types base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
Compose String | Scan String | String Compare | String Concatenate | String Constant |
String Find | String Length | String To ASCII | String To Enum | String to Double | String
to Single | Substring | To String

Topics
“String Data Type Conversions”
“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-40

Assertion
Check whether signal is zero

Library
Model Verification

Description
The Assertion block checks whether any of the elements of the input signal is zero. If all
elements are nonzero, the block does nothing. If any element is zero, the block halts the
simulation, by default, and displays an error message. Use the block parameter dialog box
to:

• Specify that the block should display an error message when the assertion fails but
allow the simulation to continue.

• Specify a MATLAB expression to evaluate when the assertion fails.
• Enable or disable the assertion.

You can also use the Model Verification block enabling setting in the Configuration
Parameters dialog box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification library are
intended to facilitate creation of self-validating models. For example, you can use model
verification blocks to test that signals do not exceed specified limits during simulation.
When you are satisfied that a model is correct, you can turn error checking off by
disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

 Assertion

1-41

The Assertion block works in normal, accelerator and rapid accelerator simulation modes.

Note For information about how Simulink Coder™ generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Assertion block accepts input signals of any dimensions and any numeric data type
that Simulink supports, including fixed-point data types.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Enable assertion

Clearing this check box disables the Assertion block, that is, causes the model to
behave as if the Assertion block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box lets you enable or
disable all Assertion blocks in a model regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Simulink software to terminate the simulation
when the block input is zero. After terminating the simulation, the software displays
an error. Clearing this check box causes the Simulink software to continue the
simulation and display a warning when the block input is zero.

Sample time

Note This parameter is not visible in the block dialog box unless it is explicitly set to
a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-42

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Assertion

1-43

Assignment
Assign values to specified elements of signal
Library: Simulink / Math Operations

Description
The Assignment block assigns values to specified elements of the signal. You specify the
indices of the elements to be assigned values either by entering the indices in the block
dialog box or by connecting an external indices source or sources to the block. The signal
at the block data port, U, specifies values to be assigned to Y. The block replaces the
specified elements of Y with elements from the data signal.

Based on the value you enter for the Number of output dimensions parameter, a table
of index options is displayed. Each row of the table corresponds to one of the output
dimensions in Number of output dimensions. For each dimension, you can define the
elements of the signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. To enable an external index port, in the corresponding row of the
table, set Index Option to Index vector (port).

For example, assume a 5-D signal with a one-based index mode. The table in the
Assignment block dialog changes to include one row for each dimension. If you define
each dimension with the following entries:

Row Index Option Index
1 Assign all
2 Index vector (dialog) [1 3 5]
3 Starting index

(dialog)
4

4 Starting index (port)
5 Index vector (port)

1 Blocks — Alphabetical List

1-44

The assigned values are Y(1:end,[1 3 5],4:3+size(U,3),Idx4:Idx4+size(U,
4)-1,Idx5)=U, where Idx4 and Idx5 are the input ports for dimensions 4 and 5.

When using the Assignment block in normal mode, Simulink initializes block outputs to
zero even if the model does not explicitly initialize them. In accelerator mode, Simulink
converts the model into an S-Function. This involves code generation. The code generated
may not do implicit initialization of block outputs. In such cases, you must explicitly
initialize the model outputs.

You can use the block to assign values to vector, matrix, or multidimensional signals.

You can use an array of buses as an input signal to an Assignment block.

Assignment Block in Conditional Subsystem
If you place an Assignment block in a conditional subsystem block, a signal buffer can be
inserted in many cases, and merging of signals from Assignment blocks with partial
writes can cause an error.

However, if you select the Ensure outport is virtual check box for the conditional
subsystem Outport block, such cases are supported and partial writes to arrays using
Assignment blocks are possible.

 Assignment

1-45

Ports

Input
Y0 — Input initialization signal
scalar | vector

The initialization signal for the output signal. If an element is not assigned another value,
then the value of the output element matches this input signal value.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | Boolean | enumerated | bus

U — Input data port
scalar | vector

Value assigned to the output element when specified.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | Boolean | enumerated | bus

IndxN — Nth index signal
scalar | vector

External port specifying an index for the assignment of the corresponding output
element.

Dependencies

To enable an external index port, in the corresponding row of the Index Option table, set
Index Option to Index vector (port) or Starting index (port).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | enumerated

Output
Y — Output signal with assigned values
scalar | vector

The output signal with assigned values for the specified elements.

1 Blocks — Alphabetical List

1-46

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | enumerated | bus

Parameters
Number of output dimensions — Number of dimensions of the output signal
1 (default) | integer

Enter the number of dimensions of the output signal.

Command-Line Information
Parameter: NumberOfDimensions
Type: character vector
Values: integer
Default: '1'

Index mode — Index mode
One-based (default) | Zero-based

Select the indexing mode. If One-based is selected, an index of 1 specifies the first
element of the input vector. If Zero-based is selected, an index of 0 specifies the first
element of the input vector.

Command-Line Information
Parameter: IndexMode
Type: character vector
Values: 'Zero-based' | 'One-based'
Default: 'One-based'

Index Option — Index method for elements
Index vector (dialog) (default) | Assign all | Index vector (port) |
Starting index (dialog) | Starting index (port)

Define, by dimension, how the elements of the signal are to be indexed. From the list,
select:

Menu Item Action
Assign all This is the default. All elements are

assigned.

 Assignment

1-47

Menu Item Action
Index vector (dialog) Enables the Index column. Enter the

indices of elements.
Index vector (port) Disables the Index column. The index port

defines the indices of elements.
Starting index (dialog) Enables the Index column. Enter the

starting index of the range of elements to
be assigned values.

Starting index (port) Disables the Index column. The index port
defines the starting index of the range of
elements to be assigned values.

If you choose Index vector (port) or Starting index (port) for any dimension
in the table, you can specify one of these values for the Initialize output (Y) parameter:

• Initialize using input port <Y0>
• Specify size for each dimension in table

Otherwise, Y0 always initializes output port Y.

The Index and Output Size columns are displayed as relevant.

Command-Line Information
Parameter: IndexOptionArray
Type: character vector
Values: 'Assign all' | 'Index vector (dialog)' | 'Index option (port)' |
'Starting index (dialog)' | 'Starting index (port)'
Default: 'Index vector (dialog)'

Index — Index of elements
1 (default) | integer

If the Index Option is Index vector (dialog), enter the index of each element you
are interested in.

If the Index Option is Starting index (dialog), enter the starting index of the
range of elements to be selected. The number of elements from the starting point is
determined by the size of this dimension at U.

1 Blocks — Alphabetical List

1-48

Command-Line Information
Parameter: IndexParamArray
Type: character vector
Values: cell array
Default: '{ }'

Output Size — Width of the block output signal
1 (default) | integer

Enter the width of the block output signal.

Dependencies

To enable this column, select Specify size for each dimension in table for the
Initialize output (Y) parameter.

Command-Line Information
Parameter: OutputSizeArray
Type: character vector
Values: cell array
Default: '{ }'

Initialize output (Y) — How to initialize the output signal
Initialize using input port <Y0> (default) | Specify size for each
dimension in the table

Specify how to initialize the output signal.

• Initialize using input port <Y0> – Signal at the input port Y0 initializes the
output.

• Specify size for each dimension in table – Requires you to specify the
width of the block's output signal in the Output Size parameter. If the output has
unassigned elements, the value of those elements is undefined.

Dependency

Enabled when you set Index Option to Index vector (port) or Starting index
(port).

Command-Line Information
Parameter: OuputInitialize
Type: character vector

 Assignment

1-49

Values: 'Initialize using input port <Y0>' | 'Specify size for each
dimension in table'
Default: 'Initialize using input port <Y0>'

Action if any output element is not assigned — Specify whether to
produce a warning or error if you have not assigned all output elements
Error (default) | Warning | None

Specify whether to produce a warning or error if you have not assigned all output
elements. Options include:

• Error — Simulink software terminates the simulation and displays an error.
• Warning — Simulink software displays a warning and continues the simulation.
• None — Simulink software takes no action.

Command-Line Information
Parameter: DiagnosticForDimensions
Type: character vector
Values: 'Error' | 'Warning' | 'None'
Default: 'None'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

1 Blocks — Alphabetical List

1-50

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Assignment.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
“Combine Buses into an Array of Buses” | Bus Assignment

 Assignment

1-51

Introduced before R2006a

1 Blocks — Alphabetical List

1-52

Backlash
Model behavior of system with play
Library: Simulink / Discontinuities

Description
The Backlash block implements a system in which a change in input causes an equal
change in output, except when the input changes direction. When the input changes
direction, the initial change in input has no effect on the output. The amount of side-to-
side play in the system is referred to as the deadband. The deadband is centered about
the output. This figure shows an initial state, with the default deadband width of 1 and
initial output of 0.

A system with play can be in one of three modes.

Mode Input Output
Disengaged Inside deadband zone. Remains constant.
Engaged-positive direction Outside deadband zone and

increasing.
Equals input minus half of
deadband width.

Engaged-negative direction Outside deadband zone and
decreasing.

Equals input plus half of
deadband width.

The Initial output parameter value defines the initial center of the deadband zone.

This table shows output values when initial conditions are: Deadband width = 2 and
Initial output = 5.

 Backlash

1-53

Output Value Condition
5 4 < input < 6
input + 1 input < 4
input - 1 input > 6

For example, you can use the Backlash block to model the meshing of two gears. The
input and output are both shafts with a gear on one end, and the input shaft drives the
output shaft. Extra space between the gear teeth introduces play. The width of this
spacing is the Deadband width parameter. If the system is disengaged initially, the
Initial output parameter defines the output.

These figures illustrate operation when the initial input is within the deadband and the
system begins in disengaged mode.

When the input increases and reaches the end of the deadband, it engages the output.
The output remains at its previous value.

After the input engages the output, the output changes by the same amount as the input.

If the input reverses direction, it disengages from the output. The output remains
constant until the input reaches the end of the deadband and engages again.

1 Blocks — Alphabetical List

1-54

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal to the backlash algorithm. The value of this signal is either in the deadband
or engaging the output in a positive or negative direction.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Output
Port_1 — Output signal
scalar | vector

Output signal after the backlash algorithm is applied to the input signal. When the input
is in the deadband, then the output remains unchanged. If the input is engaged with the
output, then the output changes an equal amount as the input.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Deadband width — Specify the width of the deadband
1 (default) | scalar | vector

Specify the size of the deadband zone centered on the output value. When the input
signal is inside the deadband, then a change in input does not cause a change in output.
When the input signal is outside of the deadband, then the output changes an equal
amount as the input.

Programmatic Use
Block Parameter: BacklashWidth
Type: character vector
Values: real scalar or vector
Default: '1'

 Backlash

1-55

Initial output — Specify the initial output value
0 (default) | scalar | vector

Specify the initial center of the deadband zone. If the initial input value is in the
deadband zone, then the output value is equal to Initial output. If the initial input value
is outside of the deadband zone, then the output value is Initial output plus or minus
half of the deadzone width.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector
Values: real scalar or vector
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox™ license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

1 Blocks — Alphabetical List

1-56

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | single | base integer

 Backlash

1-57

Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset function (string.h) in certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Backlash.

See Also
Dead Zone

Introduced before R2006a

1 Blocks — Alphabetical List

1-58

Unresolved Link
Indicate unresolved reference to library block

Description
This block indicates an unresolved reference to a library block (see “Linked Blocks”). You
can use this block's parameter dialog box to fix the reference to point to the actual
location of the library block.

Parameters
Details

The Details field contains a description of the cause of the unresolved link. Simulink
tries to help you find and install missing products that a model needs to run. For
missing products, the block description provides a link. Click the link to open Add-On
Explorer and install the missing products.

 Unresolved Link

1-59

You can customize the Unresolved Link block description for your library to include
URLs as follows:

set_param(library1,'libraryinfo','https://www.mathworks.com');

1 Blocks — Alphabetical List

1-60

Here, library1 is the name of the library for which you want to change the
description, and libraryinfo is the property that provides the description of the
unresolved link.

Source block
Path of the library block that this link represents. To fix a bad link, either click the link
in the description to open Add-On Explorer and install a missing product, or edit the
Source block field to the correct path of the library block. Then select Apply or OK to
apply the fix and close the dialog box.

Alternatively, to fix an unresolved link, you can:

• Delete the unresolved block and copy the library block back into your model.
• Add the folder that contains the required library to the MATLAB path and select

either Simulation > Update Diagram or Diagram > Refresh Blocks.

Source type
Type of library block that this link represents.

See Also

Topics
“Linked Blocks”
“Fix Unresolved Library Links”

Introduced in R2014a

 Unresolved Link

1-61

Band-Limited White Noise
Introduce white noise into continuous system
Library: Simulink / Sources

Description
The Band-Limited White Noise block generates normally distributed random numbers
that are suitable for use in continuous or hybrid systems.

Simulation of White Noise
Theoretically, continuous white noise has a correlation time of 0, a flat power spectral
density (PSD), and a total energy of infinity. In practice, physical systems are never
disturbed by white noise, although white noise is a useful theoretical approximation when
the noise disturbance has a correlation time that is very small relative to the natural
bandwidth of the system.

In Simulink software, you can simulate the effect of white noise by using a random
sequence with a correlation time much smaller than the shortest time constant of the
system. The Band-Limited White Noise block produces such a sequence. The correlation
time of the noise is the sample rate of the block. For accurate simulations, use a
correlation time much smaller than the fastest dynamics of the system. You can get good
results by specifying

tc
f

ª

1

100

2p

max

,

where fmax is the bandwidth of the system in rad/sec.

1 Blocks — Alphabetical List

1-62

Comparison with the Random Number Block
The primary difference between this block and the Random Number block is that the
Band-Limited White Noise block produces output at a specific sample rate. This rate is
related to the correlation time of the noise.

Usage with the Averaging Power Spectral Density Block
The Band-Limited White Noise block specifies a two-sided spectrum, where the units are
Hz. The Averaging Power Spectral Density block specifies a one-sided spectrum, where
the units are the square of the magnitude per unit radial frequency: mag^2/(rad/sec).
When you feed the output of a Band-Limited White Noise block into an Averaging Power
Spectral Density block, the average PSD value is π times smaller than the Noise power of
the Band-Limited White Noise block. This difference is the result of converting the units
of one block to the units of the other, 1/(1/2)(2π) = 1/π, where:

• 1/2 is the factor for converting from a two-sided to one-sided spectrum.
• 2π is the factor for converting from Hz to rad/sec.

Ports

Output
Port_1 — Normally distributed random numbers
scalar | vector | matrix | N-D array

Normally distributed random numbers specified as a scalar, vector, matrix, or N-D array.
Data Types: double

Parameters
Noise power — Height of PSD of white noise
[0.1] (default) | scalar | vector | matrix | N-D array

Specify the height of the PSD of the white noise as a scalar, vector, matrix, or N-D array of
positive values.

 Band-Limited White Noise

1-63

Programmatic Use
Block Parameter: Cov
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '[0.1]'

Sample time — Correlation time of noise
0.1 (default) | scalar | vector

Correlation time of the noise. For more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: Ts
Type: character vector
Values: scalar | vector
Default: '0.1'

Seed — Starting seed
[23341] (default) | scalar | vector | matrix | N-D array

Specify the starting seed for the random number generator as a scalar, vector, matrix, or
N-D array. Values must be positive, real-valued, and finite.

Programmatic Use
Block Parameter: seed
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '[23341]'

Interpret vector parameters as 1-D — Treat vector parameters as 1-D
on (default) | off

Select to output a 1-D array when the block parameters are vectors. Otherwise, output a
2-D array one of whose dimensions is 1. For more information, see “Determining the
Output Dimensions of Source Blocks”.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-64

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Algorithms
To produce the correct intensity of this noise, the covariance of the noise is scaled to
reflect the implicit conversion from a continuous PSD to a discrete noise covariance. The
appropriate scale factor is 1/tc, where tc is the correlation time of the noise. This scaling
ensures that the response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because of this scaling,
the covariance of the signal from the Band-Limited White Noise block is not the same as
the Noise power (intensity) parameter. This parameter is actually the height of the PSD
of the white noise. This block approximates the covariance of white noise as the Noise
power divided by tc.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot use inside a triggered subsystem hierarchy.

See Also
Random Number

Topics
“Sample Time”

 Band-Limited White Noise

1-65

Introduced before R2006a

1 Blocks — Alphabetical List

1-66

Bias
Add bias to input
Library: Simulink / Math Operations

Description
The Bias block adds a bias, or offset, to the input signal according to

Y = U + bias

where U is the block input and Y is the output.

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal to which the bias is added to create the output signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector

Output signal resulting from adding the bias to the input signal.

 Bias

1-67

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Bias — Offset to add to the input signal
0.0 (default) | scalar | vector

Specify the value of the offset to add to the input signal.

Programmatic Use
Block Parameter: Bias
Type: character vector
Values: real, finite
Default: '0.0'

Saturate on integer overflow — Choose the behavior when integer overflow
occurs
on (default) | boolean

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks — Alphabetical List

1-68

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

 Bias

1-69

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL Code Generation, see Bias.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Add | Divide | Gain

Introduced before R2006a

1 Blocks — Alphabetical List

1-70

Bit Clear
Set specified bit of stored integer to zero
Library: Simulink / Logic and Bit Operations

Description
The Bit Clear block sets the specified bit, given by its index, of the stored integer to zero.
Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter, where bit zero is
the least significant bit.

Ports

Input
Port_1 — Input signal
scalar or vector

Input signal with the specified bit of the stored integer.
Data Types: single | double | Boolean | fixed point

Output
Port_1 — Output signal
scalar or vector

Output signal with the specified bit set to zero.

 Bit Clear

1-71

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Index of bit — Index of bit
0 (default) | scalar or vector

Index of bit, where bit 0 is the least significant bit.

Programmatic Use
Block Parameter: iBit
Type: scalar or vector
Values: {'0'}
Default: '0'

Block Characteristics
Data Types Booleana | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

a.

See Also
Bit Rotate | Bit Set | Bit Shift | Bitwise Operator

Introduced before R2006a

1 Blocks — Alphabetical List

1-72

Bit Concat
Concatenates up to 128 input words into single output

Library
HDL Coder / HDL Operations

Description
The Bit Concat block concatenates up to 128 input words into a single output. The input
port labeled L designates the lowest-order input word. The port labeled H designates the
highest-order input word. The right-to-left ordering of words in the output follows the
low-to-high ordering of input signals.

How the block operates depends on the number and dimensions of the inputs, as follows:

• Single input: The input is a scalar or a vector. When the input is a vector, the coder
concatenates the individual vector elements.

• Two inputs: Inputs are any combination of scalar and vector. When one input is scalar
and the other is a vector, the coder performs scalar expansion. Each vector element is
concatenated with the scalar, and the output has the same dimension as the vector.
When both inputs are vectors, they must have the same size.

• Three or more inputs (up to a maximum of 128 inputs): Inputs are uniformly scalar or
vector. All vector inputs must have the same size.

 Bit Concat

1-73

Parameters
Number of Inputs: Enter an integer specifying the number of input signals. The number
of block input ports updates when you change Number of Inputs.

• Default: 2
• Minimum: 1
• Maximum: 128

Caution Make sure that the Number of Inputs is equal to the number of signals you
connect to the block. If the block has unconnected inputs, an error occurs at code
generation time.

Ports
The block has up to 128 input ports, with H representing the highest-order input word,
and L representing the lowest-order input word. The maximum concatenated output word
size is 128 bits.

Supported Data Types
• Input: Fixed-point, integer (signed or unsigned), Boolean
• Output: Unsigned fixed-point or integer

See Also
Bit Shift | Bit Reduce | Bit Rotate | Bit Slice

Introduced in R2014a

1 Blocks — Alphabetical List

1-74

Bit Reduce
AND, OR, or XOR bit reduction on all input signal bits to single bit

Library
HDL Coder / HDL Operations

Description
The Bit Reduce block performs a selected bit-reduction operation (AND, OR, or XOR) on
all the bits of the input signal, for a single-bit result.

Parameters
Reduction Mode

Specifies the reduction operation:

• AND (default): Perform a bitwise AND reduction of the input signal.
• OR: Perform a bitwise OR reduction of the input signal.
• XOR: Perform a bitwise XOR reduction of the input signal.

 Bit Reduce

1-75

Ports
The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Minimum bit width: 2
• Maximum bit width: 128

Output
Supported data type: ufix1

See Also
Bit Shift | Bit Concat | Bit Rotate | Bit Slice

Introduced in R2014a

1 Blocks — Alphabetical List

1-76

Bit Rotate
Rotate input signal by bit positions

Library
HDL Coder / HDL Operations

Description
The Bit Rotate block rotates the input signal left or right by the specified number of bit
positions.

Parameters
Rotate Mode: Specifies direction of rotation, left or right. The default is Rotate Left.

Rotate Length: Specifies the number of bits to rotate. Specify a value greater than or
equal to zero. The default is 0.

Ports
The block has the following ports:

 Bit Rotate

1-77

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Minimum bit width: 2
• Maximum bit width: 128

Output
Has the same data type as the input signal.

See Also
Bit Shift | Bit Concat | Bit Reduce | Bit Slice

Introduced in R2014a

1 Blocks — Alphabetical List

1-78

Bit Set
Set specified bit of stored integer to one
Library: Simulink / Logic and Bit Operations

Description
The Bit Set block sets the specified bit of the stored integer to one. Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter, where bit zero is
the least significant bit.

Ports
Input
Port_1 — Input signal
scalar or vector

Input signal with the specified bit of the stored integer.
Data Types: single | double | Boolean | fixed point

Output
Port_1 — Output signal
scalar or vector

Output signal with the specified bit set to 1.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Bit Set

1-79

Parameters
Index of bit — Index of bit
0 (default) | scalar or vector

Index of bit where bit 0 is the least significant bit.

Programmatic Use
Block Parameter: iBit
Type: character vector
Values: positive integer
Default:'0'

Block Characteristics
Data Types Booleana | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

a.

See Also
Bit Clear | Bit Rotate | Bit Shift | Bitwise Operator

Introduced before R2006a

1 Blocks — Alphabetical List

1-80

Bit Shift
Logical or arithmetic shift of input signal

Library
HDL Coder / HDL Operations

Description
The Bit Shift block performs a logical or arithmetic shift on the input signal.

Parameters
Shift Mode

Default: Shift Left Logical

Specifies the type and direction of shift:

• Shift Left Logical (default)
• Shift Right Logical
• Shift Right Arithmetic

 Bit Shift

1-81

Shift Length

Specifies the number of bits to be shifted. Specify a value greater than or equal to zero.
The default is 0.

Ports
The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Minimum bit width: 2
• Maximum bit width: 128

Output
Has the same data type and bit width as the input signal.

See Also
Bit Rotate | Bit Concat | Bit Reduce | Bit Slice

Introduced in R2014a

1 Blocks — Alphabetical List

1-82

Bit Slice
Return field of consecutive bits from input signal

Library
HDL Coder / HDL Operations

Description
The Bit Slice block returns a field of consecutive bits from the input signal. Specify the
lower and upper boundaries of the bit field by using zero-based indices in the LSB
Position and MSB Position parameters.

Parameters
MSB Position

Specifies the bit position (zero-based) of the most significant bit (MSB) of the field to
extract. The default is 7.

For an input word size WS, LSB Position and MSB Position must satisfy the following
constraints:

WS > MSB Position >= LSB Position >= 0;

 Bit Slice

1-83

The word length of the output is computed as (MSB Position - LSB Position)
+ 1.

LSB Position

Specifies the bit position (zero-based) of the least significant bit (LSB) of the field to
extract. The default is 0.

Ports
The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Maximum bit width: 128

Output
Supported data types: unsigned fixed-point or unsigned integer.

See Also
Bit Rotate | Bit Concat | Bit Reduce | Bit Shift

Introduced in R2014a

1 Blocks — Alphabetical List

1-84

Bitwise Operator
Specified bitwise operation on inputs
Library: Simulink / Logic and Bit Operations

Description
The Bitwise Operator block performs the bitwise operation that you specify on one or
more operands. Unlike logic operations of the Logical Operator block, bitwise operations
treat the operands as a vector of bits rather than a single value.

Restrictions on Block Operations
The Bitwise Operator block does not support shift operations. For shift operations, use
the Shift Arithmetic block.

When configured as a multi-input XOR gate, this block performs modulo-2 addition
according to the IEEE® Standard for Logic Elements.

Ports
Input
Port_1 — Input signal
scalar | vector

Input signal, specified as a scalar or vector.

• The NOT operator accepts only one input, which can be a scalar or a vector. If the
input is a vector, the output is a vector of the same size containing the bitwise logical
complements of the input vector elements.

 Bitwise Operator

1-85

• For a single vector input, the block applies the operation (except the NOT operator) to
all elements of the vector.

• For two or more inputs, the block performs the operation between all of the inputs. If
the inputs are vectors, the block performs the operation between corresponding
elements of the vectors to produce a vector output.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output signal
scalar | vector

The output signal specified as the output data type, which the block inherits from the
driving block, must represent zero exactly. Data types that satisfy this condition include
signed and unsigned integer data types.

The size of the block output depends on the number of inputs, the vector size, and the
operator you select. If you do not specify a bit mask, the output is a scalar. If you do
specify a bit mask, the output is a vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Operator — Bitwise logical operator
AND (default) | OR | NOR | NAND | XOR | NOT

Specify the bitwise logical operator for the block operands.

You can select one of these bitwise operations:

Bitwise Operation Description
AND TRUE if the corresponding bits are all TRUE
OR TRUE if at least one of the corresponding bits is TRUE
NAND TRUE if at least one of the corresponding bits is FALSE

1 Blocks — Alphabetical List

1-86

Bitwise Operation Description
NOR TRUE if no corresponding bits are TRUE
XOR TRUE if an odd number of corresponding bits are TRUE
NOT TRUE if the input is FALSE (available only for single input)

Programmatic Use
Block Parameter: logicop
Type: character vector
Values: 'AND'|'OR' |'NAND'|'NOR' |'XOR' | 'NOT'
Default: 'AND'

Use bit mask — Select to use bit mask
checked (default) | unchecked

Select to use the bit mask. Clearing this check box enables Number of input ports and
disables Bit Mask and Treat mask as.

Programmatic Use
Block Parameter: UseBitMask
Type: character vector
Values: 'off'|'on'
Default: 'on'

Number of input ports — Number of input signals
1 (default) | integer

Specify the number of inputs. You can have more than one input ports.

Dependency

Clearing the Use bit mask check box enables Number of input ports and disables Bit
Mask and Treat mask as.

Programmatic Use
Block Parameter: NumInputPorts
Type: character vector
Values: positive integer
Default: '1'

Bit Mask — Bit mask to associate with a single input
bin2dec (default)

 Bitwise Operator

1-87

Specify the bit mask to associate with a single input.

You can use the bit mask to set or clear a bit on the input.

To perform a... Set the Operator
parameter to...

And create a bit mask
with...

Bit set OR A 1 for each corresponding
input bit that you want to
set to 1

Bit clear AND A 0 for each corresponding
input bit that you want to
set to 0

Suppose you want to set the fourth bit of an 8-bit input vector. The bit mask would be
00010000, which you can specify as 2^4 for the Bit Mask parameter. To clear the bit, the
bit mask would be 11101111, which you can specify as
2^7+2^6+2^5+2^3+2^2+2^1+2^0 for the Bit Mask parameter.

Tip Do not use a mask greater than 53 bits. Otherwise, an error message appears during
simulation.

Dependency

This parameter is available only when you select Use bit mask.

Programmatic Use
Block Parameter: BitMask
Type: character vector
Values: positive integer
Default: 'bin2dec('11011001')'

Treat mask as — Treat the mask as a real-world value or a stored integer
Stored Integer (default) | Real World Value

Specify whether to treat the mask as a real-world value or a stored integer.

The encoding scheme is V = SQ + B, as described in “Scaling” (Fixed-Point Designer) in
the Fixed-Point Designer™ documentation. Real World Value treats the mask as V.
Stored Integer treats the mask as Q.

1 Blocks — Alphabetical List

1-88

Dependency

This parameter is available only when you select Use bit mask.

Programmatic Use
Block Parameter: BitMaskRealWorld
Type: character vector
Values: 'Real World Value' | 'Stored Integer'
Default: 'Stored Integer'

Block Characteristics
Data Types Booleana | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

No

a.

See Also
Compare To Constant | Compare To Zero | Logical Operator | Shift Arithmetic

Introduced before R2006a

 Bitwise Operator

1-89

Block Support Table
View data type support for Simulink blocks

Library
Model-Wide Utilities

Description
The Block Support Table block helps you access a table that lists the data types that
Simulink blocks support. Double-click the block to view the table.

Data Type Support
Not applicable

Parameters
Not applicable

Characteristics
Data Types Not applicable
Multidimensional Signals No

1 Blocks — Alphabetical List

1-90

Variable-Size Signals No
Code Generation Yes

Alternatives
To access the information in the Block Support Table, you can enter
showblockdatatypetable at the MATLAB command prompt.

Introduced in R2007b

 Block Support Table

1-91

Bus Assignment
Replace specified bus elements
Library: Simulink / Signal Routing

Description
The Bus Assignment block assigns the values of a signal to bus elements. Use a Bus
Assignment block to change bus element values without adding Bus Selector and Bus
Creator blocks that select bus elements and reassemble them into a bus.

Connect the bus signal to the first input port. To other input ports, connect one or more
signals whose values you want to assign to a bus element. Use the Block Parameters
dialog box to specify the bus elements to be replaced. The block displays an assignment
input port for each such element. For an example of a model that uses a Bus Assignment
block, see “Assign Signal Values to a Bus”.

By default, Simulink repairs broken selections in the Bus Assignment Block Parameters
dialog boxes that are due to upstream bus hierarchy changes. Simulink generates a
warning to highlight that it modified the model. To prevent Simulink from making these
repairs automatically, in the Model Configuration Parameters > Diagnostics >
Connectivity pane, set the “Repair bus selections” diagnostic to Error without
repair.

Limitations
When using arrays of buses with a Bus Assignment block, these limitations apply:

• You can assign or replace a subbus that is an array of buses. For a nested bus that is
nested inside an array of buses, see “Assign into Array of Buses Signals”.

• To replace a signal in an array of buses, use a Selector block to select the index for the
bus element that you want to use with the Bus Assignment block. Then, use that
selected bus element with the Bus Assignment block.

1 Blocks — Alphabetical List

1-92

Ports

Input
Bus — Accept bus signal for bus element value assignment
real or complex values of any data type supported by Simulink

Input bus signals can have real or complex values of any data type supported by Simulink,
including bus objects, arrays of buses, fixed-point, and enumerated data types. For details
about data types, see Simulink, “Data Types Supported by Simulink”.

The signal connected to the assignment port must have the same structure, data type,
and sample time as the bus element to which it corresponds. You can use a Rate
Transition block to change the sample time of an individual signal or signals in a bus, to
include the signal or bus in a nonvirtual bus. See “Virtual and Nonvirtual Buses” for more
information.

:= — Accept signals whose value are assigned to bus elements
real or complex values of any data type supported by Simulink

Assignment input ports can accept signals can have real or complex values of any data
type supported by Simulink, including bus objects, arrays of buses, fixed-point, and
enumerated data types. You cannot use the Bus Assignment block to replace a bus that is
nested within an array of buses. For details about data types, see Simulink, “Data Types
Supported by Simulink”.

The Bus Assignment block assigns signals connected to its assignment input ports to
specified elements of the bus connected to its bus input port. The block replaces the
signals previously assigned to those elements. The change does not affect the composition
of the bus; it affects only the values of the signals themselves. Signals not replaced are
unaffected by the replacement of other signals.

Output
Bus — Output bus signal
virtual or nonvirtual bus

Bus that includes the assigned bus element values and the values of the bus elements of
the input bus that you did not assign values to.

 Bus Assignment

1-93

Parameters
Signals in the bus — Bus element signals of input bus
list of signal names

List of the bus element signals of the input bus signal. An arrow next to a signal name
indicates that the input signal is a bus. To display the signals in an input bus, click the
arrow.

Click any item in the list to select it. To find the source of the selected signal, click Find.
Simulink opens and highlights the system containing the signal source. To move the
currently selected signal into the adjacent list of signals to be assigned values (see
Signals that are being assigned below), click Select>>. To refresh the display to
reflect modifications to the bus connected to the block, click Refresh.

Filter by name — Filter set of displayed signals
text

Specify a search term to use for filtering a long list of input signals. Do not enclose the
search term in quotation marks. The filter does a partial string search. To access filtering
options, including using a regular expression for specifying the search term, click the
button on the right of the Filter by name edit box.

Enable regular expression — Filter set of displayed input signals
off (default) | on

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).
Dependencies

To access this parameter, click the button on the right of the Filter by name edit box.

Show filtered results as a flat list — Filter set of displayed input signals
off (default) | on

By default, the list displays as a tree list of filtered signals, based on the search text in the
Filter by name edit box. To use a flat list format that uses dot notation to reflect the
hierarchy of bus signals, select this parameter.

1 Blocks — Alphabetical List

1-94

Dependencies

To access this parameter, click the button on the right of the Filter by name edit box

Signals that are being assigned — Bus element signals to be assigned
list of signal names

Names of bus elements to be assigned values. This block displays an assignment input
port for each bus element in this list. The label of the corresponding input port contains
the name of the element. You can order the signals by using the Up, Down, or Remove.
Port connectivity is maintained when you change the signal order.

If an input bus no longer contains a bus element, three question marks (???) appear
before the name of that bus element The reason for this event is that the bus has changed
since the last time you refreshed the Bus Assignment block input and bus element
assignment lists. To address this issue, either modify the bus to include a signal of the
specified name or remove the name from the list of bus elements designated to be
assigned values.

Programmatic Use
Block Parameter: OutputSignals
Type: character vector
Values: 'signal1'|'signal2'
Default: none

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 Bus Assignment

1-95

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block has a single, default HDL architecture. See Bus Assignment.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Creator | Bus Selector

Topics
“Getting Started with Buses”
“Combine Buses into an Array of Buses”
“Composite Signals”
“Buses and Libraries”

Introduced before R2006a

1 Blocks — Alphabetical List

1-96

Bus Creator
Create bus signal from input signals
Library: Simulink / Commonly Used Blocks

Simulink / Signal Routing

Description
The Bus Creator block combines a set of signals into a bus. To bundle a group of signals
with a Bus Creator block, set the block parameter Number of inputs to the number of
signals in the group. The block displays the number of inport ports that you specify.
Connect to the resulting input ports the signals that you want to group.

You can connect any type of signal to the inputs, including other bus signals. To access
individual signals in a bus signal, connect the output port of the block to a Bus Selector
block port.

The signals in the bus are ordered from the top input port to the bottom input port. See
“Port Location After Rotating or Flipping” for a description of the port order for various
block orientations. To rearrange the signals in the output bus signal, use buttons such as
Up or Down buttons.

Simulink hides the name of a Bus Creator block when you copy it from the Simulink
library to a model.

Tip For models that include bus signals composed of many bus elements that feed
subsystems, consider using the In Bus Element and Out Bus Element blocks. You can use
these bus element port blocks instead of Inport with Bus Selector blocks for inputs, and
Outport with Bus Creator blocks for outputs. These bus element port blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.

 Bus Creator

1-97

• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus
Selector and Goto block configuration.

Ports

Input
Port_1 — Accept signal to include in bus
real or complex values of any data type supported by Simulink

Input signals can have real or complex values of any data type supported by Simulink,
including bus objects, arrays of buses, fixed-point, and enumerated data types. For details
about data types, see Simulink, “Data Types Supported by Simulink”.

Output
Port_1 — Output bus signal
virtual or nonvirtual bus

Bus that combines the input signals.

Parameters
Number of inputs — Number of input ports
2 (default) | integer

Number of inputs, not fewer than two. Increasing the number of connected ports adds
empty ports below the connected ports. Before you simulate the model, make sure an
input signal is connected to each input port.

Tip As you draw a new signal line close to input side of a virtual Bus Creator block, if all
input ports are already connected, the :

• Adds another input port to the Bus Creator block
• Updates the Number of inputs parameter

1 Blocks — Alphabetical List

1-98

• Add to the list of bus signals a signal name for the new signal

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer greater than or equal to 2
Default: '2'

Signals in the bus — Input signals
list of signal names

List of input signals to combine into a bus signal. An arrow next to a signal name
indicates that the input signal is a bus. To display the signals in an input bus, click the
arrow. For information about working with the signals in the list, see “Bus Creation Using
Bus Creator Blocks” .

Filter by name — Filter set of displayed input signals
text

Specify a search term to filter a long list of input signals. Do not enclose the search term
in quotation marks. The filter does a partial string search. To access filtering options,
including using a regular expression to specify the search term, click the button on
the right side of the Filter by name edit box.

Enable regular expression — Filter set of displayed input signals
off (default) | on

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Dependencies

To access this parameter, click the button on the right side of the Filter by name edit
box.

Show filtered results as a flat list — Filter set of displayed input signals
off (default) | on

 Bus Creator

1-99

By default, a tree list displays the filtered signals, based on the search text in the Filter
by name edit box. To use a flat list format that uses dot notation to reflect the hierarchy
of bus signals, select this parameter.

Dependencies

To access this parameter, click the button on the right-hand side of the Filter by
name edit box

Output data type — Data type of output signal
{'Inherit: auto'} (default) | 'Bus: <object name>' | <datatype expression>

Data type of the output bus signal.

Determine whether you want the Bus Creator block to output a virtual or nonvirtual bus.

• For a virtual bus, use the Output data type parameter default (Inherit: auto) or
set the parameter to specify a bus object using Bus: <object name>.

• For a nonvirtual bus, set the Output data type parameter to specify a bus object
using Bus: <object name> and click Output as nonvirtual bus.

If you select 'Bus: <object name>', specify a bus object in the edit box. The bus
object must be in the base workspace when you perform an update diagram or simulate
the model. To define a bus object using the Bus Editor, click Show data type assistant
and then click Edit. For details, see “Create Bus Objects with the Bus Editor”.

If you select '<data type expression>', specify an expression that evaluates to a
data type. Do not specify a bus object as the expression.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: {'Inherit: auto'} | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'boolean' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus: <object name>'
Default: 'inherit: auto'

Require input signal names to match signals above — Require input signal
names to match names listed in dialog box
off (default) | on

1 Blocks — Alphabetical List

1-100

To check that the input signal names match the signal names in the Bus Creator Block
Parameters dialog box, enable this parameter (the default setting).

Tip The Require input signal names to match signals above parameter might be
removed in a future release. To enforce strong data typing, consider using the Override
bus signal names from inputs parameter. If you select Override bus signal names
from inputs, the Require input signal names to match signals above setting is
ignored.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Rename selected signal — Change name of currently selected signal
'' (default) | character vector

Specify a name for the currently selected input signal. See “Signal Names and Labels” for
guidelines for signal names.

Dependencies

The Require input signal names to match signals above parameter must be enabled.

Override bus signal names from inputs — Override bus signal names from
input signals
off (default) | on

By default, the Bus Creator block overrides bus signal names from inputs. To inherit bus
signal names from a bus object, clear this parameter. Clearing the parameter:

• Enforces strong data typing.
• Avoids having to enter a signal name multiple times: in the bus object and in the

model. Entering the name multiple times can accidentally create signal name
mismatches.

• Supports the array of buses requirement to have consistent signal names across array
elements.

 Bus Creator

1-101

Alternatively, you can enforce strong data typing and also check that input signal names
match the bus object element names.

• Select the Override bus signal names from inputs check box.
• Set the Element name mismatch parameter to error.

Dependencies

To display this parameter, the Output data type parameter must be set to a bus object.

Programmatic Use
Block Parameter: InheritFromInputs
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output as nonvirtual bus — Output nonvirtual bus
on (default) | off

Output a nonvirtual bus from the Bus Creator block. All signals in a nonvirtual bus must
have the same sample time, even if the elements of the associated bus object specify
inherited sample times. Any bus operation resulting in a nonvirtual bus that violates this
requirement generates an error. To include in a nonvirtual bus a signal or bus that has a
different sample time than the other input signals, use a Rate Transition block to change
the sample time that signal. For details, see “Specify Bus Signal Sample Times”.

Enable this parameter to generate code that uses a C structure to define the structure of
the bus signal output by this block.

Dependencies

The Output data type parameter must be set to a bus object.

Programmatic Use
Block Parameter: NonVirtualBus
Type: character vector
Values: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-102

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block has a single, default HDL architecture. See Bus Creator.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

 Bus Creator

1-103

See Also
Bus Assignment | Bus Selector | Bus to Vector | Out Bus Element

Topics
“Getting Started with Buses”
“Simplify Subsystem Bus Interfaces”
“Nest Buses”
“Bus-Capable Blocks”
“Assign Signal Values to a Bus”
“Composite Signals”
“Specify Bus Signal Sample Times”

Introduced before R2006a

1 Blocks — Alphabetical List

1-104

Bus Selector
Select signals from incoming bus
Library: Simulink / Commonly Used Blocks

Simulink / Signal Routing

Description
The Bus Selector block outputs a specified subset of the elements of the bus at its input.
The block can output the specified elements as separate signals or as a new bus.

By default, Simulink implicitly converts a nonbus signal to a bus signal to support
connecting the signal to a Bus Selector block. To prevent Simulink from performing that
conversion, set the “Non-bus signals treated as bus signals” diagnostic to warning or
error.

When the block outputs multiple elements, it outputs each element from a separate port
from top to bottom of the block. See “Port Location After Rotating or Flipping” for a
description of the port order for various block orientations.

In the Simulink Editor, as you draw a new signal line close to output side of a Bus Selector
block and all output ports are already connected, Simulink Editor:

• Adds a port
• Prompts you to specify the signal to be selected

You cannot use this automatic port addition approach in either of these cases if:

• There is no bus input signal connected to the Bus Selector block.
• You do not specify a signal in response to the prompt that appears when you draw a

signal line close to the Bus Selector block icon.
• You select the Output as bus parameter.

 Bus Selector

1-105

Tip For models that include bus signals composed of many bus elements that feed
subsystems, consider using the In Bus Element and Out Bus Element blocks. You can use
these bus element port blocks instead of Inport with Bus Selector blocks for inputs, and
Outport with Bus Creator blocks for outputs. These bus element port blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus

Selector and Goto block configuration.

Ports
Input
Port_1 — Accept bus signal to select signals from
real or complex values of any data type supported by Simulink except for arrays of buses

Input bus signals can have real or complex values of any data type supported by Simulink
except for arrays of buses. To work with an array of buses signal, select with a Selector
block the index for the bus element that you want to use with the Bus Selector block.
Then use that selected bus element with the Bus Selector block.

Output
Port_1 — Output selected bus elements of input bus
nonbus signal (default) | virtual bus

Output selected bus element signals of an input bus signal.

When the block outputs separate elements, it outputs each element from a separate port
from top to bottom of the block. See “Port Location After Rotating or Flipping” for a
description of the port order for various block orientations.

If you select the Output as bus parameter, the output bus is virtual. To produce
nonvirtual bus output, insert a Signal Conversion block after the Bus Selector block. Set
the Signal Conversion block Output parameter to Nonvirtual bus and use a
Simulink.Bus bus object for the Data type parameter. For an example, see the Signal
Conversion documentation.

1 Blocks — Alphabetical List

1-106

Parameters
Signals in the bus — Element signals in input bus
list of signal names

List of bus element signals of the input bus, from which to select signals to output. To
select a signal to output, click the signal in the list and then click Select>>.

To refresh the display to reflect modifications to the bus connected to the block, click
Refresh.

To find the source of a signal entering the block, select the signal in the list and click
Find. The Simulink software highlights the signal source in the block diagram.

Programmatic Use
Block Parameter: InputSignals
Type: matrix
Values: signal name
Default: {'[]'}

Filter by name — Filter set of displayed input signals
text

Specify a search term to use for filtering a long list of input signals. Do not enclose the
search term in quotation marks. The filter does a partial string search. To access filtering
options, including using a regular expressionto specify the search term, click the
button on the right side of the Filter by name edit box.

Enable regular expression — Filter set of displayed input signals
off (default) | on

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Dependencies

To access this parameter, click the button on the right side of the Filter by name edit
box.

 Bus Selector

1-107

Show filtered results as a flat list — Filter set of displayed input signals
off (default) | on

By default, a tree displays the filtered signals, based on the search text in the Filter by
name edit box. Select this parameter to use a flat list format that uses dot notation to
reflect the hierarchy of bus signals.

Dependencies

To access this parameter, click the button on the right side of the Filter by name edit
box

Selected signals — Selected bus elements signals
list of signal names

If an output signal listed in the Selected signals list box is not an input to the Bus
Selector block, the signal name starts with three question marks (???).

You can change the list by using the Up, Down, and Remove buttons. To save your
changes, click Apply. You can select multiple contiguous signals to move or remove. You
cannot rearrange leaf signals within a bus. For example, you can move bus signal Bus1 up
or down in the list, but you cannot reorder any of the bus elements of Bus1. Port
connectivity is maintained when you change the signal order.

Programmatic Use
Block Parameter: OutputSignals
Type: character vector
Values: character vector in the form of 'signal1',signal2'
Default: none

Output as bus — Output selected elements as bus
on (default) | off

By default, the block outputs the selected elements as standalone signals, each from an
output port that is labeled with the corresponding bus element name. To output the
selected bus element signals as a bus, select this parameter.

The output bus is virtual. To produce nonvirtual bus output, insert a Signal Conversion
block after the Bus Selector block. Set the Signal Conversion block Output parameter to
Nonvirtual bus and use a Simulink.Bus bus object for the Data type parameter. For
an example, see the Signal Conversion documentation.

1 Blocks — Alphabetical List

1-108

When the Selected signals list includes only one signal and you enable Output as bus,
then if the selected signal is:

• A nonbus signal, it is treated as a nonbus signal (it is not wrapped in a bus).
• A bus signal, then the output is that bus signal.

Programmatic Use
Block Parameter: OutputAsBus
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block has a single, default HDL architecture. See Bus Selector.

 Bus Selector

1-109

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Assignment | Bus Creator | Bus to Vector | Out Bus Element

Topics
“Getting Started with Buses”
“Simplify Subsystem Bus Interfaces”
“Nest Buses”
“Bus-Capable Blocks”
“Composite Signals”

Introduced before R2006a

1 Blocks — Alphabetical List

1-110

Bus to Vector
Convert virtual bus to vector
Library: Simulink / Signal Attributes

Description
The Bus to Vector block converts a virtual bus signal to a vector signal. The input bus
signal must consist of scalar, 1-D, or either row or column vectors having the same data
type, signal type, and sampling mode. If the input bus contains row or column vectors,
this block outputs a row or column vector, respectively; otherwise, it outputs a 1-D array.

Use the block only to replace an implicit bus-to-vector conversion with an equivalent
explicit conversion. To identify and correct buses used as vectors without manually
inserting Bus to Vector blocks, you can use the Simulink Model Advisor “Check bus
signals treated as vectors” on page 8-30 check. Alternatively, you can use the
Simulink.BlockDiagram.addBusToVector function, which automatically inserts Bus
to Vector blocks wherever needed.

Note If you use Save As for a model in a version of the Simulink product before R2007a,
Simulink replaces each Bus to Vector block with a null subsystem that outputs nothing.
Before you can use the model, reconnect or otherwise correct each signal that used to
contain a Bus to Vector block but now is interrupted by a null subsystem.

Ports

Input
Port_1 — Accept signal to convert to vector
virtual bus | nonbus signal

 Bus to Vector

1-111

An input virtual bus signal must consist of scalar, 1-D, or either row or column vectors
having the same data type, signal type, and sampling mode. If the input is a nonbus
signal, the block does no conversion.

Output
Port_1 — Output vector signal
vector | 1-D array

Output a vector signal, based on input bus signal. If the input bus contains row or column
vectors, the block outputs a row or column vector, respectively. Otherwise, it outputs a 1-
D array.

Parameters
This block has no user-accessible parameters.

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

1 Blocks — Alphabetical List

1-112

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block has a single, default HDL architecture. See Bus to Vector.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Creator | Bus Selector | Data Type Conversion |
Simulink.BlockDiagram.addBusToVector

Topics
“Correct Buses Used as Vectors”
“Composite Signals”

Introduced before R2006a

 Bus to Vector

1-113

Callback Button
Execute MATLAB code based on user input
Library: Simulink / Dashboard

Description
The Callback Button block executes MATLAB code based on user input. The Callback
Button block reacts to clicks and presses from the user. You can specify separate code to
execute for each action. The Callback Button block repeats the code specified for the
press action at a specified rate as long as you continue to press the button.

The Callback Button block registers a click when you release the left mouse button with
the cursor on the Callback Button. The code for a press executes when you click the
Callback Button and hold for the specified Press Delay.

Double-clicking the Callback Button block does not open its dialog box during simulation
and when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Parameters
Button Text — Text on button
'Callback Button' (default) | character array

Text that appears on the button.

Mouse Action — Mouse action to run code
'ClickFcn' (default) | 'PressFcn'

Mouse action that causes the MATLAB code to execute.

• Select ClickFcn to view and edit the code that executes when the Callback Button
block is clicked.

1 Blocks — Alphabetical List

1-114

• Select PressFcn to view and edit the code that executes when the button is pressed.

MATLAB Code — Code to execute based on user input
empty (default) | MATLAB Code

MATLAB code that executes based on user input.

Dependency

The MATLAB code displayed depends on the Mouse Action parameter selection.

• Select ClickFcn to view and edit the code that executes when the Callback Button
block is clicked.

• Select PressFcn to view and edit the code that executes when the button is pressed.

Press Delay (ms) — Time to hold button for press
500 (default) | scalar

Amount of time required to cause the PressFcn code to execute.

Dependency

Press Delay (ms) is only visible when PressFcn is selected as the Mouse Action.

Repeat Interval (ms) — Time interval to repeat PressFcn code
0 (default) | scalar

Time interval after which the PressFcn code executes again if the Callback Button block
is still pressed.

Dependency

Repeat Interval (ms) is only visible when PressFcn is selected as the Mouse Action.

See Also
Push Button

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Callback Button

1-115

Introduced in R2017b

1 Blocks — Alphabetical List

1-116

Check Box
Select parameter or variable value
Library: Simulink / Dashboard

Description
The Check Box block allows you to set the value of a parameter or variable during
simulation by checking or clearing the box. Use the Check Box block with other
Dashboard blocks to create an interactive dashboard for your model.

Double-clicking the Check Box block does not open its dialog box during simulation and
when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

 Check Box

1-117

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

1 Blocks — Alphabetical List

1-118

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

States

Value (Unchecked) — Value when unchecked
0 (default) | scalar

Value assigned to the connected parameter when the Check Box block is not checked.

Value (Checked) — Value when checked
0 (default) | scalar

Value assigned to the connected parameter when the Check Box block is checked.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Rocker Switch | Rotary Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2017b

 Check Box

1-119

Check Discrete Gradient
Check that absolute value of difference between successive samples of discrete signal is
less than upper bound

Library
Model Verification

Description
The Check Discrete Gradient block checks each signal element at its input to determine
whether the absolute value of the difference between successive samples of the element
is less than an upper bound. Use the block parameter dialog box to specify the value of
the upper bound (1 by default). If the verification condition is true, the block does
nothing. Otherwise, the block halts the simulation, by default, and displays an error in the
Diagnostic Viewer.

The Model Verification block enabling setting in the Configuration Parameters dialog
box lets you enable or disable all model verification blocks, including Check Discrete
Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking off
by disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

1 Blocks — Alphabetical List

1-120

Data Type Support
The Check Discrete Gradient block accepts single, double, int8, int16, and int32
input signals of any dimensions. This block also supports fixed-point data types.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Maximum gradient

Specify the upper bound on the gradient of the discrete input signal.
Enable assertion

Clearing this check box disables the Check Discrete Gradient block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Discrete Gradient
blocks, regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Discrete Gradient block to halt the
simulation when the block's output is zero and the Simulink software displays an
error. Otherwise, the Simulink software displays a warning and continues the
simulation.

Output assertion signal
Selecting this check box causes the Check Discrete Gradient block to output a
Boolean signal that is true (1) at each time step if the assertion succeeds and false (0)
if the assertion fails. The data type of the output signal is Boolean if you have
selected the Implement logic signals as Boolean data check box on the
Configuration Parameters dialog box. Otherwise the data type of the output signal is
double.

 Check Discrete Gradient

1-121

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-122

Check Dynamic Gap
Check that gap of possibly varying width occurs in range of signal's amplitudes

Library
Model Verification

Description
The Check Dynamic Gap block checks that a gap of possibly varying width occurs in the
range of a signal's amplitudes. The test signal is the signal connected to the input labeled
sig. The inputs labeled min and max specify the lower and upper bounds of the dynamic
gap, respectively. If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Dynamic Gap block and its companion blocks in the Model Verification library
are intended to facilitate creation of self-validating models. For example, you can use
model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking off
by disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Check Dynamic Gap block accepts input signals of any dimensions and of any
numeric data type that Simulink supports. All three input signals must have the same

 Check Dynamic Gap

1-123

dimension and data type. If the inputs are nonscalar, the block checks each element of the
input test signal to the corresponding elements of the reference signals.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Enable assertion

Clearing this check box disables the Check Dynamic Gap block, that is, causes the
model to behave as if the block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Dynamic Gap blocks,
regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Gap block to halt the simulation
when the block's output is zero and the Simulink software displays an error.
Otherwise, the Simulink software displays a warning and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Gap block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Configuration
Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

1 Blocks — Alphabetical List

1-124

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Dynamic Gap

1-125

Check Dynamic Lower Bound
Check that one signal is always less than another signal

Library
Model Verification

Description
The Check Dynamic Lower Bound block checks that the amplitude of a reference signal is
less than the amplitude of a test signal at the current time step. The test signal is the
signal connected to the input labeled sig. If the verification condition is true, the block
does nothing. If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Lower Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do not exceed specified
limits during simulation. When you are satisfied that a model is correct, you can turn
error checking off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Check Dynamic Lower Bound block accepts input signals of any numeric data type
that Simulink supports. The test and the reference signals must have the same

1 Blocks — Alphabetical List

1-126

dimensions and data type. If the inputs are nonscalar, the block checks each element of
the input test signal to the corresponding elements of the reference signal.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Enable assertion

Clearing this check box disables the Check Dynamic Lower Bound block, that is,
causes the model to behave as if the block did not exist. The Model Verification
block enabling setting in the Configuration Parameters dialog box allows you to
enable or disable all model verification blocks, including Check Dynamic Lower Bound
blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Lower Bound block to halt the
simulation when the block's output is zero and the Simulink software displays an
error. Otherwise, the Simulink software displays a warning and continues the
simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Lower Bound block to output a
Boolean signal that is true (1) at each time step if the assertion succeeds and false (0)
if the assertion fails. The data type of the output signal is Boolean if you have
selected the Implement logic signals as Boolean data check box on the
Configuration Parameters dialog box. Otherwise the data type of the output signal is
double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

 Check Dynamic Lower Bound

1-127

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-128

Check Dynamic Range
Check that signal falls inside range of amplitudes that varies from time step to time step

Library
Model Verification

Description
The Check Dynamic Range block checks that a test signal falls inside a range of
amplitudes at each time step. The width of the range can vary from time step to time step.
The input labeled sig is the test signal. The inputs labeled min and max are the lower and
upper bounds of the valid range at the current time step. If the verification condition is
true, the block does nothing. If not, the block halts the simulation, by default, and
displays an error message.

The Check Dynamic Range block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking off
by disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

 Check Dynamic Range

1-129

Data Type Support
The Check Dynamic Range block accepts input signals of any dimensions and of any
numeric data type that Simulink supports. All three input signals must have the same
dimension and data type. If the inputs are nonscalar, the block checks each element of the
input test signal to the corresponding elements of the reference signals.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Enable assertion

Clearing this check box disables the Check Dynamic Range block, that is, causes the
model to behave as if the block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Dynamic Range
blocks, regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Range block to halt the
simulation when the block's output is zero and the Simulink software display an error.
Otherwise, the Simulink software displays a warning and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Range block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you selected the
Implement logic signals as Boolean data check box on the Configuration
Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that

1 Blocks — Alphabetical List

1-130

represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Dynamic Range

1-131

Check Dynamic Upper Bound
Check that one signal is always greater than another signal

Library
Model Verification

Description
The Check Dynamic Upper Bound block checks that the amplitude of a reference signal is
greater than the amplitude of a test signal at the current time step. The test signal is the
signal connected to the input labeled sig. If the verification condition is true, the block
does nothing. If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Upper Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do not exceed specified
limits during simulation. When you are satisfied that a model is correct, you can turn
error-checking off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Check Dynamic Upper Bound block accepts input signals of any dimensions and of
any numeric data type that Simulink supports. The test and the reference signals must

1 Blocks — Alphabetical List

1-132

have the same dimensions and data type. If the inputs are nonscalar, the block compares
each element of the input test signal to the corresponding elements of the reference
signal.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Enable assertion

Clearing this check box disables the Check Dynamic Upper Bound block, that is,
causes the model to behave as if the block did not exist. The Model Verification
block enabling setting in the Configuration Parameters dialog box allows you to
enable or disable all model verification blocks, including Check Dynamic Upper Bound
blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Upper Bound block to halt the
simulation when the block's output is zero and the Simulink software displays an
error. Otherwise, the Simulink software displays a warning and continues the
simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Upper Bound block to output a
Boolean signal that is true (1) at each time step if the assertion succeeds and false (0)
if the assertion fails. The data type of the output signal is Boolean if you have
selected the Implement logic signals as Boolean data check box on the
Configuration Parameters dialog box. Otherwise the data type of the output signal is
double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

 Check Dynamic Upper Bound

1-133

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-134

Check Input Resolution
Check that input signal has specified resolution

Library
Model Verification

Description
The Check Input Resolution block checks whether the input signal has a specified scalar
or vector resolution (see Resolution in “Parameters” on page 1-136). If the resolution is
a scalar, the input signal must be a multiple of the resolution within a 10e-3 tolerance. If
the resolution is a vector, the input signal must equal an element of the resolution vector.
If the verification condition is true, the block does nothing. If not, the block halts the
simulation, by default, and displays an error message.

The Check Input Resolution block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking off
by disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

 Check Input Resolution

1-135

Data Type Support
The Check Input Resolution block accepts input signals of data type double and of any
dimension. If the input signal is nonscalar, the block checks the resolution of each
element of the input test signal.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Resolution

Specify the resolution that the input signal must have.
Enable assertion

Clearing this check box disables the Check Input Resolution block, that is, causes the
model to behave as if the block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Input Resolution
blocks, regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Input Resolution block to halt the
simulation when the block's output is zero and the Simulink software displays an
error. Otherwise, the Simulink software displays a warning and continues the
simulation.

Output assertion signal
Selecting this check box causes the Check Input Resolution block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Configuration
Parameters dialog box. Otherwise the data type of the output signal is double.

1 Blocks — Alphabetical List

1-136

Characteristics
Data Types Double
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Input Resolution

1-137

Check Static Gap
Check that gap exists in signal's range of amplitudes

Library
Model Verification

Description
The Check Static Gap block checks that each element of the input signal is less than (or
optionally equal to) a static lower bound or greater than (or optionally equal to) a static
upper bound at the current time step. If the verification condition is true, the block does
nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model Verification library are
intended to facilitate creation of self-validating models. For example, you can use model
verification blocks to test that signals do not exceed specified limits during simulation.
When you are satisfied that a model is correct, you can turn error checking off by
disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Check Static Gap block accepts input signals of any dimensions and of any numeric
data type that Simulink supports.

1 Blocks — Alphabetical List

1-138

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Upper bound

Specify the upper bound of the gap in the input signal's range of amplitudes.
Inclusive upper bound

Selecting this check box specifies that the gap includes the upper bound.
Lower bound

Specify the lower bound of the gap in the input signal's range of amplitudes.
Inclusive lower bound

Selecting this check box specifies that the gap includes the lower bound.
Enable assertion

Clearing this check box disables the Check Static Gap block, that is, causes the model
to behave as if the block did not exist. The Model Verification block enabling
setting in the Configuration Parameters dialog box allows you to enable or disable all
model verification blocks in a model, including Check Static Gap blocks, regardless of
the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Gap block to halt the simulation
when the block's output is zero and the Simulink software displays an error.
Otherwise, the Simulink software displays a warning and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Static Gap block to output a Boolean signal
that is true (1) at each time step if the assertion succeeds and false (0) if the assertion
fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane of
the Configuration Parameters dialog box. Otherwise the data type of the output signal
is double.

 Check Static Gap

1-139

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-140

Check Static Lower Bound
Check that signal is greater than (or optionally equal to) static lower bound

Library
Model Verification

Description
The Check Static Lower Bound block checks that each element of the input signal is
greater than (or optionally equal to) a specified lower bound at the current time step. Use
the block parameter dialog box to specify the value of the lower bound and whether the
lower bound is inclusive. If the verification condition is true, the block does nothing. If
not, the block halts the simulation, by default, and displays an error message.

The Check Static Lower Bound block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking off
by disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Check Static Lower Bound block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

 Check Static Lower Bound

1-141

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Lower bound

Specify the lower bound on the range of amplitudes that the input signal can have.
Inclusive boundary

Selecting this check box makes the range of valid input amplitudes include the lower
bound.

Enable assertion
Clearing this check box disables the Check Static Lower Bound block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Static Lower Bound
blocks, regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Lower Bound block to halt the
simulation when the block's output is zero and the Simulink software displays an
error. Otherwise, the Simulink software displays a warning and continues the
simulation.

Output assertion signal
Selecting this check box causes the Check Static Lower Bound block to output a
Boolean signal that is true (1) at each time step if the assertion succeeds and false (0)
if the assertion fails. The data type of the output signal is Boolean if you have
selected the Implement logic signals as Boolean data check box on the
Configuration Parameters dialog box. Otherwise the data type of the output signal is
double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion

1 Blocks — Alphabetical List

1-142

condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Static Lower Bound

1-143

Check Static Range
Check that signal falls inside fixed range of amplitudes

Library
Model Verification

Description
The Check Static Range block checks that each element of the input signal falls inside the
same range of amplitudes at each time step. Use the block parameter dialog box to
specify the upper and lower bounds of the valid amplitude range and whether the range
includes the bounds. If the verification condition is true, the block does nothing. If not,
the block halts the simulation, by default, and displays an error message.

The Check Static Range block and its companion blocks in the Model Verification library
are intended to facilitate creation of self-validating models. For example, you can use
model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking off
by disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Check Static Range block accepts input signals of any dimensions and of any numeric
data type that Simulink supports.

1 Blocks — Alphabetical List

1-144

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Upper bound

Specify the upper bound of the range of valid input signal amplitudes.
Inclusive upper bound

Selecting this check box specifies that the valid signal range includes the upper
bound.

Lower bound
Specify the lower bound of the range of valid input signal amplitudes.

Inclusive lower bound
Selecting this check box specifies that the valid signal range includes the lower
bound.

Enable assertion
Clearing this check box disables the Check Static Range block, that is, causes the
model to behave as if the block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Static Range blocks,
regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Range block to halt the simulation
when the block's output is zero and the Simulink software display an error. Otherwise,
the Simulink software displays a warning and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Static Range block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the

 Check Static Range

1-145

Implement logic signals as Boolean data check box in the Configuration
Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Examples
The sldemo_fuelsys model shows how you can use the Check Static Range block to
verify that the sample time is consistent throughout the model.

The Check Static Range block appears in the sldemo_fuelsys/fuel_rate_control/
validate_sample_time subsystem.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No

1 Blocks — Alphabetical List

1-146

matlab:sldemo_fuelsys

Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Static Range

1-147

Check Static Upper Bound
Check that signal is less than (or optionally equal to) static upper bound

Library
Model Verification

Description
The Check Static Upper Bound block checks that each element of the input signal is less
than (or optionally equal to) a specified upper bound at the current time step. Use the
block parameter dialog box to specify the value of the upper bound and whether the
bound is inclusive. If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking off
by disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug” (Simulink Coder).

Data Type Support
The Check Static Upper Bound block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

1 Blocks — Alphabetical List

1-148

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Upper bound

Specify the upper bound on the range of amplitudes that the input signal can have.
Inclusive boundary

Selecting this check box makes the range of valid input amplitudes include the upper
bound.

Enable assertion
Clearing this check box disables the Check Static Upper Bound block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting in the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Static Upper Bound
blocks, regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Upper Bound block to halt the
simulation when the block's output is zero and the Simulink software displays an
error. Otherwise, the Simulink software displays a warning and continues the
simulation.

Output assertion signal
Selecting this check box causes the Check Static Upper Bound block to output a
Boolean signal that is true (1) at each time step if the assertion succeeds and false (0)
if the assertion fails. The data type of the output signal is Boolean if you have
selected the Implement logic signals as Boolean data check box in the
Configuration Parameters dialog box. Otherwise the data type of the output signal is
double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion

 Check Static Upper Bound

1-149

condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-150

Chirp Signal
Generate sine wave with increasing frequency
Library: Simulink / Sources

Description
The Chirp Signal block generates a sine wave whose frequency increases at a linear rate
with time. You can use this block for spectral analysis of nonlinear systems. The block
generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at target time,
determine the block's output. You can specify any or all of these variables as scalars or
arrays. All the parameters specified as arrays must have the same dimensions. The block
expands scalar parameters to have the same dimensions as the array parameters. The
block output has the same dimensions as the parameters unless you select the Interpret
vector parameters as 1-D check box. If you select this check box and the parameters
are row or column vectors, the block outputs a vector (1-D array) signal.

Limitations
• The start time of the simulation must be 0. To confirm this value, go to the Solver

pane in the Configuration Parameters dialog box and view the Start time field.
• Suppose that you use a Chirp Signal block in an enabled subsystem. Whenever the

subsystem is enabled, the block output matches what would appear if the subsystem
were enabled throughout the simulation.

 Chirp Signal

1-151

Ports

Output
Port_1 — Chirp signal
scalar | vector | matrix | N-D array

Sine wave whose frequency increases at a linear rate with time. The chirp signal can be a
scalar, vector, matrix, or N-D array.
Data Types: double

Parameters
Initial frequency — Initial frequency (Hz)
0.1 (default) | scalar | vector | matrix | N-D array

The initial frequency of the signal, specified as a scalar, vector, matrix, or N-D array.

Programmatic Use
Block Parameter: f1
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0.1'

Target time — Target time (seconds)
100 (default) | scalar | vector | matrix | N-D array

Time, in seconds, at which the frequency reaches the Frequency at target time
parameter value. You specify the Target time as a scalar, vector, matrix, or N-D array.
After the target time is reached, the frequency continues to change at the same rate.

Programmatic Use
Block Parameter: T
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '100'

Frequency at target time — Frequency (Hz)
1 (default) | scalar | vector | matrix | N-D array

1 Blocks — Alphabetical List

1-152

Frequency, in Hz, of the signal at the target time, specified as a scalar, vector, matrix, or
N-D array.
Programmatic Use
Block Parameter: f2
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '1'

Interpret vector parameters as 1-D — Treat vector parameters as 1-D
on (default) | off

When you select this check box, any column or row matrix values you specify for the
Initial frequency, Target time, and Frequency at target time parameters result in a
vector output whose elements are the elements of the row or column. For more
information, see “Determining the Output Dimensions of Source Blocks”.
Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Chirp Signal

1-153

Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

See Also
Sine Wave

Topics
“Creating Signals”

Introduced before R2006a

1 Blocks — Alphabetical List

1-154

Clock
Display and provide simulation time
Library: Simulink / Sources

Description
The Clock block outputs the current simulation time at each simulation step. This block is
useful for other blocks that need the simulation time.

When you need the current time within a discrete system, use the Digital Clock block.

Ports

Output
Port_1 — Sample time
scalar

Sample time, specified as the current simulation time at each simulation time step.
Data Types: double

Parameters
Display time — Display simulation time on block icon
off (default) | on

Select this check box to display the simulation time as part of the Clock block icon. When
you clear this check box, the simulation time does not appear on the block icon.

 Clock

1-155

Programmatic Use
Block Parameter: DisplayTime
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Decimation — Interval at which to update block icon
10 (default) | positive integer

Specify the interval at which Simulink updates the Clock icon as a positive integer.

Suppose that the decimation is 1000. For a fixed integration step of 1 millisecond, the
Clock icon updates at 1 second, 2 seconds, and so on.

Dependencies

To display the simulation time on the block icon, you must select the Display time check
box.

Programmatic Use
Block Parameter: Decimation
Type: character vector
Value: scalar
Default: '10'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

1 Blocks — Alphabetical List

1-156

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

See Also
Digital Clock

Topics
“Sample Time”

Introduced before R2006a

 Clock

1-157

Combinatorial Logic
Implement truth table
Library: Simulink / Logic and Bit Operations

Description
The Combinatorial Logic block implements a standard truth table for modeling
programmable logic arrays (PLAs), logic circuits, decision tables, and other Boolean
expressions. You can use this block in conjunction with Memory blocks to implement
finite-state machines or flip-flops.

Ports

Input
Port_1 — Input signal
vector

Input signal, specified as a vector. The type of signals accepted by a Combinatorial Logic
block depends on whether you selected the Boolean logic signals option (see “Implement
logic signals as Boolean data (vs. double)”). If this option is enabled, the block accepts
real signals of type Boolean or double.
Data Types: double | Boolean

Output
Port_2 — Output signal
scalar | vector

1 Blocks — Alphabetical List

1-158

Output signal, double if the truth table contains non-Boolean values of type double;
Boolean otherwise. The type of the output is the same as that of the input except that the
block outputs double if the input is Boolean and the truth table contains non-Boolean
values.
Data Types: double | Boolean

Parameters
Truth table — Matrix of outputs
matrix

You specify a matrix that defines all possible block outputs as the Truth table parameter.
Each row of the matrix contains the output for a different combination of input elements.
You must specify outputs for every combination of inputs. The number of columns is the
number of block outputs.

The Truth table parameter can have Boolean values (0 or 1) of any data type, including
fixed-point data types. If the table contains non-Boolean values, the data type of the table
must be double.

The relationship between the number of inputs and the number of rows is:

number of rows = 2(number of inputs)

Simulink returns a row of the matrix by computing the row's index from the input vector
elements. Simulink computes the index by building a binary number where input vector
elements having zero values are 0 and elements having nonzero values are 1, then adding
1 to the result. For an input vector, u, of m elements:

row index = 1 + u(m)*20 + u(m-1)*21 + ... + u(1)*2m-1

Programmatic Use
Block Parameter: TruthTable
Type: character vector
Values: matrix
Default: '[0 0;0 1;0 1;1 0;0 1;1 0;1 0;1 1]'

 Combinatorial Logic

1-159

Block Characteristics
Data Types double | Boolean
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
Bit Clear | Bit Set | Compare To Constant | Compare To Zero

Introduced before R2006a

1 Blocks — Alphabetical List

1-160

Combo Box
Select parameter value from drop-down menu
Library: Simulink / Dashboard

Description
The Combo Box block lets you set the value of a parameter to one of several values. You
can define each selectable value and its label through the Combo Box block parameters.
Use the Combo Box block with other Dashboard blocks to build an interactive dashboard
of controls and indicators for your model.

Double-clicking the Combo Box block does not open its dialog box during simulation and
when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.

 Combo Box

1-161

4 Click Apply.

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

1 Blocks — Alphabetical List

1-162

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

States

Value — Values for selected option
0/1/2 (default) | scalar

Values assigned to the connected parameter when you select the option with the
corresponding Label. Click the + button to add options.

Label — Option labels
'Label1'/'Label2'/'Label3' (default) | character vector

Label for each option. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the bottom, or you can enter a text
label.
Example: Gain = 1

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Radio Button | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Combo Box

1-163

Introduced in R2017b

1 Blocks — Alphabetical List

1-164

Compare To Constant
Determine how signal compares to specified constant
Library: Simulink / Logic and Bit Operations

Description
The Compare To Constant block compares an input signal to a constant. Specify the
constant in the Constant value parameter. Specify how the input is compared to the
constant value with the Operator parameter.

Ports

Input
Port_1 — Input signal
scalar

Input signal, specified as a scalar, is compared with zero.The block first converts its
Constant value parameter to the input data type, and then performs the specified
operation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
0 | 1

The output is 0 if the comparison is false, and 1 if it is true.

 Compare To Constant

1-165

Data Types: uint8 | Boolean

Parameters
Operator — Logical operator
<= (default) | == | ~= | < | >= | >

This parameter can have these values:

• == — Determine whether the input is equal to the specified constant.
• ~= — Determine whether the input is not equal to the specified constant.
• < — Determine whether the input is less than the specified constant.
• <= — Determine whether the input is less than or equal to the specified constant.
• > — Determine whether the input is greater than the specified constant.
• >= — Determine whether the input is greater than or equal to the specified constant.

Programmatic Use
Block Parameter: relop
Type: character vector
Values: '==' | '~='| '<' |'<='| '>='| '>'
Default: '<='

Constant value — Constant to compare with
constant

Specify the constant value to which the input is compared.

Programmatic Use
Block Parameter: const
Type: character vector
Value: scalar | vector | matrix | N-D array
Default: '3.0'

Output data type — Data type of the output
boolean (default) | uint8

Specify the data type of the output, boolean or uint8.

1 Blocks — Alphabetical List

1-166

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values:'boolean' | 'uint8'
Default: 'boolean'

Enable zero-crossing detection — Select to enable zero-crossing detection
check (default) | uncheck

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

See Also
Combinatorial Logic | Compare To Zero | Logical Operator

Introduced before R2006a

 Compare To Constant

1-167

Compare To Zero
Determine how signal compares to zero
Library: Simulink / Logic and Bit Operations

Description
The Compare To Zero block compares an input signal to zero. Specify how the input is
compared to zero with the Operator parameter.

The output is 0 if the comparison is false, and 1 if it is true.

Ports

Input
Port_1 — Input signal
scalar

Input signal, specified as scalar, is compared with zero. If the input data type cannot
represent zero, parameter overflow occurs. To detect this overflow, go to the Diagnostics
> Data Validity pane of the Configuration Parameters dialog box and set Parameters >
Detect overflow to warning or error.

In this case, the block compares the input signal to the ground value of the input data
type. For example, if you have an input signal of type fixdt(0,8,2^0,10), the input
data type can represent unsigned 8-bit integers from 10 to 265 due to a bias of 10. The
ground value is 10, instead of 0.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

1 Blocks — Alphabetical List

1-168

Output
Port_1 — Output signal
0 | 1

The output is 0 if the comparison is false, and 1 if it is true.

The block output is uint8 or boolean, depending on your selection for the Output data
type parameter.
Data Types: uint8 | Boolean

Parameters
Operator — Logical operator
<= (default) | == | ~= | < | >= | >

This parameter can have the following values:

• == — Determine whether the input is equal to zero.
• ~= — Determine whether the input is not equal to zero.
• < — Determine whether the input is less than zero.
• <= — Determine whether the input is less than or equal to zero.
• > — Determine whether the input is greater than zero.
• >= — Determine whether the input is greater than or equal to zero.

Programmatic Use
Block Parameter: relop
Type: character vector
Values: '==' | '~='| '<' |'<='| '>='| '>'
Default: '<='

Output data type — Data type of the output
boolean (default) | uint8

Specify the data type of the output, boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr

 Compare To Zero

1-169

Type: character vector
Values:'boolean' | 'uint8'
Default: 'boolean'

Enable zero-crossing detection — Select to enable zero-crossing detection
on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

See Also
Bitwise Operator | Compare To Constant | Logical Operator | String Compare

Introduced before R2006a

1 Blocks — Alphabetical List

1-170

Complex to Magnitude-Angle
Compute magnitude and/or phase angle of complex signal
Library: Simulink / Math Operations

Description
The Complex to Magnitude-Angle block outputs the magnitude and/or phase angle of the
input signal, depending on the setting of the Output parameter. The outputs are real
values of the same data type as the block input. The input can be an array of complex
signals, in which case the output signals are also arrays. The magnitude signal array
contains the magnitudes of the corresponding complex input elements. The angle output
similarly contains the angles of the input elements.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Complex input signal that the block computes and outputs the magnitude and/or the
phase angle.
Data Types: single | double

Output
Port_1 — Output signal
scalar | vector | matrix

 Complex to Magnitude-Angle

1-171

Output signal that is the magnitude and/or phase angle of the input signal. To choose the
output, set the Output parameter.
Data Types: single | double

Parameters
Output — Magnitude and/or phase angle output specification
Magnitude and angle (default) | Magnitude | Angle

Specify if the output is the magnitude and/or the phase angle in radians of the input
signal.

Command-Line Information
Parameter: Output
Type: character vector
Values: 'Magnitude and angle' | 'Magnitude' | 'Angle'
Default: 'Magnitude and angle'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single

1 Blocks — Alphabetical List

1-172

Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Complex to Real-Imag | Real-Imag to Complex

Introduced before R2006a

 Complex to Magnitude-Angle

1-173

Complex to Real-Imag
Output real and imaginary parts of complex input signal
Library: Simulink / Math Operations

Description
The Complex to Real-Imag block outputs the real and/or imaginary part of the input
signal, depending on the setting of the Output parameter. The real outputs are of the
same data type as the complex input. The input can be an array (vector or matrix) of
complex signals, in which case the output signals are arrays of the same dimensions. The
real array contains the real parts of the corresponding complex input elements. The
imaginary output similarly contains the imaginary parts of the input elements.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Complex input signal that the block computes and outputs the real and/or imaginary part.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output signal
scalar | vector | matrix

1 Blocks — Alphabetical List

1-174

Output signal that is the real and/or imaginary part of the input signal. To choose which
part is output, set the Output parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters
Output — Real and/or imaginary output specification
Real and imag (default) | Real | Imag

Specify if the output is the real and/or imaginary part of the input signal.

Command-Line Information
Parameter: Output
Type: character vector
Values: 'Real and imag' | 'Real' | 'Imag'
Default: 'Real and imag'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point

 Complex to Real-Imag

1-175

Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL Code Generation, see Complex to Real-Imag.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Complex to Magnitude-Angle | Real-Imag to Complex

Introduced before R2006a

1 Blocks — Alphabetical List

1-176

Compose String
Compose output string signal based on specified format and input signals
Library: Simulink / String

Description
The Compose String block composes output string signal based on the format specifier
listed in the Format parameter. The Format parameter determines the number of input
signals. If there are multiple inputs, the block constructs the string by combining these
multiple inputs in order, and applying the associated format specifier, one format specifier
for each input. Each format specifier starts with a percent sign, %, followed by the
conversion character. For example, %f formats the input as a floating point output. To
supplement the string output, you can also add a character to the format specification.
Use this block to compose and format an output string signal from a multiple inputs.

For example, if the Format parameter contains "%s is %f", the block expects two
inputs, a string signal and a single or double signal. If the first input is the string "Pi"
and the second input is a double value 3.14, the output is "Pi is 3.14".

Ports

Input
d — Data for first part of string
scalar

Data for the first part of string, specified as a scalar. The Format parameter determines
the port label and the format of the input data. For example, if the first item in the
Format parameter is %d, the port label is d.

The data type of the input signal must be compatible with the format specifier in the
Format parameter. For more information, see the Format parameter.

 Compose String

1-177

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

f — Data for second part of string
scalar

Data for the second part of string, specified as a scalar. The Format parameter
determines the port label and the format of the input data. For example, if the first item in
the Format parameter is %f, the port label is f.

The data type of the input signal must be compatible with the format specifier specified in
the Format parameter. For more information, see the Format parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_N — Data for N parts of string
scalar (default)

Data for N parts of string, specified as a scalar. The Format parameter determines the
port label and the format of the input data. For example, if the corresponding item in the
Format parameter is %f, the port label is f.

The data type of the input signal must be compatible with the format specifier in the
Format parameter. For more information, see the Format parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output string
scalar

Output string composed of inputs, specified as a scalar.
Data Types: string

Parameters
Format — Format input data
"%d %f" (default) | scalar

1 Blocks — Alphabetical List

1-178

Format of input data, specified as a scalar.

For more information about acceptable format specifiers, see the Algorithms section.

Output data type — Output data type
string (default) | scalar

Output data type, specified using the string data type to specify a string with no maximum
length.

To specify a string data type with a maximum length, specify stringtype(N). For
example, stringtype(31) creates a string data type with a maximum length of 31
characters.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Mode — Category of data
stringtype(255) (default) | scalar

Use the stringtype function, for example, stringtype(255).

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types double | single | base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

 Compose String

1-179

Algorithms
A formatting specifier starts with a percent sign, %, and ends with a conversion character.
The conversion character is required. Optionally, you can specify identifier, flags, field
width, precision, and subtype specifiers between % and the conversion character. (Spaces
are invalid between specifiers and are shown here only for readability).

The Compose String block uses this format specifier prototype:

%[flags][width][.precision][length]specifier

Conversion Character
This table shows conversion characters to format numeric and character data as text.

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters

a–f
%X Same as %x, uppercase letters A–F

Floating-point number %f Floating-point notation (Use a precision
operator to specify the number of digits
after the decimal point.)

%e Exponential notation, such as
3.141593e+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%E Same as %e, but uppercase, such as
3.141593E+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

1 Blocks — Alphabetical List

1-180

Value Type Conversion Details
%g The more compact of %e or %f, with no

trailing zeros (Use a precision operator
to specify the number of significant
digits.)

%G The more compact of %E or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

String %s The type of the output text is the same as
the type of Format.

Optional Operators
The optional identifier, flags, field width, precision, and operators further define the
format of the output text.

• Flags

'–' Left-justify. Works with all specifiers.
Example: %-5.2f
Example: %-10s

'+' Always print a sign character (+ or –) for any numeric value. Works
with all specifiers except u, o, x, X, and s.
Example: %+5.2f
Right-justify text.
Example: %+10s

' ' Insert a space before the value. Works with all specifiers except u,
o, x, X, and s.

Example: % 5.2f
'0' Pad to field width with zeros before the value. Works with all

specifiers except s.
Example: %05.2f

 Compose String

1-181

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.
• For %f, %e, or %E, print decimal point even when precision is 0.
• For %g or %G, do not remove trailing zeros or decimal point.

Works with all specifiers except d, i, u, and s.

Example: %#5.0f
• Field Width

Minimum number of characters to print.

The function pads to field width with spaces before the value unless otherwise
specified by flags.

• Precision

For %f, %e, or %E Number of digits to the right of the decimal point
Example: '%.4f' prints pi as '3.1416'

d, i, o, u, x, X Minimum number of digits to be written. Outputs
shorter than the specified precision are padded with
leading zeros.
Example: "%.4d" prints 5 as '0005'

For %g or %G Number of significant digits
Example: '%.4g' prints pi as '3.142'

s Maximum number of characters to be written to the
output.
Example: "%.2s" prints "Hello!" as "He"

Note If you specify a precision operator for floating-point values that exceeds the
precision of the input numeric data type, the results might not match the input values
to the precision you specified. The result depends on your computer hardware and
operating system.

1 Blocks — Alphabetical List

1-182

Text Before or After Formatting Operators
Special Character Representation
Single quotation mark ''
Percent character %%
Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v
Character whose Unicode® numeric value can be
represented by the hexadecimal number, N

\xN

Example: sprintf('\x5A')
returns 'Z'

Character whose Unicode numeric value can be
represented by the octal number, N

\N

Example: sprintf('\132')
returns 'Z'

Format can also include additional text before a percent sign, %, or after a conversion
character. The text can be:

• Ordinary text to print.
• Special characters that you cannot enter as ordinary text. This table shows how to

represent special characters in formatSpec.

Length Specifiers
The Format String block supports the h and l length subspecifiers. These specifiers can
change according to the Configuration Parameters > Hardware Implementation >
Number of bits settings

 Compose String

1-183

Length d i u o x X f e E g G s
No length
specifier

int unsigned int double
(default),
single

string

h short unsigned
short

— —

l long unsigned long — —

Note for Specifiers that Specify Integer Data Types (d, i, u, o,
x, X)
Target int, long, and short type sizes are controlled by settings in the Configuration
Parameters > Hardware Implementation pane. For example, if the target int is 32
bits and the specifier is %u, then the expected input type will be uint32. However, the
input port accepts any built-in integer type of that size or smaller with the %u specifier

Notes for Specifiers that Specify Floating Point Data Types (f,
e, E, g, F)
• Do not use l and h with these specifiers. Do not use the length subspecifier (for

example, %f is allowed, but %hf and %lf are not allowed) .
• Ports that correspond with these specifiers accept both single and double data

types.

Note for Specifiers that Specify the String Data Type (s)
• The s specifier does not work with the l or h subspecifiers, and only accepts a string

input data type.

See Also
ASCII to String | Scan String | String Compare | String Concatenate | String Constant |
String Find | String Length | String To ASCII | String to Double | String to Single |
Substring | To String | sprintf

1 Blocks — Alphabetical List

1-184

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

Introduced in R2018a

 Compose String

1-185

Configurable Subsystem
Represent any block selected from user-specified library of blocks

Library
Ports & Subsystems

Description
The Configurable Subsystem block represents one of a set of blocks contained in a
specified library of blocks. The block's context menu lets you choose which block the
configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that represent families of
designs. For example, suppose that you want to model an automobile that offers a choice
of engines. To model such a design, you would first create a library of models of the
engine types available with the car. You would then use a Configurable Subsystem block
in your car model to represent the choice of engines. To model a particular variant of the
basic car design, a user need only choose the engine type, using the configurable engine
block's dialog.

To create a configurable subsystem in a model, you must first create a library containing a
master configurable subsystem and the blocks that it represents. You can then create
configurable instances of the master subsystem by dragging copies of the master
subsystem from the library and dropping them into models.

You can add any type of block to a master configurable subsystem library. Simulink
derives the port names for the configurable subsystem by making a unique list from the
port names of all the choices. However, Simulink uses default port names for non-
subsystem block choices.

1 Blocks — Alphabetical List

1-186

Note that you cannot break library links in a configurable subsystem because Simulink
uses those links to reconfigure the subsystem when you choose a new configuration.
Breaking links would be useful only if you do not intend to reconfigure the subsystem. In
this case, you can replace the configurable subsystem with a nonconfigurable subsystem
that implements the permanent configuration.

Creating a Master Configurable Subsystem
To create a master configurable subsystem:

1 Create a library of blocks representing the various configurations of the configurable
subsystem.

2 Save the library.
3 Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the Simulink Ports
& Subsystems library into the library you created in the previous step.

4 Display the Configurable Subsystem block dialog by double-clicking it. The dialog
displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that represent the
various configurations of the configurable subsystems you are creating.

6 Click the OK button to apply the changes and close the dialog box.
7 Select Block Choice from the Configurable Subsystem block's context menu.

The context menu displays a submenu listing the blocks that the subsystem can
represent.

8 Select the block that you want the subsystem to represent by default.
9 Save the library.

Note If you add or remove blocks from a library, you must recreate any Configurable
Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a configurable subsystem,
the change does not immediately propagate to the configurable subsystem. To propagate
this change, do one of the following:

• Change the default block choice to another block in the subsystem, then change the
default block choice back to the original block.

 Configurable Subsystem

1-187

• Recreate the configurable subsystem block, including the selection of the updated
block as the default block choice.

If a configurable subsystem in your model contains a broken link to a library block,
editing the link and saving the model does not fix the broken link the next time you open
the model. To fix a broken library link in your configurable subsystem, use one of the
following approaches.

• Convert the configurable subsystem to a variant subsystem. Right-click the
configurable subsystem, and select Subsystem and Model Reference > Convert
Subsystem to > Variant Subsystem.

• Remove the library block from the master configurable subsystem library, add the
library block back to the master configurable subsystem library, and then resave the
master configurable subsystem library.

Creating an Instance of a Configurable Subsystem
To create an instance of a configurable subsystem in a model:

1 Open the library containing the master configurable subsystem.
2 Drag a copy of the master into the model.
3 Select Block Choice from the copy's context menu.
4 Select the block that you want the configurable subsystem to represent.

The instance of the configurable system displays the icon and parameter dialog box of the
block that it represents.

Setting Instance Block Parameters
As with other blocks, you can use the parameter dialog box of a configurable subsystem
instance to set the instance's parameters interactively and the set_param command to
set the parameters from the MATLAB command line or in a MATLAB file. If you use
set_param, you must specify the full path name of the configurable subsystem's current
block choice as the first argument of set_param, for example:

curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');
curr_choice = ['mymod/myconfigsys/' curr_choice];
set_param(curr_choice, 'MaskValues', ...);

1 Blocks — Alphabetical List

1-188

Mapping I/O Ports
A configurable subsystem displays a set of input and output ports corresponding to input
and output ports in the selected library. Simulink uses the following rules to map library
ports to Configurable Subsystem block ports:

• Map each uniquely named input/output port in the library to a separate input/output
port of the same name on the Configurable Subsystem block.

• Map all identically named input/output ports in the library to the same input/output
ports on the Configurable Subsystem block.

• Terminate any input/output port not used by the currently selected library block with a
Terminator/Ground block.

This mapping allows a user to change the library block represented by a Configurable
Subsystem block without having to rewire connections to the Configurable Subsystem
block.

For example, suppose that a library contains two blocks A and B and that block A has
input ports labeled a, b, and c and an output port labeled d and that block B has input
ports labeled a and b and an output port labeled e.

A Configurable Subsystem block based on this library would have three input ports
labeled a, b, and c, respectively, and two output ports labeled d and e.

In this example, port a on the Configurable Subsystem block connects to port a of the
selected library block no matter which block is selected. On the other hand, port c on the
Configurable Subsystem block functions only if library block A is selected. Otherwise, it
simply terminates.

 Configurable Subsystem

1-189

Note A Configurable Subsystem block does not provide ports that correspond to non-I/O
ports, such as the trigger and enable ports on triggered and enabled subsystems. Thus,
you cannot use a Configurable Subsystem block directly to represent blocks that have
such ports. You can do so indirectly, however, by wrapping such blocks in subsystem
blocks that have input or output ports connected to the non-I/O ports.

Convert to Variant Subsystem
Right-click a configurable subsystem and select Subsystems and Model Reference >
Convert Subsystem To > Variant Subsystem.

During conversion, Simulink performs the following operations:

• Replaces the Subsystem block with a Variant Subsystem block, preserving ports and
connections.

• Adds the original subsystem as a variant choice in the Variant Subsystem block.
• Overrides the Variant Subsystem block to use the subsystem that was originally the

active choice.
• Preserves links to libraries. For linked subsystems, Simulink adds the linked

subsystem as a variant choice.

1 Blocks — Alphabetical List

1-190

Simulink also preserves the subsystem block masks, and it copies the masks to the
variant choice.

See Variant Subsystem for more information on variant choices.

Data Type Support
The Configurable Subsystem block accepts and outputs signals of the same types that are
accepted or output by the block that it currently represents. The data types can be any
that Simulink supports, including fixed-point data types.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
List of block choices

Select the blocks you want to include as members of the configurable subsystem. You
can include user-defined subsystems as blocks.

Port names
Lists of input and output ports of member blocks. In the case of multiports, you can
rearrange selected port positions by clicking the Up and Down buttons.

Characteristics
A Configurable Subsystem block has the characteristics of the block that it currently
represents. Double-clicking the block opens the dialog box for the block that it currently
represents.

Data Types Double | Single | Boolean | Base Integer | Fixed-Point |
Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

 Configurable Subsystem

1-191

Introduced before R2006a

1 Blocks — Alphabetical List

1-192

Constant
Generate constant value
Library: Simulink / Commonly Used Blocks

Simulink / Sources

Description
The Constant block generates a real or complex constant value. The block generates
scalar, vector, or matrix output, depending on:

• The dimensionality of the Constant value parameter
• The setting of the Interpret vector parameters as 1-D parameter

The output of the block has the same dimensions and elements as the Constant value
parameter. If you specify for this parameter a vector that you want the block to interpret
as a vector, select the Interpret vector parameters as 1-D check box. Otherwise, if you
specify a vector for the Constant value parameter, the block treats that vector as a
matrix.

Tip To output a constant enumerated value, consider using the Enumerated Constant
block instead. The Constant block provides block parameters that do not apply to
enumerated types, such as Output minimum and Output maximum.

Using Bus Objects as the Output Data Type
The Constant block supports nonvirtual buses as the output data type. Using a bus object
as the output data type can help simplify your model. If you use a bus object as the output
data type, set the Constant value to 0 or to a MATLAB structure that matches the bus
object.

 Constant

1-193

Using Structures for the Constant Value of a Bus
The structure you specify must contain a value for every element of the bus represented
by the bus object. The block output is a nonvirtual bus signal.

You can use the Simulink.Bus.createMATLABStruct to create a full structure that
corresponds to a bus.

You can use Simulink.Bus.createObject to create a bus object from a MATLAB
structure.

If the signal elements in the output bus use numeric data types other than double, you
can specify the structure fields by using typed expressions such as uint16(37) or
untyped expressions such as 37. To control the field data types, you can use the bus
object as the data type of a Simulink.Parameter object. To decide whether to use
typed or untyped expressions, see “Control Data Types of Initial Condition Structure
Fields”.

Setting Configuration Parameters to Support Using a Bus
Object Data Type
To enable the use of a bus object as an output data type, before you start a simulation, set
Configuration Parameters > Diagnostics > Data Validity > Advanced parameters >
Underspecified initialization detection to Simplified. For more information, see
“Underspecified initialization detection”.

Ports

Output
Port_1 — Constant value
scalar | vector | matrix | N-D array

Constant value, specified as a real or complex valued scalar, vector, matrix, or N-D array.
By default, the Constant block outputs a signal whose dimensions, data type, and
complexity are the same as those of the Constant value parameter. However, you can
specify the output to be any data type that Simulink supports, including fixed-point and
enumerated data types.

1 Blocks — Alphabetical List

1-194

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For more information,
see Simulink.BusElement.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Main
Constant value — Constant output value
1 (default) | scalar | vector | matrix | N-D array

Specify the constant value output of the block.

• You can enter any expression that MATLAB evaluates as a matrix, including the
Boolean keywords true and false.

• If you set the Output data type to be a bus object, you can specify one of these
options:

• A full MATLAB structure corresponding to the bus object
• 0 to indicate a structure corresponding to the ground value of the bus object

For details, see “Using Bus Objects as the Output Data Type” on page 1-193.
• For nonbus data types, Simulink converts this parameter from its value data type to

the specified output data type offline, using a rounding method of nearest and
overflow action of saturate.

Programmatic Use
Parameter: Value
Type: character vector
Value: scalar | vector | matrix | N-D array
Default: '1'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

 Constant

1-195

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the
Constant value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Sample time — Sampling interval
inf (default) | scalar | vector

Specify the interval between times that the Constant block output can change during
simulation (for example, due to tuning the Constant value parameter).

The default value of inf indicates that the block output can never change. This setting
speeds simulation and generated code by avoiding the need to recompute the block
output.

See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: 'inf'

Signal Attributes
Output minimum — Minimum output value for range checking
[] (default) | scalar

Specify the lower value of the output range that Simulink checks as a finite, real, double,
scalar value.

1 Blocks — Alphabetical List

1-196

Note If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum parameter for a bus element, see Simulink.BusElement.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double,
scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum parameter for a bus element, see Simulink.BusElement.

 Constant

1-197

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Output data type — Output data type
Inherit: Inherit from 'Constant value' (default) | Inherit: Inherit via
back propagation | double | single | int8 | int16 | int32 | uint8 | uint16 |
uint32 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum:
<class name> | Bus: <object name> | <data type expression>

Specify the output data type. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Parameter: OutDataTypeStr
Type: character vector

1 Blocks — Alphabetical List

1-198

Values: 'Inherit: Inherit from 'Constant value'' | 'Inherit: Inherit
via back propagation' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' | 'fixdt(1,16)'
| 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>' |
'Bus: <object name>'
Default: 'Inherit: Inherit from 'Constant value''

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Constant

1-199

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Constant.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Enumerated Constant | Simulink.BusElement | Simulink.Parameter

Topics
“Set Block Parameter Values”
“When to Use Bus Objects”
“Specify Initial Conditions for Bus Signals”
“Group Constant Signals into an Array of Buses”

Introduced before R2006a

1 Blocks — Alphabetical List

1-200

Cosine HDL Optimized
Implement fixed-point cosine wave optimized for HDL code generation

Library
HDL Coder™ / Lookup Tables

Description
The Cosine HDL Optimized block implements a fixed-point cosine wave by using a lookup
table method that exploits quarter-wave symmetry.

You define the number of lookup table points in the Number of data points parameter.
The block implementation is most efficient for HDL code generation when you specify the
lookup table data points to be (2^n), where n is an integer. For information about the
behavior of this block in HDL Coder, see Cosine HDL Optimized.

Depending on your selection of the Output formula parameter, the blocks can output
these functions of the input signal:

• sin(2πu)
• cos(2πu)
• exp(i2πu)
• sin(2πu) and cos(2πu)

Use the Table data type parameter to specify the word length of the fixed-point output
data type. The fraction length of the output is the output word length minus 2.

 Cosine HDL Optimized

1-201

Data Type Support
The Cosine HDL Optimized block accepts signals of these data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The output of the block is a fixed-point data type.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Output formula

Select the signal(s) to output.
Number of data points

Specify the number of data points to retrieve from the lookup table. The
implementation is most efficient when you specify the lookup table data points to be
(2^n), where n is an integer.

Table data type
Specify the table data type. You can specify an expression that evaluates to a data
type, for example, fixdt(1,16,0).

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the table data type.

Show data type assistant
Select the mode of data type specification. If you select Expression, enter an
expression that evaluates to a data type, for example, fixdt(1,16,0).

If you select Fixed point, you can use the options in the Data Type Assistant to
specify the fixed-point data type. In the Fixed point mode, you can choose binary
point scaling, and specify the signedness, word length, fraction length, and the data
type override setting.

1 Blocks — Alphabetical List

1-202

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Sine HDL Optimized | Sine, Cosine | Trigonometric Function

Introduced in R2016b

 Cosine HDL Optimized

1-203

Coulomb and Viscous Friction
Model discontinuity at zero, with linear gain elsewhere
Library: Simulink / Discontinuities

Description
The Coulomb and Viscous Friction block models Coulomb (static) and viscous (dynamic)
friction. The block models a discontinuity at zero and a linear gain otherwise.

The block output matches the MATLAB result for:

y = sign(x) .* (Gain .* abs(x) + Offset)

where y is the output, x is the input, Gain is the signal gain for nonzero input values, and
Offset is the Coulomb friction.

The block accepts one input and generates one output. The input can be a scalar, vector,
or matrix with real and complex elements.

• For a scalar input, Gain and Offset can have dimensions that differ from the input.
The output is a scalar, vector, or matrix depending on the dimensions of Gain and
Offset.

• For a vector or matrix input, Gain and Offset must be scalar or have the same
dimensions as the input. The output is a vector or matrix of the same dimensions as
the input.

1 Blocks — Alphabetical List

1-204

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

The input signal to the model of Coulomb and viscous friction.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector | matrix

The output signal calculated by applying the friction models to the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
To edit the parameters for the Coulomb and Viscous Friction block, double-click the block
icon.

Coulomb friction value — Static friction offset
[1320] (default) | real values

Specify the offset that applies to all input values.
Programmatic Use
Block Parameter: offset
Type: character vector
Value: real values
Default: '[1 3 2 0]'

Coefficient of viscous friction — Dynamic friction coefficient
1 (default) | real values

 Coulomb and Viscous Friction

1-205

Specify the signal gain for nonzero input values.

Programmatic Use
Block Parameter: gain
Type: character vector
Value: real values
Default: '1'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Coulomb and Viscous Friction.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks — Alphabetical List

1-206

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Backlash | Dead Zone

Introduced before R2006a

 Coulomb and Viscous Friction

1-207

Counter Free-Running
Count up and overflow back to zero after reaching maximum value for specified number
of bits
Library: Simulink / Sources

Description
The Counter Free-Running block counts up until reaching the maximum value, 2Nbits – 1,
where Nbits is the number of bits. Then the counter overflows to zero and begins
counting up again.

After overflow, the counter always initializes to zero. However, if you select the global
doubles override, the Counter Free-Running block does not wrap back to zero.

Note This block does not report wrap on overflow warnings during simulation. To report
these warnings, see the Simulink.restoreDiagnostic reference page. The block does
report errors due to wrap on overflow.

Ports

Output
Port_1 — Count value
scalar

Count value, specified as an unsigned integer of 8 bits, 16 bits, or 32 bits.
Data Types: uint8 | uint16 | uint32

1 Blocks — Alphabetical List

1-208

Parameters
Number of Bits — Number of bits
16 (default) | scalar

Specify the number of bits as a finite, real-valued. When you specify:

• A positive integer, for example 8, the block counts up to 28 – 1, which is 255.
• An unsigned integer expression, for example uint8(8), the block counts up to

uint8(2uint8(8) – 1), which is 254.

Programmatic Use
Block Parameter: NumBits
Type: character vector
Values: scalar
Default: '16'

Sample time — Interval between samples
-1 (default) | scalar | vector

Specify the time interval between samples as a scalar (sampling period), or a two-
element vector ([sampling period, initial offset]). To inherit the sample time,
set this parameter to -1. For more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar | vector
Default: '-1'

Block Characteristics
Data Types base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

 Counter Free-Running

1-209

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Counter Free-Running.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Counter Limited | MATLAB Function

Introduced before R2006a

1 Blocks — Alphabetical List

1-210

Counter Limited
Count up and wrap back to zero after outputting specified upper limit
Library: Simulink / Sources

Description
The Counter Limited block counts up until the specified upper limit is reached. Then the
counter wraps back to zero, and restarts counting up. The counter always initializes to
zero.

Note This block does not report wrap on overflow warnings during simulation. To report
these warnings, see the Simulink.restoreDiagnostic reference page. The block does
report errors due to wrap on overflow.

Ports
Output
Port_1 — Count value
scalar

Count value, specified as an unsigned integer of 8 bits, 16 bits, or 32 bits. The block uses
the smallest number of bits required to represent the upper limit.
Data Types: uint8 | uint16 | uint32

Parameters
Upper limit — Upper limit
7 (default) | scalar

Specify the upper limit for the block to count to as a finite, real-valued scalar.

 Counter Limited

1-211

Programmatic Use
Block Parameter: uplimit
Type: character vector
Values: scalar
Default: '7'

Sample time — Interval between samples
-1 (default) | scalar | vector

Specify the time interval between samples as a scalar (sampling period), or a two-
element vector (sampling period, initial offset). To inherit the sample time, set
this parameter to -1. For more information, see “Specify Sample Time”.
Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar | vector
Default: '-1'

Block Characteristics
Data Types Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• The code generator does not explicitly group primitive blocks that constitute a
nonatomic masked subsystem block in the generated code. This flexibility allows for
more efficient code generation. In certain cases, you can achieve grouping by

1 Blocks — Alphabetical List

1-212

configuring the masked subsystem block to execute as an atomic unit by selecting the
Treat as atomic unit option.

• Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead,
and widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Counter Limited.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Counter Free-Running

Introduced before R2006a

 Counter Limited

1-213

Dashboard Scope
Trace signals during simulation
Library: Simulink / Dashboard

Description
The Dashboard Scope block shows connected signals during simulation on a scope
display. You can use the Dashboard Scope block with other Dashboard blocks to build an
interactive dashboard of controls and indicators for your model. The Dashboard Scope
block provides a complete picture of a signal's behavior over the course of the simulation.
Use the Dashboard Scope block to display signals of any data type that Simulink supports,
including enumerated data types. The Dashboard Scope block can display up to eight
signals from a matrix or bus.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

Data Cursors
You can add data cursors to the Dashboard Scope to inspect the displayed signals. The
data cursors show when the Dashboard Scope block is selected. With the Dashboard
Scope block selected, you can move cursors along the displayed signals to see the data
values corresponding to each time sample. When you display two cursors, a box between
the cursors along the time axis displays the time difference between the two cursors.

1 Blocks — Alphabetical List

1-214

To add data cursors, right-click the Dashboard Scope block. Under the Data Cursors
menu, select the number of cursors you want to add.

Zoom and Pan
You can also zoom and pan to inspect your signals. To change zoom and pan modes, right-
click the Dashboard Scope block, and select the zoom or pan mode you want.

Complex Signals
The Dashboard Scope block displays complex signals according to their Complex
Format. You can configure the Complex Format for a signal using the Instrumentation
Properties dialog box, accessible when you right-click the logging badge for the signal
and select Properties. A signal can have a Complex Format of Real-Imaginary,
Magnitude-Phase, Magnitude, or Phase. When you set the Complex Format for a
signal to Real-Imaginary or Magnitude-Phase, the Dashboard Scope block displays
both components of the signal together. The real or magnitude component displays in the

 Dashboard Scope

1-215

color indicated in the Connection table. The imaginary or phase component displays in a
different shade of the color indicated in the Connection table.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• If you turn off logging for a signal connected to a Dashboard block, the model stops
sending data from that signal to the block. To view the signal again, reconnect the
signal.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

Time Span — Set horizontal axis span
auto (default) | scalar

A finite, real, double, scalar value that sets the time span of the scope display.

When Time Span is set to auto, the block sets its time span to the model's simulation
stop time.

Min — Set y-axis minimum
-3 (default) | scalar

A finite, real, double, scalar value that sets the minimum of the vertical axis on the scope
display.

1 Blocks — Alphabetical List

1-216

The Min value must be less than the Max value.

Max — Set y-axis maximum
3 (default) | scalar

A finite, real, double, scalar value that sets the maximum of the vertical axis on the scope
display.

The Max value must be greater than the Min value.

Legend — Set position of legend
'Top' (default) | 'Right' | 'Hide'

Options from the drop-down menu specify the position of the legend in the scope display.
The legend shows the color chosen for each connected signal next to the signal's name.

Scale axes limits at stop — Autoscale axes limits when simulation finishes
on (default) | off

When on, performs a fit-to-view operation on the data displayed in the scope when the
simulation stops.

Show "Double-click to connect" message — Show or hide message
on (default) | off

When on, shows instructional text if the block is not connected. When the block is not
connected, you can turn this parameter off to hide the text.

See Also

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

 Dashboard Scope

1-217

Data Store Memory
Define data store
Library: Simulink / Signal Routing

Description
The Data Store Memory block defines and initializes a named shared data store, which is
a memory region usable by Data Store Read and Data Store Write blocks that specify the
same data store name.

The location of the Data Store Memory block that defines a data store determines which
Data Store Read and Data Store Write blocks can access the data store:

• If the Data Store Memory block is in the top-level system, Data Store Read and Data
Store Write blocks anywhere in the model can access the data store.

• If the Data Store Memory block is in a subsystem, Data Store Read and Data Store
Write blocks in the same subsystem or in any subsystem below it in the model
hierarchy can access the data store.

Data Store Read or Data Store Write blocks cannot access a Data Store Memory block
that is either in a model that contains a Model block or in a referenced model.

Do not include a Data Store Memory block in a For Each subsystem.

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. For details, see:

• “Order Data Store Access”
• “Data Store Diagnostics”
• “Log Data Stores”

You can use Simulink.Signal objects in addition to, or instead of, Data Store Memory
blocks to define data stores. A data store defined in the base workspace with a signal

1 Blocks — Alphabetical List

1-218

object is a global data store. Global data stores are accessible to every model, including
all referenced models. See “Data Stores” for more information.

Parameters

Main
Data store name — Name for the data store
A (default) | character | string

Specify a name for the data store you are defining with this block. Data Store Read and
Data Store Write blocks with the same name can read from, and write to, the data store
initialized by this block. The name can represent a Data Store Memory block or a sign
object defined to be a data store.

Programmatic Use
Block Parameter: DataStoreName
Type: character vector
Values: 'A' | ...
Default: 'A'

Rename All — Rename this data store throughout the model
button

Rename this data store everywhere the Data Store Read and Data Store Write blocks use
it in a model.

Limitations

You cannot use Rename All to rename a data store if you:

• Use a Simulink.Signal object in a workspace to control the code generated for the
data store

• Use a Simulink.Signal object instead of a Data Store Memory block to define the
data store

You must instead rename the corresponding Simulink.Signal object from Model
Explorer. For an example, see “Rename Data Store Defined by Signal Object”.

 Data Store Memory

1-219

Corresponding Data Store Read/Write blocks — Path to connected Data
Store Read/Write blocks
block path

List all the Data Store Read and Data Store Write blocks that have the same data store
name as the current block, and that are in the current system or in any subsystem below
it in the model hierarchy. Clicking a block path displays and highlights that block in your
model.

Signal Attributes
Initial value — Initial value of data store
0 (default) | scalar | vector | matrix | N-D array

Specify the initial value or values of the data store. The Minimum parameter specifies
the minimum value for this parameter, and the Maximum parameter specifies the
maximum value.

If you specify a nonscalar value and set Dimensions to -1 (the default), the data store
has the same dimensions as the array. Data that you write to the data store (by using Data
Store Write blocks) must have these dimensions.

If you set the Dimensions parameter to a value other than -1, the initial value
dimensions must match the dimensions that you specify, unless the initial value is a scalar
or a MATLAB structure. If you specify a scalar, each element of the data store uses the
scalar as the initial value. Use this technique to apply the same initial value (the scalar
that you specify) to each element without manually matching the dimensions of the initial
value with the dimensions of the data store.

To use this block to initialize a nonvirtual bus signal, specify the initial value as a MATLAB
structure and set the model configuration parameter “Underspecified initialization
detection” to Simplified. For more information about initializing nonvirtual bus signals
using structures, see “Specify Initial Conditions for Bus Signals”.
Programmatic Use
Block Parameter: InitialValue
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0'

Minimum — Minimum output value for range checking
[] (default) | scalar

1 Blocks — Alphabetical List

1-220

Specify the minimum value that the block should output. The default value is []
(unspecified). This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink uses the minimum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Maximum — Maximum output value for range checking
[] (default) | scalar

Specify the maximum value that the block should output. The default value is []
(unspecified). This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

 Data Store Memory

1-221

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Data type — Output data type
Inherit: auto (default) | double | single | int8 | uint8 | int16 | uint16 | int32 |
uint32 | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name>

Specify the output data type. You can set it to:

• A rule that inherits a data type (for example, Inherit: auto)
• The name of a built-in data type (for example, single)
• The name of a data type object (for example, a Simulink.NumericType object)
• An expression that evaluates to a data type (for example, fixdt(1,16,0)). Do not

specify a bus object as the data type in an expression; use Bus: <object name> to
specify a bus data type.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>'

1 Blocks — Alphabetical List

1-222

Default: 'Inherit: auto'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Dimensions (-1 to infer from Initial value) — Dimensions of data store
-1 (default) | scalar | vector | matrix

Dimensions of the data store. The default value, -1, enables you to set the dimensions of
the data store by using the Initial value parameter. However, in this case, you cannot use
scalar expansion with the initial value. You must specify the initial value by using an array
that has the dimensions that you want.

If you use a value other than -1, specify the same dimensions as the dimensions of the
Initial value parameter, unless you specify the initial value as a scalar (for scalar
expansion) or a MATLAB structure. If the data store represents an array of buses, and if
you use a MATLAB structure for the initial value, you can specify dimensions to initialize
the array of buses with this structure.
Programmatic Use
Block Parameter: Dimensions
Type: character vector
Values: scalar | vector | matrix
Default: '-1'

Interpret vector parameters as 1-D — Interpret vectors as 1-D
on (default) | off

Specify that the data store interpret vector initial values as one-dimensional.

By default, MATLAB represents vector data as matrices, which have two dimensions. For
example, MATLAB represents the vector [1 2 3] as a 1-by-3 matrix.

 Data Store Memory

1-223

When you select this parameter, the data store represents vector data by using only one
dimension instead of two. For example, if you specify an initial value of [1 2 3], the data
store stores a one-dimensional vector with three elements.

For more information, see “Determining the Output Dimensions of Source Blocks”.
Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Signal type — Complexity of data store values
auto (default) | real | complex

Specify the numeric type, real or complex, of the values in the data store.
Programmatic Use
Block Parameter: SignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Share across model instances — Allow Model blocks to read from the same
data store
off (default) | on

In a single model reference hierarchy, when you use multiple Model blocks to refer to a
model that contains a Data Store Memory block, by default, each instance of the
referenced model (each Model block) reads from and writes to a separate copy of the data
store. When you select Share across model instances, instead of interacting with a
separate copy, all of the instances read from and write to the same data store.

When you set the model configuration parameter Code interface packaging to
Reusable function to generate reentrant code from a model (Simulink Coder), a data
store with Share across model instances selected appears in the code as a global
symbol that the generated entry-point functions access directly. For example, a global
symbol is a global variable or a field of a global structure variable. Therefore, each call
that your code makes to the entry-point functions (each instance of the model) shares the
data.

For an example, see “Share Data Store Between Instances of a Reusable Algorithm”. For
more information, see “Share Data Between Instances”.

1 Blocks — Alphabetical List

1-224

Programmatic Use
Block Parameter: ShareAcrossModelInstances
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data store name must resolve to Simulink signal object — Require data
store name resolve to Simulink signal object
off (default) | on

Specify that Simulink software, when compiling the model, searches the model and base
workspace for a Simulink.Signal object having the same name, as described in
“Symbol Resolution”. If Simulink does not find such an object, the compilation stops, with
an error. Otherwise, Simulink compares the attributes of the signal object to the
corresponding attributes of the Data Store Memory block. If the block and the object
attributes are inconsistent, Simulink halts model compilation and displays an error.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package
Simulink.Signal (default) | object of a class that is derived from Simulink.Signal

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder® software, custom storage classes do not affect the generated code.

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | ...
Default: 'Simulink.Signal'

 Data Store Memory

1-225

Storage class — Storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | BitField (Custom) | Volatile (Custom) |
ExportToFile (Custom) | ImportFromFile (Custom) | FileScope (Custom) |
AutoScope (Custom) | Struct (Custom) | GetSet (Custom) | Reusable
(Custom)

Applies the storage class or custom storage class that you select from the list. For
information about storage classes, see “Apply Storage Classes to Individual Signal, State,
and Parameter Data Elements” (Simulink Coder). For information about custom storage
classes, see “Apply Custom Storage Classes to Individual Signal, State, and Parameter
Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.

To programmatically set this parameter, use StateStorageClass or
StateSignalObject. See “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'Model default' | 'ExportedGlobal' | 'ImportedExtern'
| 'ImportedExternPointer' | 'Custom' | ...
Default: 'Auto'

TypeQualifier — Storage type qualifier
'' (default) | const | volatile | ...

Specify a storage type qualifier such as const or volatile.

Note TypeQualifier will be removed in a future release. To apply storage type qualifiers
to data, use custom storage classes and memory sections. Unless you use an ERT-based
code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved

1 Blocks — Alphabetical List

1-226

• Min and Max values of the signal object

For more information, see “Data Objects”.
Dependencies

To enable this parameter, set Code generation storage class to ExportedGlobal,
ImportedExtern, ImportedExternPointer, or Model default. This parameter is
hidden unless you previously set its value.
Programmatic Use
Block Parameter: RTWStateStorageTypeQualifier
Type: character vector
Values: '' | 'const' | 'volatile' | ...
Default: ''

Diagnostics
Detect Read Before Write — Action when model attempts to read data before
writing in current time step
warning (default) | none | error

Select the diagnostic action to take if the model attempts to read data from a data store
to which it has not written data in this time step. See also the “Detect read before write”
diagnostic in the Data Store Memory block section of the Model Configuration
Parameters > Diagnostics > Data Validity pane.

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: ReadBeforeWriteMsg
Type: character vector
Values: 'none' | 'warning' | 'error'
Default: 'warning'

Detect Write After Read — Action when block attempts to write after reading
in same time step
warning (default) | none | error

Select the diagnostic action to take if the model attempts to write data to the data store
after previously reading data from it in the current time step. See also the “Detect write

 Data Store Memory

1-227

after read” diagnostic in the Data Store Memory block section of the Model
Configuration Parameters > Diagnostics > Data Validity pane.

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: WriteAfterReadMsg
Type: character vector
Values: 'none' | 'warning' | 'error'
Default: 'warning'

Detect Write After Write — Action when model writes twice in same time
step
warning (default) | none | error

Select the diagnostic action to take if the model attempts to write data to the data store
twice in succession in the current time step. See also the “Detect write after write”
diagnostic in the Data Store Memory block section of the Model Configuration
Parameters > Diagnostics > Data Validity pane.

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: WriteAfterWriteMsg
Type: character vector
Values: 'none' | 'warning' | 'error'
Default: 'warning'

Logging
Log data store data — Log data store data
off (default) | on

Select this option to save the values of this signal to the MATLAB workspace during
simulation. See “Signal Logging” for details.

1 Blocks — Alphabetical List

1-228

Programmatic Use
Block Parameter: DataLogging
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Logging name — Name associated with logged signal data
Use data store name (default) | Custom

Use this pair of controls, consisting of a list box and an edit field, to specify the name
associated with logged signal data.

Simulink uses the signal name as its logging name by default. To specify a custom logging
name, select Custom from the list box and enter the custom name in the adjacent edit
field.

Programmatic Use
Block Parameter: DataLoggingNameMode
Type: character vector
Values: 'SignalName' | 'Custom'
Default: ''

Note If you set DataLoggingNameMode to Custom, you must specify the name
associated with logged signal data using the DataLoggingName parameter.

Block Parameter: DataLoggingName
Type: character vector
Values: character vector
Default: ''

Limit data points to last — Discard all but the last N data points
5000 | non-zero integer

Discard all but the last N data points, where N is the number that you enter in the
adjacent edit field. For more information, see “Log Data Stores”.

Programmatic Use
Block Parameter: DataLoggingMaxPoints
Type: character vector
Values: non-zero integer

 Data Store Memory

1-229

Default: '5000'

Decimation — Log every Nth data point
2 (default) | integer

Log every Nth data point, where N is the number that you enter in the adjacent edit field.
For example, suppose that your model uses a fixed-step solver with a step size of 0.1 s. If
you select this option and accept the default decimation value (2), Simulink records data
points for this signal at times 0.0, 0.2, 0.4, and so on. For more information, see “Log
Data Stores”.
Programmatic Use
Block Parameter: DataLoggingLimitDataPoints
Type: character vector
Values: non-zero integer
Default: '2'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks — Alphabetical List

1-230

To generate PLC code for a model that uses a Data Store Memory block, first define a
Simulink.Signal in the base workspace. Then in the Signal Attributes tab of the
block parameters, set the data store name to resolve to that of the Simulink.Signal
object.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Data Store Read | Data Store Write

Topics
“Storing Data Using Data Store Memory Blocks”
“Data Stores”
“Choosing How to Store Global Data”
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Apply Custom Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Embedded Coder)
“Access Data Stores with Simulink Blocks”
“Log Data Stores”

Introduced before R2006a

 Data Store Memory

1-231

Data Store Read
Read data from data store
Library: Simulink / Signal Routing

Description
The Data Store Read block copies data from the named data store to its output. More
than one Data Store Read block can read from the same data store.

The data store from which the data is read is determined by the location of the Data Store
Memory block or signal object that defines the data store. For more information, see
“Data Stores” and Data Store Memory.

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. See “Order Data Store Access” and “Data Store
Diagnostics” for details.

Ports

Output
Port_1 — Values from specified data store
scalar | vector | matrix | N-D array

Values from the specified data store, output with the same data type and dimensions as in
the data store. The block supports both real and complex signals. You can choose whether
to output the entire data store, or only selected elements from the data store.

You can use arrays of buses with a Data Store Read block. For details about defining and
using an array of buses, see “Combine Buses into an Array of Buses”.

1 Blocks — Alphabetical List

1-232

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Arguments
Data store name — Name of data store from which this block reads
A (default) | name of data store

Specifies the name of the data store from which this block reads data. The adjacent drop-
down list provides the names of Data Store Memory blocks that exist at the same level in
the model as the Data Store Read block or at higher levels. The list also includes all
Simulink.Signal objects in the base and model workspaces. To change the name,
select a name from the list or enter the name directly in the edit field.

When Simulink software compiles the model containing this block, Simulink searches the
model upwards from this block's level for a Data Store Memory block having the specified
data store name. If Simulink software does not find such a block, it searches the model
workspace and the MATLAB workspace for a Simulink.Signal object having the same
name. See “Symbol Resolution” for more information about the search path.

If Simulink finds the signal object, it creates a hidden Data Store Memory block at the
model's root level having the properties specified by the signal object and an initial value
of 0. If Simulink software finds neither the Data Store Memory block nor the signal
object, it halts the compilation and displays an error.

Programmatic Use
Block Parameter: DataStoreName
Type: character vector
Values: data store name
Default: 'A'

Data store memory block — Data Store Memory block name
block path

This field lists the Data Store Memory block that initialized the store from which this
block reads.

 Data Store Read

1-233

Data store write blocks — Corresponding Data Store Write blocks
block path

This field lists the path to all Data Store Write blocks with the same data store name as
this block that are in the same (sub)system or in any subsystem below it in the model
hierarchy. Click any entry in this list to highlight the corresponding block in your model.

Sample time — Sample time
-1 (default) | scalar | vector

The sample time, which controls when the block reads from the data store. A value of -1
indicates that the sample time is inherited. See “Specify Sample Time” for more
information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Element Selection
Elements in the array (Signals in the bus) — Elements in the associated
data store
no default

List of elements in the associated data store. For data stores containing arrays, you can
read the whole data store, or you can specify one or more elements of the data store. For
bus signals, lists the elements in the associated data store. The list displays the maximum
dimensions for each element, in parentheses.

You can select an element and then use one of the following approaches:

• Click Select>> to display that element (and all its subelements) in the Selected
element(s) list.

• Use the Specify element(s) to select edit box to specify the elements that you want
to select for reading. Then click Select>>.

To refresh the display and reflect modifications to the array or bus used in the data store,
click Refresh.

1 Blocks — Alphabetical List

1-234

Dependencies

The prompt for this section (Elements in the array or Signals in the bus) depends on
the type of data in the data store.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements—see “Specification using the command line”
Default: ''

Specify element(s) to select — MATLAB expression defining the elements to
select
no default

Enter a MATLAB expression to define the specific element that you want to read. For
example, for a data store named DSM that has maximum dimensions of [3,5], you could
enter expressions such as DSM(2,4) or DSM([1 3],2) in the edit box and then click
Select>>.

To apply the element selection, click OK or Apply.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements—see “Specification using the command line”
Default: ''

Selected element(s) — List of selected elements
no default

Displays the elements that you select from the data store. The Data Store Read block icon
displays a port for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the list and
click Up or Down. Changing the order of the elements in the list changes the order of the
ports. To remove an element, click Remove.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements—see “Specification using the command line”

 Data Store Read

1-235

Default: ''

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Data Store Memory | Data Store Write

Topics
“Data Stores”
“Rename Data Stores”
“Order Data Store Access”
“Access Data Stores with Simulink Blocks”
“Data Store Diagnostics”

1 Blocks — Alphabetical List

1-236

Introduced before R2006a

 Data Store Read

1-237

Data Store Write
Write data to data store
Library: Simulink / Signal Routing

Description
The Data Store Write block copies the value at its input to the named data store. Each
write operation performed by a Data Store Write block writes over the data store,
replacing the previous contents.

The data store to which this block writes is determined by the location of the Data Store
Memory block or signal object that defines the data store. For more information, see
“Data Stores” and Data Store Memory. The size of the data store is set by the signal
object or the Data Store Memory block that defines and initializes the data store. Each
Data Store Write block that writes to that data store must write the same amount of data.

More than one Data Store Write block can write to the same data store. However, if two
Data Store Write blocks attempt to write to the same data store during the same
simulation step, results are unpredictable.

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. For details, see “Order Data Store Access” and “Data
Store Diagnostics”.

You can log the values of a local or global data store data variable for all the steps in a
simulation. For details, see “Log Data Stores”.

1 Blocks — Alphabetical List

1-238

Ports

Input
Port_1 — Values to write to data store
scalar | vector | matrix | N-D array

Values to write to the specified data store. The Data Store Write block accepts a real or
complex signal.

You can use an array of buses with a Data Store Write block. For details about defining
and using an array of buses, see “Combine Buses into an Array of Buses”.

To assign a subset of the bus or matrix elements to the associated data store, use the
Element Assignment pane. The Data Store Write block icon reflects the elements that
you specify. For details, see “Accessing Specific Bus and Matrix Elements”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Arguments
Data store name — Name of data store from which this block writes
A (default) | name of data store

Specifies the name of the data store to which this block writes data. The adjacent drop-
down list provides the names of Data Store Memory blocks that exist at the same level in
the model as the Data Store Write block or at higher levels. The drop-down list also
includes all Simulink.Signal objects in the base and model workspaces. To change the
name, select a name from the drop-down or enter the name directly in the edit field.

When Simulink software compiles the model containing this block, Simulink searches the
model upwards from this block's level for a Data Store Memory block having the specified
data store name. If Simulink does not find such a block, it searches the model workspace
and the MATLAB workspace for a Simulink.Signal object having the same name. If
Simulink finds neither the Data Store Memory block nor the signal object, it halts the

 Data Store Write

1-239

compilation and displays an error. See “Symbol Resolution” for more information about
the search path.

If Simulink finds a signal object, it creates a hidden Data Store Memory block at the
model's root level having the properties specified by the signal object and an initial value
set to a matrix of zeros. The dimensions of that matrix are inherited from the
Dimensions property of the signal object.

Programmatic Use
Block Parameter: DataStoreName
Type: character vector
Values: data store name
Default: 'A'

Data store memory block — Data Store Memory block name
block path

This field lists the Data Store Memory block that initialized the store to which this block
writes.

Data store read blocks — Corresponding Data Store Read blocks
block path

This field lists the path to all Data Store Read blocks with the same data store name as
this block that are in the same (sub)system or in any subsystem below it in the model
hierarchy. Click any entry in this list to highlight the corresponding block in your model.

Sample time — Sample time
-1 (default) | scalar | vector

The sample time, which controls when the block writes to the data store. A value of -1
indicates that the sample time is inherited. See “Specify Sample Time” for more
information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

1 Blocks — Alphabetical List

1-240

Element Assignment
Elements in the array (Signals in the bus) — Elements in the associated
data store
no default

List of elements in the associated data store. For data stores with arrays, you can write
the whole data store, or you can assign one or more elements to the whole data store. For
data stores with a bus data type, you can expand the tree to view the bus elements. The
list displays the maximum dimensions for each element, in parentheses.

You can select an element and then use one of the following approaches:

• Click Select>> to display that element (and all its subelements) in the Selected
element(s) list.

• Use the Specify element(s) to select edit box to specify the elements that you want
to select for writing. Then click Select>>.

To refresh the display and reflect modifications to the array or bus used in the data store,
click Refresh.

Dependencies

The prompt for this section (Elements in the array or Signals in the bus) depends on
the type of data in the data store.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements—see “Specification using the command line”
Default: ''

Specify element(s) to assign — MATLAB expression defining the elements to
assign
no default

Enter a MATLAB expression to define the specific element that you want to write. For
example, for a data store named DSM that has maximum dimensions of [3,5], you could
enter expressions such as DSM(2,4) or DSM([1 3],2) in the edit box. Then click
Select>>.

To apply the element selection, click OK or Apply.

 Data Store Write

1-241

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements—see “Specification using the command line”
Default: ''

Assigned element(s) — List of selected elements
no default

Displays the elements that you selected for assignment. The Data Store Write block icon
displays a port for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the list and
click Up or Down. Changing the order of the elements in the list changes the order of the
ports. To remove an element, click Remove.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements—see “Specification using the command line”
Default: ''

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

See Also
Data Store Memory | Data Store Read

Topics
“Data Stores”

1 Blocks — Alphabetical List

1-242

“Rename Data Stores”
“Order Data Store Access”
“Access Data Stores with Simulink Blocks”
“Log Data Stores”
“Data Store Diagnostics”

Introduced before R2006a

 Data Store Write

1-243

Data Type Conversion
Convert input signal to specified data type

Library
Signal Attributes

Description
The Data Type Conversion block converts an input signal of any Simulink data type to the
data type that you specify.

The input can be any real- or complex-valued signal. If the input is real, the output is real.
If the input is complex, the output is complex.

Note To control the output data type by specifying block parameters, or to inherit a data
type from a downstream block, use the Data Type Conversion block. To inherit a data type
from a different signal in the model, use the Data Type Conversion Inherited block.

Convert Fixed-Point Signals
When you convert between fixed-point data types, the Input and output to have equal
parameter controls block behavior. If neither input nor output use fixed-point scaling,
because they are not of a fixed-point data type or have trivial fixed-point scaling, this
parameter does not change the behavior of the block. For more information about fixed-
point numbers, see “Fixed-Point Numbers in Simulink” (Fixed-Point Designer).

To convert a signal from one data type to another by attempting to preserve the real-
world value of the input signal, select Real World Value (RWV), the default setting.
The block accounts for the scaling of the input and output and, within the limits of the
specified data types, attempts to generate an output of equal real-world value.

1 Blocks — Alphabetical List

1-244

To change the real-world value of the input signal by performing a scaling
reinterpretation of the stored integer value, select Stored Integer (SI). Within the
limits of the specified data types, the block attempts to preserve the stored integer value
of the signal during conversion. A best practice is to specify input and output data types
using the same word length and signedness so that the block changes only the scaling of
the signal. Specifying a different signedness or word length for the input and output could
produce unexpected results such as range loss or unexpected sign extensions. For an
example, see “Reinterpret Signal Using a Fixed-Point Data Type” on page 1-261.

If you select Stored Integer (SI), the block does not perform a lower-level bit
reinterpretation of a floating-point input signal. For example, if the input is of the data
type single and has value 5, the bits that store the input in memory are given in
hexadecimal by the following command.

num2hex(single(5))

40a00000

However, the Data Type Conversion block does not treat the stored integer value as
40a00000, but instead as the real-world value, 5. After conversion, the stored integer
value of the output is 5.

Cast Enumerated Signals
Use a Data Type Conversion block to cast enumerated signals as follows:

1 To cast a signal of enumerated type to a signal of any numeric type.

The underlying integers of all enumerated values input to the Data Type Conversion
block must be within the range of the numeric type. Otherwise, an error occurs
during simulation.

2 To cast a signal of any integer type to a signal of enumerated type.

The value input to the Data Type Conversion block must match the underlying value
of an enumerated value. Otherwise, an error occurs during simulation.

You can enable the block’s Saturate on integer overflow parameter so that
Simulink uses the default value of the enumerated type when the value input to the
block does not match the underlying value of an enumerated value. See “Type
Casting for Enumerations” (Simulink Coder).

You cannot use a Data Type Conversion block in the following cases:

 Data Type Conversion

1-245

• To cast a non-integer numeric signal to an enumerated signal.
• To cast a complex signal to an enumerated signal, regardless of the data types of the

complex signal’s real and imaginary parts.

See “Simulink Enumerations” for information on working with enumerated types.

Data Type Support
The Data Type Conversion block handles any data type that Simulink supports, including
fixed-point and enumerated data types.

For more information, see “Data Types Supported by Simulink”.

Parameters

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Lock output data type setting against changes by the fixed-
point tools
Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor.

Default: Off

 On
Locks the output data type setting for this block.

1 Blocks — Alphabetical List

1-246

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Input and output to have equal
Specify which type of input and output must be equal, in the context of fixed point data
representation.

Default: Real World Value (RWV)

Real World Value (RWV)
Specifies the goal of making the Real World Value (RWV) of the input equal to the
Real World Value (RWV) of the output.

Stored Integer (SI)
Specifies the goal of making the Stored Integer (SI) value of the input equal to
the Stored Integer (SI) value of the output.

For the command-line information, see “Block-Specific Parameters” on page 6-130.

Integer rounding mode
Specify the rounding mode for fixed-point operations.

Default: Floor

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

 Data Type Conversion

1-247

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Parameter: RndMeth
Type: character vector
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow
Specify whether overflows saturate.

Default: Off

1 Blocks — Alphabetical List

1-248

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time

Note This parameter is not visible in the block dialog box unless it is explicitly set to a
value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

 Data Type Conversion

1-249

Output minimum
Lower value of the output range that Simulink checks.

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Parameter: OutMin
Type: character vector
Value: '[]'
Default: '[]'

Output maximum
Upper value of the output range that Simulink checks.

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

1 Blocks — Alphabetical List

1-250

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Parameter: OutMax
Type: character vector
Value: '[]'
Default: '[]'

Output data type
Specify the output data type.

Default: Inherit: Inherit via back propagation

Inherit: Inherit via back propagation
Use data type of the driving block.

double
Output data type is double.

single
Output data type is single.

int8
Output data type is int8.

uint8
Output data type is uint8.

 Data Type Conversion

1-251

int16
Output data type is int16.

uint16
Output data type is uint16.

int32
Output data type is int32.

uint32
Output data type is uint32.

boolean
Output data type is boolean. The Data Type Conversion block converts real, nonzero
numeric values (including NaN and Inf) to boolean true (1).

fixdt(1,16,0)
Output data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Output data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Use an enumerated data type, for example, Enum: BasicColors.

<data type expression>
Use a data type object, for example, Simulink.NumericType.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

For more information, see “Control Signal Data Types”.

Mode
Select the category of data to specify.

Default: Inherit

Inherit
Inheritance rules for data types. Selecting Inherit enables Inherit via back
propagation.

1 Blocks — Alphabetical List

1-252

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Fixed point
Fixed-point data types.

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

 Data Type Conversion

1-253

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that holds the quantized integer.

1 Blocks — Alphabetical List

1-254

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias

 Data Type Conversion

1-255

• Calculate Best-Precision Scaling

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

1 Blocks — Alphabetical List

1-256

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

Real-World Values and Stored Integers
The example model ex_data_type_conversion_rwv_si uses Data Type Conversion
blocks to show the meaning of the real-world value and the stored integer of a signal. For
basic information about fixed-point scaling, see “Scaling” (Fixed-Point Designer).

The Fixed-Point Constant block represents the real-world value 15 by using a fixed-point
data type with binary-point scaling 2-5. Due to the scaling, the output signal uses a stored
integer value of 480.

The model uses Data Type Conversion blocks to convert the signal to a fixed-point data
type with binary-point scaling 2-2.

• The Fixed to Fixed: Preserve RWV block converts the input signal by preserving the
real-world value, 15. The parameter Input and output to have equal is set to Real
World Value (RWV).

The output signal has the same real-world value as the input, that is, 15. Due to the
fixed-point scaling, the output uses a stored integer value of 60.

• The Fixed to Fixed: Preserve SI block converts the input signal by preserving the
stored integer value, 480. The parameter Input and output to have equal is set to
Stored Integer (SI).

The output signal uses the same stored integer value as the input, that is, 480. Due to
the fixed-point scaling, the output has a real-world value of 120.

The figure shows the conversion mechanism for the two blocks.

 Data Type Conversion

1-257

matlab:open_system(fullfile(matlabroot,'help','toolbox','simulink','examples','blocks','ex_data_type_conversion_rwv_si'))

The Double Constant block represents the real-world value 15 by using the floating-point
data type double. The output signal does not use fixed-point scaling.

1 Blocks — Alphabetical List

1-258

The model uses Data Type Conversion blocks to convert the double signal to a fixed-
point data type with binary-point scaling 2-2.

• The Float to Fixed: Preserve RWV block converts the input signal by preserving the
real-world value, 15. The output signal has the same real-world value. Due to the
fixed-point scaling, the output uses a stored integer value of 60.

• The Float to Fixed: Preserve SI block converts the input signal by attempting to
preserve the stored integer value. However, the block does not use the underlying bits
that store the floating-point signal in memory. Instead, the block uses the real-world
value of the input, 15, as the stored integer of the output signal. Due to the fixed-point
scaling, the real-world value of the output is 3.75.

The figure shows the conversion mechanism for the two blocks. The blocks also use these
mechanisms if the input uses the floating-point data type single.

 Data Type Conversion

1-259

1 Blocks — Alphabetical List

1-260

Reinterpret Signal Using a Fixed-Point Data Type
Suppose your hardware uses the data type uint8 to store data from a temperature
sensor. Also suppose that the minimum stored integer value 0 represents –20 degrees
Celsius while the maximum 255 represents 60 degrees. The following model uses a Data
Type Conversion block to convert the stored integer value of the sensor data to degrees
Celsius.

The Data Type Conversion block parameter Input and output to have equal is set to
Stored Integer (SI). The block output signal is of a fixed-point data type with word
length 8, slope 80/255, and bias -20.

The Data Type Conversion block reinterprets the integer input, 127, as a Celsius output,
19.84 degrees. The block output uses the specified slope and bias to scale the stored
integer of the input.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block

 Data Type Conversion

1-261

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Data Type Conversion Inherited | Data Type Propagation

Topics
“Control Signal Data Types”
“About Data Types in Simulink”
“Fixed Point”

Introduced before R2006a

1 Blocks — Alphabetical List

1-262

Data Type Conversion Inherited
Convert from one data type to another using inherited data type and scaling

Library
Signal Attributes

Description
The Data Type Conversion Inherited block forces dissimilar data types to be the same.
The first input is used as the reference signal and the second input is converted to the
reference type by inheriting the data type and scaling information. (See “Port Location
After Rotating or Flipping” for a description of the port order for various block
orientations.) Either input undergoes scalar expansion such that the output has the same
width as the widest input.

Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.
• It allows you to create new fixed-point models with less effort since you can avoid the

detail of specifying the associated parameters.

Data Type Support
The Data Type Conversion Inherited block accepts signals of the following data types:

• Floating point

 Data Type Conversion Inherited

1-263

• Built-in integer
• Fixed point
• Boolean
• Enumerated

For more information, see “Data Types Supported by Simulink”.

Parameters
Input and Output to have equal

Specify whether the Real World Value (RWV) or the Stored Integer (SI) of
the input and output should be the same. Refer to Description on page 1-244 in the
Data Type Conversion block reference page for more information about these choices.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

1 Blocks — Alphabetical List

1-264

See Also
Data Type Conversion | Data Type Propagation

Topics
“Control Signal Data Types”
“About Data Types in Simulink”
“Fixed Point”

Introduced before R2006a

 Data Type Conversion Inherited

1-265

Data Type Duplicate
Force all inputs to same data type

Library
Signal Attributes

Description
The Data Type Duplicate block forces all inputs to have exactly the same data type. Other
attributes of input signals, such as dimension, complexity, and sample time, are
completely independent.

You can use the Data Type Duplicate block to check for consistency of data types among
blocks. If all signals do not have the same data type, the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to the block controls
the data type for all other blocks. The other blocks are set to inherit their data types via
back propagation.

The block is also used in a user created library. These library blocks can be placed in any
model, and the data type for all library blocks are configured according to the usage in
the model. To create a library block with more complex data type rules than duplication,
use the Data Type Propagation block.

Data Type Support
The Data Type Duplicate block accepts signals of the following data types:

• Floating point

1 Blocks — Alphabetical List

1-266

• Built-in integer
• Fixed point
• Boolean
• Enumerated

For more information, see “Data Types Supported by Simulink”.

Parameters
Number of input ports

Specify the number of inputs to this block.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated | Bus
Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Data Type Conversion | Data Type Propagation

Topics
“Control Signal Data Types”
“About Data Types in Simulink”
“Fixed Point”

Introduced before R2006a

 Data Type Duplicate

1-267

Data Type Propagation
Set data type and scaling of propagated signal based on information from reference
signals

Library
Signal Attributes

Description
The Data Type Propagation block allows you to control the data type and scaling of
signals in your model. You can use this block in conjunction with fixed-point blocks that
have their Output data type parameter configured to Inherit: Inherit via back
propagation.

The block has three inputs: Ref1 and Ref2 are the reference inputs, while the Prop input
back propagates the data type and scaling information gathered from the reference
inputs. This information is then passed on to other fixed-point blocks.

The block provides you with many choices for propagating data type and scaling
information. For example, you can:

• Use the number of bits from the Ref1 reference signal, or use the number of bits from
widest reference signal.

• Use the range from the Ref2 reference signal, or use the range of the reference signal
with the greatest range.

• Use a bias of zero, regardless of the biases used by the reference signals.
• Use the precision of the reference signal with the least precision.

1 Blocks — Alphabetical List

1-268

You specify how data type information is propagated with the Propagated data type
parameter list. If the parameter list is configured as Specify via dialog, then you
manually specify the data type via the Propagated data type edit field. If the parameter
list is configured as Inherit via propagation rule, then you must use the
parameters described in “Parameters” on page 1-270.

You specify how scaling information is propagated with the Propagated scaling
parameter list. If the parameter list is configured as Specify via dialog, then you
manually specify the scaling via the Propagated scaling edit field. If the parameter list
is configured as Inherit via propagation rule, then you must use the parameters
described in “Parameters” on page 1-270.

After you use the information from the reference signals, you can apply a second level of
adjustments to the data type and scaling by using individual multiplicative and additive
adjustments. This flexibility has a variety of uses. For example, if you are targeting a DSP,
then you can configure the block so that the number of bits associated with a MAC
(multiply and accumulate) operation is twice as wide as the input signal, and has a certain
number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force the computed
number of bits to a useful value. For example, if you are targeting a 16-bit micro, then the
target C compiler is likely to support sizes of only 8 bits, 16 bits, and 32 bits. The block
will force these three choices to be used. For example, suppose the block computes a data
type size of 24 bits. Since 24 bits is not directly usable by the target chip, the signal is
forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals. This makes it
easier to create designs that are easily retargeted from fixed-point chips to floating-point
chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful subsystems that
will be properly configured based on the connected signals. Without this data type
propagation process, a subsystem that you use from a library will almost certainly not
work as desired with most integer or fixed-point signals, and manual intervention to
configure the data type and scaling would be required. This block can eliminate the
manual intervention in many situations.

Precedence Rules
The precedence of the dialog box parameters decreases from top to bottom. Additionally:

 Data Type Propagation

1-269

• Double-precision reference inputs have precedence over all other data types.
• Single-precision reference inputs have precedence over integer and fixed-point data

types.
• Multiplicative adjustments are carried out before additive adjustments.
• The number of bits is determined before the precision or positive range is inherited

from the reference inputs.

Data Type Support
The Data Type Propagation block accepts signals of the following data types:

• Floating-point
• Built-in integer
• Fixed-point
• Boolean

For more information, see “Data Types Supported by Simulink”.

Parameters
Propagated data type

Use the parameter list to propagate the data type via the dialog box, or inherit the
data type from the reference signals. Use the edit field to specify the data type via the
dialog box.

If any reference input is double, output is
Specify single or double. This parameter makes it easier to create designs that are
easily retargeted from fixed-point chips to floating-point chips or vice versa.

This parameter is visible only when you set Propagated data type to Inherit via
propagation rule.

If any reference input is single, output is
Specify single or double. This parameter makes it easier to create designs that are
easily retargeted from fixed-point chips to floating-point chips or visa versa.

1 Blocks — Alphabetical List

1-270

This parameter is visible only when you set Propagated data type to Inherit via
propagation rule.

Is-Signed
Specify the sign of Prop as one of the following values:

Parameter Value Description
IsSigned1 Prop is a signed data type if Ref1 is a signed data type.
IsSigned2 Prop is a signed data type if Ref2 is a signed data type.
IsSigned1 or
IsSigned2

Prop is a signed data type if either Ref1 or Ref2 are signed
data types.

TRUE Ref1 and Ref2 are ignored, and Prop is always a signed
data type.

FALSE Ref1 and Ref2 are ignored, and Prop is always an unsigned
data type.

For example, if the Ref1 signal is ufix(16), the Ref2 signal is sfix(16), and the Is-
Signed parameter is IsSigned1 or IsSigned2, then Prop is forced to be a signed
data type.

This parameter is visible only when you set Propagated data type to Inherit via
propagation rule.

Number-of-bits: Base
Specify the number of bits used by Prop for the base data type as one of the following
values:

Parameter Value Description
NumBits1 The number of bits for Prop is given by the number of

bits for Ref1.
NumBits2 The number of bits for Prop is given by the number of

bits for Ref2.
max([NumBits1
NumBits2])

The number of bits for Prop is given by the reference
signal with largest number of bits.

min([NumBits1
NumBits2])

The number of bits for Prop is given by the reference
signal with smallest number of bits.

 Data Type Propagation

1-271

Parameter Value Description
NumBits1+NumBits2 The number of bits for Prop is given by the sum of the

reference signal bits.

For more information about the base data type, refer to Targeting an Embedded
Processor (Fixed-Point Designer).

This parameter is visible only when you set Propagated data type to Inherit via
propagation rule.

Number-of-bits: Multiplicative adjustment
Specify the number of bits used by Prop by including a multiplicative adjustment that
uses a data type of double. For example, suppose you want to guarantee that the
number of bits associated with a multiply and accumulate (MAC) operation is twice as
wide as the input signal. To do this, you configure this parameter to the value 2.

This parameter is visible only when you set Propagated data type to Inherit via
propagation rule.

Number-of-bits: Additive adjustment
Specify the number of bits used by Prop by including an additive adjustment that uses
a data type of double. For example, if you are performing multiple additions during a
MAC operation, the result might overflow. To prevent overflow, you can associate
guard bits with the propagated data type. To associate four guard bits, you specify the
value 4.

This parameter is visible only when you set Propagated data type to Inherit via
propagation rule.

Number-of-bits: Allowable final values
Force the computed number of bits used by Prop to a useful value. For example, if you
are targeting a processor that supports only 8, 16, and 32 bits, then you configure this
parameter to [8,16,32]. The block always propagates the smallest specified value
that fits. If you want to allow all fixed-point data types, you would specify the value
1:128.

This parameter is visible only when you set Propagated data type to Inherit via
propagation rule.

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box, inherit the scaling
from the reference signals, or calculate the scaling to obtain best precision.

1 Blocks — Alphabetical List

1-272

Propagated scaling (Slope or [Slope Bias])
Specify the scaling as either a slope or a slope and bias.

This parameter is visible only when you set Propagated scaling to Specify via
dialog.

Values used to determine best precision scaling
Specify any values to be used to constrain the precision, such as the upper and lower
limits on the propagated input. Based on the data type, the scaling will automatically
be selected such that these values can be represented with no overflow error and
minimum quantization error.

This parameter is visible only when you set Propagated scaling to Obtain via
best precision.

Slope: Base
Specify the slope used by Prop for the base data type as one of the following values:

Parameter Value Description
Slope1 The slope of Prop is given by the slope of Ref1.
Slope2 The slope of Prop is given by the slope of Ref2.
max([Slope1 Slope2]) The slope of Prop is given by the maximum slope

of the reference signals.
min([Slope1 Slope2]) The slope of Prop is given by the minimum slope of

the reference signals.
Slope1*Slope2 The slope of Prop is given by the product of the

reference signal slopes.
Slope1/Slope2 The slope of Prop is given by the ratio of the Ref1

slope to the Ref2 slope.
PosRange1 The range of Prop is given by the range of Ref1.
PosRange2 The range of Prop is given by the range of Ref2.
max([PosRange1
PosRange2])

The range of Prop is given by the maximum range
of the reference signals.

min([PosRange1
PosRange2])

The range of Prop is given by the minimum range
of the reference signals.

 Data Type Propagation

1-273

Parameter Value Description
PosRange1*PosRange2 The range of Prop is given by the product of the

reference signal ranges.
PosRange1/PosRange2 The range of Prop is given by the ratio of the Ref1

range to the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and you control the range
of Prop with PosRange1 and PosRange2. Additionally, PosRange1 and PosRange2
are one bit higher than the maximum positive range of the associated reference
signal.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Slope: Multiplicative adjustment
Specify the slope used by Prop by including a multiplicative adjustment that uses a
data type of double. For example, if you want 3 bits of additional precision (with a
corresponding decrease in range), the multiplicative adjustment is 2^-3.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Slope: Additive adjustment
Specify the slope used by Prop by including an additive adjustment that uses a data
type of double. An additive slope adjustment is often not needed. The most likely use
is to set the multiplicative adjustment to 0, and set the additive adjustment to force
the final slope to a specified value.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Base
Specify the bias used by Prop for the base data type. The parameter values are
described as follows:

Parameter Value Description
Bias1 The bias of Prop is given by the bias of Ref1.
Bias2 The bias of Prop is given by the bias of Ref2.

1 Blocks — Alphabetical List

1-274

Parameter Value Description
max([Bias1 Bias2]) The bias of Prop is given by the maximum bias of the

reference signals.
min([Bias1 Bias2]) The bias of Prop is given by the minimum bias of the

reference signals.
Bias1*Bias2 The bias of Prop is given by the product of the reference

signal biases.
Bias1/Bias2 The bias of Prop is given by the ratio of the Ref1 bias to

the Ref2 bias.
Bias1+Bias2 The bias of Prop is given by the sum of the reference

biases.
Bias1-Bias2 The bias of Prop is given by the difference of the

reference biases.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Multiplicative adjustment
Specify the bias used by Prop by including a multiplicative adjustment that uses a
data type of double.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Additive adjustment
Specify the bias used by Prop by including an additive adjustment that uses a data
type of double.

If you want to guarantee that the bias associated with Prop is zero, you should
configure both the multiplicative adjustment and the additive adjustment to 0.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point

 Data Type Propagation

1-275

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Ye
Zero-Crossing Detection No
Code Generation Yes

See Also
Data Type Conversion | Data Type Conversion Inherited | Data Type Duplicate

Topics
“Control Signal Data Types”
“About Data Types in Simulink”
“Fixed Point”

Introduced before R2006a

1 Blocks — Alphabetical List

1-276

Data Type Scaling Strip
Remove scaling and map to built in integer

Library
Signal Attributes

Description
The Scaling Strip block strips the scaling off a fixed point signal. It maps the input data
type to the smallest built in data type that has enough data bits to hold the input. The
stored integer value of the input is the value of the output. The output always has nominal
scaling (slope = 1.0 and bias = 0.0), so the output does not make a distinction between
real world value and stored integer value.

Data Type Support
The Data Type Scaling Strip block accepts signals of any numeric data type that Simulink
supports, including fixed-point data types.

For more information, see “Data Types Supported by Simulink”.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point

 Data Type Scaling Strip

1-277

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-278

Dead Zone
Provide region of zero output
Library: Simulink / Discontinuities

Description
The Dead Zone block generates zero output within a specified region, called its dead
zone. You specify the lower limit (LL) and upper limit (UL) of the dead zone as the Start
of dead zone and End of dead zone parameters. The block output depends on the input
(U) and the values for the lower and upper limits.

Input Output
U >= LL and U <= UL Zero
U > UL U – UL
U < LL U – LL

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal to the dead-zone algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

 Dead Zone

1-279

Output
Port_1 — Output signal
scalar | vector

Output signal after the dead-zone algorithm is applied to the input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Start of dead zone — Specify the lower bound of the dead zone
'-0.5' (default) | scalar | vector

Specify dead zone lower limit. Set the value for Start of dead zone less than or equal to
End of dead zone. When the input value is less than Start of dead zone, then the block
shifts the output value down by the Start of dead zone value.

Programmatic Use
Block Parameter: LowerValue
Type: character vector
Value: scalar or vector less than or equal to UpperValue.
Default: '-0.5'

End of dead zone — Specify the upper limit of the dead zone
'0.5' (default) | scalar | vector

Specify dead zone upper limit. Set the value for End of dead zone greater than or equal
to Start of dead zone. When the input value is greater than End of dead zone, then the
block shifts the output value down by the End of dead zone value.

Programmatic Use
Block Parameter: UpperValue
Type: character vector
Value: scalar or vector greater than or equal to LowerValue.
Default: '0.5'

Saturate on integer overflow — Choose the behavior when integer overflow
occurs
on (default) | boolean

1 Blocks — Alphabetical List

1-280

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

 Dead Zone

1-281

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Treat as gain when linearizing — Specify the gain value
On (default) | boolean

The linearization commands in Simulink software treat this block as a gain in state space.
Select this check box to cause the commands to treat the gain as 1. Clear the box to have
the commands treat the gain as 0.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

1 Blocks — Alphabetical List

1-282

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Dead Zone.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Backlash | Dead Zone Dynamic

 Dead Zone

1-283

Introduced before R2006a

1 Blocks — Alphabetical List

1-284

Dead Zone Dynamic
Provide dynamic region of zero output
Library: Simulink / Discontinuities

Description
The Dead Zone Dynamic block generates a region of zero output based on dynamic input
signals that specify the upper and lower limit. The block output depends on the input u,
and the values of the input signals up and lo.

Input Output
u >= lo and u <= up Zero
u > up u – up
u < lo u – lo

The Dead Zone Dynamic block is a masked subsystem and does not have any parameters.

Ports

Input
u — Input signal
scalar | vector

Input signal to the dead zone algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

lo — Lower limit for the dead zone
scalar | vector

 Dead Zone Dynamic

1-285

Dynamic value providing the lower bound of the region of zero output. When the input is
less than lo then the output value is shifted down by value of lo.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

up — Upper limit for the dead zone
scalar

Dynamic value providing the upper bound of the region of zero output. When the input is
greater than up then the output value is shifted down by value of up.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
y — Output signal
scalar | vector

Output signal after the dynamic dead zone algorithm is applied to the input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

1 Blocks — Alphabetical List

1-286

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Dead Zone Dynamic.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Dead Zone | Triggered Subsystem

Introduced before R2006a

 Dead Zone Dynamic

1-287

Decrement Real World
Decrease real world value of signal by one

Library
Additional Math & Discrete / Additional Math: Increment - Decrement

Description
The Decrement Real World block decreases the real world value of the signal by one.
Overflows always wrap.

Data Type Support
The Decrement Real World block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point

1 Blocks — Alphabetical List

1-288

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Decrement Stored Integer, Decrement Time To Zero, Decrement To Zero, Increment Real
World

Introduced before R2006a

 Decrement Real World

1-289

Decrement Stored Integer
Decrease stored integer value of signal by one

Library
Additional Math & Discrete / Additional Math: Increment - Decrement

Description
The Decrement Stored Integer block decreases the stored integer value of a signal by
one.

Floating-point signals also decrease by one, and overflows always wrap.

Data Type Support
The Decrement Stored Integer block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-290

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Decrement Real World, Decrement Time To Zero, Decrement To Zero, Increment Stored
Integer

Introduced before R2006a

 Decrement Stored Integer

1-291

Decrement Time To Zero
Decrease real-world value of signal by sample time, but only to zero

Library
Additional Math & Discrete / Additional Math: Increment - Decrement

Description
The Decrement Time To Zero block decreases the real-world value of the signal by the
sample time, Ts. The output never goes below zero. This block works only with fixed
sample rates and does not work inside a triggered subsystem.

Data Type Support
The Decrement Time To Zero block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-292

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Decrement Real World, Decrement Stored Integer, Decrement To Zero

Introduced before R2006a

 Decrement Time To Zero

1-293

Decrement To Zero
Decrease real-world value of signal by one, but only to zero

Library
Additional Math & Discrete / Additional Math: Increment - Decrement

Description
The Decrement To Zero block decreases the real-world value of the signal by one. The
output never goes below zero.

Data Type Support
The Decrement To Zero block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-294

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Decrement Real World, Decrement Stored Integer, Decrement Time To Zero

Introduced before R2006a

 Decrement To Zero

1-295

Delay
Delay input signal by fixed or variable sample periods
Library: Simulink / Commonly Used Blocks

Simulink / Discrete

Description
The Delay block outputs the input of the block after a delay. The block determines the
delay time based on the value of the Delay length parameter. The block supports:

• Variable delay length
• Specification of the initial condition from an input port
• State storage
• Using a circular buffer instead of an array buffer for state storage
• Resetting the state to the initial condition with an external reset signal
• Controlling execution of the block at every time step with an external enable signal

The initial block output depends on several factors such as the Initial condition
parameter and the simulation start time. For more information, see “Initial Block Output”
on page 1-296. The External reset parameter determines if the block output resets to the
initial condition on triggering. The Show enable port parameter determines if the block
execution is controlled in every time step by an external enable signal.

Initial Block Output
The output in the first few time steps of the simulation depends on the block sample time,
the delay length, and the simulation start time. The block supports specifying or
inheriting discrete sample times to determine the time interval between samples. For
more information, see “Specify Sample Time”.

The table shows the Delay block output for the first few time steps with these settings.
The block inherits a discrete sample time as [Tsampling,Toffset], where Tsampling
is the sampling period and Toffset is the initial time offset. n is the value of the Delay
length parameter and Tstart is the simulation start time for the model

1 Blocks — Alphabetical List

1-296

Simulation Time Range Block Output
(Tstart) to (Tstart + Toffset) Zero
(Tstart + Toffset) to (Tstart + Toffset + n *
Tsampling)

Initial condition
parameter

After (Tstart + Toffset + n * Tsampling) Input signal

Variable-Size Support
The Delay block provides the following support for variable-size signals:

• The data input port u accepts variable-size signals. The other input ports do not accept
variable-size signals.

• The output port has the same signal dimensions as the data input port u for variable-
size inputs.

The rules that apply to variable-size signals depend on the input processing mode of the
Delay block.

Input Processing Mode Rules for Variable-Size Signal Support
Elements as channels
(sample based)

• The signal dimensions change only during state reset
when the block is enabled.

• The initial condition must be scalar.
Columns as channels
(frame based)

• No support

Inherited
(where input is a sample-
based signal)

• The signal dimensions change only during state reset
when the block is enabled.

• The initial condition must be scalar.
Inherited
(where input is a frame-
based signal)

• The channel size changes only during state reset when the
block is enabled.

• The initial condition must be scalar.
• The frame size must be constant.

Bus Support
The Delay block provides the following support for bus signals:

 Delay

1-297

• The data input port u accepts virtual and nonvirtual bus signals. The other input ports
do not accept bus signals.

• The output port has the same bus type as the data input port u for bus inputs.
• Buses work with:

• Sample-based and frame-based processing
• Fixed and variable delay length
• Array and circular buffers

To use a bus signal as the input to a Delay block, specify the initial condition on the dialog
box. The initial condition cannot come from the input port x0. Support for virtual and
nonvirtual buses depends on the initial condition that you specify and whether the State
name parameter is empty or not.

Initial Condition State Name
Empty Not Empty

Zero Virtual and nonvirtual bus
support

Nonvirtual bus support only

Nonzero scalar Virtual and nonvirtual bus
support

No bus support

Nonscalar No bus support No bus support
Structure Virtual and nonvirtual bus

support
Nonvirtual bus support only

Partial structure Virtual and nonvirtual bus
support

Nonvirtual bus support only

Ports

Input
u — Data input signal
scalar | vector

Input data signal delayed according to parameters settings.

1 Blocks — Alphabetical List

1-298

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

d — Delay length
scalar

Delay length specified as inherited from an input port. Enabled when you select the Delay
length: Source parameter as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Enable — External enable signal
scalar

Enable signal that enables or disables execution of the block. To create this port, select
the Show enable port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

External reset — External reset signal
scalar

External signal that resets execution of the block to the initial condition. To create this
port, select the External reset parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

x0 — Initial condition
scalar | vector

Initial condition specified as inherited from an input port. Enabled when you select the
Initial Condition: Source parameter as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector

 Delay

1-299

Output signal that is the input signal delayed by the length of time specified by the
parameter Delay length. The initial value of the output signal depends on several
conditions. See “Initial Block Output” on page 1-296.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Main
Delay length — Delay length
Dialog (default) | Input port

Specify whether to enter the delay length directly on the dialog box (fixed delay) or to
inherit the delay from an input port (variable delay).

• If you set Source to Dialog, enter the delay length in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies a delay

length for the d input port. You can also specify its maximum value by specifying the
parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or non-
integer value in the dialog box (fixed delay) returns an error. An out-of-range value from
an input port (variable delay) casts it into the range. A noninteger value from an input
port (variable delay) truncates it to the integer.

Programmatic Use
Block Parameter: DelayLengthSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: DelayLength
Type: character vector
Values: scalar
Default: '2'
Block Parameter: DelayLengthUpperLimit
Type: character vector
Values: scalar

1 Blocks — Alphabetical List

1-300

Default: '100'

Initial condition — Initial condition
Dialog (default) | Input port

Specify whether to enter the initial condition directly on the dialog box or to inherit the
initial condition from an input port.

• If you set Source to Dialog, enter the initial condition in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies an initial

condition for the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the input
signal u using a round-to-nearest operation and saturation.

Note When State name must resolve to Simulink signal object is selected on the
State Attributes pane, the block copies the initial value of the signal object to the Initial
condition parameter. However, when the source for Initial condition is Input port,
the block ignores the initial value of the signal object.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: InitialCondition
Type: character vector
Values: scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

 Delay

1-301

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Use circular buffer for state — Circular buffer for storing state
off (default) | on

1 Blocks — Alphabetical List

1-302

Select to use a circular buffer for storing the state in simulation and code generation.
Otherwise, an array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large. For
an array buffer, the number of copy operations increases as the delay length goes up. For
a circular buffer, the number of copy operations is constant for increasing delay length.

If one of the following conditions is true, an array buffer always stores the state because a
circular buffer does not improve execution speed.

• For sample-based signals, the delay length is 1.
• For frame-based signals, the delay length is no larger than the frame size.

Programmatic Use
Block Parameter: UseCircularBuffer
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Prevent direct feedthrough — Prevent direct feedthrough
off (default) | on

Select to increase the delay length from zero to the lower limit for the Input processing
mode.

• For sample-based signals, increase the minimum delay length to 1.
• For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the output
port. However, this check box cannot prevent direct feedthrough from the initial condition
port, x0, to the output port.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: PreventDirectFeedthrough
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 Delay

1-303

Remove delay length check in generated code — Remove delay length out-
of-range check
off (default) | on

Select to remove code that checks for out-of-range delay length.

Check Box Result When to Use
Selected Generated code does not

include conditional
statements to check for out-
of-range delay length.

For code efficiency

Cleared Generated code includes
conditional statements to
check for out-of-range delay
length.

For safety-critical
applications

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: RemoveDelayLengthCheckInGeneratedCode
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for delay length — Diagnostic checks for delay length
None (default) | Warning | Error

Specify whether to produce a warning or error when the input d is less than the lower
limit or greater than the Delay length: Upper limit. The lower limit depends on the
setting for Prevent direct feedthrough.

• If the check box is cleared, the lower limit is zero.
• If the check box is selected, the lower limit is 1 for sample-based signals and frame

length for frame-based signals.

Options for the diagnostic include:

• None — Simulink software takes no action.

1 Blocks — Alphabetical List

1-304

• Warning — Simulink software displays a warning and continues the simulation.
• Error — Simulink software terminates the simulation and displays an error.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: DiagnosticForDelayLength
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Show enable port — Create enable port
off (default) | on

Select to control execution of this block with an enable port. The block is considered
enabled when the input to this port is nonzero, and is disabled when the input is 0. The
value of the input is checked at the same time step as the block execution.

External reset — External state reset
None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when the reset signal is nonzero at the
current time step

• when the reset signal value changes
from nonzero at the previous time step
to zero at the current time step

Level hold Reset when the reset signal is nonzero at
the current time step

 Delay

1-305

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Sample time (-1 for inherited) — Discrete interval between sample time
hits
-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. This block supports discrete sample time, but not continuous sample time.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you
click Apply.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector

1 Blocks — Alphabetical List

1-306

Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name
resolve to a signal object
off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if
you set the model configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default) | <StorageClass.PackageName>

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'

 Delay

1-307

Default: 'Simulink.Signal'

Code generation storage class — State storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | BitField (Custom) | Model default | ExportToFile
(Custom) | ImportFromFile (Custom) | FileScope (Custom) | AutoScope
(Custom) | Struct (Custom) | GetSet (Custom) | Reusable (Custom)

Select state storage class for code generation.

• Auto is the appropriate storage class for states that you do not need to interface to
external code.

• StorageClass applies the storage class or custom storage class that you select from
the list. For information about storage classes, see “Apply Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Simulink Coder). For
information about custom storage classes, see “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.

Dependencies

To enable this parameter, specify a value for State name.

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'SimulinkGlobal' | 'ExportedGlobal' |
'ImportedExtern' | 'ImportedExternPointer' | 'Custom' | ...
Default: 'Auto'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

1 Blocks — Alphabetical List

1-308

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Consider using the Model Discretizer to map these continuous blocks into discrete
equivalents that support code generation. From a model, select Analysis > Control
Design > Model Discretizer.

Not reommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see Delay.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Resettable Delay | Tapped Delay | Unit Delay | Variable Integer Delay

Topics
“Using Enabled Subsystems”

 Delay

1-309

Introduced before R2006a

1 Blocks — Alphabetical List

1-310

Demux
Extract and output elements of virtual vector signal
Library: Simulink / Commonly Used Blocks

Simulink / Signal Routing

Description
The Demux block extracts the components of an input vector signal and outputs separate
signals. The output signal ports are ordered from top to bottom. See “Mux Signals” for
information about creating and decomposing vectors.

Ports

Input
Port_1 — Accept nonbus vector signal to extract and output signals from
real or complex values of any nonbus data type supported by Simulink

Vector input signal from which the Demux block selects scalar signals or smaller vectors.

Output
Port_1 — Output signals extracted from input vector signal
nonbus signal with real or complex values of any data type supported by Simulink

Output signals extracted from the input vector. The output signal ports are ordered from
top to bottom. See “Port Location After Rotating or Flipping” for a description of the port
order for various block orientations.

 Demux

1-311

Parameters
Number of outputs — Number of outputs
2 (default) | scalar | vector

Specify the number and, optionally, the dimensionality of each output port. If you do not
specify the dimensionality of the outputs, the block determines the dimensionality of the
outputs.

The value can be a scalar specifying the number of outputs or a vector whose elements
specify the widths of the block output ports. The block determines the size of its outputs
from the size of the input signal and the value of the Number of outputs parameter.

If you specify a scalar for the Number of outputs parameter and all of the output ports
are connected, as you draw a new signal line close to output side of a Demux block,
Simulink adds a port and updates the Number of outputs parameter.

For an input vector of width n, here is what the block outputs.

Parameter Value Block outputs... Examples and Comments
p = n p scalar signals If the input is a three-element

vector and you specify three
outputs, the block outputs three
scalar signals.

p > n Error This value is not supported.
p < n

n mod p = 0

p vector signals each having
n/p elements

If the input is a six-element
vector and you specify three
outputs, the block outputs three
two-element vectors.

p < n

n mod p = m

m vector signals each having
(n/p)+1 elements and p-m
signals having n/p elements

If the input is a five-element
vector and you specify three
outputs, the block outputs two
two-element vector signals and
one scalar signal.

1 Blocks — Alphabetical List

1-312

Parameter Value Block outputs... Examples and Comments
[p1 p2 ... pm]

p1+p2+...+pm=n

pi > 0

m vector signals having widths
p1, p2, ... pm

If the input is a five-element
vector and you specify [3, 2]
as the output, the block outputs
three of the input elements on
one port and the other two
elements on the other port.

An array that has one or more of
m elements with a value of -1,
which specifies that Simulink
infers the size for the element.

For example, suppose that you
have a four-element array with
a total width of 14 and you
specify the parameter to be [p1
p2 -1 p4].

The value for the third element
(the -1 element) is 14 - (p1 +
p2 + p4)

m vector signals If pi is greater than zero, the
corresponding output has width
pi. If pi is -1, the width of the
corresponding output is
computed dynamically.

[p1 p2 ... pm]

p1+p2+...+pm!=n

pi = > 0

Error This value is not supported

If you specify the number of outputs that is smaller than the number of input elements,
the block distributes the elements as evenly as possible over the outputs. For example,
this model, model distributes the seven input signals as evenly as possible.

 Demux

1-313

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_demux_block_vector_mode_unspecified')))

You can use –1 in a vector expression to indicate that the block dynamically sizes the
corresponding port. For example, the expression [-1, 3 -1] causes the block to output
three signals where the second signal always has three elements. The sizes of the first
and third signals depend on the size of the input signal.

If a vector expression comprises positive values and -1 values, the block assigns as many
elements as needed to the ports with positive values. The block distributes the remaining
elements as evenly as possible over the ports with -1 values. For example, suppose that
the block input is seven elements wide and you specify the output as [-1, 3 -1]. In this
model, the block outputs two elements on the first port, three elements on the second,
and two elements on the third.

Programmatic Use
Block Parameter: Outputs
Type: scalar or vector

1 Blocks — Alphabetical List

1-314

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_demux_block_vector_mode_specified')))
matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_demux_block_vector_mode_specified')))

Values: character vector
Default: {'2'} or vector

Display option — Displayed block icon
bar (default) | none

By default, the block icon is a solid bar of the block foreground color. To display the icon
as a box containing the block type name, select none.

Programmatic Use
Block Parameter: Display option
Type: character vector
Values: 'bar' | 'none'
Default: 'bar'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Demux

1-315

This block has a single, default HDL architecture. See Demux.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Creator | Bus to Vector | Mux

Topics
“Virtual Signals”
“Simplify Subsystem Bus Interfaces”
“Composite Signals”
feedbacksystem

Introduced before R2006a

1 Blocks — Alphabetical List

1-316

matlab:feedbacksystem

Derivative
Output time derivative of input
Library: Simulink / Continuous

Description
The Derivative block approximates the derivative of the input signal u with respect to the
simulation time t. You obtain the approximation of

du

dt
,

by computing a numerical difference D Du t , where Du is the change in input value and
Dt is the change in time since the previous simulation (major) time step.

This block accepts one input and generates one output. The initial output for the block is
zero.

The precise relationship between the input and output of this block is:

y t
u

t

u t u T

t T
t T

previous

previous
previous()

() ()
,=

D

D

=

-

-

>

where t is the current simulation time and Tprevious is the time of the last output time of
the simulation. The latter is the same as the time of the last major time step.

The Derivative block output might be sensitive to the dynamics of the entire model. The
accuracy of the output signal depends on the size of the time steps taken in the
simulation. Smaller steps allow for a smoother and more accurate output curve from this
block. However, unlike with blocks that have continuous states, the solver does not take
smaller steps when the input to this block changes rapidly. Depending on the dynamics of
the driving signal and model, the output signal of this block might contain unexpected

 Derivative

1-317

fluctuations. These fluctuations are primarily due to the driving signal output and solver
step size.

Because of these sensitivities, structure your models to use integrators (such as
Integrator blocks) instead of Derivative blocks. Integrator blocks have states that allow
solvers to adjust the step size and improve simulation accuracy. See “Circuit Model” for
an example of choosing the best-form mathematical model to avoid using Derivative
blocks in your models.

If you must use the Derivative block with a variable step solver, set the solver maximum
step size to a value such that the Derivative block can generate answers with adequate
accuracy. To determine this value, you might need to repeatedly run the simulation using
different solver settings.

If the input to this block is a discrete signal, the continuous derivative of the input
exhibits an impulse when the value of the input changes. Otherwise, it is 0. Alternatively,
you can define the discrete derivative of a discrete signal using the difference of the last
two values of the signal:

y k
t

u k u k() (() ())=

D

- -

1
1

.

Taking the z-transform of this equation results in:

Y z

u z

z

t

z

t z

()

()
.=

-

D

=

-

D ◊

-

1 1
1

The Discrete Derivative block models this behavior. Use this block instead of the
Derivative block to approximate the discrete-time derivative of a discrete signal.

Ports

Input
Port_1 — Input signal
real scalar or vector

1 Blocks — Alphabetical List

1-318

Signal to be differentiated, specified as a real scalar or vector.
Data Types: double

Output
Port_1 — Time derivative of input signal
real scalar or vector

Time derivative of input signal, specified as a real scalar or vector. The input signal is
differentiated with respect to time as:

y t
u

t

u t u T

t T
t T

previous

previous
previous()

() ()
,=

D

D

=

-

-

>

where t is the current simulation time and Tprevious is the time of the last output time of
the simulation. The latter is the same as the time of the last major time step.
Data Types: double

Parameters
Coefficient c in the transfer function approximation s/(c*s + 1)
used for linearization — Specify the time constant c to approximate the
linearization of your system
inf (default)

The exact linearization of the Derivative block is difficult because the dynamic equation

for the block is y u= & , which you cannot represent as a state-space system. However, you
can approximate the linearization by adding a pole to the Derivative block to create a

transfer function s c s/ ().* +1 The addition of a pole filters the signal before
differentiating it, which removes the effect of noise.

The default value inf corresponds to a linearization of 0.

 Derivative

1-319

Tips

•
As a best practice, change the value of c to 1

fb
, where fb is the break frequency of the

filter.
• The parameter must be a finite positive value.

Programmatic Use
Block Parameter: CoefficientInTFapproximation
Type: character vector
Values: 'inf'
Default: 'inf'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Consider using the Model Discretizer to map the continuous blocks into discrete
equivalents that support code generation. From a model, select Analysis > Control
Design > Model Discretizer to access the Model Discretizer

Not recommended for production code.

1 Blocks — Alphabetical List

1-320

See Also
Discrete Derivative

Topics
“Improved Linearization with Transfer Fcn Blocks” on page 12-20

Introduced before R2006a

 Derivative

1-321

Deserializer1D
Convert scalar stream or smaller vectors to vector signal

Library
HDL Coder / HDL Operations

Description
The Deserializer1D block buffers a faster, scalar stream or vector signals into a larger,
slower vector signal. The faster input signal is converted to a slower signal based on the
Ratio and Idle Cycle values, the conversion changes sample time. Also, the output signal
is delayed one slow signal cycle because the serialized data needs to be collected before it
can be output as a vector. See the examples below for more details.

You can configure the deserialization to depend on a valid input signal ValidIn and a start
signal StartIn. If the ValidIn and StartIn block parameters are both selected, data
collection starts only if both ValidIn and StartIn signals are true. Consider this example:

1 Blocks — Alphabetical List

1-322

• Ratio is 2 and Idle Cycles is 0, so each output cycle is two input signals long with all
data points considered.

• ValidIn and StartIn are selected, so data collection can begin only when both StartIn
and ValidIn signals are true.

• ValidOut is selected.

In the first cycle, ValidIn and StartIn are true, so data collection begins for A and B. The
block outputs the deserialized vector in the next valid cycle, so the AB vector is output in
the next cycle. This is also true in the second cycle for C and D.

In the third cycle, starting at E, StartIn is true, but ValidIn is not. E is dropped. At F,
ValidIn is true, but StartIn is not, so F is also dropped. Since it cannot collect data for E or
F, Deserializer1D outputs the previous cycle vector, CD, but ValidOut changes to false.

Another scenario to consider is when the StartIn signal arrives too early. If the length
between two StartIn signals is not long enough to collect a full ratio cycle, the insufficient
signal data is dropped. Consider this example:

 Deserializer1D

1-323

• Ratio is 3, so each cycle is two sections long.
• Idle Cycles is 0, so all data inputs are considered.
• ValidIn and StartIn are selected, so data collection can begin only when both StartIn

and ValidIn signals are true.
• ValidOut is selected.

In the first cycle, ValidIn and StartIn are true, so data collection can begin for A and B.
However, at C another StartIn signal arrives before three signals can be collected.
Because the StartIn arrived early, A and B are dropped and no valid vector is collected
during the first cycle. Therefore, the output of the second cycle is still zero.
Deserialization begins at the StartIn at C, for C, D, and E. This vector is output at the next
valid cycle, which is cycle 3. Similarly, deserialization starts again at the StartIn at F, and
outputs the FGH vector in the fourth cycle.

You specify the block output for the first sampling period with the value of the Initial
condition parameter.

1 Blocks — Alphabetical List

1-324

Parameters
Ratio

Enter the deserialization ratio. Default is 1.

The ratio is the output vector size, divided by the input vector size. The ratio must be
divisible by the input vector size.

Idle Cycles
Enter the number of idle cycles added to the end of each serialized input. Default is 0.

The value of Idle Cycles affects the deserialized output rate. For example, if Ratio is
2 and the input signal is A, B, B, C, D, D, ..., without idle cycles the output
would be AB, BC, DD.... However for the same input and ratio with Idle Cycles
set to 1, the output is AB, CD.... The idle cycles, B and D, are dropped.

The Deserializer1D behavior changes if Idle Cycles is not zero, and ValidIn or
StartIn are on. The idle cycles value affects only the output rate, while ValidIn and
StartIn control what input data is deserialized.

Initial condition
Specify the initial output of the simulation. Default is 0.

StartIn
Select to activate the StartIn port. Default is off.

ValidIn
Select to activate the ValidIn port. Default is off.

ValidOut
Select to activate ValidOut port. Default is off.

Input data port dimensions (-1 for inherited)
Enter the size of the input data signal. The input size must be divisible by the ratio
plus the number of idle cycles. By default, the block inherits size based on context
within the model.

Input sample time (-1 for inherited)
Enter the time interval between sample time hits or specify another appropriate
sample time such as continuous. By default, the block inherits its sample time based
on context within the model. For more information, see “Sample Time”.

 Deserializer1D

1-325

Input signal type
Specify the input signal type of the block as auto, real, or complex.

Ports
S

Input signal to deserialize. Bus data types are not supported.
ValidIn

Indicates valid input signal. Use with the Serializer1D block. This port is available
when you select the ValidIn check box.

Data type: Boolean
StartOut

Indicates where to start deserialization. Use with the Serializer1D block. This port is
available when you select the StartOut check box.

Data type: Boolean
P

Deserialized output signal. Bus data types are not supported.
ValidOut

Indicates valid output signal. This port is available when you select the ValidOut
check box.

Data type: Boolean

See Also
Serializer1D

Introduced in R2014b

1 Blocks — Alphabetical List

1-326

Detect Change
Detect change in signal value
Library: Simulink / Logic and Bit Operations

Description
The Detect Change block determines if an input siganal does not equal its previous value.
The initial condition determines the initial value of the previous input U/z.

Ports

Input
Port_1 — Input signal
signal value

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | built-in integer | floating point

Output
Port_1 — Output signal
0 | 1

Output signal, true (equal to 1) when the input signal does not equal its previous value;
false (equal to 0) when the input signal equals its previous value.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Detect Change

1-327

Parameters
Initial condition — Initial condition for the previous input
0 (default) | scalar or vector

Set the initial condition for the previous input U/z.

Programmatic Use
Block Parameter: vinit
Type: character vector
Default:'0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

1 Blocks — Alphabetical List

1-328

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Output data type — Data type of the ouput
boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

 Detect Change

1-329

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase | Detect
Rise Nonnegative | Detect Rise Positive

Introduced before R2006a

1 Blocks — Alphabetical List

1-330

Detect Decrease
Detect decrease in signal value
Library: Simulink / Logic and Bit Operations

Description
The Detect Decrease block determines if an input is strictly less than its previous value.

Ports

Input
Port_1 — Input signal
signal value

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Output
Port_1 — Output signal
0 | 1

Output signal, true (equal to 1) when the input signal is less than its previous value; false
(equal to 0) when the input signal is greater than or equal to its previous value.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

 Detect Decrease

1-331

Parameters
Initial condition — Initial condition for the previous input
0 (default) | scalar or vector

Set the initial condition for the previous input U/z.

Programmatic Use
Block Parameter: vinit
Type: character vector
Default:'0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

1 Blocks — Alphabetical List

1-332

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Output data type — Data type of the ouput
boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

 Detect Decrease

1-333

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Detect Change | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase | Detect
Rise Nonnegative | Detect Rise Positive

Introduced before R2006a

1 Blocks — Alphabetical List

1-334

Detect Fall Negative
Detect falling edge when signal value decreases to strictly negative value, and its
previous value was nonnegative
Library: Simulink / Logic and Bit Operations

Description
The Detect Fall Negative block determines if the input is less than zero, and its previous
value is greater than or equal to zero.

Ports
For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Input
Port_1 — Input signal
signal value

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Output
Port_1 — Output signal
0 | 1

 Detect Fall Negative

1-335

Output signal, true (equal to 1) when the input signal is less than zero, and its previous
value was greater than or equal to zero; false (equal to 0) when the input signal is greater
than or equal to zero, or if the input signal is negative, its previous value was also
negative.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Initial condition — Initial condition for the previous input
0 (default) | scalar or vector

Set the initial condition of the Boolean expression U/z < 0.

Programmatic Use
Block Parameter: vinit
Default:'0'
Type: character vector

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

1 Blocks — Alphabetical List

1-336

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Output data type — Data type of the ouput
boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

 Detect Fall Negative

1-337

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Detect Change | Detect Deacrease | Detect Fall Nonpositive | Detect Increase | Detect
Rise Nonnegative | Detect Rise Positive

Introduced before R2006a

1 Blocks — Alphabetical List

1-338

Detect Fall Nonpositive
Detect falling edge when signal value decreases to nonpositive value, and its previous
value was strictly positive
Library: Simulink / Logic and Bit Operations

Description
The Detect Fall Nonpositive block determines if the input is less than or equal to zero, and
its previous value was greater than zero.

• The output is true (equal to 1) when the input signal is less than or equal to zero, and
its previous value was greater than zero.

• The output is false (equal to 0) when the input signal is greater than zero, or if it is
nonpositive, its previous value was also nonpositive.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

 Detect Fall Nonpositive

1-339

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal that detects a falling edge, specified as a scalar, vector, or matrix.

• The output is true (equal to 1) when the input signal is less than or equal to zero, and
its previous value was greater than zero.

• The output is false (equal to 0) when the input signal is greater than zero, or if it is
nonpositive, its previous value was also nonpositive.

Data Types: uint8 | Boolean

Parameters
Initial condition — Initial condition of Boolean expression U/z <= 0
0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z <= 0.
Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

1 Blocks — Alphabetical List

1-340

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

 Detect Fall Nonpositive

1-341

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

1 Blocks — Alphabetical List

1-342

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Increase | Detect Rise
Nonnegative | Detect Rise Positive

Introduced before R2006a

 Detect Fall Nonpositive

1-343

Detect Increase
Detect increase in signal value
Library: Simulink / Logic and Bit Operations

Description
The Detect Increase block determines if an input is strictly greater than its previous
value.

• The output is true (equal to 1) when the input signal is greater than its previous value.
• The output is false (equal to 0) when the input signal is less than or equal to its

previous value.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Output
Port_1 — Output signal
scalar | vector | matrix

1 Blocks — Alphabetical List

1-344

Output signal, detecting an increase in signal value, specified as a scalar, vector, or
matrix.

• The output is true (equal to 1) when the input signal is greater than its previous value.
• The output is false (equal to 0) when the input signal is less than or equal to its

previous value.

Data Types: uint8 | Boolean

Parameters
Initial condition — Initial condition of previous input
0.0 (default) | scalar | vector | matrix

Set the initial condition for the previous input U/z.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by

 Detect Increase

1-345

looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'

1 Blocks — Alphabetical List

1-346

Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect
Rise Nonnegative | Detect Rise Positive

 Detect Increase

1-347

Introduced before R2006a

1 Blocks — Alphabetical List

1-348

Detect Rise Nonnegative
Detect rising edge when signal value increases to nonnegative value, and its previous
value was strictly negative
Library: Simulink / Logic and Bit Operations

Description
The Detect Rise Nonnegative block determining if the input is greater than or equal to
zero, and its previous value was less than zero.

• The output is true (equal to 1) when the input signal is greater than or equal to zero,
and its previous value was less than zero.

• The output is false (equal to 0) when the input signal is less than zero, or if the input
signal is nonnegative, its previous value was also nonnegative.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

 Detect Rise Nonnegative

1-349

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal that indicates a rising edge whenever the signal value increases to a
nonnegative value, and its previous value was strictly negative. The output can be a
scalar, vector, or matrix.

• The output is true (equal to 1) when the input signal is greater than or equal to zero,
and its previous value was less than zero.

• The output is false (equal to 0) when the input signal is less than zero, or if the input
signal is nonnegative, its previous value was also nonnegative.

Data Types: uint8 | Boolean

Parameters
Initial condition — Initial condition of Boolean expression U/z >= 0
0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z >= 0.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

1 Blocks — Alphabetical List

1-350

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Output data type — Output data type
boolean (default) | uint8

 Detect Rise Nonnegative

1-351

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

1 Blocks — Alphabetical List

1-352

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect
Increase | Detect Rise Positive

Introduced before R2006a

 Detect Rise Nonnegative

1-353

Detect Rise Positive
Detect rising edge when signal value increases to strictly positive value, and its previous
value was nonpositive
Library: Simulink / Logic and Bit Operations

Description
The Detect Rise Positive block detects a rising edge by determining if the input is strictly
positive, and its previous value was nonpositive.

• The output is true (equal to 1) when the input signal is greater than zero, and the
previous value was less than or equal to zero.

• The output is false (equal to 0) when the input is negative or zero, or if the input is
positive, the previous value was also positive.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

1 Blocks — Alphabetical List

1-354

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal that detects a rising edge whenever the input is strictly positive, and its
previous value was nonpositive. The output can be a scalar, vector, or matrix.

• The output is true (equal to 1) when the input signal is greater than zero, and the
previous value was less than or equal to zero.

• The output is false (equal to 0) when the input is negative or zero, or if the input is
positive, the previous value was also positive.

Data Types: uint8 | Boolean

Parameters
Initial condition — Initial condition of Boolean expression U/z > 0
0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z > 0.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

 Detect Rise Positive

1-355

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Output data type — Output data type
boolean (default) | uint8

1 Blocks — Alphabetical List

1-356

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Detect Rise Positive

1-357

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect
Increase | Detect Rise Nonnegative

Introduced before R2006a

1 Blocks — Alphabetical List

1-358

Difference
Calculate change in signal over one time step
Library: Simulink / Discrete

Description
The Difference block outputs the current input value minus the previous input value.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.

Dependencies

When you set Input processing to Columns as channels (frame based), the input
signal must have two dimensions or less.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Current input minus previous input
scalar | vector | matrix | N-D array

Current input minus previous input, specified as a scalar, vector, matrix, or N-D array.

 Difference

1-359

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters

Main
Initial condition for previous input — Initial condition
0.0 (default) | scalar | vector | matrix | N-D array

Set the initial condition for the previous input.

Programmatic Use
Parameter: ICPrevInput
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

1 Blocks — Alphabetical List

1-360

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).
Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Signal Attributes
Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

 Difference

1-361

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

1 Blocks — Alphabetical List

1-362

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Output data type
Inherit: Inherit via internal rule (default) | Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' | 'uint32' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

 Difference

1-363

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action
off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value
that the data type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-364

Block Characteristics
Data Types double | single | Booleana | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

a. This block is not recommended for use with Boolean signals.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• The code generator does not explicitly group primitive blocks that constitute a
nonatomic masked subsystem block in the generated code. This flexibility allows for
more efficient code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic unit by selecting the
Treat as atomic unit option.

• Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead,
and widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Difference

1-365

See Also
diff

Topics
“Sample- and Frame-Based Concepts” (DSP System Toolbox)

Introduced before R2006a

1 Blocks — Alphabetical List

1-366

Digital Clock
Output simulation time at specified sampling interval
Library: Simulink / Sources

Description
The Digital Clock block outputs the simulation time only at the specified sampling
interval. At other times, the block holds the output at the previous value. To control the
precision of this block, use the Sample time parameter in the block dialog box.

Use this block rather than the Clock block (which outputs continuous time) when you
need the current simulation time within a discrete system.

Ports

Output
Port_1 — Sample time
scalar

Sample time, in seconds, at the specified sampling interval. At other times, the block
holds the output at the previous value.
Data Types: double

Parameters
Sample time — Sampling interval
1 (default) | scalar | vector

 Digital Clock

1-367

Specify the sampling interval in seconds. You can specify the sampling interval in one of
two ways:

• As the period, specified as a real-valued scalar with data type double.
• As the period and offset, specified as a real-valued vector of length 2 with data type

double. The period and offset must be finite and non-negative, and the offset value
must be less than the period.

For more information, see Specifying Sample Time.

Tip Do not specify a continuous sample time, either 0 or [0,0]. Also, avoid specifying -1
(inheriting the sample time) because this block is a source.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '1'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-368

Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

See Also
Clock

Topics
“Sample Time”

Introduced before R2006a

 Digital Clock

1-369

Direct Lookup Table (n-D)
Index into n-dimensional table to retrieve element, vector, or 2-D matrix
Library: Simulink / Lookup Tables

Description
The Direct Lookup Table (n-D) block indexes into an n-dimensional table to retrieve an
element, vector, or 2-D matrix. Vector is a column vector. The block inputs are zero-based
indices. The first selection index corresponds to the top (or left) input port. You can
choose to provide the table data as an input to the block, or define the table data on the
block dialog box. The number of input ports and the size of the output depend on the
number of table dimensions and the output slice you select.

Block Inputs and Outputs
The Direct Lookup Table (n-D) block uses inputs as zero-based indices into an n-
dimensional table. The number of inputs varies with the shape of the output: an element,
vector, or 2-D matrix.

You define a set of output values as the Table data parameter. The first input specifies
the zero-based index to the table dimension that is one higher than the output
dimensionality. The next input specifies the zero-based index to the next table dimension,
and so on.

Output
Shape

Output Dimensionality Table Dimension that Maps to the First
Input

Element 0 1
Vector 1 2
Matrix 2 3

Suppose that you want to select a vector of values from a 4-D table.

1 Blocks — Alphabetical List

1-370

The following mapping of block input port to table dimension applies.

This input port... Is the index for this table dimension...
1 2
2 3
3 4

Changes in Block Icon Appearance
Depending on parameters you set, the block icon changes appearance. For table
dimensions higher than 4, the icon matches the 4-D version but shows the exact number
of dimensions at the top.

When you use the Table data parameter, you see these icons.

Object that
Inputs Select
from the Table

Number of Table Dimensions
1 2 3 4

Element

Vector

 Direct Lookup Table (n-D)

1-371

Object that
Inputs Select
from the Table

Number of Table Dimensions
1 2 3 4

2-D Matrix Not applicable

When you use the table input port, you see these icons.

Object that
Inputs Select
from the Table

Number of Table Dimensions
1 2 3 4

Element

Vector

2-D Matrix Not applicable

Ports
Input
Port_1 — Index i1 input values
scalar | vector

1 Blocks — Alphabetical List

1-372

First input port, specifying the zero-based index to the table dimension that is one higher
than the output dimensionality (0, 1, or 2). The next input specifies the zero-based index
to the next table dimension, and so on. All index inputs must be real-valued.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | enumerated

Port_N — Index iN input values
scalar | vector

N-th input port, specifying the zero-based index to the table dimension that is N higher
than the output dimensionality (0, 1, or 2). The number of inputs varies with the shape of
the output. All index inputs must be real-valued.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | enumerated

T — Table data
vector | matrix | N-D array

Table data, specified as a vector, matrix, or N-D array. The table size must match the
dimensions of the Number of dimensions parameter. The block's output data type is the
same as the table data type.

Dependencies

To enable this port, select the Make table an input check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Output
Port_1 — Output element, vector, or 2-D matrix
scalar | vector | 2-D matrix

Output slice, provided as a scalar, vector, or 2-D matrix. The size of the block output is
determined by the setting of the Output slice parameter. The output data type is the
same as the table data type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

 Direct Lookup Table (n-D)

1-373

Parameters
Main
Table

Number of table dimensions — Number of dimensions of table data
2 (default) | 1 | 3 | 4

Number of dimensions that the Table data parameter must have. This value determines
the number of independent variables for the table and the number of inputs to the block.

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions
that this block supports is 30.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' | '4' | ... |'30'|
Default: '2'

Make table an input — Provide table data as a block input
off (default) | on

Select this check box to provide table data to the Direct Lookup Table (n-D) block as a
block input. When you select this check box, a new input port, T, appears. Use this port to
input the table data.
Programmatic Use
Block Parameter: TableIsInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Table data — Table of output values
[4 5 6; 16 19 20; 10 18 23] (default) | scalar, vector, matrix, or N-D
array

1 Blocks — Alphabetical List

1-374

Specify the table of output values. The table size must match the dimensions of the
Number of table dimensions parameter.

Tip During block diagram editing, you can leave the Table data field empty. But for
simulation, you must match the number of dimensions in Table data to the Number of
table dimensions. For details on how to construct multidimensional MATLAB arrays, see
“Multidimensional Arrays” (MATLAB).

Click Edit to open the Lookup Table Editor. For more information, see “Edit Lookup
Tables”.

Dependencies

To enable the Table data field, clear the Make table an input check box.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: scalar, vector, matrix, or N-D array
Default: '[4 5 6;16 19 20;10 18 23]'

Algorithm

Inputs select this object from table — Specify whether output is an
element, vector, or 2-D matrix
Element (default) | Vector | 2-D Matrix

Specify whether the output data is a single element, a vector, or a 2-D matrix. The number
of input ports for indexing depends on your selection.

Selection Number of Input Ports for Indexing
Element Number of table dimensions
Vector Number of table dimensions -1
2-D Matrix Number of table dimensions -2

This numbering matches MATLAB indexing. For example, if you have a 4-D table of data,
follow these guidelines.

 Direct Lookup Table (n-D)

1-375

To access... Specify... As in...
An element Four indices array(1,2,3,4)
A vector Three indices array(:,2,3,4)
A 2-D matrix Two indices array(:,:,3,4)

Diagnostic for out-of-range input — Block action when input is out of range
None (default) | Warning | Error

Specify whether to show a warning or error when an index is out of range with respect to
the table dimension. Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

When you select None or Warning, the block clamps out-of-range indices to fit table
dimensions. For example, if the specified index is 5.3 and the maximum index for that
table dimension is 4, the block clamps the index to 4.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar

1 Blocks — Alphabetical List

1-376

Default: '-1'

Table Attributes

Note The parameters in the Table Attributes pane are not available if you select Make
table an input. In this case, the block inherits all table attributes from the input port
with the label T.

Table minimum — Minimum value table data can have
[] (default) | finite, real, double, scalar

Specify the minimum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table maximum — Maximum value table data can have
[] (default) | finite, real, double, scalar

Specify the maximum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Table data type — Data type of table data
Inherit: Inherit from 'Table data' (default) | double | single | int8 | uint8 |
int16 | uint16 | int32 | uint32 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit from 'Table
data'

 Direct Lookup Table (n-D)

1-377

• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'Enum: <class name>'|'<data type expression>'
Default: 'Inherit: Inherit from 'Table data''

Lock data type settings against changes by the fixed-point tools —
Prevent fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on this block. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | enumerated
Multidimensional
Signals

Yes

1 Blocks — Alphabetical List

1-378

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Direct Lookup Table (n-D).

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

This block supports fixed-point data types for Table data only.

See Also
n-D Lookup Table

Topics
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

Introduced before R2006a

 Direct Lookup Table (n-D)

1-379

Discrete Derivative
Compute discrete-time derivative
Library: Simulink / Discrete

Description
The Discrete Derivative block computes an optionally scaled discrete time derivative as
follows

y t
Ku t

T

Ku t

T
n

n

s

n

s

()
() ()

= -
-1

where

•
u t

n
() and y tn() are the block's input and output at the current time step, respectively.

•
u t

n
()

-1 is the block's input at the previous time step.
•

K is a scaling factor.
•

T
s is the simulation's discrete step size, which must be fixed.

Note Do not use this block in subsystems with a nonperiodic trigger (for example,
nonperiodic function-call subsystems). This configuration produces inaccurate results.

1 Blocks — Alphabetical List

1-380

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Scaled discrete time derivative
scalar | vector | matrix

Optionally scaled discrete-time derivative, specified as a scalar, vector, or matrix. For
more information on how the block computes the discrete-time derivative, see
“Description” on page 1-380. You specify the data type of the output signal with the
Output data type parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters

Main
Gain value — Scaling factor
1.0 (default) | scalar

Scaling factor used to weight the block's input at the current time step, specified as a
real-valued scalar.

Programmatic Use
Block Parameter: gainval
Type: character vector

 Discrete Derivative

1-381

Values: scalar
Default: '1.0'

Initial condition for previous weighted input K*u/Ts — Initial condition
0.0 (default) | scalar

Initial condition for the previous scaled input, specified as a scalar.

Programmatic Use
Block Parameter: ICPrevScaledInput
Type: character vector
Values: scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

1 Blocks — Alphabetical List

1-382

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).
Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Signal Attributes
Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL

 Discrete Derivative

1-383

or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

1 Blocks — Alphabetical List

1-384

Output data type — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16,0) | fixdt(1,16,2^0,0)

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' | 'uint32' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 Discrete Derivative

1-385

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action
off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value
that the data type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

1 Blocks — Alphabetical List

1-386

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Depends on absolute time when used inside a triggered subsystem hierarchy.
• Generated code relies on memcpy or memset functions (string.h) under certain

conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Derivative | Discrete-Time Integrator

Introduced before R2006a

 Discrete Derivative

1-387

Discrete Filter
Model Infinite Impulse Response (IIR) filters

Library
Discrete

Description
The Discrete Filter block independently filters each channel of the input signal with the
specified digital IIR filter. You can specify the filter structure as one of | Direct form I |
Direct form I transposed | Direct form II | Direct form II transposed.
The block implements static filters with fixed coefficients. You can tune the coefficients of
these static filters.

This block filters each channel of the input signal independently over time. The Input
processing parameter allows you to specify how the block treats each element of the
input. You can specify treating input elements as an independent channel (sample-based
processing), or treating each column of the input as an independent channel (frame-based
processing). To perform frame-based processing, you must have a DSP System Toolbox
license.

The output dimensions equal those of the input, except when you specify a matrix of filter
taps for the Numerator coefficients parameter. When you do so, the output dimensions
depend on the number of different sets of filter taps you specify.

Use the Numerator coefficients parameter to specify the coefficients of the discrete
filter numerator polynomial. Use the Denominator coefficients parameter to specify the
coefficients of the denominator polynomial of the function. The Denominator
coefficients parameter must be a vector of coefficients.

1 Blocks — Alphabetical List

1-388

Specify the coefficients of the numerator and denominator polynomials in ascending
powers of z-1. The Discrete Filter block lets you use polynomials in z-1 (the delay operator)
to represent a discrete system. This method is the one that signal processing engineers
typically use. Conversely, the Discrete Transfer Fcn block lets you use polynomials in z to
represent a discrete system. This method is the one that control engineers typically use.
When the numerator and denominator polynomials have the same length, the two
methods are identical.

Specifying Initial States
In Dialog parameters and Input port(s) modes, the block initializes the internal filter
states to zero by default, which is equivalent to assuming past inputs and outputs are
zero. You can optionally use the Initial states parameter to specify nonzero initial states
for the filter delays.

To determine the number of initial state values you must specify, and how to specify them,
see the following table on Valid Initial States and Number of Delay Elements (Filter
States). The Initial states parameter can take one of four forms as described in the
following table.

 Discrete Filter

1-389

Valid Initial States

Initial state Examples Description
Scalar 5

Each delay element for each
channel is set to 5.

The block initializes all delay elements in
the filter to the scalar value.

Vector
(for applying the
same delay
elements to each
channel)

For a filter with two delay elements:
[d1 d2]

The delay elements for all channels
are d1 and d2.

Each vector element specifies a unique
initial condition for a corresponding delay
element. The block applies the same vector
of initial conditions to each channel of the
input signal. The vector length must equal
the number of delay elements in the filter
(specified in the table Number of Delay
Elements (Filter States)).

Vector or matrix
(for applying
different delay
elements to each
channel)

For a 3-channel input signal and a
filter with two delay elements:

[d1 d2 D1 D2 d1 d2] or

d D d

d D d

1 1 1

2 2 2

È

Î
Í

˘

˚
˙

• The delay elements for channel
1 are d1 and d2.

• The delay elements for channel
2 are D1 and D2.

• The delay elements for channel
3 are d1and d2.

Each vector or matrix element specifies a
unique initial condition for a corresponding
delay element in a corresponding channel:

• The vector length must be equal to the
product of the number of input channels
and the number of delay elements in the
filter (specified in the table Number of
Delay Elements (Filter States)).

• The matrix must have the same number
of rows as the number of delay elements
in the filter (specified in the table
Number of Delay Elements (Filter
States)), and must have one column for
each channel of the input signal.

Empty matrix []
Each delay element for each
channel is set to 0.

The empty matrix, [], is equivalent to
setting the Initial conditions parameter to
the scalar value 0.

The number of delay elements (filter states) per input channel depends on the filter
structure, as indicated in the following table.

1 Blocks — Alphabetical List

1-390

Number of Delay Elements (Filter States)

Filter Structure Number of Delay Elements per
Channel

Direct form I
Direct form I transposed

• number of zeros - 1
• number of poles - 1

Direct form II
Direct form II transposed

max(number of zeros, number of
poles)-1

The following tables describe the valid initial states for different sizes of input and
different number of channels. These tables provide this information according to whether
you set the Input processing parameter to frame based or sample based.

Frame-Based Processing

Input Number of
Channels

Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Column vector (K-
by-1)

• Unoriented vector
(K)

1 • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)

• Scalar
• Column vector

(M-by-1)

• Row vector (1-by-
N)

• Matrix (K-by-N)

N • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Matrix (M-by-N)

• Scalar
• Matrix (M-by-N)

 Discrete Filter

1-391

Sample-Based Processing
Input Number of

Channels
Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Scalar 1 • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)

• Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Row vector (1-by-

N)
• Column vector

(N-by–1)
• Unoriented vector

(N)

N • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Matrix (M-by-N)

• Scalar

• Matrix (K-by-N) K×N • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Matrix (M-by-

(K×N))

• Scalar

When the Initial states is a scalar, the block initializes all filter states to the same scalar
value. Enter 0 to initialize all states to zero. When the Initial states is a vector or a
matrix, each vector or matrix element specifies a unique initial state. This unique state
corresponds to a delay element in a corresponding channel:

• The vector length must equal the number of delay elements in the filter, M =
max(number of zeros, number of poles).

• The matrix must have the same number of rows as the number of delay elements in
the filter, M = max(number of zeros, number of poles). The matrix must also
have one column for each channel of the input signal.

The following example shows the relationship between the initial filter output and the
initial input and state. Given an initial input u1, the first output y1 is related to the initial
state [x1, x2] and initial input by:

1 Blocks — Alphabetical List

1-392

y b
u a x a x

a
b x b x

1 1

1 2 1 3 2

1

2 1 3 2
=

- -()È

Î
Í
Í

˘

˚
˙
˙

+ +

+ 1/a1

b 2

b 1 +

-a 2

-a 3 b 3

z-1

z-1

x
1

x
2

yu

To see an example of how to set initial conditions as a vector:

• Click on the model ex_discretefilter_nonzero_ic, or type it at the MATLAB
command prompt.

• Double-click on the Discrete Filter block, and set the parameters. The following shows
how to set the initial conditions of the Discrete Filter block to [1 2].

 Discrete Filter

1-393

matlab:ex_discretefilter_nonzero_ic

• Simulate the model, by left-clicking the green simulation icon.

1 Blocks — Alphabetical List

1-394

• Double-click the scope. You can see that the difference between the signal filtered by
the Discrete Filter block, and the signal from the filter’s building blocks, is zero.

 Discrete Filter

1-395

This demonstrates that you can enter the initial conditions of the Discrete Filter block
as a vector of [1 2]. You can also set the initial condition of the first Unit Delay to 1 and
the second Unit Delay to 2. The resulting outputs are the same.

1 Blocks — Alphabetical List

1-396

Data Type Support
The Discrete Filter block accepts and outputs real and complex signals of any signed
numeric data type that Simulink supports. The block supports the same types for the
numerator and denominator coefficients.

Numerator and denominator coefficients must have the same complexity. They can have
different word lengths and fraction lengths.

The following diagrams show the filter structure and the data types used within the
Discrete Filter block for fixed-point signals.

Input

1

Output

1

z-1

z-1

+

+
+

+

-
-

b 0

b 1a 1

aM
b N

1/a
0

The block omits the dashed divide when you select the Optimize by skipping divide by
leading denominator coefficient (a0) parameter.

 Discrete Filter

1-397

Input

Input

data type

Output

data type

Numerator

coefficient

data type

1 b0

Denominator

coefficient

data type

Denominator

accumulator

data type

b1

b2

+

+

+

+

z-1

Cast

Cast

a1

a2

Cast

z-1

Output

1+

-

+

-

Cast Cast

State

data type

Numerator

product output

data type

Numerator

accumulator

data type
CastCast

Denominator

product output

data type

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

coefficient

data type

Numerator

coefficient

data type

Cast

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

accumulator

data type

Denominator

product output

data type

Denominator

accumulator

data type

Parameters
Numerator

Numerator coefficients of the discrete filter. To specify the coefficients, set the
Source to Dialog. Then, enter the coefficients in Value as descending powers of z.
Use a row vector to specify the coefficients for a single numerator polynomial.

Denominator
Denominator coefficients of the discrete filter. To specify the coefficients, set the
Source to Dialog. Then, enter the coefficients in Value as descending powers of z.
Use a row vector to specify the coefficients for a single denominator polynomial.

Initial states
If the Source is Dialog, then, in Value, specify the initial states of the filter states.
To learn how to specify initial states, see “Specifying Initial States” on page 1-389.

If the Source is Input port, then you do not need to specify Value.
External reset

Specify the trigger event to use to reset the states to the initial conditions.

1 Blocks — Alphabetical List

1-398

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when the reset signal is nonzero at
the current time step

• when the reset signal value changes
from nonzero at the previous time
step to zero at the current time step

Level hold Reset when the reset signal is nonzero
at the current time step

The reset signal must be a scalar of type single, double, boolean, or integer.
Fixed point data types, except for ufix1, are not supported.

Input processing
Specify whether the block performs sample- or frame-based processing.

• Elements as channels (sample based) — Process each element of the input
as an independent channel.

• Columns as channels (frame based) — Process each column of the input as
an independent channel.

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

Optimize by skipping divide by leading denominator coefficient (a0)
Select when the leading denominator coefficient, a0, equals 1. This parameter
optimizes your code.

When you select this check box, the block does not perform a divide-by-a0 either in
simulation or in the generated code. An error occurs if a0 is not equal to one.

 Discrete Filter

1-399

When you clear this check box, the block is fully tunable during simulation. It
performs a divide-by-a0 in both simulation and code generation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

State
Specify the state data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator coefficients

Specify the numerator coefficient data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator coefficient minimum

Specify the minimum value that a numerator coefficient can have. The default value is
[] (unspecified). Simulink software uses this value to perform:

1 Blocks — Alphabetical List

1-400

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Numerator coefficient maximum
Specify the maximum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Numerator product output
Specify the product output data type for the numerator coefficients. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator accumulator

Specify the accumulator data type for the numerator coefficients. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

 Discrete Filter

1-401

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator coefficients

Specify the denominator coefficient data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator coefficient minimum

Specify the minimum value that a denominator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Denominator coefficient maximum
Specify the maximum value that a denominator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Denominator product output
Specify the product output data type for the denominator coefficients. You can set this
parameter to:

1 Blocks — Alphabetical List

1-402

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator accumulator

Specify the accumulator data type for the denominator coefficients. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Output

Specify the output data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output parameter.

 Discrete Filter

1-403

See “Control Signal Data Types” for more information.
Output minimum

Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” (Fixed-Point Designer).

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

1 Blocks — Alphabetical List

1-404

Saturate on integer overflow

Action Reasons for Taking
This Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

 Discrete Filter

1-405

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when
you click Apply.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter. This parameter appears only if you set the model
configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.
Signal object class

Choose a custom storage class package by selecting a signal object class that the
target package defines. For example, to apply custom storage classes from the built-in
package mpt, select mpt.Signal. Unless you use an ERT-based code generation
target with Embedded Coder, custom storage classes do not affect the generated
code.

If the class that you want does not appear in the list, select Customize class
lists. For instructions, see “Target Class Does Not Appear in List of Signal Object
Classes” (Embedded Coder).

To programmatically set this parameter, use StateSignalObject.

1 Blocks — Alphabetical List

1-406

For information about storage classes, see “Apply Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Simulink Coder). For information about
custom storage classes, see “Apply Custom Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Embedded Coder).

Code generation storage class
Select state storage class for code generation.

Default: Auto
Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

StorageClass
Applies the storage class or custom storage class that you select from the list. For
information about storage classes, see “Apply Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Simulink Coder). For information
about custom storage classes, see “Apply Custom Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other
than Simulink.

State name enables this parameter.

To programmatically set this parameter, use StateStorageClass or
StateSignalObject. See “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

TypeQualifier

Note TypeQualifier will be removed in a future release. To apply storage type
qualifiers to data, use custom storage classes and memory sections. Unless you use an
ERT-based code generation target with Embedded Coder, custom storage classes and
memory sections do not affect the generated code.

Specify a storage type qualifier such as const or volatile.

Setting Code generation storage class to ExportedGlobal, ImportedExtern,
ImportedExternPointer, or Model default enables this parameter. This
parameter is hidden unless you previously set its value.

 Discrete Filter

1-407

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name resolves
• Minimum and maximum values of the signal object

For more information, see “Data Objects”.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Direct Feedthrough Only when the leading numerator coefficient does not

equal zero
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Filter Structure Diagrams
The diagrams in the following sections show the filter structures supported by the Digital
Filter block. They also show the data types used in the filter structures for fixed-point
signals. You can set the coefficient, output, accumulator, product output, and state data
types shown in these diagrams in the block dialog.

• “IIR direct form I” on page 1-409
• “IIR direct form I transposed” on page 1-411
• “IIR direct form II” on page 1-414
• “IIR direct form II transposed” on page 1-416

1 Blocks — Alphabetical List

1-408

IIR direct form I

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog box
and have different complexities from each other, the block does not error. Instead,
it processes the filter as if two sets of complex coefficients are provided. The real-
valued coefficient set is treated as if it is a complex vector with zero-valued
imaginary parts.

 Discrete Filter

1-409

• Numerator and denominator coefficients must have the same word length. They can
have different fraction lengths.

• The State data type cannot be specified on the block mask for this structure. Doing so
is not possible because the input and output states have the same data types as the
input and output buffers.

1 Blocks — Alphabetical List

1-410

IIR direct form I transposed

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.

 Discrete Filter

1-411

• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog box
and have different complexities from each other, the block does not error. Instead,
it processes the filter as if two sets of complex coefficients are provided. The real-
valued coefficient set is treated as if it is a complex vector with zero-valued
imaginary parts.

• States are complex when either the input or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can

have different fraction lengths.

1 Blocks — Alphabetical List

1-412

 Discrete Filter

1-413

IIR direct form II

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog box
and have different complexities from each other, the block does not error. Instead,
it processes the filter as if two sets of complex coefficients are provided. The real-
valued coefficient set is treated as if it is a complex vector with zero-valued
imaginary parts.

1 Blocks — Alphabetical List

1-414

• States are complex when either the inputs or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can

have different fraction lengths.

 Discrete Filter

1-415

IIR direct form II transposed

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

1 Blocks — Alphabetical List

1-416

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog box
and have different complexities from each other, the block does not error. Instead,
it processes the filter as if two sets of complex coefficients are provided. The real-
valued coefficient set is treated as if it is a complex vector with zero-valued
imaginary parts.

• States are complex when either the inputs or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can

have different fraction lengths.

 Discrete Filter

1-417

1 Blocks — Alphabetical List

1-418

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

See Also
Allpole Filter DSP System Toolbox
Digital Filter Design DSP System Toolbox
Discrete FIR Filter Simulink
Filter Realization Wizard DSP System Toolbox
dsp.IIRFilter DSP System Toolbox
dsp.AllpoleFilter DSP System Toolbox
filterDesigner DSP System Toolbox
fvtool Signal Processing Toolbox

Introduced before R2006a

 Discrete Filter

1-419

Discrete FIR Filter
Model FIR filters

Library
Discrete

Description
The Discrete FIR Filter block independently filters each channel of the input signal with
the specified digital FIR filter. The block can implement static filters with fixed
coefficients, as well as time-varying filters with coefficients that change over time. You
can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time. The Input
processing parameter allows you to specify whether the block treats each element of the
input as an independent channel (sample-based processing), or each column of the input
as an independent channel (frame-based processing). To perform frame-based processing,
you must have a DSP System Toolbox license.

The output dimensions equal those of the input, except when you specify a matrix of filter
taps for the Coefficients parameter. When you do so, the output dimensions depend on
the number of different sets of filter taps you specify.

The outputs of this block numerically match the outputs of the DSP System Toolbox
Digital Filter Design block.

This block supports the Simulink state logging feature. See “States”.

1 Blocks — Alphabetical List

1-420

Filter Structure Support
You can change the filter structure implemented with the Discrete FIR Filter block by
selecting one of the following from the Filter structure parameter:

• Direct form
• Direct form symmetric
• Direct form antisymmetric
• Direct form transposed
• Lattice MA

You must have an available DSP System Toolbox license to run a model with any of these
filter structures other than Direct form.

Specifying Initial States
The Discrete FIR Filter block initializes the internal filter states to zero by default, which
has the same effect as assuming that past inputs and outputs are zero. You can optionally
use the Initial states parameter to specify nonzero initial conditions for the filter delays.

To determine the number of initial states you must specify and how to specify them, see
the table on valid initial states. The Initial states parameter can take one of the forms
described in the next table.

 Discrete FIR Filter

1-421

Valid Initial States

Initial Condition Description
Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix
(for applying different
delay elements to each
channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel:

• The vector length equal the product of the number of input
channels and the number of delay elements in the filter,
#_of_filter_coeffs-1 (or #_of_reflection_coeffs for
Lattice MA).

• The matrix must have the same number of rows as the number of
delay elements in the filter, #_of_filter_coeffs-1
(#_of_reflection_coeffs for Lattice MA), and must have one
column for each channel of the input signal.

Data Type Support
The Discrete FIR Filter block accepts and outputs real and complex signals of any
numeric data type supported by Simulink. The block supports the same types for the
coefficients.

The following diagrams show the filter structure and the data types used within the
Discrete FIR Filter block for fixed-point signals.

Direct Form
You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

1 Blocks — Alphabetical List

1-422

Input

1 b0

z-1

b1

bN

+

+
+

z-1

Output

1

z-1

Input

Input

data type

Output

data type

Numerator

coefficient

data type

Product output

data type

Accumulator

data type

Accumulator

data type
1 b0

z-1

Numerator

coefficient

data type

Product output

data type

Accumulator

data type

Numerator

coefficient

data type

Product output

data type

Accumulator

data type

b1

bN

+

+

+

+

Cast Cast

Cast

Cast

z-1

Output

1

 Discrete FIR Filter

1-423

Direct Form Symmetric
You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

It is assumed that the filter coefficients are symmetric. The block only uses the first half
of the coefficients for filtering.

Input

1 b0

b1

+

+
+

z-1

z-1

Output

1

z-1

+

+

+

+

z-1

bM

Input

2 b0

b1

+

+
+

z-1

z-1

Output

2

z-1

+

+

+

+

z-1 bM

Even Order - Type I

+

+

z-1

Odd Order - Type II

1 Blocks — Alphabetical List

1-424

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

+

+

+

z-1

bM

Even Order - Type I

Input

data type
Cast

CastCast

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

 Discrete FIR Filter

1-425

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

+

+

+

z-1

bM

Odd Order - Type II

Input

data type
Cast

Cast

Cast

Cast

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

z-1

Cast

+

+

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Tap sum

data type

Direct Form Antisymmetric
You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

It is assumed that the filter coefficients are antisymmetric. The block only uses the first
half of the coefficients for filtering.

1 Blocks — Alphabetical List

1-426

Input

1 b0

b1

+

+
+

z-1

z-1

Output

1

z-1

+

-

+

-

z-1

bM

Input

2 b0

b1

+

+
+

z-1

z-1

Output

2

z-1

+

-

+

-

z-1 bM

Even Order - Type III

+

-

z-1

Odd Order - Type IV

 Discrete FIR Filter

1-427

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

-

+

-

z-1

bM

Even Order - Type III

Input

data type
Cast

CastCast

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

1 Blocks — Alphabetical List

1-428

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

-

+

-

z-1

bM

Odd Order - Type IV

Input

data type
Cast

Cast

Cast

Cast

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

z-1

Cast

+

-

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Tap sum

data type

Direct Form Transposed
States are complex when either the inputs or the coefficients are complex.

 Discrete FIR Filter

1-429

Section

input

1 b0

b1

+

+

Section

output

1

+

+

bN

z-1

z-1

+

+

bN-1

z-1

1 Blocks — Alphabetical List

1-430

Input

1 b0

z-1

z-1

b1

bN

+

+

+

+

+

+

Input

data type
Cast

Product output

data type

Accumulator

data type
Cast

Output

1

Ouput

data type

Cast

Accumulator

data type

Product output

data type

Numerator

coefficient

data type

Accumulator

data type

Cast

Product output

data type

Accumulator

data type

Numerator

coefficient

data type

Accumulator

data type

Accumulator

data type

z-1

bN-1 Cast

Product output

data type

Numerator

coefficient

data type

Accumulator

data type

Accumulator

data type

Lattice MA

Input

1

k1

+

+

+

+

z-1z-1

Output

1

CONJ(k0)

+

+

k0

 Discrete FIR Filter

1-431

Input

Input

data type

Accumulator

data type

Accumulator

data type

1

Coefficient

data type

Product output

data type

Accumulator

data type

Product output

data type

Accumulator

data type

k1

+

+

+

+

z-1

Cast

Cast

Cast

Castz-1

Output

1

Cast

Cast

CONJ(k0)

State

data type

+

+

Cast

k0

State

data type

Product output

data type

Coefficient

data type

Accumulator

data type

Parameters
Coefficient source

Select whether you want to specify the filter coefficients on the block mask or through
an input port.

Filter structure
Select the filter structure you want the block to implement. You must have an
available DSP System Toolbox license to run a model with a Discrete FIR Filter block
that implements any filter structure other than direct form.

Coefficients
Specify the vector coefficients of the filter's transfer function. Filter coefficients must
be specified as a row vector. When you specify a row vector of filter taps, the block
applies a single filter to the input. To apply multiple filters to the same input, specify a
matrix of coefficients, where each row represents a different set of filter taps. This
parameter is visible only when Coefficient source is set to Dialog parameters .
For multiple filter, Filter structure must be Direct form, and the input must be a
scalar.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

1 Blocks — Alphabetical List

1-432

• Elements as channels (sample based) — Treat each element of the input
as an independent channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as
an independent channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

Initial states
Specify the initial conditions of the filter states. To learn how to specify initial states,
see “Specifying Initial States” on page 1-421.

Show enable port
Select to show an enable port for this block. This port can control execution of the
block. The block is considered enabled when the input to this port is nonzero, and is
disabled when the input is 0. The value of the input is checked at the same time step
as the block execution.

External reset
Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when the reset signal is nonzero at
the current time step

• when the reset signal value changes
from nonzero at the previous time
step to zero at the current time step

Level hold Reset when the reset signal is nonzero
at the current time step

 Discrete FIR Filter

1-433

The reset signal must be a scalar of type single, double, boolean, or integer.
Fixed point data types, except for ufix1, are not supported.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

Tap sum
Specify the tap sum data type of a direct form symmetric or direct form
antisymmetric filter, which is the data type the filter uses when it sums the inputs
prior to multiplication by the coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

This parameter is only visible when the selected filter structure is either Direct
form symmetric or Direct form antisymmetric.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Tap sum parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Coefficients

Specify the coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same word length as
input

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Coefficients parameter.

1 Blocks — Alphabetical List

1-434

See “Specify Data Types Using Data Type Assistant” for more information.
Coefficients minimum

Specify the minimum value that a filter coefficient should have. The default value is
[] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Coefficients maximum
Specify the maximum value that a filter coefficient should have. The default value is
[] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Product output
Specify the product output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Accumulator

Specify the accumulator data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8

 Discrete FIR Filter

1-435

• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
State

Specify the state data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

This parameter is only visible when the selected filter structure is Lattice MA.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Output

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.

1 Blocks — Alphabetical List

1-436

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as
SIL or external mode. For more information, see “Optimize using the specified
minimum and maximum values” (Simulink Coder).

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as
SIL or external mode. For more information, see “Optimize using the specified
minimum and maximum values” (Simulink Coder).

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” (Fixed-Point Designer).

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

 Discrete FIR Filter

1-437

Saturate on integer overflow

Action Reasons for Taking
This Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

1 Blocks — Alphabetical List

1-438

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports custom state attributes to customize and generate code more
efficiently. To access or set these attributes, in the Simulink editor, select View > Model
Data Editor or press Ctrl+Shift+E. For an example, see “Custom State Attributes in
Discrete FIR Filter block”.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Discrete FIR Filter

1-439

See Also
Blocks
Discrete Filter

Introduced in R2008a

1 Blocks — Alphabetical List

1-440

Discrete State-Space
Implement discrete state-space system
Library: Simulink / Discrete

Description

Block Behavior for Non-Empty Matrices
The Discrete State-Space block implements the system described by

x n Ax n Bu n

y n Cx n Du n

() () ()

() () (),

+ = +

= +

1

where u is the input, x is the state, and y is the output. The matrix coefficients must have
these characteristics, as illustrated in the following diagram:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

The block accepts one input and generates one output. The width of the input vector is
the number of columns in the B and D matrices. The width of the output vector is the
number of rows in the C and D matrices. To define the initial state vector, use the Initial
conditions parameter.

To specify a vector or matrix of zeros for A, B, C, D, or Initial conditions, use the zeros
function.

 Discrete State-Space

1-441

Block Behavior for Empty Matrices
When the matrices A, B, and C are empty (for example, []), the functionality of the block
becomes y(n) = Du(n). If the Initial conditions vector is also empty, the block uses an
initial state vector of zeros.

Ports
Input
Port_1 — Input signal
scalar | vector | matrix

Input vector, where the width equals the number of columns in the B and D matrices. For
more information, see “Description” on page 1-441.

Tip For integer and fixed-point input signals, use the Fixed-Point State-Space block.

Data Types: single | double

Output
Port_1 — Output vector
scalar | vector | matrix

Output vector, with width equal to the number of rows in the C and D matrices. For more
information, see “Description” on page 1-441.
Data Types: single | double

Parameters
Main
A — Matrix coefficient A
1 (default) | scalar | vector | matrix

1 Blocks — Alphabetical List

1-442

Specify the matrix coefficient A, as a real-valued n-by-n matrix, where n is the number of
states. For more information on the matrix coefficients, see “Description” on page 1-441.

Programmatic Use
Block Parameter: A
Type: character vector
Values: scalar | vector | matrix
Default: '1'

B — Matrix coefficient B
1 (default) | scalar | vector | matrix

Specify the matrix coefficient B, as a real-valued n-by-m matrix, where n is the number of
states, and m is the number of inputs. For more information on the matrix coefficients,
see “Description” on page 1-441.

Programmatic Use
Block Parameter: B
Type: character vector
Values: scalar | vector | matrix
Default: '1'

C — Matrix coefficient, C
1 (default) | scalar | vector | matrix

Specify the matrix coefficient C, as a real-valued r-by-n matrix, where r is the number of
outputs, and n is the number of states. For more information on the matrix coefficients,
see “Description” on page 1-441.

Programmatic Use
Block Parameter: C
Type: character vector
Values: scalar | vector | matrix
Default: '1'

D — Matrix coefficient, D
1 (default) | scalar | vector | matrix

Specify the matrix coefficient D, as a real-valued r-by-m matrix, where r is the number of
outputs, and m is the number of inputs. For more information on the matrix coefficients,
see “Description” on page 1-441.

 Discrete State-Space

1-443

Programmatic Use
Block Parameter: D
Type: character vector
Values: scalar | vector | matrix
Default: '1'

Initial conditions — Initial state vector
0 (default) | scalar | vector | matrix

Specify the initial state vector as a scalar, vector, or matrix. Simulink does not allow the
initial states of this block to be inf or NaN.

Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Sample time (–1 for inherited) — Interval between samples
-1 (default) | scalar | vector

Specify the time interval between samples. See “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

1 Blocks — Alphabetical List

1-444

This parameter enables State name must resolve to Simulink signal object when you
click Apply.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name
resolve to a signal object
off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if
you set the model configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default) | <StorageClass.PackageName>

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

 Discrete State-Space

1-445

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).
Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'
Default: 'Simulink.Signal'

Code generation storage class — State storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | BitField (Custom) | Model default | ExportToFile
(Custom) | ImportFromFile (Custom) | FileScope (Custom) | AutoScope
(Custom) | Struct (Custom) | GetSet (Custom) | Reusable (Custom)

Select state storage class for code generation.

• Auto is the appropriate storage class for states that you do not need to interface to
external code.

• StorageClass applies the storage class or custom storage class that you select from
the list. For information about storage classes, see “Apply Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Simulink Coder). For
information about custom storage classes, see “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.
Dependencies

To enable this parameter, specify a value for State name.
Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'SimulinkGlobal' | 'ExportedGlobal' |
'ImportedExtern' | 'ImportedExternPointer' | 'Custom' | ...
Default: 'Auto'

TypeQualifier — Storage type qualifier
'' (default) | const | volatile | ...

1 Blocks — Alphabetical List

1-446

Specify a storage type qualifier such as const or volatile.

Note TypeQualifier will be removed in a future release. To apply storage type qualifiers
to data, use custom storage classes and memory sections. Unless you use an ERT-based
code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

For more information, see “Data Objects”.

Dependencies

To enable this parameter, set Code generation storage class to ExportedGlobal,
ImportedExtern, ImportedExternPointer, or Model default. This parameter is
hidden unless you previously set its value.

Programmatic Use
Block Parameter: RTWStateStorageTypeQualifier
Type: character vector
Values: '' | 'const' | 'volatile' | ...
Default: ''

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size
Signals

No

 Discrete State-Space

1-447

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Fixed-Point State-Space | State-Space

Topics
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Apply Custom Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Embedded Coder)
“Data Objects”

Introduced before R2006a

1 Blocks — Alphabetical List

1-448

Discrete-Time Integrator
Perform discrete-time integration or accumulation of signal
Library: Simulink / Commonly Used Blocks

Simulink / Discrete

Description
Use the Discrete-Time Integrator block in place of the Integrator block to create a purely
discrete model. With the Discrete-Time Integrator block, you can:

• Define initial conditions on the block dialog box or as input to the block
• Define an input gain (K) value
• Output the block state
• Define upper and lower limits on the integral
• Reset the state with an additional reset input

Output Equations
With the first time step, block state n = 0, with either initial output y(0) = IC or initial
state x(0) = IC, depending on the Initial condition setting parameter value.

For a given step n > 0 with simulation time t(n), Simulink updates output y(n) as
follows:

• Forward Euler method:

y(n) = y(n-1) + K*[t(n) - t(n-1)]*u(n-1)

• Backward Euler method:

y(n) = y(n-1) + K*[t(n) - t(n-1)]*u(n)

• Trapezoidal method:

 Discrete-Time Integrator

1-449

y(n) = y(n-1) + K*[t(n)-t(n-1)]*[u(n)+u(n-1)]/2

Simulink automatically selects a state-space realization of these output equations
depending on the block sample time, which can be explicit or triggered. When using
explicit sample time, t(n)-t(n-1) reduces to the sample time T for all n > 0.

Integration and Accumulation Methods
This block can integrate or accumulate a signal using a forward Euler, backward Euler, or
trapezoidal method. Assume that u is the input, y is the output, and x is the state. For a
given step n, Simulink updates y(n) and x(n+1). In integration mode, T is the block
sample time (delta T in the case of triggered sample time). In accumulation mode, T = 1.
The block sample time determines when the output is computed but not the output value.
K is the gain value. Values clip according to upper or lower limits.

Forward Euler method (default), also known as forward rectangular, or left-hand
approximation

The software approximates 1/s as T/(z-1). The expressions for the output of the block
at step n are:

x(n+1) = x(n) + K*T*u(n)
y(n) = x(n)

The block uses these steps to compute the output:

Step 0: y(0) = IC (clip if necessary)
 x(1) = y(0) + K*T*u(0)

Step 1: y(1) = x(1)
 x(2) = x(1) + K*T*u(1)

Step n: y(n) = x(n)
 x(n+1) = x(n) + K*T*u(n) (clip if necessary)

Using this method, input port 1 does not have direct feedthrough.

Backward Euler method, also known as backward rectangular or right-hand
approximation

1 Blocks — Alphabetical List

1-450

The software approximates 1/s as T*z/(z-1). The resulting expression for the output of
the block at step n is

y(n) = y(n-1) + K*T*u(n).

Let x(n) = y((n)-1). The block uses these steps to compute the output.

• If the parameter Initial condition setting is set to Output or Auto for triggered and
function-call subsystems:

Step 0: y(0) = IC (clipped if necessary)
 x(1) = y(0)

• If the parameter Initial condition setting is set to Auto for non-triggered
subsystems:

Step 0: x(0) = IC (clipped if necessary)
 x(1) = y(0) = x(0) + K*T*u(0)

Step 1: y(1) = x(1) + K*T*u(1)
 x(2) = y(1)

Step n: y(n) = x(n) + K*T*u(n)
 x(n+1) = y(n)

Using this method, input port 1 has direct feedthrough.

For this method, the software approximates 1/s as T/2*(z+1)/(z-1).

When T is fixed (equal to the sampling period), the expressions to compute the output
are:

x(n) = y(n-1) + K*T/2*u(n-1)
y(n) = x(n) + K*T/2*u(n)

• If the parameter Initial condition setting is set to Output or Auto for triggered and
function-call subsystems:

Step 0: y(0) = IC (clipped if necessary)
 x(1) = y(0) + K*T/2*u(0)

• If the parameter Initial condition setting is set to Auto for non-triggered
subsystems:

Step 0: x(0) = IC (clipped if necessary)
 y(0) = x(0) + K*T/2*u(0)

 Discrete-Time Integrator

1-451

 x(1) = y(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2*u(1)
 x(2) = y(1) + K*T/2*u(1)

Step n: y(n) = x(n) + K*T/2*u(n)
 x(n+1) = y(n) + K*T/2*u(n)

Here, x(n+1) is the best estimate of the next output. It is not the same as the state, in
that x(n) is not equal to y(n).

Using this method, input port 1 has direct feedthrough.

WhenT is a variable (for example, obtained from the triggering times), the block uses
these steps to compute the output.

• If the parameter Initial condition setting is set to Output or Auto for triggered and
function-call subsystems:

Step 0: y(0) = IC (clipped if necessary)
 x(1) = y(0)

• If the parameter Initial condition setting is set to Auto for non-triggered
subsystems:

Step 0: x(0) = IC (clipped if necessary)
 x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + T/2*(u(1) + u(0))
 x(2) = y(1)

Step n: y(n) = x(n) + T/2*(u(n) + u(n-1))
 x(n+1) = y(n)

Define Initial Conditions
You can define the initial conditions as a parameter on the block dialog box or input them
from an external signal:

• To define the initial conditions as a block parameter, set the Initial condition source
parameter to internal and enter the value in the Initial condition text box.

• To provide the initial conditions from an external source, set the Initial condition
source parameter to external. An additional input port appears on the block.

1 Blocks — Alphabetical List

1-452

When to Use the State Port
Use the state port instead of the output port:

• When the output of the block is fed back into the block through the reset port or the
initial condition port, causing an algebraic loop. For an example, see the
sldemo_bounce_two_integrators model.

• When you want to pass the state from one conditionally executed subsystem to
another, which can cause timing problems. For an example, see the sldemo_clutch
model.

You can work around these problems by passing the state through the state port rather
than the output port. Simulink generates the state at a slightly different time from the
output, which protects your model from these problems. To output the block state, select
the Show state port check box. The state port appears on the top of the block.

Limit the Integral
To keep the output within certain levels, select the Limit output check box and enter the
limits in the corresponding text box. Doing so causes the block to function as a limited

 Discrete-Time Integrator

1-453

integrator. When the output reaches the limits, the integral action turns off to prevent
integral windup. During a simulation, you can change the limits but you cannot change
whether the output is limited. The table shows how the block determines output.

Integral Output
Less than or equal to the Lower
saturation limit and the input is negative

Held at the Lower saturation limit

Between the Lower saturation limit and
the Upper saturation limit

The integral

Greater than or equal to the Upper
saturation limit and the input is positive

Held at the Upper saturation limit

To generate a signal that indicates when the state is being limited, select the Show
saturation port check box. A new saturation port appears below the block output port.

The saturation signal has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• -1 indicates that the lower limit is being applied.

Reset the State
The block resets its state to the specified initial condition, based on an external signal. To
cause the block to reset its state, select one of the External reset parameter options. A
reset port appears that indicates the reset trigger type.

1 Blocks — Alphabetical List

1-454

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results.
To resolve this loop, feed the output of the block state port into the reset port instead. To
access the block state, select the Show state port check box.

Reset Trigger Types
The External reset parameter lets you determine the attribute of the reset signal that
triggers the reset. The trigger options include:

• rising – Resets the state when the reset signal has a rising edge. For example, this
figure shows the effect that a rising reset trigger has on backward Euler integration.

• falling — Resets the state when the reset signal has a falling edge. For example,
this figure shows the effect that a falling reset trigger has on backward Euler
integration.

 Discrete-Time Integrator

1-455

• either — Resets the state when the reset signal rises or falls. For example, the
following figure shows the effect that an either reset trigger has on backward Euler
integration.

• level — Resets and holds the output to the initial condition while the reset signal is
nonzero. For example, this figure shows the effect that a level reset trigger has on
backward Euler integration.

1 Blocks — Alphabetical List

1-456

• sampled level — Resets the output to the initial condition when the reset signal is
nonzero. For example, this figure shows the effect that a sampled level reset trigger
has on backward Euler integration.

The sampled level reset option requires fewer computations, making it more
efficient than the level reset option.

Note For the Discrete-Time Integrator block, all trigger detections are based on
signals with positive values. For example, a signal changing from -1 to 0 is not
considered a rising edge, but a signal changing from 0 to 1 is.

 Discrete-Time Integrator

1-457

Behavior in Simplified Initialization Mode
Simplified initialization mode is enabled when you set Underspecified initialization
detection to Simplified in the Configuration Parameters dialog box. If you use
simplified initialization mode, the behavior of the Discrete-Time Integrator block differs
from classic initialization mode. The new initialization behavior is more robust and
provides more consistent behavior in these cases:

• In algebraic loops
• On enable and disable
• When comparing results using triggered sample time against explicit sample time,

where the block is triggered at the same rate as the explicit sample time

Simplified initialization mode enables easier conversion from Continuous-Time Integrator
blocks to Discrete-Time Integrator blocks, because the initial conditions have the same
meaning for both blocks.

For more information on classic and simplified initialization modes, see “Underspecified
initialization detection”.

When you use simplified initialization mode with Initial condition setting set to Output
for triggered and function-call subsystems, the enable and disable behavior of the block is
simplified as follows.

At disable time td:

 y(td) = y(td-1)

At enable time te:

• If the parent subsystem control port has States when enabling set to reset:

y(te) = IC.

• If the parent subsystem control port has States when enabling set to held:

y(te) = y(td).

The following figure shows this condition.

1 Blocks — Alphabetical List

1-458

When using simplified initialization mode, you cannot place the Discrete-Time Integrator
block in an iterator subsystem block.

In simplified initialization mode, Iterator subsystems do not maintain elapsed time. Thus,
if a Discrete-Time Integrator block, which needs elapsed time, is placed inside an iterator
subsystem block, Simulink reports an error.

Behavior in an Enabled Subsystem Inside a Function-Call
Subsystem
Suppose you have a function-call subsystem that includes an enabled subsystem, which
contains a Discrete-Time Integrator block. The following behavior applies.

 Discrete-Time Integrator

1-459

Integrator Method Sample Time Type of
Function-Call Trigger
Port

Value of delta T
When Function-Call
Subsystem Executes
for the First Time
After Enabled

Reason for Behavior

Forward Euler Triggered t — tstart When the function-call
subsystem executes for
the first time, the
integrator algorithm
uses tstart as the
previous simulation
time.

Backward Euler and
Trapezoidal

Triggered t — tprevious When the function-call
subsystem executes for
the first time, the
integrator algorithm
uses tprevious as the
previous simulation
time.

Forward Euler,
Backward Euler, and
Trapezoidal

Periodic Sample time of the
function-call generator

In periodic mode, the
Discrete-Time
Integrator block uses
sample time of the
function-call generator
for delta T.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

1 Blocks — Alphabetical List

1-460

IC — Initial conditions of the states
scalar | vector | matrix

Initial conditions of the states, specified as a finite scalar, vector, or matrix.
Dependencies

To enable this port, set Initial condition source to external.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Discrete-time integration or accumulation of input
scalar | vector | matrix

Discrete-time integration or accumulation of the input signal, specified as a scalar, vector,
or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Port_2 — Saturation output
scalar | vector | matrix

Signal indicating when the state is being limited, specified as a scalar, vector, or matrix.
The signal has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• -1 indicates that the lower limit is being applied.

Dependencies

To enable this port, select the Show saturation port check box.
Data Types: single | double | int8

Port_3 — State output
scalar | vector | matrix

Block states, output as a scalar, vector, or matrix. By default, the block adds this port to
the top of the block icon. Use the state port when:

 Discrete-Time Integrator

1-461

• The output of the block is fed back into the block through the reset port or the initial
condition port, causing an algebraic loop. For an example, see the
sldemo_bounce_two_integrators model.

• You want to pass the state from one conditionally executed subsystem to another,
which can cause timing problems. For an example, see the sldemo_clutch model.

For more information, see “When to Use the State Port” on page 1-453.

Dependencies

To enable this port, select the Show state port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters

Main
Integrator method — Accumulation method
Integration: Forward Euler (default) | Integration: Backward Euler |
Integration: Trapezoidal | Accumulation: Forward Euler | Accumulation:
Backward Euler | Accumulation: Trapezoidal

Specify the integration or accumulation method. See “Output Equations” on page 1-449
and “Integration and Accumulation Methods” on page 1-450 for more information.

Programmatic Use
Block Parameter: IntegratorMethod
Type: character vector
Values: 'Integration: Forward Euler' | 'Integration: Backward Euler' |
'Integration: Trapezoidal' | 'Accumulation: Forward Euler' |
'Accumulation: Backward Euler' | 'Accumulation: Trapezoidal'
Default: 'Integration: Forward Euler'

Gain value — Value to multiply with integrator input
1.0 (default) | scalar | vector

Specify a scalar, vector, or matrix by which to multiply the integrator input. Each element
of the gain must be a positive real number.

1 Blocks — Alphabetical List

1-462

• Specifying a value other than 1.0 (the default) is semantically equivalent to connecting
a Gain block to the input of the integrator.

• Valid entries include:

• double(1.0)
• single(1.0)
• [1.1 2.2 3.3 4.4]
• [1.1 2.2; 3.3 4.4]

Tip Using this parameter to specify the input gain eliminates a multiplication operation
in the generated code. However, this parameter must be nontunable to realize this
benefit. If you want to tune the input gain, set this parameter to 1.0 and use an external
Gain block to specify the input gain.

Programmatic Use
Block Parameter: gainval
Type: character vector
Values: scalar | vector
Default: '1.0'

External reset — Select when to reset states to initial conditions
none (default) | rising | falling | either | level | sampled level

Select the type of trigger event that resets the states to their initial conditions:

• none — Do not reset the state to initial conditions.
• rising — Reset the state when the reset signal has a rising edge.
• falling — Reset the state when the reset signal has a falling edge.
• either — Reset the state when the reset signal rises or falls.
• level — Reset and hold the output to the initial condition while the reset signal is

nonzero.
• sampled level — Reset the output to the initial condition when the reset signal is

nonzero.

For more information, see “Reset the State” on page 1-454 and “Reset Trigger Types” on
page 1-455.

 Discrete-Time Integrator

1-463

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'sampled level'
Default: 'none'

Initial condition source — Select source of initial condition
internal (default) | external

Select source of initial condition:

• internal — Get the initial conditions of the states from the Initial condition block
parameter.

• external — Get the initial conditions of the states from an external block, via the IC
input port.

Dependencies

Selecting internal enables the Initial condition parameter.

Selecting external disables the Initial condition parameter and enables the IC input
port.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'internal' | 'external'
Default: 'internal'

Initial condition — Initial condition of states
0 (default) | scalar | vector | matrix

Specify initial condition of the block states. The minimum and maximum values are bound
by the Output minimum and Output maximum block parameters.

Tip Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

To enable this parameter, set the Initial condition source to internal.

1 Blocks — Alphabetical List

1-464

Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Initial condition setting — Select where to apply the initial condition
Auto (default) | Output | Compatibility

Select whether to apply the value of the Initial condition parameter to the block state or
block output. The initial condition is also the reset value.

• Auto — Block chooses where to apply the Initial condition parameter.

• If the block is in a non-triggered subsystem and Integrator method is set to an
integration method, set initial conditions:

x(0) = IC

At reset:

x(n) = IC
• If the block is in a triggered or function-call subsystem and Integrator method is

set to an integration method, set initial conditions as if output was selected.
• Output — Use this option when the block is in a triggered or a function-call

subsystem and Integrator method is set to an integration method.

Set initial conditions:

y(0) = IC

At reset:

y(n) = IC
• Compatibility — This option is present to provide backward compatibility. You

cannot select this option for Discrete-Time Integrator blocks in Simulink models but
you can select it for Discrete-Time Integrator blocks in a library. Use this option to
maintain compatibility with Simulink models created before R2014a.

Prior to R2014a, the option Auto was known as State only (most efficient).
The option Output was known as State and output. The behavior of the block with
the option Compatibility is as follows.

 Discrete-Time Integrator

1-465

• If Underspecified initialization detection is set to Classic, the Initial
condition setting parameter behaves as Auto.

• If Underspecified initialization detection is set to Simplified, the Initial
condition setting parameter behaves as Output.

Note This parameter was named Use initial condition as initial and reset value for
in Simulink before R2014a.

Programmatic Use
Block Parameter: InitialConditionSetting
Type: character vector
Value: 'Auto' | 'Output' | 'Compatibility'
Default: 'Auto'

Sample time (-1 for inherited) — Interval between samples
-1 (default) | scalar | vector

Enter the discrete time interval between steps.

By default, the block uses a discrete sample time of 1. To set a different sample time,
enter another discrete value, such as 0.1.

See “Specify Sample Time” for more information.

Tips

• Do not specify a sample time of 0. This value specifies a continuous sample time,
which the Discrete-Time Integrator block does not support.

• Do not specify a sample time of inf or NaN because these values are not discrete.
• If you specify -1 to inherit the sample time from an upstream block, verify that the

upstream block uses a discrete sample time. For example, the Discrete-Time
Integrator block cannot inherit a sample time of 0.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

1 Blocks — Alphabetical List

1-466

Limit output — Limit block output values to specified range
off (default) | on

Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

• Selecting this check box limits the block's output to a value between the Lower
saturation limit and Upper saturation limit parameters.

• Clearing this check box does not limit the block's output values.

Dependencies

Selecting this parameter enables the Lower saturation limit and Upper saturation
limit parameters.

Programmatic Use
Block Parameter: LimitOutput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Upper saturation limit — Upper limit for the integral
inf (default) | scalar | vector | matrix

Specify the upper limit for the integral as a scalar, vector, or matrix. You must specify a
value between the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: UpperSaturationLimit
Type: character vector
Values: scalar | vector | matrix
Default: 'inf'

Lower saturation limit — Lower limit for the integral
-inf (default) | scalar | vector | matrix

Specify the lower limit for the integral as a scalar, vector, or matrix. You must specify a
value between the Output minimum and Output maximum parameter values.

 Discrete-Time Integrator

1-467

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: LowerSaturationLimit
Type: character vector
Values: scalar | vector | matrix
Default: '-inf'

Show saturation port — Enable saturation output port
off (default) | on

Select this check box to add a saturation output port to the block. When you clear this
check box, the block does not have a saturation output port.

Dependencies

Selecting this parameter enables a saturation output port.

Programmatic Use
Block Parameter: ShowSaturationPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show state port — Enable state output port
off (default) | on

Select this check box to add a state output port to the block. When you clear this check
box, the block does not have a state output port.

Dependencies

Selecting this parameter enables a state output port.

Programmatic Use
Block Parameter: ShowStatePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Ignore limit and reset when linearizing — Treat block as not resettable
off (default) | on

1 Blocks — Alphabetical List

1-468

Select this check box to have Simulink linearization commands treat this block as not
resettable and as having no limits on its output, regardless of the settings of the block
reset and output limitation options.

Tip Ignoring the limit and resetting allows you to linearize a model around an operating
point. This point may cause the integrator to reset or saturate.

Programmatic Use
Block Parameter: IgnoreLimit
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal Attributes
Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

 Discrete-Time Integrator

1-469

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Data type — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType. For more information,
see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-470

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to
balance numerical accuracy, performance, and generated code size, while taking into
account the properties of the embedded target hardware. If you change the embedded
target settings, the data type selected by the internal rule might change. For example,
if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is
specified as the targeted hardware type, the output data type is sfix24. If
Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is
specified as the target hardware, the output data type is int32. If none of the word
lengths provided by the target microprocessor can accommodate the output range,
Simulink software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

 Discrete-Time Integrator

1-471

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

1 Blocks — Alphabetical List

1-472

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type

can represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or
127.

Tip

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

 Discrete-Time Integrator

1-473

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

Dependencies

When you specify a value for State name and click Apply, you enable the State name
must resolve to Simulink signal object parameter.

Programmatic Use
Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state
names resolve to signal object
Off (default) | Boolean

Specify if requiring that state name resolve to Simulink signal objects or not. If selected,
the software generates an error at run time if you specify a state name that does not
match the name of a Simulink signal object.

1 Blocks — Alphabetical List

1-474

Dependency

Enabled when you give the parameter State name a value and set the model
configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default)

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'
Default: 'Simulink.Signal'

Code generation storage class — Storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | Bitfield (Custom) | Volatile (Custom) |
ExportToFile (Custom) | ImportFromFile (Custom) | FileScope (Custom) |
Struct (Custom) | GetSet (Custom) | Reusable (Custom)

 Discrete-Time Integrator

1-475

Select state storage class for code generation. If you do not need to interface to external
code, select Auto.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder) and “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'Model default' | 'ExportedGlobal'' | 'ImportedExtern' |
'ImportedExternPointer' | 'Custom'
Default: 'Auto'

TypeQualifier — Storage type qualifier
'' (default) | const | volatile | ...

Specify a storage type qualifier such as const or volatile.

Note TypeQualifier will be removed in a future release. To apply storage type qualifiers
to data, use custom storage classes and memory sections. Unless you use an ERT-based
code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

Dependencies

To enable this parameter, set Code generation storage class to ExportedGlobal,
ImportedExtern, ImportedExternPointer, or Model default. This parameter is
hidden unless you previously set its value.

Programmatic Use
Block Parameter: RTWStateStorageTypeQualifier
Type: character vector
Values:'' | 'const' | 'volatile' | ...
Default: ''

1 Blocks — Alphabetical List

1-476

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Depends on absolute time when used inside a triggered subsystem hierarchy.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Discrete-Time Integrator.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Integrator

 Discrete-Time Integrator

1-477

Topics
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Apply Custom Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Embedded Coder)

Introduced before R2006a

1 Blocks — Alphabetical List

1-478

Discrete Transfer Fcn
Implement discrete transfer function

Library
Discrete

Description
The Discrete Transfer Fcn block implements the z-transform transfer function:

H z
num z

den z

num z num z num

den z den z

m m

m

n n
()

()

()

...
= =

+ + +

+ +

-

-

0 1
1

0 1
1

....+ denn

where m+1 and n+1 are the number of numerator and denominator coefficients,
respectively. num and den contain the coefficients of the numerator and denominator in
descending powers of z. num can be a vector or matrix, den must be a vector, and you
specify both as parameters on the block dialog box. The order of the denominator must be
greater than or equal to the order of the numerator.

Specify the coefficients of the numerator and denominator polynomials in descending
powers of z. This block lets you use polynomials in z to represent a discrete system, a
method that control engineers typically use. Conversely, the Discrete Filter block lets you
use polynomials in z-1 (the delay operator) to represent a discrete system, a method that
signal processing engineers typically use. The two methods are identical when the
numerator and denominator polynomials have the same length.

The Discrete Transfer Fcn block applies the z-transform transfer function to each
independent channel of the input. The Input processing parameter allows you to specify
whether the block treats each element of the input as an individual channel (sample-
based processing), or each column of the input as an individual channel (frame-based

 Discrete Transfer Fcn

1-479

processing). To perform frame-based processing, you must have a DSP System Toolbox
license.

Specifying Initial States
Use the Initial states parameter to specify initial filter states. To determine the number
of initial states you must specify and how to specify them, see the following tables.

Frame-Based Processing

Input Number of
Channels

Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Column vector (K-
by-1)

• Unoriented vector
(K)

1 • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)

• Scalar
• Column vector

(M-by-1)

• Row vector (1-by-
N)

• Matrix (K-by-N)

N • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Matrix (M-by-N)

• Scalar
• Matrix (M-by-N)

1 Blocks — Alphabetical List

1-480

Sample-Based Processing
Input Number of

Channels
Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Scalar 1 • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)

• Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Row vector (1-by-

N)
• Column vector

(N-by-1)
• Unoriented vector

(N)

N • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Matrix (M-by-N)

• Scalar

• Matrix (K-by-N) K×N • Scalar
• Column vector

(M-by-1)
• Row vector (1-by-

M)
• Matrix (M-by-

(K×N))

• Scalar

When the Initial states is a scalar, the block initializes all filter states to the same scalar
value. Enter 0 to initialize all states to zero. When the Initial states is a vector or a
matrix, each vector or matrix element specifies a unique initial state for a corresponding
delay element in a corresponding channel:

• The vector length must equal the number of delay elements in the filter, M =
max(number of zeros, number of poles).

• The matrix must have the same number of rows as the number of delay elements in
the filter, M = max(number of zeros, number of poles). The matrix must also
have one column for each channel of the input signal.

The following example shows the relationship between the initial filter output and the
initial input and state. Given an initial input u1, the first output y1 is related to the initial
state [x1, x2] and initial input by:

 Discrete Transfer Fcn

1-481

y x

x u x

1 1

2 1 1

4

1 2 3

=

= -/ ()

1 Blocks — Alphabetical List

1-482

Data Type Support
The Discrete Transfer Function block accepts and outputs real and complex signals of any
signed numeric data type that Simulink supports. The block supports the same types for
the numerator and denominator coefficients.

Numerator and denominator coefficients must have the same complexity. They can have
different word lengths and fraction lengths.

States are complex when either the input or the coefficients are complex.

The following diagrams show the filter structure and the data types that the block uses
for floating-point and fixed-point signals.

Input

1

Output

1

z-1

z-1

+

+

+

-
-

b 0

a 1

a 3
b 1

1/a
0

z-1

a 2

-

The block omits the dashed divide when you select the Optimize by skipping divide by
leading denominator coefficient (a0) parameter.

 Discrete Transfer Fcn

1-483

Input

Input

data type

Output

data type
1

b0

Denominator

coefficient

data type

Denominator

accumulator

data type
+

+

z-1

Cast

Cast

a1

a2

z-1

Output

1+

-

+

-

Cast

State

data type
CastCast

Denominator

product output

data type

Denominator

coefficient

data type

Numerator

coefficient

data type

Cast

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

accumulator

data type

Denominator

product output

data type

Denominator

accumulator

data type

+

-

b1Cast a2

Denominator

coefficient

data type

Numerator

coefficient

data type

Cast

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

product output

data type

z-1Denominator

accumulator

data type

Parameters
Numerator

Numerator coefficients of the discrete transfer function. To specify the coefficients,
set the Source to Dialog. Then enter the coefficients in Value as descending powers
of z. Use a row vector to specify the coefficients for a single numerator polynomial.
Use a matrix to specify coefficients for multiple filters to be applied to the same input.
Each matrix row represents a set of filter taps.

Denominator
Denominator coefficients of the discrete transfer function. To specify the coefficients,
set the Source to Dialog. Then, enter the coefficients in Value as descending
powers of z. Use a row vector to specify the coefficients for a single denominator

1 Blocks — Alphabetical List

1-484

polynomial. Use a matrix to specify coefficients for multiple filters to be applied to the
same input. Each matrix row represents a set of filter taps.

Initial states
If the Source is Dialog, then, in Value, specify the initial states of the filter states.
To learn how to specify initial states, see “Specifying Initial States” on page 1-480.

If the Source is Input port, then there is nothing to be specified for Value.
External reset

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when the reset signal is nonzero at
the current time step

• when the reset signal value changes
from nonzero at the previous time
step to zero at the current time step

Level hold Reset when the reset signal is nonzero
at the current time step

The reset signal must be a scalar of type single, double, boolean, or integer.
Fixed point data types, except for ufix1, are not supported.

Input processing
Specify whether the block performs sample- or frame-based processing.

• Elements as channels (sample based) — Process each element of the input
as an independent channel.

• Columns as channels (frame based) — Process each column of the input as
an independent channel.

Note Frame-based processing requires a DSP System Toolbox license.

 Discrete Transfer Fcn

1-485

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

Optimize by skipping divide by leading denominator coefficient (a0)
Select when the leading denominator coefficient, a0, equals one. This parameter
optimizes your code.

When you select this check box, the block does not perform a divide-by-a0 either in
simulation or in the generated code. An error occurs if a0 is not equal to one.

When you clear this check box, the block is fully tunable during simulation, and
performs a divide-by-a0 in both simulation and code generation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

State
Specify the state data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide for
more information.

Numerator coefficients
Specify the numerator coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object

1 Blocks — Alphabetical List

1-486

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide for
more information.

Numerator coefficient minimum
Specify the minimum value that a numerator coefficient can have. The default value is
[] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Numerator coefficient maximum
Specify the maximum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Numerator product output
Specify the product output data type for the numerator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator product output parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide for
more information.

 Discrete Transfer Fcn

1-487

Numerator accumulator
Specify the accumulator data type for the numerator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide for
more information.

Denominator coefficients
Specify the denominator coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide for
more information.

Denominator coefficient minimum
Specify the minimum value that a denominator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

1 Blocks — Alphabetical List

1-488

Denominator coefficient maximum
Specify the maximum value that a denominator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Denominator product output
Specify the product output data type for the denominator coefficients. You can set it
to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator product output parameter.

See “Specify Data Types Using Data Type Assistant” in theSimulink User's Guide for
more information.

Denominator accumulator
Specify the accumulator data type for the denominator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide for
more information.

 Discrete Transfer Fcn

1-489

Output
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Output minimum

Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” (Fixed-Point Designer).

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

1 Blocks — Alphabetical List

1-490

Saturate on integer overflow

Action Reasons for Taking
This Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

 Discrete Transfer Fcn

1-491

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when
you click Apply.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter. This parameter appears only if you set the model
configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.
Signal object class

Choose a custom storage class package by selecting a signal object class that the
target package defines. For example, to apply custom storage classes from the built-in
package mpt, select mpt.Signal. Unless you use an ERT-based code generation
target with Embedded Coder, custom storage classes do not affect the generated
code.

If the class that you want does not appear in the list, select Customize class
lists. For instructions, see “Target Class Does Not Appear in List of Signal Object
Classes” (Embedded Coder).

To programmatically set this parameter, use StateSignalObject.

1 Blocks — Alphabetical List

1-492

For information about storage classes, see “Apply Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Simulink Coder). For information about
custom storage classes, see “Apply Custom Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Embedded Coder).

Code generation storage class
Select state storage class for code generation.

Default: Auto
Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

StorageClass
Applies the storage class or custom storage class that you select from the list. For
information about storage classes, see “Apply Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Simulink Coder). For information
about custom storage classes, see “Apply Custom Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other
than Simulink.

State name enables this parameter.

To programmatically set this parameter, use StateStorageClass or
StateSignalObject. See “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

TypeQualifier

Note TypeQualifier will be removed in a future release. To apply storage type
qualifiers to data, use custom storage classes and memory sections. Unless you use an
ERT-based code generation target with Embedded Coder, custom storage classes and
memory sections do not affect the generated code.

Specify a storage type qualifier such as const or volatile.

Setting Code generation storage class to ExportedGlobal, ImportedExtern,
ImportedExternPointer, or Model default enables this parameter. This
parameter is hidden unless you previously set its value.

 Discrete Transfer Fcn

1-493

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name resolves
• Minimum and maximum values of the signal object

For more information, see “Data Objects”.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Direct Feedthrough Only when the leading numerator coefficient is not

equal to zero and the numerator order equals the
denominator order

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-494

Discrete Zero-Pole
Model system defined by zeros and poles of discrete transfer function
Library: Simulink / Discrete

Description
The Discrete Zero-Pole block models a discrete system defined by the zeros, poles, and
gain of a z-domain transfer function. This block assumes that the transfer function has the
following form:

H z K
Z z

P z
K

z Z z Z z Z

z P z P z P

m

n

()
()

()

()()...()

()()...()
= =

- - -

- - -

1 2

1 2

,,

where Z represents the zeros vector, P the poles vector, and K the gain. The number of
poles must be greater than or equal to the number of zeros (n ≥ m). If the poles and zeros
are complex, they must be complex conjugate pairs.

The block displays the transfer function depending on how the parameters are specified.
See Zero-Pole for more information.

Modeling a Single-Output System
For a single-output system, the input and the output of the block are scalar time-domain
signals. To model this system:

1 Enter a vector for the zeros of the transfer function in the Zeros field.
2 Enter a vector for the poles of the transfer function in the Poles field.
3 Enter a 1-by-1 vector for the gain of the transfer function in the Gain field.

Modeling a Multiple-Output System
For a multiple-output system, the block input is a scalar and the output is a vector, where
each element is an output of the system. To model this system:

 Discrete Zero-Pole

1-495

1 Enter a matrix of zeros in the Zeros field.

Each column of this matrix contains the zeros of a transfer function that relates the
system input to one of the outputs.

2 Enter a vector for the poles common to all transfer functions of the system in the
Poles field.

3 Enter a vector of gains in the Gain field.

Each element is the gain of the corresponding transfer function in Zeros.

Each element of the output vector corresponds to a column in Zeros.

Ports

Input
Port_1 — Input signal
scalar

Input signal specified as a real-valued scalar.
Data Types: single | double

Output
Port_1 — Model of discrete system
scalar | vector

Model of system as defined by zeros, poles, and gain of discrete transfer function. The
width of the output is equal to the number of columns in the Zeros matrix, or one if Zeros
is a vector.
Data Types: single | double

1 Blocks — Alphabetical List

1-496

Parameters

Main
Zeros — Matrix of zeros
[1] (default) | vector | matrix

Specify the vector or matrix of zeros. The number of zeros must be less than or equal to
the number of poles. If the poles and zeros are complex, they must be complex conjugate
pairs.

• For a single-output system, enter a vector for the zeros of the transfer function.
• For a multiple-output system, enter a matrix. Each column of the matrix contains the

zeros of a transfer function that relates the system input to one of the outputs.

Programmatic Use
Block Parameter: Zeros
Type: character vector
Values: vector
Default: '[1]'

Poles — Vector of poles
[0 0.5] (default) | vector

Specify the vector of poles. The number of poles must be greater than or equal to the
number of zeros. If the poles and zeros are complex, they must be complex conjugate
pairs.

• For a single-output system, enter a vector for the poles of the transfer function.
• For a multiple-output system, enter a vector for the poles common to all transfer

functions of the system.

Programmatic Use
Block Parameter: Poles
Type: character vector
Values: vector
Default: '[0 0.5]'

Gain — Gain value
1 (default) | scalar | vector

 Discrete Zero-Pole

1-497

Specify vector of gain values.

• For a single-output system, enter a scalar or 1-by-1 vector for the gain of the transfer
function.

• For a multiple-output system, enter a vector of gains. Each element is the gain of the
corresponding transfer function in Zeros.

Programmatic Use
Block Parameter: Gain
Type: character vector
Values: scalar | vector
Default: '1'

Sample time (-1 for inherited) — Interval between samples
-1 | scalar | vector

Specify the time interval between samples. For more information, see Specifying Sample
Time.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you
click Apply.

1 Blocks — Alphabetical List

1-498

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).
Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name
resolve to a signal object
off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.
Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if
you set the model configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.
Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default) | <StorageClass.PackageName>

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

 Discrete Zero-Pole

1-499

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'
Default: 'Simulink.Signal'

Code generation storage class — State storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | BitField (Custom) | Model default | ExportToFile
(Custom) | ImportFromFile (Custom) | FileScope (Custom) | AutoScope
(Custom) | Struct (Custom) | GetSet (Custom) | Reusable (Custom)

Select state storage class for code generation.

• Auto is the appropriate storage class for states that you do not need to interface to
external code.

• StorageClass applies the storage class or custom storage class that you select from
the list. For information about storage classes, see “Apply Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Simulink Coder). For
information about custom storage classes, see “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.

Dependencies

To enable this parameter, specify a value for State name.

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'SimulinkGlobal' | 'ExportedGlobal' |
'ImportedExtern' | 'ImportedExternPointer' | 'Custom' | ...
Default: 'Auto'

TypeQualifier — Storage type qualifier
'' (default) | const | volatile | ...

Specify a storage type qualifier such as const or volatile.

1 Blocks — Alphabetical List

1-500

Note TypeQualifier will be removed in a future release. To apply storage type qualifiers
to data, use custom storage classes and memory sections. Unless you use an ERT-based
code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

For more information, see “Data Objects”.

Dependencies

To enable this parameter, set Code generation storage class to ExportedGlobal,
ImportedExtern, ImportedExternPointer, or Model default. This parameter is
hidden unless you previously set its value.

Programmatic Use
Block Parameter: RTWStateStorageTypeQualifier
Type: character vector
Values: '' | 'const' | 'volatile' | ...
Default: ''

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size
Signals

No

 Discrete Zero-Pole

1-501

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain
conditions.

See Also
Discrete Transfer Fcn | Zero-Pole

Topics
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Apply Custom Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Embedded Coder)
“Data Objects”

Introduced before R2006a

1 Blocks — Alphabetical List

1-502

Display
Display signal value during simulation
Library: Simulink / Dashboard

Description
The Display block connects to a signal in your model and displays its value during
simulation. You can edit the parameters of the Display block while a simulation runs. Use
the Display block with other Dashboard blocks to build an interactive dashboard of
controls and indicators for your model.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

 Display

1-503

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

Format — Format for displaying numerical values
long (default) | long_e

Format for displaying numerical values.

• When you select long, the block displays numeric signal values using up to 15 digits
with a fixed decimal point that displays up to four decimal places.

• When you select long_e, the block displays numeric signal values in scientific
notation using up to 16 digits with a floating decimal point.

Alignment — Text alignment in block
'Center' (default) | 'Left' | 'Right'

Text alignment in Display block.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

1 Blocks — Alphabetical List

1-504

See Also
Dashboard Scope | Gauge | Lamp | MultiStateImage

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2017b

 Display

1-505

Display
Show value of input

Library
Sinks

Description

Format Options
You control the display format using the Format parameter:

If you select... The block displays...
short A 5-digit scaled value with fixed decimal

point
long A 15-digit scaled value with fixed decimal

point
short_e A 5-digit value with a floating decimal point
long_e A 16-digit value with a floating decimal

point
bank A value in fixed dollars and cents format

(but with no $ or commas)
hex (Stored Integer) The stored integer value of a fixed-point

input in hexadecimal format

1 Blocks — Alphabetical List

1-506

If you select... The block displays...
binary (Stored Integer) The stored integer value of a fixed-point

input in binary format
decimal (Stored Integer) The stored integer value of a fixed-point

input in decimal format
octal (Stored Integer) The stored integer value of a fixed-point

input in octal format

If the input to a Display block has an enumerated data type (see “Simulink Enumerations”
and “Define Simulink Enumerations”):

• The block displays enumerated values, not the values of underlying integers.
• Setting Format to any of the Stored Integer settings causes an error.

Display Abbreviations
The following abbreviations appear on the Display block to help you identify the format of
the value.

When you see... The value that appears is...
(SI) The stored integer value

Note (SI) does not appear when the signal is of an integer
data type.

hex In hexadecimal format
bin In binary format
oct In octal format

Frequency of Data Display
The amount of data that appears and the time steps at which the data appears depend on
the Decimation block parameter and the SampleTime property:

• The Decimation parameter enables you to display data at every nth sample, where n
is the decimation factor. The default decimation, 1, displays data at every time step.

 Display

1-507

Note The Display block updates its display at the initial time, even when the
Decimation value is greater than one.

• The SampleTime property, which you can set with set_param, enables you to specify
a sampling interval at which to display points. This property is useful when you are
using a variable-step solver where the interval between time steps is not the same.
The default sample time, -1, causes the block to ignore the sampling interval when
determining the points to display.

Note If the block inherits a sample time of Inf, the Decimation parameter is
ignored.

Resizing Options
If the block input is an array, you can resize the block to show more than just the first
element. You can resize the block vertically or horizontally. If the block input is a vector,
the block sequentially adds display fields from left to right and top to bottom. The block
displays as many values as possible. A black triangle indicates that the block is not
displaying all input array elements.

The Display block shows the first 200 elements of a vector signal and the first 20 rows
and 10 columns of a matrix signal.

Floating Display
To use the block as a floating display, select the Floating display check box. The block
input port disappears and the block displays the value of the signal on a selected line.

If you select Floating display:

• Turn off signal storage reuse for your model. See “Signal storage reuse” in the
Simulink documentation for more information.

• Do not connect a multidimensional signal to a floating display. Otherwise, you get a
simulation error because the block does not support multidimensional signals.

Data Type Support
The Display block accepts real or complex signals of the following data types:

1 Blocks — Alphabetical List

1-508

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

When working with strings, the Display block displays:

• Strings with double quotes.
• Special characters such as newline are shown as escaped sequences, for example

'\n'.
• Non-displayable characters as escaped octal number, for example '\201'.

If the incoming signal is of type string, the Format parameter selection does not affect
the display of the string.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Format

Specify the format of the data that appears, as discussed in “Format Options” on page
1-506. The default is short.

If the incoming signal is of type string, the selection of the Format parameter does
not affect the display of the string.

Decimation
Specify how often to display data, as discussed in “Frequency of Data Display” on
page 1-507. The default is 1.

Floating display
Select to use the block as a floating display, as discussed in “Floating Display” on
page 1-508.

 Display

1-509

Examples
The sldemo_auto_climatecontrol model shows how you can use the Display block.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Use set_param to specify the SampleTime property
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No

1 Blocks — Alphabetical List

1-510

matlab:sldemo_auto_climatecontrol

Code Generation No

See Also
Scope

Introduced before R2006a

 Display

1-511

Divide
Divide one input by another
Library: Simulink / Math Operations

Description
The Divide block outputs the result of dividing its first input by its second. The inputs can
be scalars, a scalar and a nonscalar, or two nonscalars that have the same dimensions.
The Divide block is functionally a Product block that has two block parameter values
preset:

• Multiplication — Element-wise(.*)
• Number of Inputs — */

Setting nondefault values for either of those parameters can change a Divide block to be
functionally equivalent to a Product block or a Product of Elements block.

Ports

Input
X — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more X ports, specify one or more * characters for the Number of
inputs parameter.

1 Blocks — Alphabetical List

1-512

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

÷ — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more ÷ ports, specify one or more / characters for the Number of
inputs parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Port_1 — First input to multiply or divide
scalar | vector | matrix | N-D array

First input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Port_N — Nth input to multiply or divide
scalar | vector | matrix | N-D array

Nth input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output computed by multiplying, dividing, or inverting inputs
scalar | vector | matrix | N-D array

Output computed by multiplying, dividing, or inverting inputs.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

 Divide

1-513

Parameters

Main
Number of inputs — Control number of inputs and type of operation
*/ (default) | positive integer scalar | * or / for each input port

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

When you specify:

• 1 or * or /

The block has one input port. In element-wise mode, the block processes the input as
described for the Product of Elements block. In matrix mode, if the parameter value is
1 or *, the block outputs the input value. If the value is /, the input must be a square
matrix (including a scalar as a degenerate case) and the block outputs the matrix
inverse. See “Element-Wise Mode” on page 1-1306 and “Matrix Mode” on page 1-1307
for more information.

• Integer value > 1

The block has the number of inputs given by the integer value. The inputs are
multiplied together in element-wise mode or matrix mode, as specified by the
Multiplication parameter. See “Element-Wise Mode” on page 1-1306 and “Matrix
Mode” on page 1-1307 for more information.

• Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each
input that corresponds to a * character is multiplied into the output. Each input that
corresponds to a / character is divided into the output. The operations occur in
element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1306 and “Matrix Mode” on page 1-1307 for more
information.

Programmatic Use
Block Parameter: Inputs

1 Blocks — Alphabetical List

1-514

Type: character vector
Values: '2' | '*' | '**' | '*/' | '*/*' | ...
Default: '*/'

Multiplication — Element-wise (.*) or Matrix (*) multiplication
Element-wise(.*) (default) | Matrix(*)

Specify whether the block performs Element-wise(.*) or Matrix(*) multiplication.

Programmatic Use
Block Parameter: Multiplication
Type: character vector
Values: 'Element-wise(.*)' | 'Matrix(*)'
Default: 'Element-wise(.*)'

Multiply over — All dimensions or specified dimension
All dimensions (default) | Specified dimension

Specify the dimension to multiply over as All dimensions, or Specified dimension.
When you select Specified dimension, you can specify the Dimension as 1 or 2.

Dependencies

To enable this parameter, set Number of inputs to * and Multiplication to Element-
wise (.*).

Programmatic Use
Block Parameter: CollapseMode
Type: character vector
Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension to multiply over
1 (default) | 2 | ... | N

Specify the dimension to multiply over as an integer less than or equal to the number of
dimensions of the input signal.

Dependencies

To enable this parameter, set:

• Number of inputs to *

 Divide

1-515

• Multiplication to Element-wise (.*)
• Multiply over to Specified dimension

Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Values: '1' | '2' | ...
Default: '1'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes
Require all inputs to have the same data type — Require that all inputs
have the same data type
off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter,
then an error occurs during simulation if the input signal types are different.
Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking
[] (default) | scalar

1 Blocks — Alphabetical List

1-516

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

 Divide

1-517

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | int8 | uint8 |
int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType. For more information,
see “Control Signal Data Types”.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to
balance numerical accuracy, performance, and generated code size, while taking into
account the properties of the embedded target hardware. If you change the embedded
target settings, the data type selected by the internal rule might change. For example,
if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is
specified as the targeted hardware type, the output data type is sfix24. If
Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If
none of the word lengths provided by the target microprocessor can accommodate the
output range, Simulink software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

1 Blocks — Alphabetical List

1-518

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first
input' | 'Inherit: Inherit via back propagation' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' | 'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

 Divide

1-519

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

1 Blocks — Alphabetical List

1-520

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

 Divide

1-521

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

These conditions may yield different results between simulation and the generated code:

• The Divide block inputs contain a NaN or inf value
• The Divide block generates NaN or inf during execution

This difference is due to the nonfinite NaN or inf values. In such cases, inspect your
model configuration and eliminate the conditions that produce NaN or inf.

The Simulink Coder build process provides efficient code for matrix inverse and division
operations. This table describes the benefits and when each benefit is available.

1 Blocks — Alphabetical List

1-522

Benefit Small Matrices
(2-by-2 to 5-by-5)

Medium Matrices
(6-by-6 to 20-
by-20)

Large Matrices
(larger than 20-
by-20)

Faster code
execution time,
compared to R2011a
and earlier releases

Yes No Yes

Reduced ROM and
RAM usage,
compared to R2011a
and earlier releases

Yes, for real values Yes, for real values Yes, for real values

Reuse of variables Yes Yes Yes
Dead code
elimination

Yes Yes Yes

Constant folding Yes Yes Yes
Expression folding Yes Yes Yes
Consistency with
MATLAB Coder
results

Yes Yes Yes

For blocks that have three or more inputs of different dimensions, the code might include
an extra buffer to store temporary variables for intermediate results.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Divide.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Divide

1-523

See Also
Dot Product | Product | Product of Elements

Introduced before R2006a

1 Blocks — Alphabetical List

1-524

DocBlock
Create text that documents model and save text with model

Library
Model-Wide Utilities

Description
The DocBlock allows you to create and edit text that documents a model, and save that
text with the model. Double-clicking an instance of the block creates a temporary file
containing the text associated with this block and opens the file in an editor. Use the
editor to modify the text and save the file. Simulink software stores the contents of the
saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII text document types.
The default editors for these different document types are

• HTML — Microsoft® Word (if available). Otherwise, the DocBlock opens HTML
documents using the editor specified on the Editor/Debugger Preferences pane of
the Preferences dialog box.

• RTF — Microsoft Word (if available). Otherwise, the DocBlock opens RTF documents
using the editor specified on the Editor/Debugger Preferences pane of the
Preferences dialog box.

• Text — The DocBlock opens text documents using the editor specified on the Editor/
Debugger Preferences pane of the Preferences dialog box.

Use the docblock command to change the default editors.

 DocBlock

1-525

Data Type Support
Not applicable.

Parameters
Code generation template symbol (Embedded Coder license required)

Enter a template symbol name in this field. Embedded Coder software uses this
symbol to add comments to the code generated from the model. For more
information, see “Add Global Comments” (Embedded Coder).

Document type
Select the type of document associated with the DocBlock. The options are:

• Text (the default)
• RTF
• HTML

Note If you are using a DocBlock to add comments to your code during code
generation, ensure that you set the Document Type as Text. If you set the
Document Type as RTF or HTML, your comments will not appear in the code.

Characteristics
Data Types Not applicable
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-526

Dot Product
Generate dot product of two vectors
Library: Simulink / Math Operations

Description
The Dot Product block generates the dot product of the input vectors. The scalar output,
y, is equal to the MATLAB operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the input vectors. The inputs can be vectors, column vectors
(single-column matrices), or scalars. If both inputs are vectors or column vectors, they
must be the same length. If u1 and u2 are both column vectors, the block outputs the
equivalent of the MATLAB expression u1'*u2.

The elements of the input vectors can be real- or complex-valued signals. The signal type
(complex or real) of the output depends on the signal types of the inputs.

Input 1 Input 2 Output
real real real
real complex complex
complex real complex
complex complex complex

 Dot Product

1-527

Ports

Input
Port_1 — First operand input signal
scalar | vector

Signal representing the first operand to the dot product calculation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Port_2 — Second operand input signal
scalar | vector

Signal representing the second operand to the dot product calculation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Dot product output signal
scalar | vector

Output signal resulting from the dot product calcuation of the two inputs signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Require all inputs to have the same data type — Require all inputs to
have the same data type
off (default) | on

Clear this check box to all the inputs to have different data types.

Output minimum — Minimum output value for range checking
[] (default) | scalar

1 Blocks — Alphabetical List

1-528

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double,
scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum parameter for a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

 Dot Product

1-529

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | int8 | uint8 |
int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType. For more information,
see “Control Signal Data Types”.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to
balance numerical accuracy, performance, and generated code size, while taking into
account the properties of the embedded target hardware. If you change the embedded
target settings, the data type selected by the internal rule might change. For example,
if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is
specified as the targeted hardware type, the output data type is sfix24. If
Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If
none of the word lengths provided by the target microprocessor can accommodate the
output range, Simulink software displays an error in the Diagnostic Viewer.

1 Blocks — Alphabetical List

1-530

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first
input' | 'Inherit: Inherit via back propagation' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' | 'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

 Dot Product

1-531

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type

can represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or
127.

Tip

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

1 Blocks — Alphabetical List

1-532

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL Code Generation, see Dot Product.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Dot Product

1-533

See Also
Product | Product of Elements

Introduced before R2006a

1 Blocks — Alphabetical List

1-534

Dual Port RAM
Dual port RAM with two output ports

Library
HDL Coder / HDL Operations

Description
The Dual Port RAM block models a RAM that supports simultaneous read and write
operations, and has both a read data output port and write data output port. You can use
this block to generate HDL code that maps to RAM in most FPGAs.

If you do not need to use the write output data, wr_dout, you can achieve better RAM
inference with synthesis tools by using the Simple Dual Port RAM block.

Read-During-Write Behavior
During a write, new data appears at the output of the write port (wr_dout) of the Dual
Port RAM block. If a read operation occurs simultaneously at the same address as a write
operation, old data appears at the read output port (rd_dout).

 Dual Port RAM

1-535

Parameters
Address port width

Address bit width. Minimum bit width is 2, and maximum bit width is 29. The default
is 8.

Ports
The block has the following ports:

wr_din
Write data input. The data can be any width. It inherits the width and data type from
the input signal.

Data type: scalar fixed point, integer, or complex
wr_addr

Write address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

wr_en
Write enable.

Data type: Boolean
rd_addr

Read address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

wr_dout
Output data from write address, wr_addr.

rd_dout
Output data from read address, rd_addr.

1 Blocks — Alphabetical List

1-536

See Also
Dual Rate Dual Port RAM | Simple Dual Port RAM | Single Port RAM

Introduced in R2014a

 Dual Port RAM

1-537

Dual Rate Dual Port RAM
Dual Port RAM that supports two rates

Library
HDL Coder / HDL Operations

Description
The Dual Rate Dual Port RAM block models a RAM that supports simultaneous read and
write operations to different addresses at two clock rates. Port A of the RAM can run at
one rate, and port B can run at a different rate.

In high-performance hardware applications, you can use this block to access the RAM
twice per clock cycle. If you generate HDL code, this block maps to a dual-clock dual-port
RAM in most FPGAs.

Simultaneous Access
You can access different addresses from ports A and B simultaneously. You can also read
the same address from ports A and B simultaneously.

1 Blocks — Alphabetical List

1-538

However, do not access an address from one RAM port while it is being written from the
other RAM port. During simulation, if you access an address from one RAM port at the
same time as you write that address from the other RAM port, the software reports an
error.

Read-During-Write Behavior
The RAM has write-first behavior. When you write to the RAM, the new write data is
immediately available at the output port.

HDL Code Generation
For simulation results that match the generated HDL code, in the Solver pane of the
Configuration Parameters dialog box, clear the checkbox for Treat each discrete rate as
a separate task. When the checkbox is cleared, single-tasking mode is enabled.

If you simulate this block with Treat each discrete rate as a separate task selected,
multitasking mode is enabled. The output data can update in the same cycle but in the
generated HDL code, the output data is updated one cycle later.

Parameters
Address port width

Address bit width. Minimum bit width is 2, and maximum bit width is 28. The default
value is 8.

Ports
The block has the following ports:

din_A
Write data input for RAM port A. The data can be any width. It inherits the width and
data type from the input signal.

Data type: scalar fixed point, integer, or complex
addr_A

Write address for RAM port A.

 Dual Rate Dual Port RAM

1-539

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

we_A
Write enable for RAM port A. Set we_A to true for a write operation, or false for a
read operation.

Data type: Boolean
din_B

Write data input for RAM port B. The data can be of any width, and inherits the width
and data type from the input signal.

Data type: scalar fixed point, integer, or complex
addr_B

Write address for RAM port B.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

we_B
Write enable for RAM port B. Set we_B to true for a write operation, or false for a
read operation.

Data type: Boolean
dout_A

Output data from RAM port A address, addr_A.
dout_B

Output data from RAM port B address, addr_B.

See Also
Dual Port RAM | HDL FIFO | Simple Dual Port RAM | Single Port RAM

Introduced in R2014a

1 Blocks — Alphabetical List

1-540

Dual Port RAM System, Simple Dual Port
RAM System, Single Port RAM System
RAM blocks based on the hdl.RAM system object with ability to provide initial value
Library: HDL Coder / HDL RAMs / Dual Port RAM System

HDL Coder / HDL RAMs / Simple Dual Port RAM
System
HDL Coder / HDL RAMs / Single Port RAM System

Description
The blocks are MATLAB System blocks that use the hdl.RAM System object™. You can
specify the RAM type as Dual port, Simple dual port, or Single port. In terms of
simulation behavior, the Dual Port RAM System block behaves similar to the Dual Port
RAM, the Single Port RAM System behaves similar to the Single Port RAM, and so on.
With the MATLAB System blocks, you can:

• Specify an initial value for the RAM. In the Block Parameters dialog box, enter a value
for Specify the RAM initial value.

• Obtain faster simulation results when you use these blocks in your Simulink model.

Limitations
• The block does not support boolean inputs. Cast any boolean types to ufix1 for

input to the block.

 Dual Port RAM System, Simple Dual Port RAM System, Single Port RAM System

1-541

Ports
Input
din — Write data input
Scalar (default) | Vector

Data that you write into the RAM memory location when wrEn is true. This value can be
double, single, integer, or a fixed-point (fi) object, and can be real or complex.
Data Types: single | double | int8 | int16 | uint8 | uint16 | fixed point

addr — Write or Read address
Scalar (default) | Vector

Address that you write the data into when wrEn is true. The RAM reads the value in
memory location addr when wrEn is false. This value can be either fixed-point (fi)
or integer, and must be real and unsigned.
Dependencies

To enable this port, set the Specify the type of RAM parameter to Single port.
Data Types: uint8 | uint16 | fixed point

wr_addr — Write address
Scalar (default) | Vector

RAM address that you write the data into. This value can be either fixed-point (fi)
or integer, and must be real and unsigned.
Dependencies

To enable this port, set the Specify the type of RAM parameter to Simple dual port
or Dual port.
Data Types: uint8 | uint16 | fixed point

wr_en — Write enable
Scalar (default) | Vector

When wrEn is true, the RAM writes the data into the memory location that you specify. If
you set the Specify the type of RAM to Single port, the RAM reads the value in the
memory location addr when wrEn is false.

1 Blocks — Alphabetical List

1-542

Data Types: Boolean

rd_addr — Read address
Scalar (default) | Vector

Address that you read the data from the RAM. This value can be either fixed-point
(fi) or integer, and must be real and unsigned.

Dependencies

To enable this port, set the Specify the type of RAM parameter to Simple dual port
or Dual port.
Data Types: uint8 | uint16 | fixed point

Output
dout — Output data
Scalar (default) | Vector

Output data that the RAM reads from the memory location addr when wrEn is false.

Dependencies

To enable this port, set the Specify the type of RAM parameter to Single port.

rd_dout — Read data
Scalar (default) | Vector

Old output data that the RAM reads from the memory location rd_addr.

Dependencies

To enable this port, set the Specify the type of RAM parameter to Simple dual port
or Dual port.

wr_dout — Write data output
Scalar (default) | Vector

New or old output data that the RAM reads from the memory location wr_addr.

Dependencies

To enable this port, set the Specify the type of RAM parameter to Dual port.

 Dual Port RAM System, Simple Dual Port RAM System, Single Port RAM System

1-543

Parameters
Specify the type of RAM — RAM type
Dual port (default) | Simple dual port | Single port

Type of RAM, specified as either:

• Single port — Create a single port RAM with Write data, Address, and Write enable
as inputs and Read data as the output.

• Simple dual port — Create a simple dual port RAM with Write data, Write address,
Write enable, and Read address as inputs and data from read address as the output.

• Dual port — Create a dual port RAM with Write data, Write address, Write enable,
and Read address as inputs and data from read address and write address as the
outputs.

The code generator dynamically configures the input and output ports of the block based
on the RAM type that you specify.

Specify the output data for a write operation — Write output behavior
New data (default) | Old data

Behavior for Write output, specified as either:

• 'New data' — Send out new data at the address to the output.
• Old data' — Send out old data at the address to the output.

Specify the RAM initial value — Initial simulation output of RAM
'0.0' (default) | Scalar | Vector

Initial simulation output of the System object, specified as either:

• A scalar value.
• A vector with one-to-one mapping between the initial value and the RAM words.

Block Characteristics
Data Types double | single | base integer | fixed point | bus

1 Blocks — Alphabetical List

1-544

Sample Time Inherit
Direct
Feedthrough

Yes

Multidimensional
Signals

Scalar

Variable-Size
Signals

Yes

Zero-Crossing
Detection

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

If have HDL Coder installed, you can generate HDL code for the blocks. For more
information, see Dual Port RAM System, Simple Dual Port RAM System, and Single Port
RAM System.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Dual Port RAM | Dual Rate Dual Port RAM | Simple Dual Port RAM | Single Port RAM

Introduced in R2017b

 Dual Port RAM System, Simple Dual Port RAM System, Single Port RAM System

1-545

Edit
Enter new value for parameter
Library: Simulink / Dashboard

Description
The Edit block allows you to type in new values for block parameters during simulation.
Use the Edit block with other Dashboard blocks to build an interactive dashboard of
controls and indicators for your model.

Double-clicking the Edit block does not open its dialog box during simulation and when
the block is selected. To edit the block parameters, you can use the Property Inspector,
or you can right-click the block and select Block Parameters from the context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

1 Blocks — Alphabetical List

1-546

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

 Edit

1-547

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

Align — Text alignment
'Center' (default) | 'Left' | 'Right'

Alignment of the text in the Edit block.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Display | Knob | Slider

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2017b

1 Blocks — Alphabetical List

1-548

Enable
Add enable port to subsystem or model
Library: Ports & Subsystems

Description
The Enable block allows an external signal to control execution of a subsystem or a
model. To enable this functionality, add the block to a Subsystem block or at the root level
of a model that is referenced in a Model block.

If you use an enable port at the root-level of a model:

• For multi-rate models, set the solver to single-tasking.
• For models with a fixed-step size, at least one block in the model must run at the
specified fixed-step size rate.

Ports

Output
Enable signal — External enable signal for a subsystem or model
scalar

Enable signal attached externally to the outside of an Enable Subsystem block and passed
to the inside of the subsystem. An enable signal port is added to an Enable block when
you select the Show output port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | expression

 Enable

1-549

Parameters
States when enabling — Select block states when subsystem or model is
disabled
held (default) | reset

When a Subsystem block or Model block is disabled, select what happens to block states
for the blocks within the subsystem or model.

held
Hold block states at their previous values.

reset
Reset block states to their initial conditions (zero if not defined).

Programmatic Use
Block parameter: StatesWhenEnabling
Type: character vector
Value: 'held' | 'reset'
Default: 'held'

Propagate sizes of variable-size signals — Select when to propagate a
variable-size signal
Only when enabling (default) | During execution

Select when to propagate a variable-size signal.

Only when enabling
Propagate a variable-size signal when reenabling a Subsystem block or Model block
containing an Enable port block. When you select this option, sample time must be
periodic.

During execution
Propagate variable-size signals at each time step.

Programmatic Use
Block parameter: PropagateVarSize
Type: character vector
Value: 'Only when enabling' | 'During execution'
Default: 'Only when enabling'

1 Blocks — Alphabetical List

1-550

Show output port — Control display of output port for enable signal
off (default) | on

The output port passes the enable signal attached externally to the outside of an Enable
Subsystem block or enabled Model block to the inside.

 off
Remove the output port on the Enable port block.

 on
Display an output port on the Enable port block. Selecting this option allows the
subsystem or model to process the enable signal.

Programmatic Use
Block parameter: ShowOutputPort
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Enable zero-crossing detection — Control zero-crossing detection
on (default) | off

Control zero-crossing detection for a model.

 on
Detect zero crossings.

 off
Do not detect zero crossings.

Programmatic Use
Block parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Port dimensions — Specify dimensions for the enable signal
1 (default) | [n] | [m n]

Specify dimensions for the enable signal attached externally to a Model block and passed
to the inside of the block.

 Enable

1-551

1
Scalar signal.

[n]
Vector signal of width n.

[m n]
Matrix signal having m rows and n columns.

Programmatic Use
Block parameter: PortDimensions
Type: character vector
Value: '1' | '[n]' | '[m n]'
Default: '1'

Sample time — Specify time interval
-1 (default) | Ts | [Ts, To]

Specify time interval between block method execution. See “Specify Sample Time”.

-1
Sample time inherited from the model.

Ts
Scalar where Ts is the time interval.

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Programmatic Use
Block parameter: SampleTime
Type: character vector
Value: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

Minimum — Specify minimum output value for the enable signal
[] (default) | real scalar

Specify minimum value for the enable signal attached externally to a Model block and
passed to the inside of the block.

Simulink uses this value to perform:

1 Blocks — Alphabetical List

1-552

• Simulation range checking. See “Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and
affect the results of some simulation modes such as SIL or external mode. See
“Optimize using the specified minimum and maximum values” (Simulink Coder).

[]
Unspecified minimum value.

real scalar
Real double scalar value.

Programmatic Use
Block parameter: OutMin
Type: character vector
Value: '[]' | '<real scalar>'
Default: '[]'

Maximum — Specify maximum output value for the enable signal
[] (default) | real scalar

Specify maximum value for the enable signal attached externally to a Model block and
passed to the inside of the block.

Simulink uses this value to perform:

• Simulation range checking. See “Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and
affect the results of some simulation modes such as SIL or external mode. See
“Optimize using the specified minimum and maximum values” (Simulink Coder).

[]
Unspecified maximum value.

real scalar
Real double scalar value.

Programmatic Use
Block parameter: OutMax

 Enable

1-553

Type: character vector
Value: '[]' | '<real scalar>'
Default: '[]'

Data type — Specify output data type for the enable signal
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean
| fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^,0) | <data type expression>

Specify data type for the enable signal attached externally to a Model block and passed to
the inside of the block.

double
Double-precision floating point.

single
Single-precision floating point.

int8
Signed 8-bit integer.

uint8
Unsigned 8-bit integer.

int16
Signed 16-bit integer.

uint16
Unsigned 16-bit integer.

int32
Signed 32-bit integer.

uint32
Unsigned 32-bit integer.

boolean
Boolean with a value of true or false.

fixdt(1,16)
Signed 16-bit fixed point number with binary point undefined.

fixdt(1,16,0)
Signed 16-bit fixed point number with binary point set to zero.

1 Blocks — Alphabetical List

1-554

fixdt(1,16,2^,0)
Signed 16-bit fixed point number with slope set to 2^0 and bias set to 0.

<data type expression>
Data type object, for example Simulink.NumericType. Do not specify a bus object
as the expression.

Programmatic Use

b
Block parameter: OutDataTypeStr
Type: character vector
Value: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'boolean' | '<fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'double'

Mode — Select data type category
Build in (default) | Fixed point | Expression

Select data type category and display drop-down lists to help you define the data type.

Build in
Display drop-down lists for data type and Data type override.

Fixed point
Display drop-down lists for Signedness, Scaling, and Data type override.

Expression
Display text box for entering an expression.

Dependency

To enable this parameter, select the Show data type assistant button.

Programmatic Use

No equivalent command-line parameter.

Interpolate data — Specify value of missing workspace data
on (default) | off

Specify value of missing workspace data when loading data from the workspace.

 Enable

1-555

 on
Linearly Interpolate output at time steps for which no corresponding workspace data
exists.

 off
Do not interpolate output at time steps. The current output equals the output at the
most recent time step for which data exists.

Programmatic Use
Block parameter: Interpolate
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also
Enabled Subsystem | Enabled and Triggered Subsystem | Subsystem

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Enabled and Triggered Subsystems”

Introduced before R2006a

1 Blocks — Alphabetical List

1-556

Enabled and Triggered Subsystem
Subsystem whose execution is enabled and triggered by external input
Library: Ports & Subsystems

Description
The Enabled and Triggered Subsystem block is a Subsystem block preconfigured as a
starting point for creating a subsystem that executes when both of these conditions occur:

• Enable control signal has a positive value.
• Trigger control signal has a trigger event.

Use Enabled and Triggered Subsystem blocks to model:

• Optional functionality that runs with the detection of an event.
• Alternative functionality that runs with the detection of an event.

 Enabled and Triggered Subsystem

1-557

Ports
Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Enable — Control signal input to a subsystem block
scalar

Placing an Enable block in a subsystem block adds an external input port to the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Trigger — Control signal input to a subsystem block
scalar

Placing a Trigger block in a subsystem block adds an external input port to the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

1 Blocks — Alphabetical List

1-558

See Also
Blocks
Enable | Enabled Subsystem | Function-Call Subsystem | Subsystem | Trigger | Triggered
Subsystem

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

Introduced before R2006a

 Enabled and Triggered Subsystem

1-559

Enabled Subsystem
Subsystem whose execution is enabled by external input
Library: Ports & Subsystems

Description
The Enabled Subsystem block is a Subsystem block preconfigured as a starting point for
creating a subsystem that executes when a control signal has a positive value.

Use Enable Subsystem blocks to model:

• Discontinuities
• Optional functionality
• Alternative functionality

1 Blocks — Alphabetical List

1-560

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Enable — Control signal input to a subsystem block
scalar | vector | matrix

Placing an Enable block in a subsystem block adds an external input port to the block and
changes the block to an Enable Subsystem block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Enabled Subsystem

1-561

See Also
Blocks
Enable | Enabled and Triggered Subsystem | Function-Call Subsystem | Subsystem |
Triggered Subsystem

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

Introduced before R2006a

1 Blocks — Alphabetical List

1-562

Enabled Synchronous Subsystem
Represent enabled subsystem that has synchronous reset and enable behavior

Library
HDL Coder / HDL Subsystems

Description
An Enabled Synchronous Subsystem is an Enabled Subsystem that uses the
Synchronous mode of the State Control block. If an S symbol appears in the subsystem,
then it is synchronous.

To create an Enabled Synchronous Subsystem block, add the block to your Simulink
model from the HDL Subsystems block library. You can also add a State Control block
with State control set to Synchronous inside an Enabled subsystem.

For more information, see State Control and “Using Enabled Subsystems”.

Data Type Support
See Inport for information on the data types accepted by a subsystem's input ports. See
Outport for information on the data types output by a subsystem's output ports.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

 Enabled Synchronous Subsystem

1-563

Parameters

Show port labels
Cause Simulink software to display labels for the subsystem's ports on the subsystem's
icon.

Default: FromPortIcon

none
Does not display port labels on the subsystem block.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
subsystem block. Otherwise, display the port block's name.

FromPortBlockName
Display the name of the corresponding port block on the subsystem block.

SignalName
If a name exists, display the name of the signal connected to the port on the
subsystem block; otherwise, the name of the corresponding port block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Read/Write permissions
Control user access to the contents of the subsystem.

Default: ReadWrite

ReadWrite
Enables opening and modification of subsystem contents.

ReadOnly
Enables opening but not modification of the subsystem. If the subsystem resides in a
block library, you can create and open links to the subsystem and can make and

1 Blocks — Alphabetical List

1-564

modify local copies of the subsystem but cannot change the permissions or modify the
contents of the original library instance.

NoReadOrWrite
Disables opening or modification of subsystem. If the subsystem resides in a library,
you can create links to the subsystem in a model but cannot open, modify, change
permissions, or create local copies of the subsystem.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Name of error callback function
Enter name of a function to be called if an error occurs while Simulink software is
executing the subsystem.

Default: ' '

Simulink software passes two arguments to the function: the handle of the subsystem and
a character vector that specifies the error type. If no function is specified, Simulink
software displays a generic error message if executing the subsystem causes an error.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Permit hierarchical resolution
Specify whether to resolve names of workspace variables referenced by this subsystem.

Default: All

All
Resolve all names of workspace variables used by this subsystem, including those
used to specify block parameter values and Simulink data objects (for example,
Simulink.Signal objects).

ExplicitOnly
Resolve only names of workspace variables used to specify block parameter values,
data store memory (where no block exists), signals, and states marked as “must
resolve”.

 Enabled Synchronous Subsystem

1-565

None
Do not resolve any workspace variable names.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Treat as atomic unit
Causes Simulink software to treat the subsystem as a unit when determining the
execution order of block methods.

Default: Off

 On
Cause Simulink software to treat the subsystem as a unit when determining the
execution order of block methods. For example, when it needs to compute the output
of the subsystem, Simulink software invokes the output methods of all the blocks in
the subsystem before invoking the output methods of other blocks at the same level
as the subsystem block.

 Off
Cause Simulink software to treat all blocks in the subsystem as being at the same
level in the model hierarchy as the subsystem when determining block method
execution order. This can cause execution of methods of blocks in the subsystem to be
interleaved with execution of methods of blocks outside the subsystem.

This parameter enables:

• “Minimize algebraic loop occurrences” on page 1-0 .
• “Sample time” on page 1-0
• “Function packaging” on page 1-0 (requires a Simulink Coder license)

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-566

Treat as grouped when propagating variant conditions
Causes Simulink software to treat the subsystem as a unit when propagating variant
conditions from Variant Source blocks or to Variant Sink blocks.

Default: On

 On
Simulink treats the subsystem as a unit when propagating variant conditions from
Variant Source blocks or to Variant Sink blocks. For example, when Simulink
computes the variant condition of the subsystem, it propagates that condition to all
the blocks in the subsystem.

 Off
Simulink treats all blocks in the subsystem as being at the same level in the model
hierarchy as the subsystem itself when determining their variant condition.

“Treat as grouped when propagating variant conditions” on page 1-0 enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Function packaging
Specify the code format to be generated for an atomic (nonvirtual) subsystem.

Default: Auto

Auto
Simulink Coder software chooses the optimal format for you based on the type and
number of instances of the subsystem that exist in the model.

Inline
Simulink Coder software inlines the subsystem unconditionally.

Nonreusable function
Simulink Coder software explicitly generates a separate function in a separate file.
Subsystems with this setting generate functions that might have arguments

 Enabled Synchronous Subsystem

1-567

depending on the “Function interface” on page 1-0 parameter setting. You can
name the generated function and file using parameters “Function name” on page 1-
0 and “File name (no extension)” on page 1-0 . These functions are not
reentrant.

Reusable function
Simulink Coder software generates a function with arguments that allows reuse of
subsystem code when a model includes multiple instances of the subsystem.

This option also generates a function with arguments that allows subsystem code to
be reused in the generated code of a model reference hierarchy that includes multiple
instances of a subsystem across referenced models. In this case, the subsystem must
be in a library.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated | Bus
Multidimensional Signals Yes
Variable-Size Signals Yes
HDL Code Generation Yes

See Also
Enable | Resettable Synchronous Subsystem | State Control | Synchronous Subsystem

Introduced in R2016a

1 Blocks — Alphabetical List

1-568

Enumerated Constant
Generate enumerated constant value
Library: Simulink / Sources

Description
The Enumerated Constant block outputs a scalar, array, or matrix of enumerated values.
You can also use the Constant block to output enumerated values, but it provides block
parameters that do not apply to enumerated types, such as Output minimum and
Output maximum. When you need a block that outputs only constant enumerated
values, use Enumerated Constant rather than Constant. For more information, see
“Simulink Enumerations”.

Ports

Output
Port_1 — Enumerated constant
scalar | vector | matrix

Enumerated constant value, specified as a scalar, vector, or matrix.
Data Types: enumerated

Parameters
Output data type — Output data type
Enum: SlDemoSign (default) | Enum:<ClassName>

Specify the enumerated type from which you want the block to output one or more values.
The initial value, Enum:SlDemoSign, is a dummy enumerated type that prevents a newly

 Enumerated Constant

1-569

cloned block from causing an error. To specify the desired enumerated type, select it from
the drop-down list or enter Enum:ClassName in the Output data type field, where
ClassName is the name of the MATLAB class that defines the type.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Enum:<ClassName>'
Default: 'Enum: SlDemoSign'

Value — Enumerated value
SlDemoSign.Positive (default) | Enum:<ClassName.Value>

Specify the value or values that the block outputs. The output of the block has the same
dimensions and elements as the Value parameter. The initial value,
SlDemoSign.Positive, is a dummy enumerated value that prevents a newly cloned
block from causing an error.

To specify the desired enumerated values, select from the drop-down list or enter any
MATLAB expression that evaluates to the desired result, including an expression that uses
tunable parameters. All specified values must be of the type indicated by the Output
data type. To specify an array that includes every value in the enumerated type, use the
enumeration function.

Programmatic Use
Block Parameter: Value
Type: character vector
Values: 'Enum:<ClassName.Value>'
Default: 'SlDemoSign.Positive'

Sample time — Sample time
inf (default) | scalar | vector

Specify the interval between times that the block output can change during simulation
(for example, due to tuning the Value parameter). The default value of inf indicates that
the block output can never change. A sample time of inf speeds the simulation and
generated code by avoiding the need to recompute the block output. For more
information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector

1 Blocks — Alphabetical List

1-570

Values: scalar | vector
Default: 'inf'

Block Characteristics
Data Types enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Enumerated Constant.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Constant | enumeration

Topics
“Use Enumerated Data in Simulink Models”

 Enumerated Constant

1-571

“Simulink Enumerations”
“Code Generation for Enumerations”
“Specify Sample Time”

Introduced in R2009b

1 Blocks — Alphabetical List

1-572

Environment Controller
Create branches of block diagram that apply only to simulation or only to code generation
Library: Simulink / Signal Routing

Description
The Environment Controller block outputs the signal at its Sim port only if the model that
contains it is being simulated. It outputs the signal at its Coder port only if code is being
generated from the model. This option enables you to create branches of a block diagram
that apply only to simulation or code generation. This table describes various scenarios
where either the Sim or Coder port applies.

Scenario Output
Normal mode simulation Sim
Accelerator mode simulation Sim
Rapid Accelerator mode simulation Sim
Simulation of a referenced model (Normal
or Accelerator modes)

Sim

Simulation of a referenced model
(Processor-in-the-loop (PIL) mode)

Coder
(uses the same code generated for a
referenced model)

External mode simulation Coder
Standard code generation Coder
Code generation of a referenced model Coder

Simulink Coder software does not generate code for blocks connected to the Sim port if
these conditions hold:

• On the Code Generation > Optimization pane of the Configuration Parameters
dialog box, you set Default parameter behavior to Inlined.

 Environment Controller

1-573

• The blocks connected to the Sim port do not have external signals.
• The Sim port input path does not contain an S-function or an Interpreted MATLAB

Function block.

If you enable block reduction optimization, Simulink eliminates blocks in the branch
connected to the Coder port when compiling the model for simulation. For more
information, see “Block reduction”.

Note Simulink Coder code generation eliminates the blocks connected to the Sim branch
only if the Sim branch has the same signal dimensions as the Coder branch. Regardless of
whether it eliminates the Sim branch, Simulink Coder uses the sample times on the Sim
branch as well as the Coder branch to determine the fundamental sample time of the
generated code and might, in some cases, generate sample-time handling code that
applies only to sample times specified on the Sim branch.

Ports

Input
Sim — Simulation input
scalar | vector | matrix

Simulation input values, specified as a scalar, vector, or matrix. Input signal must have the
same width as the input to the Coder port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Coder — Code generation input
scalar | vector | matrix

Code generation input values, specified as a scalar, vector, or matrix. Input signal must
have the same width as the input to the Sim port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

1 Blocks — Alphabetical List

1-574

Output
Out — Values from Sim or Coder input port
scalar | vector | matrix

Values from the Sim or Coder input port, depending on the current environment. For
more information on what the block outputs in various simulation and code generation
modes, see “Description” on page 1-573.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

 Environment Controller

1-575

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
“Default parameter behavior” (Simulink Coder)

Topics
“Dual-Model Approach: Code Generation” (Simulink Coder)
“Block reduction”

Introduced before R2006a

1 Blocks — Alphabetical List

1-576

Event Listener
Add event port to a subsystem block
Library: Ports & Subsystems

Description
Add event port to a Subsystem block.

Parameters
Event type — Select event type for subsystem
Initialize (default) | Terminate | Reset

Select event type for subsystem to execute initialize, reset, or terminate algorithms.

Initialize
Select to trigger the execution of an Initialize Function block with an initialize event.

Terminate
Select to trigger the execution of a Terminate Function block with a terminate event.

Reset
Select to trigger the execution of an Initialize Function block reconfigured as a Reset
Function block with a reset event.

Programmatic Use
Parameter:EventType
Type: character vector
Value: 'Initialize' | 'Terminate' | 'Reset'
Default: 'Initialize'

Event name — Specify event name
Reset (default) | event name

Specify event name for Reset Function block

 Event Listener

1-577

Reset
Default name on the face of the Reset Function block.

event name
User entered name displayed on the face of the Reset Function block, and the name of
the reset event port on the Model block containing the Reset Function block.

When tying the name for a reset function, the auto-completion list provides some
suggestions. The list is not complete.

Dependency

To enable this parameter, set the Event parameter to Reset.

Programmatic Use
Parameter: EventName
Type: character vector
Value: 'reset' | '<event name>'
Default: 'reset'

Enable variant condition — Control activating the variant control (condition)
off (default) | on

Control activating the variant control (condition) defined with the Variant Control
parameter.

 off
Deactivate variant control of subsystem.

 on
Activate variant control of subsystem.

Dependency

Selecting this parameter, enables the Variant control and Generate preprocessor
conditionals parameters.

Programmatic Use
Parameter: Variant
Type: character vector
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-578

Variant control — Specify variant control (condition) expression
Variant (default) | logical expression

Specify variant control (condition) expression that executes a variant Initialize function,
Reset function, or Terminate function block when the expression evaluates to true.

Variant
Default name for a logical (Boolean) expression.

logical expression
A logical (Boolean) expression or a Simulink.Variant object representing a
boolean expression.

If you want to generate code for your model, define the variables in the expression as
Simulink.Parameter objects.

Dependency

To enable this parameter, select the Enable variant condition parameter.

Programmatic Use
Parameter: VariantControl
Type: character vector
Value: 'Variant' | '<logical expression>'
Default: 'Variant'

Generate preprocessor conditionals — Select if variant choices are enclosed
within C preprocessor conditional statements
off (default) | on

Select if variant choices are enclosed within C preprocessor conditional statements.

 off
Does not enclose variant choices within C preprocessor conditional statements.

 on
When generating code for an ERT target, encloses variant choices within C
preprocessor conditional statements (#if).

Dependency

To enable this parameter, select the Enable variant condition parameter.

 Event Listener

1-579

Programmatic Use
Parameter: GeneratePreprocessorConditionals
Type: character vector
Value: 'off' | 'on'
Default: 'off'

See Also
Initialize Function | Reset Function | State Reader | State Writer | Terminate Function

Topics
“Customize Initialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

1 Blocks — Alphabetical List

1-580

Extract Bits
Output selection of contiguous bits from input signal
Library: Simulink / Logic and Bit Operations

Description
The Extract Bits block allows you to output a contiguous selection of bits from the stored
integer value of the input signal. Use the Bits to extract parameter to define the method
for selecting the output bits.

• Select Upper half to output the half of the input bits that contain the most
significant bit. If there is an odd number of bits in the input signal, the number of
output bits is given by the equation

number of output bits = ceil(number of input bits/2)
• Select Lower half to output the half of the input bits that contain the least
significant bit. If there is an odd number of bits in the input signal, the number of
output bits is given by the equation

number of output bits = ceil(number of input bits/2)
• Select Range starting with most significant bit to output a certain number

of the most significant bits of the input signal. Specify the number of most significant
bits to output in the Number of bits parameter.

• Select Range ending with least significant bit to output a certain number
of the least significant bits of the input signal. Specify the number of least significant
bits to output in the Number of bits parameter.

• Select Range of bits to indicate a series of contiguous bits of the input to output in
the Bit indices parameter. You indicate the range in [start end] format, and the
indices of the input bits are labeled contiguously starting at 0 for the least significant
bit.

 Extract Bits

1-581

This block does not report wrap on overflow warnings during simulation. To report these
warnings, see the Simulink.restoreDiagnostic reference page. The block does
report errors due to wrap on overflow.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. Floating-point inputs are
passed through the block unchanged. Boolean inputs are treated as uint8 signals.

Note Performing bit operations on a signed integer is difficult. You can avoid difficulty by
converting the data type of your input signals to unsigned integer types.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Extracted bits
scalar | vector | matrix | N-D array

Contiguous selection of extracted bits, specified as a scalar, vector, matrix, or N-D array.
Floating-point inputs are passed through the block unchanged.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Bits to extract — Method for extracting bits
Upper half (default) | Lower half | Range starting with most significant
bit | Range ending with least significant big | Range of bits

1 Blocks — Alphabetical List

1-582

Select the method for extracting bits from the input signal.

Consider an input signal that is represented in binary by 110111001:

• If you select Upper half for the Bits to extract parameter, the output is 11011 in
binary.

• If you select Lower half for the Bits to extract parameter, the output is 11001 in
binary.

• If you select Range starting with most significant bit for the Bits to
extract parameter, and specify 3 for the Number of bits parameter, the output is 110
in binary.

• If you select Range ending with least significant bit for the Bits to
extract parameter, and specify 8 for the Number of bits parameter, the output is
10111001 in binary.

• If you select Range of bits for the Bits to extract parameter, and specify [4 7]
for the Bit indices parameter, the output is 1011 in binary.

Programmatic Use
Block Parameter: bitsToExtract
Type: character vector
Values: 'Upper half' | 'Lower half' | 'Range starting with most
significant bit' | 'Range ending with least significant bit' |
'Range of bits'
Default: 'Upper half'

Number of bits — Number of bits to output
8 (default) | positive integer

Select the number of bits to output from the input signal. Signed integer data types must
have at least two bits. Unsigned data integer types can be as short as a single bit.

Dependencies

To enable this parameter, set Bits to extract to Range starting with most
significant bit or Range ending with least significant bit.

Programmatic Use
Block Parameter: numBits
Type: character vector
Values: positive integer
Default: '8'

 Extract Bits

1-583

Bit indices — Contiguous range of bits to output
[0 7] (default) | contiguous range

Specify a contiguous range of bits of the input signal to output. Specify the range in
[start end] format. The indices are assigned to the input bits starting with 0 at the
least significant bit.

Dependencies

To enable this parameter, set Bits to extract to Range of bits.

Programmatic Use
Block Parameter: bitIdxRange
Type: character vector
Values: contiguous range
Default: '[0 7]'

Output scaling mode — Output scaling mode
Preserve fixed-point scaling (default) | Treat bit field as an integer

Select the scaling mode to use on the output bit selection:

• When you select Preserve fixed-point scaling, the fixed-point scaling of the
input is used to determine the output scaling during the data type conversion.

• When you select Treat bit field as an integer, the fixed-point scaling of the
input is ignored, and only the stored integer is used to compute the output data type.

Programmatic Use
Block Parameter: outScalingMode
Type: character vector
Values: 'Preserve fixed-point scaling' | 'Treat bit field as an
integer'
Default: 'Preserve fixed-point scaling'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

1 Blocks — Alphabetical List

1-584

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Extract Bits.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Bit Clear | Bit Set | Bitwise Operator

Introduced before R2006a

 Extract Bits

1-585

Fcn
Apply specified expression to input

Library
User-Defined Functions

Description
The Fcn block applies the specified mathematical expression to its input. The expression
can include one or more of these components:

• u — The input to the block. If u is a vector, u(i) represents the ith element of the
vector; u(1) or u alone represents the first element.

• Numeric constants.
• Arithmetic operators (+ - * / ^).
• Relational operators (== != > < >= <=) — The expression returns 1 if the relation is

true; otherwise, it returns 0.
• Logical operators (&& || !) — The expression returns 1 if the relation is true;

otherwise, it returns 0.
• Parentheses.
• Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos, cosh, exp,

floor, hypot, log, log10, power, rem, sgn (equivalent to sign in MATLAB), sin,
sinh, sqrt, tan, and tanh.

Note The Fcn block does not support round and fix. Use the Rounding Function
block to apply these rounding modes.

1 Blocks — Alphabetical List

1-586

• Workspace variables — Variable names that are not recognized in the preceding list of
items are passed to MATLAB for evaluation. Matrix or vector elements must be
specifically referenced (e.g., A(1,1) instead of A for the first element in the matrix).

The Fcn block observes the following rules of operator precedence:

1 ()
2 ^
3 + - (unary)
4 !
5 * /
6 + -
7 > < <= >=
8 == !=
9 &&
10 ||

The expression differs from a MATLAB expression in that the expression cannot perform
matrix computations. Also, this block does not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For vector output,
consider using the Math Function block. If a block input is a vector and the function
operates on input elements individually (for example, the sin function), the block
operates on only the first vector element.

Limitations
The Fcn block has the following limitations:

• You cannot tune the expression during simulation in Normal or Accelerator mode (see
“How Acceleration Modes Work”), or in generated code. To implement tunable
expressions, tune the expression outside the Fcn block. For example, use the
Relational Operator block to evaluate the expression outside.

• The Fcn block does not support custom storage classes. See “Apply Custom Storage
Classes to Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

 Fcn

1-587

Data Type Support
The Fcn block accepts and outputs signals of type single or double.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Expression

Specify the mathematical expression to apply to the input. Expression components
are listed above. The expression must be mathematically well-formed (uses matched
parentheses, proper number of function arguments, and so on). The expression has
restrictions on tunability (see “Limitations” on page 1-587)

Sample time

Note This parameter is not visible in the block dialog box unless it is explicitly set to
a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples
The following example models show how to use the Fcn block:

• sldemo_absbrake
• sldemo_enginewc (Throttle & Manifold/Throttle subsystem)

Characteristics
Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No

1 Blocks — Alphabetical List

1-588

Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Fcn

1-589

Find Nonzero Elements
Find nonzero elements in array
Library: Simulink / Math Operations

Description
The Find Nonzero Elements block locates all nonzero elements of the input signal and
returns the linear indices of those elements. If the input is a multidimensional signal, the
Find Nonzero Elements block can also return the subscripts of the nonzero input
elements. In both cases, you can show an output port with the nonzero input values.

The Find Nonzero Elements block outputs a variable-size signal. The sample time for any
variable-size signal must be discrete. If your model does not already use a fixed-step
solver, you may need to select a fixed-step solver in the Configuration Parameters dialog.
For more information, see “Solvers” and “Choose a Solver”.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal from which the block finds all nonzero elements.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Indices of nonzero elements
variable-size signal

1 Blocks — Alphabetical List

1-590

The Find Nonzero Elements block outputs the indices of nonzero elements as a variable-
size signal. You control the data type of the output using the Output data type block
parameter.
Dependencies

By default, the block outputs linear indices from the first output port. When you change
the Index output format to Subscripts, the block instead provides the element indices
of a two-dimension or larger signal in a subscript form. In this mode, you must specify the
Number of input dimensions, and the block creates a separate output port for each
dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Port_2 — Values of nonzero elements
variable-size signal

The Find block can optionally output the values of all nonzero elements as a variable-size
signal.
Dependencies

To enable this port, select Show output port for nonzero input values.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters
Main
Index output format — Format for indices of nonzero elements
Linear indices (default) | Subscripts

Select the output format for the indices of the nonzero input values.

• Selecting Linear indices provides the element indices of any dimension signal in a
vector form. For one dimension (vector) signals, indices correspond to the position of
nonzero values within the vector. For signals with more than one dimension, the
conversion of subscripts to indices is along the first dimension. You do not need to
know the signal dimension of the input signal.

 Find Nonzero Elements

1-591

• Selecting Subscripts provides the element indices of a two-dimension or larger
signal in a subscript form. Because the block shows an output port for each dimension,
this option requires you to specify the Number of input dimensions.

Programmatic Use
Block Parameter: IndexOutputFormat
Type: character vector
Values: 'Linear indices' | 'Subscripts'
Default: 'Linear indices'

Number of input dimensions — Number of dimensions for the input signal
1 (default) | scalar

Specify the number of dimensions for the input signal as a positive integer value from 1 to
32.

Dependencies

To enable this parameter, set Index output format to Subscripts.

Programmatic Use
Block Parameter: NumberOfInputDimensions
Type: character vector
Values: scalar
Default: '1'

Index mode — Specify zero- or one-based indexing
Zero-based (default) | One-based

Specify the indexing mode as Zero-based or One-based.

• For Zero-based indexing, an index of 0 specifies the first element of the input vector.
An index of 1 specifies the second element, and so on.

• For One-based indexing, an index of 1 specifies the first element of the input vector.
An index of 2, specifies the second element, and so on.

Programmatic Use
Block Parameter: IndexMode
Type: character vector
Values: 'Zero-based' | 'One-based'
Default: 'Zero-based'

1 Blocks — Alphabetical List

1-592

Show output port for nonzero input values — Enable output port for
nonzero values
off (default) | on

Show or hide the output port for nonzero input values.

• When you clear this check box (off), the block hides the output port for nonzero input
values.

• When you select this check box (on), the block displays the output port for nonzero
input values. The additional output port provides values of the nonzero input elements.

Programmatic Use
Block Parameter: ShowOutputPortForNonzeroInputValues
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Data Types
Output data type — Output data type
Inherit: Inherit via internal rule (default) | int8 | uint8 | int16 | uint16 |
int32 | uint32 | fixdt(1,16) | <data type expression>

Specify the output data type.

 Find Nonzero Elements

1-593

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' | 'uint32'| 'fixdt(1,16)'| '<data type
expression>'
Default: 'Inherit: Inherit via internal rule'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
find

1 Blocks — Alphabetical List

1-594

Topics
“Matrix Indexing” (MATLAB)
“Variable-Size Signal Basics”
“Simulink Models Using Variable-Size Signals”
“Control Signal Data Types”

Introduced in R2010a

 Find Nonzero Elements

1-595

First-Order Hold
Implement first-order sample-and-hold
Library: Simulink / Discrete

Description
The First-Order Hold block implements a first-order sample-and-hold that operates at the
specified sampling interval. This block has little value in practical applications and is
included primarily for academic purposes.

This figure compares the output from a Sine Wave block and a First-Order Hold block.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: double

1 Blocks — Alphabetical List

1-596

Output
Port_1 — First-order sample-and-hold
scalar | vector | matrix

First-order sample and hold applied to the input signal.
Data Types: double

Parameters
Sample time — Time interval between samples
1 (default) | scalar | vector

The time interval between samples. See “Specify Sample Time” for more information.
Programmatic Use
Block Parameter: Ts
Type: character vector
Values: scalar | vector
Default: '1'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 First-Order Hold

1-597

Not recommended for production code. Relates to resource limits and restrictions on
speed and memory often found in embedded systems. Generated code can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code. Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

See Also
Memory | Zero-Order Hold

Topics
“What Is Sample Time?”

Introduced before R2006a

1 Blocks — Alphabetical List

1-598

Fixed-Point State-Space
Implement discrete-time state space

Library
Additional Math & Discrete / Additional Discrete

Description
The Fixed-Point State-Space block implements the system described by

y n x n u n() () ()= +C D

x n x n u n() () ()+ = +1 A B

where u is the input, x is the state, and y is the output. Both equations have the same data
type.

The matrices A, B, C and D have the following characteristics:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

In addition:

• The state x must be an n-by-1 vector.

 Fixed-Point State-Space

1-599

• The input u must be an m-by-1 vector.
• The output y must be an r-by-1 vector.

The block accepts one input and generates one output. The block determines the input
vector width by the number of columns in the B and D matrices. Similarly, the block
determines the output vector width by the number of rows in the C and D matrices.

Data Type Support
The Fixed-Point State-Space block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
State Matrix A

Specify the matrix of states.
Input Matrix B

Specify the column vector of inputs.
Output Matrix C

Specify the column vector of outputs.
Direct Feedthrough Matrix D

Specify the matrix for direct feedthrough.
Initial condition for state

Specify the initial condition for the state.

Data type for internal calculations
Specify the data type for internal calculations.

1 Blocks — Alphabetical List

1-600

Scaling for State Equation AX+BU
Specify the scaling for state equations.

Scaling for Output Equation CX+DU
Specify the scaling for output equations.

Lock output data type setting against changes by the fixed-point tools
Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting” (Fixed-Point Designer).

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Discrete State-Space

 Fixed-Point State-Space

1-601

Introduced before R2006a

1 Blocks — Alphabetical List

1-602

Floating Scope and Scope Viewer
Display signals generated during simulation without signal lines
Library: Simulink / Sinks

Description
The Simulink Scope Viewer and Floating Scope block display time domain signals with
respect to simulation time. The Scope Viewer and Floating Scope block have the same
functionality as the Scope block, but they are not connected to signal lines. Use the Signal
Selector to add and display signals on a Floating Scope.

 Floating Scope and Scope Viewer

1-603

• Multiple y-axes (displays) — Display multiple y-axes with multiple input ports. All the
y-axes have a common time range on the x-axis.

• Multiple signals — Show multiple signals on the same y-axis (display) from one or
more input ports.

• Modify parameters — Modify scope parameter values before and during a simulation.
• Display data after simulation — If a scope is closed at the start of a simulation, scope

data is still written to the scope during the simulation. If you open the scope after a
simulation, the scope displays simulation results for input signals.

Oscilloscope features:

• Triggers — Set triggers on repeating signals and pause the display when events occur.
• Cursor Measurements — Measure signal values using vertical and horizontal cursors.
• Signal Statistics — Display the maximum, minimum, peak-to-peak difference, mean,

median, and RMS values of a selected signal.

1 Blocks — Alphabetical List

1-604

• Peak Finder — Find maxima, showing the x-axis values at which they occur.
• Bilevel Measurements — Measure transitions, overshoots, undershoots, and cycles.

You must have a Simscape™ or DSP System Toolbox license to use the Peak Finder,
Bilevel Measurements, and Signal Statistics.

For information on controlling a Floating Scope block from the command line, see
“Control Scopes Programmatically” in the Simulink documentation.

Limitations
When you use model configuration parameters that optimize the simulation, such as
Signal storage reuse and Block reduction, Simulink eliminates storage for some
signals during simulation. You are unable to apply a Floating Scope to these eliminated
signals. To work around this issue, configure an eliminated signal as a test point. You can
then apply a Floating Scope to the signal regardless of optimization settings. To configure
test points, see “Test Points”.

• If you step back the simulation after adding or removing a signal, the Floating Scope
clears the existing data. New data does not appear until the simulation steps forward
again.

• When connected to a constant signal, the Scope Viewer plots a single point.
• Simulink messages are not supported for Floating Scope block and Scope Viewer.

Ports

Input
Port_1 — Signal or signals to visualize
scalar | vector | matrix | array | bus | nonvirtual bus

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals
can have these characteristics:

• Type — Continuous (sample-based) or discrete (sample-based and frame-based).
• Data type — Any data type that Simulink supports. See “Data Types Supported by

Simulink”.

 Floating Scope and Scope Viewer

1-605

• Dimension — Scalar, one dimensional (vector), two dimensional (matrix), or
multidimensional (array). Display multiple channels within one signal depending on
the dimension. See “Signal Dimensions” and “Determine Output Signal Dimensions”.

Bus Support

You can connect nonvirtual bus and arrays of bus signals to a scope block. To display the
bus signals, use normal or accelerator simulation mode. The scope block displays each
bus element signal in the order the elements appear in the bus, from the top to the
bottom. Nested bus elements are flattened.

To log nonvirtual bus signals with a scope block, set the Save format block parameter to
Dataset. You can use any Save format to log virtual bus signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Properties
Configuration Properties
The Configuration Properties dialog box controls various properties about the scope
displays. From the scope menu, select View > Configuration Properties.

Main

Open at simulation start — Specify when scope window opens
off (default) | on

Select this check box to open the scope window when simulation starts.
Programmatic Use

See OpenAtSimulationStart.

Display the full path — Display block path on scope title bar
off (default) | on

Select this check box to display the block path in addition to the block name.

Layout — Number and arrangement of displays
1-by-1 display (default) | an arrangement of m-by-n displays

1 Blocks — Alphabetical List

1-606

Specify number and arrangement of displays. To expand the layout grid beyond 4 by 4,
click within the dialog box and drag. The maximum layout is 16 rows by 16 columns.

If the number of displays is equal to the number of ports, signals from each port appear
on separate displays. If the number of displays is less than the number of ports, signals
from additional ports appear on the last display. For layouts with multiple columns and
rows, ports are mapped down and then across.
Programmatic Use

See LayoutDimensions.

Input processing — Channel or element signal processing
Elements as channels (sample based) (default) | Columns as channels
(frame based)

• Elements as channels (sample based) — Process each element as a unique
sample.

• Columns as channels (frame based) — Process signal values in a column as a
group of values from multiple time intervals. Frame-based processing is available only
with discrete input signals.

Programmatic Use

See FrameBasedProcessing.

Maximize axes — Maximize size of plots
Off (default) | Auto | On

 Floating Scope and Scope Viewer

1-607

• Auto — If “Title” on page 1-0 and “Y-label” on page 1-0 properties are not
specified, maximize all plots.

• On — Maximize all plots. Values in Title and Y-label are hidden.
• Off — Do not maximize plots.

Programmatic Use

See MaximizeAxes.

Time

Time span — Length of x-axis to display
Auto (default) | User defined

• Auto — Difference between the simulation start and stop times.

The block calculates the beginning and end times of the time range using the “Time
display offset” on page 1-0 and “Time span” on page 1-0 properties. For
example, if you set the Time display offset to 10 and the Time span to 20, the scope
sets the time range from 10 to 30.

• User defined — Enter any value less than the total simulation time.

Programmatic Use

See TimeSpan.

Time span overrun action — Display data beyond visible x-axis
Wrap (default) | Scroll

Specify how to display data beyond the visible x-axis range.

You can see the effects of this option only when plotting is slow with large models or small
step sizes.

• Wrap — Draw a full screen of data from left to right, clear the screen, and then restart
drawing the data from the left.

• Scroll — Move data to the left as new data is drawn on the right. This mode is
graphically intensive and can affect run-time performance.

Programmatic Use

See TimeSpanOverrunAction.

1 Blocks — Alphabetical List

1-608

Time units — x-axis units
None (default for Scope) | Metric (default for Time Scope) | Seconds

• Metric — Display time units based on the length of “Time span” on page 1-0 .
• Seconds — Display time in seconds.
• None — Do not display time units.

Programmatic Use

See TimeUnits.

Time display offset — x-axis offset
0 (default) | scalar | vector

Offset the x-axis by a specified time value, specified as a real number or vector of real
numbers.

For input signals with multiple channels, you can enter a scalar or vector:

• Scalar — Offset all channels of an input signal by the same time value.
• Vector — Independently offset the channels.

Programmatic Use

See TimeDisplayOffset.

Time-axis labels — Display of x-axis labels
Bottom Displays Only (default for Scope) | All (default for Time Scope) | None

Specify how x-axis (time) labels display:

• All — Display x-axis labels on all y-axes.
• None — Do not display labels. Selecting None also clears the Show time-axis label

check box.
• Bottom displays only — Display x-axis label on the bottom y-axis.

Dependencies

To activate this property, set:

• “Show time-axis label” on page 1-0 to on.

 Floating Scope and Scope Viewer

1-609

• “Maximize axes” on page 1-0 to off.

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See TimeAxisLabels.

Show time-axis label — Display or hide x-axis labels
off (default for Scope) | on (default for Time Scope)

Select this check box to show the x-axis label for the active display
Dependencies

To activate this property, set “Time-axis labels” on page 1-0 to All or Bottom
Displays Only.

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See ShowTimeAxisLabel.

Display

Active display — Selected display
1 (default) | positive integer

Selected display. Use this property to control which display is changed when changing
style properties and axes-specific properties.

Specify the desired display using a positive integer that corresponds to the column-wise
placement index. For layouts with multiple columns and rows, display numbers are
mapped down and then across.
Programmatic Use

See “Active display” on page 1-0 .

Title — Display name
%<SignalLabel> (default) | character vector | string

Title for a display, specified as a character vector or string. The default value
%<SignalLabel> uses the input signal name for the title.

1 Blocks — Alphabetical List

1-610

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See Title.

Show legend — Display signal legend
off (default) | on

Toggle signal legend. The names listed in the legend are the signal names from the model.
For signals with multiple channels, a channel index is appended after the signal name.
Continuous signals have straight lines before their names, and discrete signals have step-
shaped lines.

From the legend, you can control which signals are visible. This control is equivalent to
changing the visibility in the Style properties. In the scope legend, click a signal name to
hide the signal in the scope. To show the signal, click the signal name again. To show only
one signal, right-click the signal name, which hides all other signals. To show all signals,
press Esc.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See ShowLegend.

Show grid — Show internal grid lines
on (default) | off

Select this check box to show grid lines.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See ShowGrid.

 Floating Scope and Scope Viewer

1-611

Plot signals as magnitude and phase — Split display into magnitude and
phase plots
off (default) | on

• On — Display magnitude and phase plots. If the signal is real, plots the absolute value
of the signal for the magnitude. The phase is 0 degrees for positive values and 180
degrees for negative values. This feature is useful for complex-valued input signals. If
the input is a real-valued signal, selecting this check box returns the absolute value of
the signal for the magnitude.

• Off — Display signal plot. If the signal is complex, plots the real and imaginary parts
on the same y-axis.

Dependency

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See PlotAsMagnitudePhase.

Y-limits (Minimum) — Minimum y-axis value
-10 (default) | real scalar

Specify the minimum value of the y-axis as a real number.

Tunable: Yes
Dependency

If you select Plot signals as magnitude and phase, this property only applies to the
magnitude plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See YLimits.

Y-limits (Maximum) — Maximum y-axis value
10 (default) | real scalar

Specify the maximum value of the y-axis as a real number.

Tunable: Yes

1 Blocks — Alphabetical List

1-612

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the
magnitude plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLimits.

Y-label — Y-axis label
none (default for Scope) | 'Amplitude' (default for Time Scope) | character vector |
string

Specify the text to display on the y-axis. To display signal units, add (%<SignalUnits>)
to the label. At the beginning of a simulation, Simulink replaces (%SignalUnits) with
the units associated with the signals.
Example: For a velocity signal with units of m/s, enter Velocity (%<SignalUnits>).

Dependency

If you select Plot signals as magnitude and phase, this property does not apply. The y-
axes are labeled Magnitude and Phase.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLabel.

Logging

Limit data points to last — Limit buffered data values
off (default) | on

Limit buffered data values before plotting and saving signals. Data values are from the
end of a simulation. To use this property, you must also specify the number of data values
by entering a positive integer in the text box.

• On — Specify the number of data values saved for each signal (5000 by default). If the
signal is frame-based, the number of buffered data values is the specified number of
data values multiplied by the frame size.

 Floating Scope and Scope Viewer

1-613

For simulations with Stop time set to inf, consider selecting Limit data points to
last.

Sometimes, selecting this parameter cause signals to be plotted for less than the
entire time range of a simulation. For example, where the sample time is small. If a
scope plots a portion of your signals, consider increasing the number of data values
the simulation saves.

• Off — Save and plot all data values. Clearing Limit data points to last can cause an
out-of-memory error for simulations that generate a large amount of data or for
systems without enough available memory.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

This property limits the data values plotted in the scope and the data values saved to a
MATLAB variable specified in “Variable name” on page 1-0 .

Programmatic Use

See DataLoggingLimitDataPoints and DataLoggingMaxPoints.

Decimation — Reduce amount of scope data to display and save
off (default) | on

• On — Plot and log (save) scope data every Nth data point, where N is the decimation
factor entered in the text box. The default decimation factor is 2. A value of 1 buffers
all data values.

• Off — Save all scope data values.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

This property limits the data values plotted in the scope and the data values saved to a
MATLAB variable specified in “Variable name” on page 1-0 .

Programmatic Use

See DataLoggingDecimateData and DataLoggingDecimation.

Log/Unlog Viewed Signals to Workspace — Toggle logging
on | off

1 Blocks — Alphabetical List

1-614

For signals selected with the Signal Selector, clicking this button toggles the state of the
Log signal data check boxes in the Signals Properties dialog boxes.

Axes Scaling Properties
The Axes Scaling Properties dialog controls the axes limits of the scope. To open the Axes
Scaling properties, in the scope menu, select Tools > Axes Scaling > Axes Scaling
Properties.

Axes scaling — Y-axis scaling mode
Manual (default) | Auto | After N Updates

• Manual — Manually scale the y-axis range with the Scale Y-axis Limits toolbar
button.

• Auto — Scale the y-axis range during and after simulation. Selecting this option
displays the “Do not allow Y-axis limits to shrink” on page 1-0 check box. If you
want the y-axis range to increase and decrease with the maximum value of a signal,
set Axes scaling to Auto and clear the Do not allow Y-axis limits to shrink check
box.

• After N Updates — Scale y-axis after the number of time steps specified in the
“Number of updates” on page 1-0 text box (10 by default). Scaling occurs only
once during each run.

Programmatic Use

See AxesScaling.

Do not allow Y-axis limits to shrink — When y-axis limits can change
on (default) | off

Allow y-axis range limits to increase but not decrease during a simulation.

Dependency

To use this property, set “Axes scaling” on page 1-0 to Auto.

Number of updates — Number of updates before scaling
10 (default) | integer

Set this property to delay auto scaling the y-axis.

 Floating Scope and Scope Viewer

1-615

Dependency

To use this property, set “Axes scaling” on page 1-0 to After N Updates.

Programmatic Use

See AxesScalingNumUpdates.

Scale axes limits at stop — When y-axis limits can change
on (default) | off

• On — Scale axes when simulation stops.
• Off — Scale axes continually.

Dependency

To use this property, set “Axes scaling” on page 1-0 to Auto.

Y-axis Data range (%) — Percent of y-axis to use for plotting
80 (default) | integer between [1, 100]

Specify the percentage of the y-axis range used for plotting data. If you set this property
to 100, the plotted data uses the entire y-axis range.

Y-axis Align — Alignment along y-axis
Center (default) | Top | Bottom

Specify where to align plotted data along the y-axis data range when Y-axis Data range
is set to less than 100 percent.

• Top — Align signals with the maximum values of the y-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the y-axis range.

Autoscale X-axis limits — Scale x-axis range limits
off (default) | on

Scale x-axis range to fit all signal values. If Axes scaling is set to Auto, the data
currently within the axes is scaled, not the entire signal in the data buffer.

X-axis Data range (%) — Percent of x-axis to use for plotting
100 (default) | integer in the range [1, 100]

1 Blocks — Alphabetical List

1-616

Specify the percentage of the x-axis range to plot data on. For example, if you set this
property to 100, plotted data uses the entire x-axis range.

X-axis Align — Alignment along x-axis
Center (default) | Top | Bottom

Specify where to align plotted data along the x-axis data range when X-axis Data range
is set to less than 100 percent.

• Top — Align signals with the maximum values of the x-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the x-axis range.

Style Properties
To open the Style dialog box, from the scope menu, select View > Style.

Figure color — Background color for window
black (default) | color

Background color for the scope.

Plot type — How to plot signal
Auto (default for Scope) | Line (default for Time Scope) | Stairs | Stem

When you select Auto, the plot type is a line graph for continuous signals, a stair-step
graph for discrete signals, and a stem graph for Simulink message signals.

Axes colors — Background and axes color for individual displays
black (default) | color

Select the background color for axes (displays) with the first color palette. Select the grid
and label color with the second color palette.

Preserve colors for copy to clipboard — Copy scope without changing
colors
off (default) | on

Specify whether to use the displayed color of the scope when copying.

 Floating Scope and Scope Viewer

1-617

When you select File > Copy to Clipboard, the software changes the color of the scope
to be printer friendly (white background, visible lines). If you want to copy and paste the
scope with the colors displayed, select this check box.

Properties for line — Line to change
Channel 1 (default)

Select active line for setting line style properties.

Visible — Line visibility
on (default) | off

Show or hide a signal on the plot.
Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0
determine which line is affected.

Line — Line style
solid line (default style) | 0.75 (default width) | yellow (default color)

Select line style, width, and color.
Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0
determine which line is affected.

Marker — Data point marker style
None (default) | marker shape

Select marker shape.
Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0
determine which line is affected.

See Also
Blocks
Scope

1 Blocks — Alphabetical List

1-618

Topics
“Scope Blocks and Scope Viewer Overview”
“Common Scope Interactions”
“Simulate a Model Interactively”
“Step Through a Simulation”
“Monitor Test Points in Stateflow Charts” (Stateflow)

Introduced in R2015b

 Floating Scope and Scope Viewer

1-619

Float Typecast
Typecast a floating-point type to an unsigned integer or vice versa
Library: HDL Coder / HDL Floating Point Operations / Float

Typecast

Description
The block casts the underlying bits of the input to the corresponding fixed-point or
floating point representation. The input and output of the block contain the same number
of bits. This figure shows how the block mask, behavior, and output data type changes
dynamically depending on the input data type that you specify.

1 Blocks — Alphabetical List

1-620

Ports
Input
Port_1(u) — Input signal
scalar | vector

Port to provide input to the block.
Data Types: single | double | uint32 | fixed point

 Float Typecast

1-621

Output
Port_1(y) — Output signal
scalar | vector

Port to obtain calculated output from the block.
Data Types: single | double | uint32 | fixed point

Block Characteristics
Data Types double | single | base integer | fixed point | bus
Sample Time Inherit
Direct
Feedthrough

Yes

Multidimensional
Signals

Scalar

Variable-Size
Signals

Yes

Zero-Crossing
Detection

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

If have HDL Coder installed, you can generate HDL code for the block in the Native
Floating Point mode. For more information, see Float Typecast.

1 Blocks — Alphabetical List

1-622

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Functions
typecast

Introduced in R2017b

 Float Typecast

1-623

For Each
Process elements or subarrays of a mask parameter or input signal independently
Library: Ports & Subsystems

Description
The For Each block serves as a control block for the For Each Subsystem block.
Specifically, the For Each block enables the blocks inside the For Each Subsystem to
process the elements of input signals or mask parameters independently. Each block
inside this subsystem that has states maintains a separate set of states for each element
or subarray that it processes. As the set of blocks in the subsystem processes the
elements or subarrays, the subsystem concatenates the results to form output signals.

You can use a For Each subsystem to iteratively compute output after changing inputs or
mask parameters. To do so, you configure the partitioning of input signals or mask
parameters in the For Each block dialog box.

Partition Input Signals to the Subsystem
In a For Each subsystem, you can specify which input signals to partition for each
iteration using the Input Partition tab in the dialog box of the For Each block. When
specifying a signal to be partitioned, you also have to specify the Partition Dimension,
Partition Width, and Partition Offset parameters.

Partition Parameters in the For Each block
You can partition the mask parameters of a For Each Subsystem block. Partitioning is
useful for systems that have identical structures in each iteration but different parameter
values. In this case, changing the model to partition extra input signals for each
parameter is cumbersome. Instead, add a mask parameter to a For Each subsystem. For
more information, see “Create a Simple Mask”. To select the mask parameter for

1 Blocks — Alphabetical List

1-624

partitioning, use the Parameter Partition tab on the For Each block dialog box. For more
information, see “Select Partition Parameters” on page 1-625

Concatenate Output
You define the dimension along which to concatenate the results by specifying the
Concatenation Dimension in the Output Concatenation tab.

The results generated by the block for each subarray stack along the concatenation
dimension, d1 (y-axis). Whereas, if you specify d2 by setting the concatenation dimension
to 2, the results concatenate along the d2 direction (x-axis). Thus if the process generates
row vectors, then the concatenated result is a row vector.

Select Partition Parameters
When selecting an input signal or subsystem mask parameter for partitioning, you need to
specify how to decompose it into elements or subarrays for each iteration. Do this by
setting integer values for the Partition Dimension, Partition Width, and Partition
Offset parameters.

As an illustration, consider an input signal matrix A of the form:

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

d
1

d
2

The labels d1 and d2, respectively, define dimensions 1 and 2. If you retain the default
setting of 1 for both the partition dimension and the partition width, and 0 for the
partition offset, then Simulink slices perpendicular to partition dimension d1 at a width
equal to the partition width, that is one element.

 For Each

1-625

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

Partition

dimension

set to 1

Matrix A decomposes into these three row vectors.

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

If instead you specify d2 as the partition dimension by entering the value 2, Simulink
slices perpendicular to d2 to form three column vectors.

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

In addition to setting the Partition Dimension to 2, if you set the Partition Width to 2
and the Partition Offset to -1, Simulink uses two overlapping 3x2 partitions for
processing.

1 Blocks — Alphabetical List

1-626

For an example using the Partition Offset parameter, open the Simulink
model .slexForEachOverlapExample

Note Only signals are considered one-dimensional in Simulink. Mask parameters are row
or column vectors, according to their orientation. To partition a row vector, specify the
partition dimension as 2 (along the columns). To partition a column vector, specify the
partition dimension as 1 (along the rows).

Examples
The following model demonstrates the partitioning of an input signal by a For Each block.
Each row of this 2-by-3 input array contains three integers that represent the (x, y, z)-
coordinates of a point. The goal is to translate each of these points based on a new origin
at (–20, –10, –5) and to display the results.

By placing the process of summing an input signal and the new origin inside of a For Each
Subsystem block, you can operate on each set of coordinates by partitioning the input
signal into two row vectors. To accomplish such partitioning, use the default settings of 1
for both the partition dimension and the partition width. If you also use the default
concatenation dimension of 1, each new set of coordinates stacks in the d1 direction,
making your display a 2-by-3 array.

Alternatively, if you specify a concatenation dimension of 2, then you get a single row
vector because each set of results stacks in the d2 direction.

 For Each

1-627

matlab:slexForEachOverlapExample

This example shows how to partition an input signal. To learn how the For Each block and
subsystem handle a model with states, see the For Each Subsystem documentation.

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Input Partition Tab
Select each input signal you want to partition and to specify the corresponding Partition
Dimension and Partition Width parameters. See the Inport block reference page for
more information.

1 Blocks — Alphabetical List

1-628

Port — List of input ports
no default (default) | input port name

List of input ports connected to the For Each Subsystem block.

Partition — Select input port signals to partition
off (default) | on

Select input ports signals connected to the For Each Subsystem block to partition into
subarrays or elements.

off
Clear input port signals.

on
Select input port signals to partition.

Dependency

Selecting this parameter enables the Partition Dimension and Partition Width
parameters for the selected input port signal.

Programmatic Use
Parameter: InputPartition
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Partition Dimension — Specify dimension
1 (default) | integer

Specify the dimension through which to slice the input signal array. The resulting slices
are perpendicular to the dimension that you specify. The slices also partition the array
into subarrays or elements, as appropriate.

1
Specify a dimension of 1.

integer
Specify dimension. Minimum value 1.

 For Each

1-629

Programmatic Use
Parameter: InputPartitionDimension
Type: character vector
Value: '1' | '<integer>'
Default: '1'

Partition Width — Specify width
1 (default) | integer

Specify the width of each partition slice of the input signal.

1
Width of one element.

integer
Specify width. Minimum value 1.

Programmatic Use
Parameter: InputPartitionWidth
Type: character vector
Value: '1' | '<integer>'
Default: '1'

Partition Offset — Specify partition offset
0 (default) | integer

Specify the offset for each partition slice of the input signal.

0
No offset between partition slices.

integer
Specify partition offset where the sum of the partition width and the partition offset is
a positive integer.

For example, a Partition Width of 3 and a Partition Offset of -2 indicates that each
3 element slice overlaps its neighboring slices by 2 elements.

Programmatic Use
Parameter: SubsysMaskParameterOffset
Type: character vector
Value: '0' | '<integer>'

1 Blocks — Alphabetical List

1-630

Default: '0'

Output Concatenation Tab
For each output port, specify the dimension along which to stack (concatenate) the For
Each Subsystem block results. See the Outport block reference page for more
information.

Port — List of output ports
none (default) | output port name

List of output ports connected to the For Each Subsystem block.

Concatenation Dimension — Specify dimension
1 (default) | integer

Specify the dimension along which to stack the results of the For Each Subsystem block.

1
The results stack in the d1 direction. If the block generates column vectors, the
concatenation process results in a single column vector.

integer
The results stack in the d2 direction. If the block generates row vectors, the
concatenation process results in a single row vector. Minimum value 1

Programmatic Use
Parameter: OutputConcatenationDimension
Type: character vector
Value: '1' | '<integer>'
Default: '1'

Parameter Partition Tab
Select each mask parameter to partition and to specify the corresponding Partition
Dimension and Partition Width parameters. Parameters appear in the list only if you
have added an editable parameter to the mask of the parent For Each subsystem.

Parameter — List of mask parameters
parameter name

 For Each

1-631

List of mask parameters for the For Each Subsystem block.

Partition — Select mask parameters to partition
off (default) | on

Select mask parameters for the For Each Subsystem block to partition into subarrays or
elements.

off
Clear mask parameters.

on
Select mask parameters to partition.

Dependency

Selecting this parameter enables the Partition Dimension and Partition Width
parameters for the selected mask parameter.

Programmatic Use
Parameter: SubsysMaskParameterPartition
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Partition Dimension — Specify dimension
1 (default) | integer

Specify the dimension through which to slice the input signal array. The resulting slices
are perpendicular to the dimension that you specify. The slices also partition the array
into subarrays or elements, as appropriate.

Default: 1

1
Dimension of 1.

integer
Specify dimension. Minimum value 1

Programmatic Use
Parameter: SubsysMaskParameterPartitionDimension

1 Blocks — Alphabetical List

1-632

Type: character vector
Value: '1' | '<integer>'
Default: '1'

Partition Width — Specify partition width
1 (default) | integer

Specify the width of each partition slice of the input signal.

1
Width of one element.

integer
Specify width. Minimum value 1

Programmatic Use
Parameter: SubsysMaskParameterPartitionWidth
Type: character vector
Value: '1' | '<integer>'
Default: '1'

See Also
Blocks
For Each Subsystem | Subsystem

Topics
“Repeat an Algorithm Using a For Each Subsystem”
“Log Signals in For Each Subsystems”

Introduced in R2010a

 For Each

1-633

For Each Subsystem
Subsystem that repeats execution on each element or subarray of input signal and
concatenates results
Library: Ports & Subsystems

Description
The For Each Subsystem block is a Subsystem block preconfigured as a starting point for
creating a subsystem that repeats execution during a simulation time step on each
element or subarray of an input signal.

The set of blocks within the subsystem represents the algorithm applied to a single
element or subarray of the original signal. The For Each block inside the subsystem
allows you to configure the decomposition of the subsystem inputs into elements or
subarrays, and to configure the concatenation of the individual results into output signals.

Inside this subsystem, each block that has states maintains separate sets of states for
each element or subarray that it processes. Consequently, the operation of this subsystem
is similar in behavior to copying the contents of the subsystem for each element in the
original input signal and then processing each element using its respective copy of the
subsystem.

1 Blocks — Alphabetical List

1-634

An additional benefit of the For Each Subsystem block is that, for certain models, it
improves the code reuse in SimulinkCoder generated code. Consider a model containing
two reusable Atomic Subsystem blocks with the same scalar algorithm applied to each
element of the signal. If the input signal dimensions of these subsystems are different,
Simulink Coder generated code includes two distinct functions. You can replace these two
subsystems with two identical For Each Subsystem blocks that are configured to process
each element of their respective inputs using the same algorithm. For this case, Simulink
Coder generated code consists of a single function parameterized by the number of input
signal elements. This function is invoked twice — once for each unique instance of the For
Each Subsystem block in the model. For each of these cases, the input signal elements
have different values.

S-Function Support
The For Each Subsystem block supports both C-MEX S-functions and Level-2 MATLAB S-
functions, provided that the S-function supports multiple execution instances using one of
the following techniques:

• A C-MEX S-function must declare ssSupportsMultipleExecInstances(S, true)
in the mdlSetWorkWidths method.

• A Level-2 MATLAB S-function must declare
block.SupportsMultipleExecInstances = true in the setup method.

If you use the above specifications:

• Do not cache run-time data, such as DWork and Block I/O, using global or persistent
variables or within the user data of the S-function.

• Every S-function execution method from mdlStart up to mdlTerminate is called
once for each element processed by the S-function, when it is in a For Each Subsystem
block. Consequently, you need to be careful not to free the same memory on repeated
calls to mdlTerminate. For example, consider a C-MEX S-function that allocates
memory for a run-time parameter within mdlSetWorkWidths. The memory only
needs to be freed once in mdlTerminate. As a solution, set the pointer to be empty
after the first call to mdlTerminate.

Limitations
The For Each Subsystem block has these limitations, and these are the workarounds.

 For Each Subsystem

1-635

Limitation Workaround
You cannot log bus or an array of bus
signals directly in the For Each subsystem.

Use one of these approaches:

• Use a Bus Selector block to select the
signals you want to log and mark those
signals for signal logging.

• Attach the signal to an Outport block
and log the signal outside the For Each
subsystem.

You cannot log a signal inside a referenced
model that is inside a For Each subsystem if
either of these conditions exists:

• The For Each subsystem is in a model
simulating in Rapid Accelerator mode.

• The For Each subsystem itself is in a
model referenced by a Model block in
Accelerator mode.

For the first condition, use Accelerator
mode.

For the second condition, use Normal or
Rapid Accelerator mode.

You cannot log the states of the blocks in a
For Each subsystem .

Save and restore the simulation state.

You cannot use Normal mode to simulate a
Model block inside a For Each subsystem.

Use Accelerator or Rapid Accelerator mode.

Reusable code is generated for two For
Each Subsystems with identical contents if
their input and output signals are vectors
(1-D or 2-D row or column vector). For n-D
input and output signals, reusable code is
generated only when the dimension along
which the signal is partitioned is the
highest dimension.

Permute the signal dimensions to transform
the partition dimension and the
concatenation dimension to the highest
nonsingleton dimension for n-D signals.

The For Each Subsystem block does not support these features:

• You cannot include these blocks or S-functions inside a For Each Subsystem:

• Data Store Memory, Data Store Read, or Data Store Write blocks inside the
subsystem

1 Blocks — Alphabetical List

1-636

• The From Workspace block if the input is a Structure with Time that has an
empty time field

• The To Workspace and To File data saving blocks
• Goto and From blocks that cross the subsystem boundary
• Model Reference block with simulation mode set to Normal
• Shadow Inports
• ERT S-functions

For a complete list of the blocks that support the For Each Subsystem, type
showblockdatatypetable at the MATLAB command line.

• You cannot use these types of signals:

• Test-pointed signals or signals with an external storage class inside the system
• Frame signals on subsystem input and output boundaries
• Variable-size signals
• Function-call signals crossing the boundaries of the subsystem

• Creation of a linearization point inside the subsystem
• Propagating the Jacobian flag for the blocks inside the subsystem. You can check this

condition in MATLAB using J.Mi.BlockAnalyticFlags.jacobian, where J is the
Jacobian object. To verify the correctness of the Jacobian of the For Each Subsystem
block, perform these steps:

• Look at the tag of the For Each Subsystem Jacobian. If it is “not_supported”,
then the Jacobian is incorrect.

• Move each block out of the For Each Subsystem and calculate its Jacobian. If any
block is " not_supported " or has a warning tag, the For Each Subsystem Jacobian is
incorrect.

• You cannot perform these types of code generation:

• Generation of a Simulink Coder S-function target
• Simulink Coder code generation under both of the following conditions:

• A Stateflow or MATLAB Function block resides in the subsystem.
• This block tries to access global data outside the subsystem, such as Data Store

Memory blocks or Simulink.Signal objects of ExportedGlobal storage
class.

 For Each Subsystem

1-637

• PLC code generation

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

See Also
Blocks
For Each | Subsystem

Topics
“Repeat an Algorithm Using a For Each Subsystem”
“Log Signals in For Each Subsystems”

1 Blocks — Alphabetical List

1-638

Introduced in R2010a

 For Each Subsystem

1-639

For Iterator
Repeat execution of a subsystem during a time step for a specified number of iterations
Library: Ports & Subsystems

Description
The For Iterator block, when placed in a Subsystem block, repeats the execution of a
subsystem during the current time step until an iteration variable exceeds the specified
iteration limit. You can use this block to implement the block diagram equivalent of a for
loop in a programming language.

The output of a For Iterator Subsystem block cannot be a function-call signal. Simulink
displays an error message when the model updates.

Ports
Input
Number of Iterations — External value for iterator variable
scalar | vector, size 1 | matrix, size 1x1

• The input port accepts data of mixed numeric types.
• If the input port value is non-integer, it is first truncated to an integer.
• Internally, the input value is cast to an integer of the type specified for the iteration

variable output port.
• If no output port is specified, the input port value is cast to type int32.
• If the input port value exceeds the maximum value of the output port type, the
overflow wraps around.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

1 Blocks — Alphabetical List

1-640

Output
Iterator value — Value of iterator variable during time step
scalar | vector, size 1 | matrix, size 1x1

Selecting the Show iteration variable parameter check box adds an output port to this
block
Data Types: double | int8 | int16 | int32

Parameters
States when starting — Select block states between time steps
held (default) | reset

Select how to handle block states between time steps.

held
Hold block states between time steps. Block state values persist across time steps.

reset
Reset block states to their initial values at the beginning of each time step and before
the first iteration loop.

Programmatic Use
Block Parameter: ResetStates
Type: character vector
Values: 'held' | 'reset'
Default: 'held'

Iteration limit source — Select source for number of iterations
internal (default) | external

Select source for number of iterations.

internal
Value of the Iteration limit parameter determines the number of iterations.

external
Value of the signal at the N port determines the number of iterations. The signal
source must reside outside the For Iterator Subsystem block.

 For Iterator

1-641

Dependencies

Selecting internal displays and enables the Iteration limit parameter. Selecting
external adds an input port labeled N.

Programmatic Use
Block Parameter: IterationSource
Type: character vector
Values: 'internal' | 'external'
Default: 'internal'

Iteration limit — Specify number of iterations
5 (default) | integer

Specify the number of iterations. This parameter supports storage classes. You can define
the named constant in the base workspace of the Model Explorer as a
Simulink.Parameter object of the built-in storage class Define (custom) type.

5
Iterate blocks in the For Iterator Subsystem block 5 times.

integer
Specify an integer or a named constant variable.

Dependencies

To enable this parameter, select internal from the Iteration limit source drop-down
list.

Programmatic Use
Block Parameter: IterationLimit
Type: character vector
Values: '5' | '<integer>'
Default: '5'

Set Next i (iteration variable) externally — Control display of input port
off (default) | on

Control display of an input port.

off
Remove input port.

1 Blocks — Alphabetical List

1-642

on
Add input port labeled Next_i for connecting to an external iteration variable source.
The value of the input at the current iteration is used as the value of the iteration
variable at the next iteration.

Dependencies

To enable this parameter, select the Show iteration variable parameter which
alsodisplays an output port labeled 1:N.

Programmatic Use
Block Parameter: ExternalIncrement
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show iteration variable — Control display of output port
on (default) | off

Control the display of an output port with the current iterator value for a loop.

on
Add output port labeled 1:N to the For Iterator block.

off
Remove output port.

Dependencies

Selecting this parameter enables the Set next i (iteration variable) externally
parameter.

Programmatic Use
Parameter: ShowIterationPort
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Index mode — Select initial iteration number
One-based (default) | Zero-based

Select an initial iteration number of 0 or 1.

 For Iterator

1-643

One-based
Iteration number starts at one.

Zero-based
Iteration number starts at zero.

Programmatic Use
Block Parameter: IndexMode
Type: character vector
Values: 'One-based' | 'Zero-based'
Default: 'One-based'

Iteration variable data type — Select data type
int32 (default) | int16 | int8 | double

Set the data type for the iteration value output from the iteration number port.

int32
Set data type to int32.

int16
Set data type to int16.

int8
Set data type to int8.

double
Set data type to double.

Programmatic Use
Parameter: IterationVariableDataType
Type: character vector
Value: 'int32' | 'int16' | 'int8' | 'double'
Default: 'int32'

See Also
Blocks
For Iterator Subsystem | Subsystem

1 Blocks — Alphabetical List

1-644

Topics
Iterator Subsystem Execution

Introduced before R2006a

 For Iterator

1-645

For Iterator Subsystem
Subsystem that repeats execution during a simulation time step
Library: Simulink / Ports & Subsystems

Description
The For Iterator Subsystem block is a Subsystem block preconfigured as a starting point
for creating a subsystem that repeats the execution during a simulation time step for a
specified number of iterations.

When using simplified initialization mode, if you place a block that needs elapsed time
(such as a Discrete-Time Integrator block) in a While Iterator Subsystem block, Simulink
displays an error.

Ports
Input
In — Signal input to a subsystem block
scalar | vector | matrix

1 Blocks — Alphabetical List

1-646

Placing an Inport block in a Subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a Subsystem block adds an output port from the block. The
port label on the Subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa

Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 For Iterator Subsystem

1-647

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Blocks
For Iterator | Subsystem

Topics
Iterator Subsystem Execution

Introduced before R2006a

1 Blocks — Alphabetical List

1-648

From
Accept input from Goto block
Library: Simulink / Signal Routing

Description
The From block accepts a signal from a corresponding Goto block, then passes it as
output. The data type of the output is the same as that of the input from the Goto block.
From and Goto blocks allow you to pass a signal from one block to another without
actually connecting them. To associate a Goto block with a From block, enter the Goto
block's tag in the Goto Tag parameter.

A From block can receive its signal from only one Goto block, although a Goto block can
pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent to connecting
the blocks to which those blocks are connected. In the model at the left, Block1 passes a
signal to Block2. That model is equivalent to the model at the right, which connects
Block1 to the Goto block, passes that signal to the From block, then on to Block2.

The visibility of a Goto block tag determines the From blocks that can receive its signal.
For more information, see Goto and Goto Tag Visibility. The block indicates the visibility
of the Goto block tag:

• A local tag name is enclosed in brackets ([]).
• A scoped tag name is enclosed in braces ({}).
• A global tag name appears without additional characters.

The From block supports signal label propagation.

 From

1-649

Ports

Output
Port_1 — Signal from connected Goto block
scalar | vector | matrix | N-D array

Signal from connected Goto block, output with the same dimensions and data type as the
input to the Goto block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Goto Tag — Tag of the Goto block that forwards its signal to this block
A (default) | <More Tags...> | ...

Specify the tag of the Goto block that forwards its signal to this From block. To change
the tag, select a new tag from the drop-down list.

The drop-down list displays the Goto tags that the From block can currently see. An item
labeled <More Tags...> appears at the end of the list the first time you display the list
in a Simulink session. Selecting this item causes the block to update the tags list to
include the tags of Goto blocks residing in library subsystems referenced by the model
containing this From block. Simulink software displays a progress bar while building the
list of library tags. Simulink saves the updated tags list for the duration of the Simulink
session or until the next time you select the adjacent Update Tags button. You need to
update the tags list again in the current session only if the libraries referenced by the
model have changed since the last time you updated the list.

Tip If you use multiple From and Goto Tag Visibility blocks to refer to the same Goto tag,
you can simultaneously rename the tag in all of the blocks. To do so, use the Rename All
button in the Goto block dialog box.

To find the relevant Goto block, use the Goto Source hyperlink in the From block dialog
box.

1 Blocks — Alphabetical List

1-650

Programmatic Use
Block Parameter: GotoTag
Type: character vector
Values: 'A' | ...
Default: 'A'

Update Tags — Update list of visible tags
button

Updates the list of tags visible to this From block, including tags residing in libraries
referenced by the model containing this From block. You need to update the tags list
again in the current session only if the libraries referenced by the model have changed
since the last time you updated the list.

Goto Source — Path to connected Goto block
block path

Path of the Goto block connected to this From block. Clicking the path displays and
highlights the Goto block in your model.

Icon Display — Text to display on block icon
Tag | Tag and signal name | Signal name

Specifies the text to display on the From block's icon. The options are the block's tag, the
name of the signal that the block represents, or both the tag and the signal name.

Programmatic Use
Block Parameter: IconDisplay
Type: character vector
Values: 'Signal name' | 'Tag' | 'Tag and signal name'
Default: 'Tag'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

 From

1-651

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see From.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Goto | Goto Tag Visibility

Topics
“Signal Label Propagation”

Introduced before R2006a

1 Blocks — Alphabetical List

1-652

From File
Load data from MAT-file
Library: Simulink / Sources

Description
The From File block loads data from a MAT-file to a model and outputs the data as a
signal. The data is a sequence of samples. Each sample consists of a time stamp and an
associated data value. The data can be in array format or MATLAB timeseries format.

The From File block icon shows the name of the MAT-file that supplies the data to the
block.

You can have multiple From File blocks that load from the same MAT-file.

The supported MAT-file versions are Version 7.0 or earlier and Version 7.3. The From File
block incrementally loads data from Version 7.3 files.

You can specify how the data is loaded, including:

• Sample time
• How to handle data for missing data points
• Whether to use zero-crossing detection

For more information, see “Load Data Using the From File Block”.

Ports

Output
Port_1 — File data
scalar | vector | matrix | N-D array

 From File

1-653

MAT-file data, specified as a sequence of samples. Each sample consists of a time stamp
and an associated data value. The data can be in array format or MATLAB timeseries
format.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
File name — Path or file name
untitled.mat (default) | path, or MAT-file name

Path or file name of the MAT-file that contains the input data. Specify a path or file name
in one of these ways:

• Browse to a folder that contains a valid MAT-file.

On UNIX® systems, the path name can start with a tilde (~) character, which means
your home folder.

• Enter the path for the file in the text box.

The default file name is untitled.mat. If you specify a file name without path
information, Simulink loads the file in the current folder or on the MATLAB path. (To
determine the current folder, at the MATLAB command prompt enter pwd.)

After you specify the File name, you can use the view button () to preview the signal
from the MAT-file. For more information, see “Preview Signal Data”.

Dependencies

Code generation for RSim target provides identical support as Simulink; all other code
generation targets support only double, one-dimensional, real signals in array with time
format.

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, the
MAT-file must contain a nonempty, finite, real matrix with at least two rows.

For more information on C/C++ code generation with the From File block, see “Code
Generation” on page 1-0 .

1 Blocks — Alphabetical List

1-654

Programmatic Use
Block Parameter: FileName
Type: character vector
Values: MAT-file name
Default: 'untitled.mat'

Output data type — Output data type
Inherit: auto (default) | double | single | int8 | uint8 | int16 | uint16 | int32 |
uint32 | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class_name> |
Bus: <bus_object> | <data type expression>

The data type for the data that the From File block outputs. For nonbus types, you can
use Inherit: auto to skip any data type verification. If you specify an output data type,
then the From File block verifies that the data in the file matches the specified data type.
For more information, see “Control Signal Data Types”.

If you set Output data type as a bus object, the bus object must be available when you
compile the model. For each signal in bus data, the From File block verifies that data
type, dimensions, and complexity are the same for the data and for the bus object.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus:
<object name>' | '<data type expression>'
Default: 'Inherit: auto'

Sample time — Sampling period and offset
0 | scalar | vector

Specify the sample period and offset.

The From File block loads data from a MAT-file, using a sample time that either:

• You specify for the From File block.

 From File

1-655

• The From File block inherits from the blocks into which the From File block feeds
data.

The default sample time is 0, which specifies a continuous sample time. The MAT-file is
loaded at the base (fastest) rate of the model. For details, see “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '0'

Data extrapolation before first data point — Extrapolation method for
simulation times before initial time stamp in MAT-file
Linear extrapolation (default) | Hold first value | Ground value

Extrapolation method for a simulation time hit that occurs before the initial time stamp in
the MAT-file. Choose one of the following extrapolation methods.

1 Blocks — Alphabetical List

1-656

Method Description
Linear extrapolation (Default)

If the MAT-file contains only one sample, then the From File
block outputs the corresponding data value.

If the MAT-file contains more than one sample, then the
From File block linearly extrapolates using the first two
samples:

• For double data, linearly extrapolates the value using
the first two samples

• For Boolean data, outputs the first data value
• For a built-in data type other than double or Boolean,

the From File block:

• Upcasts the data to double
• Performs linear extrapolation (as described for

double data)
• Downcasts the extrapolated data value to the original

data type

You cannot use the Linear extrapolation option with
enumerated (enum) data. All signals in a bus use the same
extrapolation setting. If any signal in a bus uses enum data,
then you cannot use the Linear extrapolation option.

Hold first value Uses the first data value in the file
Ground value Uses a value that depends on the data type of MAT-file

sample data values:

• Fixed-point data types — Uses the ground value
• Numeric types other than fixed point —Uses 0
• Boolean — Uses false
• Enumerated data types — Uses default value

 From File

1-657

Dependencies

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, you
must set this parameter to Linear extrapolation. For more information on C/C++
code generation with the From File block, see “Code Generation” on page 1-0 .

Programmatic Use
Block Parameter: ExtrapolationBeforeFirstDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold first value' | 'Ground value'
Default: 'Linear extrapolation'

Data interpolation within time range — Interpolation method for
simulation times that fall between two time stamps in the MAT-file
Linear interpolation (default) | Zero order hold

The interpolation method that Simulink uses for a simulation time hit between two time
stamps in the MAT-file. Choose one of these interpolation methods.

Method Description
Linear interpolation (Default)

The From File block interpolates using the two
corresponding MAT-file samples:

• For double data, linearly interpolates the value using the
two corresponding samples

• For Boolean data, uses false for the first half of the
sample and true for the second half.

• For a built-in data type other than double or Boolean,
the From File block:

• Upcasts the data to double
• Performs linear interpolation, as described for double

data
• Downcasts the interpolated value to the original data

type
Zero order hold Uses the data from the first of the two samples

1 Blocks — Alphabetical List

1-658

Limitations

You cannot use the Linear interpolation option with enumerated (enum) data. All
signals in a bus use the same interpolation setting. If any signal in a bus uses enum data,
then you cannot use the Linear interpolation option.

Dependencies

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, you
must set this parameter to Linear interpolation. For more information on C/C++
code generation with the From File block, see “Code Generation” on page 1-0 .

Programmatic Use
Block Parameter: InterpolationWithinTimeRange
Type: character vector
Values: 'Linear interpolation' | 'Zero order hold'
Default: 'Linear interpolation'

Data extrapolation after last data point — Extrapolation method for
simulation times after last time stamp in MAT-file
Linear extrapolation (default) | Hold last value | Ground value

The extrapolation method for a simulation time hit that occurs after the last time stamp in
the MAT-file. Choose one of these extrapolation methods.

 From File

1-659

Method Description
Linear extrapolation (Default)

If the MAT-file contains only one sample, then the From File
block outputs the corresponding data value.

If the MAT-file contains more than one sample, then the
From File block linearly extrapolates using data values of the
last two samples:

• For double data, extrapolates the value using the last
two samples.

• For Boolean data, outputs the first data value.
• For built-in data types other than double or Boolean:

• Upcasts the data to double
• Performs linear extrapolation, as described for

double data
• Downcasts the extrapolated value to the original data

type
Hold last value Uses the last data value in the file
Ground value Uses a value that depends on the data type of MAT-file

sample data values:

• Fixed-point data types — Uses the ground value
• Numeric types other than fixed point —Uses 0
• Boolean — Uses false
• Enumerated data types — Uses default value

Limitations

You cannot use the Linear extrapolation option with enumerated (enum) data. All
signals in a bus use the same extrapolation setting. If any signal in a bus uses enum data,
then you cannot use the Linear extrapolation option.

1 Blocks — Alphabetical List

1-660

Dependencies

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, you
must set this parameter to Linear extrapolation. For more information on C/C++
code generation with the From File block, see “Code Generation” on page 1-0 .

Programmatic Use
Block Parameter: ExtrapolationAfterLastDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold last value' | 'Ground value'
Default: 'Linear extrapolation'

Enable zero-crossing detection — Enable zero-crossing detection
off (default) | on

Enables zero-crossing detection.

The “Zero-Crossing Detection” parameter applies only if the Sample time parameter is
set to 0 (continuous).

Simulink uses a technique known as zero-crossing detection to locate a discontinuity in
time stamps, without resorting to excessively small time steps. “Zero-crossing” represents
a discontinuity.

For the From File block, zero-crossing detection occurs only at time stamps in the file.
Simulink examines only the time stamps, not the data values.

For bus signals, Simulink detects zero-crossings across all leaf bus elements.

If the input array contains duplicate time stamps (more than one entry with the same time
stamp), Simulink detects a zero crossing at those time stamps. For example, suppose that
the input array has this data.

time: 0 1 2 2 3
signal: 2 3 4 5 6

At time 2, there is a zero crossing from the input signal discontinuity.

For nonduplicate time stamps, zero-crossing detection depends on the settings of these
parameters:

• Data extrapolation before first data point

 From File

1-661

• Data interpolation within time range
• Data extrapolation after last data point

The From File block determination of when zero-crossing occurs depends on the time
stamp.

Time Stamp Setting
First Data extrapolation before first data point is set to Ground

value.
Between first and
last

Data interpolation within time range is set to Zero-order
hold.

Last One or both of these settings apply:

• Data extrapolation after last data point is set to Ground
value.

• Data interpolation within time range is set to Zero-order
hold.

This figure illustrates zero-crossing detection for data accessed by a From File block that
has these settings:

• Data extrapolation before first data point — Linear extrapolation
• Data interpolation within time range (for internal points) — Zero order hold
• Data extrapolation after last data point — Linear extrapolation

1 Blocks — Alphabetical List

1-662

This figure is another illustration of zero-crossing detection for data accessed by a From
File block. The block has the following settings for the time stamps (points):

• Data extrapolation before first data point — Hold first value
• Data interpolation within time range — Zero order hold
• Data extrapolation after last data point — Hold last value

 From File

1-663

Dependencies

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes,
clear this check box. For more information on C/C++ code generation with the From File
block, see “Code Generation” on page 1-0 .

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

1 Blocks — Alphabetical List

1-664

Block Characteristics
Data Types double | single | Boolean | base integer | fixed pointa |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

a.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Not recommended for production code.
• Code generation for RSim target provides identical support as Simulink; all other code

generation targets support only double, one-dimensional, real signals in array with
time format.

• For a From File block, generating code that builds ERT or GRT targets or uses SIL or
PIL simulation modes requires that:

• The MAT-file contains a nonempty, finite, real matrix with at least two rows.

• Use a data type of double for the matrix.
• Do not include any NaN, Inf, or -Inf elements in the matrix.

• In the From File block parameters dialog box:

• Set the Data extrapolation before first data point and Data extrapolation
after last data point parameters to Linear extrapolation.

• Set the Data interpolation within time range parameter to Linear
interpolation.

• Clear the Enable zero-crossing detection parameter.

 From File

1-665

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Supports up to 32-bit fixed-point data types.

See Also
From Spreadsheet | From Workspace | To File | To Workspace

Topics
“Overview of Signal Loading Techniques”
“Comparison of Signal Loading Techniques”
“Create Data for a From File Block”
“Load Data Using the From File Block”
“Load Signal Data That Uses Units”
“Specify Source for Data in Model Workspace”

Introduced before R2006a

1 Blocks — Alphabetical List

1-666

From Spreadsheet
Read data from spreadsheet
Library: Simulink / Sources

Description
The From Spreadsheet block reads data from Microsoft Excel® (all platforms) or CSV
(MicrosoftWindows® platform with Microsoft Office installed only) spreadsheets and
outputs the data as a signal. The From Spreadsheet block does not support Microsoft
Excel spreadsheet charts.

The From Spreadsheet icon displays the spreadsheet file name and sheet name specified
in the block File name and Sheet name parameters.

Storage Formats
The data that the From Spreadsheet block reads from a spreadsheet must be
appropriately formatted.

For Microsoft Excel spreadsheets:

• The From Spreadsheet block interprets the first row as a signal name. If you do not
specify a signal name, the From Spreadsheet block assigns a default one with the
format Signal #, where # increments with each additional unnamed signal.

• The From Spreadsheet block interprets the first column as time. In this column, the
time values must monotonically increase.

• The From Spreadsheet block interprets the remaining columns as signals.

This example shows an acceptably formatted Microsoft Excel spreadsheet. The first
column is Time and the first row contains signal names. Each worksheet contains a signal
group.

 From Spreadsheet

1-667

For CSV text files (Microsoft platform with Microsoft Office installed only):

• The From Spreadsheet block interprets the first column as time. In this column, the
time values must increase.

• The From Spreadsheet block interprets the remaining columns as signals.
• Each column must have the same number of entries.
• The From Spreadsheet block interprets each file as one signal group.

This example shows an acceptably formatted CSV file. The contents represent one signal
group.

0,0,0,5,0
1,0,1,5,0
2,0,1,5,0
3,0,1,5,0
4,5,1,5,0

1 Blocks — Alphabetical List

1-668

5,5,1,5,0
6,5,1,5,0
7,0,1,5,0
8,0,1,5,1
9,0,1,5,1
10,0,1,5,0

Block Behavior During Simulation
The From Spreadsheet block incrementally reads data from the spreadsheet during
simulation.

The Sample time parameter specifies the sample time that the From Spreadsheet block
uses to read data from the spreadsheet. For details, see “Parameters” on page 1-671.
The time stamps in the file must be monotonically nondecreasing.

For each simulation time hit for which the spreadsheet contains no matching time stamp,
Simulink software interpolates or extrapolates to obtain the needed data using the
selected method. For details, see “Simulation Time Hits That Have No Corresponding
Spreadsheet Time Stamps” on page 1-669.

Simulation Time Hits That Have No Corresponding
Spreadsheet Time Stamps
If the simulation time hit does not have a corresponding spreadsheet time stamp, the
From Spreadsheet block output depends on:

• Whether the simulation time hit occurs before the first time stamp, within the range of
time stamps, or after the last time stamp

• The interpolation or extrapolation methods that you select
• The data type of the spreadsheet data

For details about interpolation and extrapolation options, see the descriptions of these
parameters:

• “Data extrapolation before first data point” on page 1-0
• “Data interpolation within time range” on page 1-0
• “Data extrapolation after last data point” on page 1-0

 From Spreadsheet

1-669

Sometimes the spreadsheet includes two or more data values that have the same time
stamp. In such cases, the From Spreadsheet block action depends on when the simulation
time hit occurs, relative to the duplicate time stamps in the spreadsheet.

For example, suppose that the spreadsheet contains this data. Three data values have a
time stamp value of 2.

time stamps: 0 1 2 2 2 3 4
data values: 2 3 6 4 9 1 5

The table describes the From Spreadsheet block output.

Simulation Time, Relative to Duplicate
Time Stamp Values in Spreadsheet

From Spreadsheet Block Action

Before the duplicate time stamps Performs the same actions as when the time
stamps are distinct, using the first of the
duplicate time stamp values as the basis for
interpolation. (In this example, the time
stamp value is 6.)

At or after the duplicate time stamps Performs the same actions as when the
times stamps are distinct, using the last of
the duplicate time stamp values as the basis
for interpolation. (In this example, that time
stamp value is 9.)

Rounding Mode
The From Spreadsheet block rounds positive and negative numbers toward negative
infinity. This mode is equivalent to the MATLAB floor function.

Saturation on Integer Overflow
For data type conversion, the From Spreadsheet block deals with saturation overflow by
wrapping to the appropriate value that the data type can represent. For example, the
number 130 does not fit in a signed 8-bit integer and wraps to –126.

1 Blocks — Alphabetical List

1-670

Ports

Output
Port_1 — Data from spreadsheet
scalar | vector | matrix

Incremental data from the specified spreadsheet.

The Sample time parameter specifies the sample time that the From Spreadsheet block
uses to read data from the spreadsheet. For details, see “Parameters” on page 1-671.
The time stamps in the file must be monotonically nondecreasing.

For each simulation time hit for which the spreadsheet contains no matching time stamp,
Simulink software interpolates or extrapolates to obtain the needed data using the
selected method. For details, see “Simulation Time Hits That Have No Corresponding
Spreadsheet Time Stamps” on page 1-669.

The From Spreadsheet block accepts data type specifications at a block level. If you want
to specify different data types for each signal, consider selecting Output Data Type >
Inherit: Auto. This option resolves back signal data types using back propagation. For
example, assume that there are two signals in the From Spreadsheet block, In1 and In2,
which the block sends to ports that have int8 and Boolean data types. With back
propagation, the block recasts In1 as int8 and In2 as Boolean.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Parameters
File name — Full path and file name
untitled.xlsx (default) | full path and file name

Enter full path and file name of a spreadsheet file.

This block supports non-English full paths and file names only on Microsoft platforms.

Programmatic Use
Block Parameter: FileName

 From Spreadsheet

1-671

Type: character vector
Value: full path and file name
Default: 'untitled.xlsx'

Sheet name — Name of sheet in spreadsheet
Sheet1 (default) | sheet name

Enter the name of the sheet in the spreadsheet. You can type the sheet name in this edit
box or select the sheet name after you open the sheet.

If your spreadsheet is the CSV format, the block populates this parameter with the name
of the CSV file without the extension. Do not change this value.

To open the sheet, click . In the sheet, you can select the range of data by dragging
over the desired range of values.

Alternatively, you can select the range of data by specifying the range of values in the
Range parameter.

1 Blocks — Alphabetical List

1-672

Programmatic Use
Block Parameter: SheetName
Type: character vector
Value: Sheet name
Default: 'Sheet1'

Range — Cell range
entire range of used cells in sheet (default) | A1:B3,D1:D3,A7:B9,D7:D9 | comma-
separated list of column:row

To specify the range, use the format column:row, with multiple specifications separated
by commas. For example, A1:B3,D1:D3,A7:B9,D7:D9. If unspecified, or empty, the
block automatically detects the used range, which is all the data in the sheet.

If the selections overlap, the block resolves the selection information as appropriate. For
example, if you specify multiple ranges that overlap, such as A1:B4,B1:E7, the block
resolves the selection to A1 to E7, inclusive.

An alternate to using the Range parameter is to open the sheet, by clicking . In the
sheet, you can select the range of data by dragging over the desired range of values.

Programmatic Use
Block Parameter: Range
Type: character vector
Value: Cell range
Default: ''

 From Spreadsheet

1-673

Output data type — Output data type
Inherit: auto (default) | double | single | int8 | uint8 | int16 | uint16 | int32 |
uint32 | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class_name> |
Bus: <bus_object> | <data type expression>

The data type for the From Spreadsheet block output. The From Spreadsheet block
accepts spreadsheets that contain many data types. However, the block reads the
spreadsheet data type as doubles. It then outputs the data type according to the value of
Output data type.

If you want to specify different data types for each signal, consider selecting Output
Data Type > Inherit: auto. This option resolves back signal data types using back
propagation. For example, assume that there are two signals in the From Spreadsheet
block, In1 and In2, which the block sends to ports that have int8 and Boolean data types.
With back propagation, the block recasts In1 as int8 and In2 as boolean.

To allow the block to cast the output data type to match that of the receiving block, use
Inherit: auto.

For more information, see “Control Signal Data Types”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus:
<object name>' | '<data type expression>'
Default: 'Inherit: auto'

Treat first column as — Time or data
Time (default) | Data

Select how the block should treat the first column of the spreadsheet:

• Time — Treat first column as time.
• Data — Treat first column as data.

Dependencies

When you select Data, the block disables:

1 Blocks — Alphabetical List

1-674

• Data extrapolation before first data point
• Data interpolation within time range
• Data extrapolation after last data point

And enables:

• Output after last data point

Programmatic Use
Block Parameter: TreatFirstColumnAs
Type: character vector
Value: 'Time' | 'Data'
Default: 'Time'

Sample time — Sampling period and offset
0 (default) | scalar | vector

The sample period and offset.

The From Spreadsheet block reads data from a spreadsheet using a sample time that
either:

• You specify for the From Spreadsheet block
• The From Spreadsheet block inherits from the blocks into which the From

Spreadsheet block feeds data

The default is 0, which specifies a continuous sample time. The spreadsheet is read at the
base (fastest) rate of the model. For details, see “Specify Sample Time”.

Programmatic Use
Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '0'

Data extrapolation before first data point — Extrapolation method for
simulation times before initial time stamp in MAT-file
Linear extrapolation (default) | Hold first value | Ground value

Extrapolation method that Simulink uses for a simulation time hit that is before the first
time stamp in the spreadsheet. Choose one of these extrapolation methods.

 From Spreadsheet

1-675

Method Description
Linear extrapolation (Default)

If the spreadsheet contains only one sample, the From
Spreadsheet block outputs the corresponding data value.

If the spreadsheet contains more than one sample, the From
Spreadsheet block linearly extrapolates using the first two
samples:

• For double data, linearly extrapolates the value using
the first two samples

• For Boolean data, outputs the first data value
• For a built-in data type other than double or Boolean:

• Upcasts the data to double
• Performs linear extrapolation (as described above for

double data)
• Downcasts the extrapolated data value to the original

data type

You cannot use the Linear extrapolation option with
enumerated (enum) data.

Hold first value Uses the first data value in the file
Ground value Uses a value that depends on the data type of spreadsheet

sample data values:

• Fixed-point data types — Uses the ground value
• Numeric types other than fixed–point — Uses 0
• Boolean — Uses false
• Enumerated data types — Uses default value

Dependencies

To enable this parameter, set Treat first column as to Time.

Programmatic Use
Parameter: ExtrapolationBeforeFirstDataPoint

1 Blocks — Alphabetical List

1-676

Type: character vector
Values: 'Linear extrapolation' | 'Hold first value' | 'Ground value'
Default: 'Linear extrapolation'

Data interpolation within time range — Interpolation method for
simulation times that fall between two time stamps in the MAT-file
Linear interpolation (default) | Zero order hold

The interpolation method that Simulink uses for a simulation time hit between two time
stamps in the spreadsheet. Choose one of the following interpolation methods.

Method Description
Linear interpolation (Default)

The From Spreadsheet block interpolates using the two
corresponding spreadsheet samples:

• For double data, linearly interpolates the value using the
two corresponding samples

• For Boolean data, uses false for the first half of the
sample and true for the second half

• For a built-in data type other than double or Boolean:

• Upcasts the data to double
• Performs linear interpolation (as described above for

double data)
• Downcasts the interpolated value to the original data

type

You cannot use the Linear interpolation option with
enumerated (enum) data.

Zero order hold Uses the data from the first of the two samples

Dependencies

To enable this parameter, set Treat first column as to Time.

Programmatic Use
Parameter: InterpolationWithinTimeRange
Type: character vector

 From Spreadsheet

1-677

Values: 'Linear interpolation' | 'Zero order hold'
Default: 'Linear interpolation'

Data extrapolation after last data point — Extrapolation method for
simulation times after last time stamp in MAT-file
Linear extrapolation (default) | Hold last value | Ground value

The extrapolation method that Simulink uses for a simulation time hit that is after the last
time stamp in the spreadsheet. Choose one of the following extrapolation methods.

Method Description
Linear extrapolation (Default)

If the spreadsheet contains only one sample, the From
Spreadsheet block outputs the corresponding data value.

If the spreadsheet contains more than one sample, the From
Spreadsheet block linearly extrapolates using data values of
the last two samples:

• For double data, extrapolates the value using the last
two samples

• For Boolean data, outputs the last data value
• For a built-in data type other than double or Boolean:

• Upcasts the data to double.
• Performs linear extrapolation (as described above for

double data).
• Downcasts the extrapolated value to the original data

type.

You cannot use the Linear extrapolation option with
enumerated (enum) data.

Hold last value Uses the last data value in the file

1 Blocks — Alphabetical List

1-678

Method Description
Ground value Uses a value that depends on the data type of spreadsheet

sample data values:

• Fixed-point data types — Uses the ground value
• Numeric types other than fixed–point — uses 0
• Boolean — Uses false
• Enumerated data types — Uses default value

Dependencies

To enable this parameter, set Treat first column as to Time.

Programmatic Use
Parameter: ExtrapolationAfterLastDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold last value' | 'Ground value'
Default: 'Linear extrapolation'

Output after last data point — Action after last data point
Repeating sequence (default) | Hold final value | Ground value

Select action after last data point:

• Repeating sequence — Repeat the sequence by reading the data from the first row
of the range specified in Range

• Hold final value — Output the last defined value for the remainder of the
simulation.

• Ground value — Output a ground value depending on the data type value specified
in Output data type.

Dependencies

To enable this parameter, set Treat first column as to Data.

Programmatic Use
Parameter: OutputAfterLastPoint
Type: character vector
Values: 'Repeating sequence' | 'Hold final value' | 'Ground value'
Default: 'Repeating sequence'

 From Spreadsheet

1-679

Enable zero-crossing detection — Enable zero-crossing detection
off (default) | on

Select to enable zero-crossing detection.

The “Zero-Crossing Detection” parameter applies only if the Sample time parameter is
set to 0 (continuous).

Simulink uses a technique known as zero-crossing detection to locate accurately a
discontinuity, without resorting to excessively small time steps. In this context, zero-
crossing is used to represent discontinuities.

For the From Spreadsheet block, zero-crossing detection can only occur at time stamps in
the file. Simulink examines only the time stamps, not the data values.

If the input array contains duplicate time stamps (more than one entry with the same time
stamp), Simulink detects a zero crossing at that time stamp. For example, suppose that
the input array has this data.

time: 0 1 2 2 3
signal: 2 3 4 5 6

At time 2, there is a zero crossing from the input signal discontinuity.

For data with nonduplicate time stamps, zero-crossing detection depends on the settings
of the following parameters:

• Data extrapolation before first data point
• Data interpolation within time range
• Data extrapolation after last data point

The block applies the following rules when determining when:

• Zero-crossing occurs for the first time stamp
• For time stamps between the first and last time stamp
• For the last time stamp

Time Stamp When Zero-Crossing Detection Occurs
First Data extrapolation before first data point is set to Ground

value.

1 Blocks — Alphabetical List

1-680

Time Stamp When Zero-Crossing Detection Occurs
Between first and
last

Data interpolation within time range is set to Zero-order
hold.

Last One or both of these settings occur:

• Data extrapolation after last data point is set to Ground
value.

• Data interpolation within time range is set to Zero-order
hold.

The following figure illustrates zero-crossing detection for data accessed by a From
Spreadsheet block that has these settings:

• Data extrapolation before first data point — Linear extrapolation
• Data interpolation within time range (for internal points) — Zero order hold
• Data extrapolation after last data point — Linear extrapolation

 From Spreadsheet

1-681

The following figure is another illustration of zero-crossing detection for data accessed by
a From Spreadsheet block. The block has these settings for the time stamps (points):

• Data extrapolation before first data point — Hold first value
• Data interpolation within time range — Zero order hold
• Data extrapolation after last data point — Hold last value

1 Blocks — Alphabetical List

1-682

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed pointa |

enumerated
Multidimensional
Signals

No

 From Spreadsheet

1-683

Variable-Size
Signals

No

a.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Not recommended for production code.
• Code generation for RSim target provides identical support as Simulink; all other code

generation targets support only double, one-dimensional, real signals in array with
time format.

• Simulating in accelerator, rapid accelerator, model reference accelerator mode, or
model reference rapid accelerator mode behaves the same way, and has the same
requirements, as simulating in normal mode.

• The From Spreadsheet block does not support generating code that involves building
ERT or GRT targets, or using SIL or PIL simulation modes.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Supports up to 32-bit fixed-point data types.

See Also
From File | From Workspace

Topics
“Overview of Signal Loading Techniques”
“Comparison of Signal Loading Techniques”
“Spreadsheets” (MATLAB)

1 Blocks — Alphabetical List

1-684

Introduced in R2015b

 From Spreadsheet

1-685

From Workspace
Load signal data from workspace
Library: Simulink / Sources

Description
The From Workspace block reads signal data from a workspace and outputs the data as a
signal.

The block displays the expression specified in the Data parameter. For details about how
Simulink software evaluates this expression, see “Symbol Resolution”.

You can specify how the data is loaded, including sample time, how to handle data for
missing data points, and whether to use zero-crossing detection. For more information,
see “Load Data Using the From Workspace Block”.

Specifying Workspace Data
In the From Workspace block dialog box, use the Data parameter to specify the
workspace data to load. You can specify a MATLAB expression (for example, the name of a
variable in the MATLAB workspace) that evaluates to one of these options:

• A MATLAB timeseries object
• A structure of MATLAB timeseries objects
• A structure, with or without time
• A two-dimensional matrix

For additional information, see “Load Data Using the From Workspace Block”.

Use with Data Dictionary
When you link a model to a data dictionary, you:

1 Blocks — Alphabetical List

1-686

• Store design data, which contributes to the fundamental design of the model in the
Design Data section of the dictionary. Design data includes numeric variables and
Simulink.Parameter objects that you use to set block parameter values.

• Store simulation input data, which you use to stimulate and experiment with the
model, in the base workspace. Typically, you create simulation input data as MATLAB
timeseries objects.

For more information about storing variables, objects, and other data that a model uses,
see “Determine Where to Store Variables and Objects for Simulink Models”.

• To access design data by using a From Workspace block, store the target variable in
the Design Data section of the dictionary and set the Data parameter of the block to
the name of the variable.

• To access simulation input data, store the target variable in the base workspace and
set the Data parameter by using a call to the evalin function. In the call to evalin,
specify the ws argument as 'base' so that the block seeks the variable in the base
workspace instead of the data dictionary. For example, if the name of the variable is
myTimeseriesObject, set Data to evalin('base','myTimeseriesObject').

Ports

Output
Port_1 — Workspace data
scalar | vector | matrix

Signal created from workspace data. The block outputs real or complex signals of any
type that Simulink supports, including fixed-point and enumerated data types.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Data — Workspace data to load
simin (default) | timeseries object | structure of timeseries objects | structure | 2-D
matrix

 From Workspace

1-687

In the Data parameter, specify the workspace data to load. Specify a MATLAB expression
(for example, the name of a variable in the MATLAB workspace) that evaluates to one of
the following:

• A MATLAB timeseries object
• A structure of MATLAB timeseries objects
• A structure, with or without time
• A two-dimensional matrix

The From Workspace block also accepts a bus object as a data type. To load bus data, use
a structure of MATLAB timeseries objects. For details, see “Load Bus Data to Root-
Level Input Ports”.

Real signals of type double can be in any data format that the From Workspace block
supports. For complex signals and real signals of a data type other than double, use any
format except Array.

For additional information, see “Specify the Workspace Data”.

Programmatic Use
Block Parameter: VariableName
Type: character vector
Values: timeseries object | structure of timeseries objects | structure | 2-D matrix
Default: 'simin'

Output data type — Output data type
Inherit: auto (default) | double | single | int8 | uint8 | int16 | uint16 | int32 |
uint32 | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class_name> |
Bus: <bus_object> | <data type expression>

Required data type for the workspace data that the From Workspace block loads. For non-
bus types, to skip any data type verification, you can use Inherit: auto. For more
information, see “Control Signal Data Types”.

To load bus data, use a structure of MATLAB timeseries objects. For details, see “Load
Bus Data to Root-Level Input Ports”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector

1 Blocks — Alphabetical List

1-688

Values: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus:
<object name>' | '<data type expression>'
Default: 'Inherit: auto'

Sample time — Sample rate of loaded data
0 (default) | scalar | vector

Sample rate of loaded workspace data. For details, see “Specify Sample Time”.

Command-Line Information
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '0'

Interpolate data — Interpolate or use last known data point
on (default) | off

When you select this option, the block performs linear interpolation at time hits for which
no corresponding workspace data exist. Otherwise, the current output equals the output
at the most recent time for which data exists.

The From Workspace block interpolates by using the two corresponding workspace
samples:

• For double data, linearly interpolates the value by using the two corresponding
samples

• For Boolean data, uses false for the first half of the time between two time values
and true for the second half

• For a built-in data type other than double or Boolean:

• Upcasts the data to double
• Performs linear interpolation (as described for double data)
• Downcasts the interpolated value to the original data type

You cannot use linear interpolation with enumerated (enum) data.

The block uses the value of the last known data point as the value of time hits that occur
after the last known data point.

 From Workspace

1-689

To determine the block output after the last time hit for which workspace data is
available, combine the settings of these parameters:

• Interpolate data
• Form output after final data value by

For details, see the Form output after final data value by parameter.

Programmatic Use
Block Parameter: Interpolate
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | off

When you select Enable zero-crossing detection, and the input array contains multiple
entries for the same time hit, Simulink detects a zero crossing. For example, suppose that
the input array has this data.

time: 0 1 2 2 3
signal: 2 3 4 5 6

At time 2, there is a zero crossing from input signal discontinuity. For more information,
see “Zero-Crossing Detection”.

For bus signals, Simulink detects zero crossings across all leaf bus elements.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Form output after final data value by — Determine block output after final
time hit
Extrapolation (default) | Setting to zero | Holding final value | Cyclic
repetition

To determine the block output after the last time hit for which workspace data is
available, combine the settings of these parameters:

1 Blocks — Alphabetical List

1-690

• Interpolate data
• Form output after final data value by

This table lists the block output, based on the values of the two options.

Setting for Form Output
After Final Data Value By

Setting for
Interpolate
Data

Block Output After Final Data

Extrapolation On Extrapolated from final data value
Off Error

Setting to zero On Zero
Off Zero

Holding final value On Final value from workspace
Off Final value from workspace

Cyclic repetition On Error
Off Repeated from workspace if the

workspace data is in structure-without-
time format. Error otherwise.

For example, the block uses the last two known data points to extrapolate data points that
occur after the last known point if you:

• Select Interpolate data.
• Set Form output after final data value by to Extrapolation.

Consider this model.

 From Workspace

1-691

The From Workspace block reads data from the workspace. The data consists of the
output of the Simulink Sine Wave block sampled at one-second intervals. The workspace
contains the first 16 samples of the output. The top and bottom X-Y plots display the
output of the Sine Wave and From Workspace blocks, respectively, from 0 to 20 seconds.
The straight line in the output of the From Workspace block reflects the linear
extrapolation of missing data points at the end of the simulation.

Programmatic Use
Block Parameter: OutputAfterFinalValue
Type: character vector
Values: 'Extrapolation' | 'Setting to zero' | 'Holding final value' |
'Cyclic repetition'
Default: 'Extrapolation'

1 Blocks — Alphabetical List

1-692

Block Characteristics
Data Types double | single | Boolean | base integer | fixed pointa |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

a.

Extended Capabilities

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Supports input via fi objects created using Fixed-Point Designer.

See Also
From File | From Spreadsheet | To File | To Workspace

Topics
“Overview of Signal Loading Techniques”
“Comparison of Signal Loading Techniques”
“Determine Where to Store Variables and Objects for Simulink Models”
“Use From Workspace Block for Test Case”
“Load Data Using the From Workspace Block”
“Load Signal Data That Uses Units”
“Load Signal Data for Simulation”

Introduced before R2006a

 From Workspace

1-693

Function-Call Feedback Latch
Break feedback loop involving data signals between function-call blocks
Library: Ports & Subsystems

Description
Use the Function-Call Feedback Latch block to break a feedback loop of data signals
between one or more function-call blocks. Specifically, break a feedback loop formed in
one of the following ways.

• When function-call blocks connect to branches of the same function-call
signal

Place the Function-Call Feedback Latch block on the feedback signal between the
branched blocks. As a result, the latch block delays the signal at the input of the
destination function-call block, and the destination function-call block executes prior
to the source function-call block of the latch block.

• When the loop involves parent and child function-call blocks, where the child
initiator is inside the parent

1 Blocks — Alphabetical List

1-694

Place the Function-Call Feedback Latch block on the feedback signal between the
child and the parent. This arrangement prevents the signal value, read by the parent
(FCSS1), from changing during execution of the child. In other words, the parent
reads the value from the previous execution of the child (FCSS2).

Using the latch block is equivalent to selecting the Latch input for function-call
feedback signals check box on the Inport block in the destination function-call
subsystem or model. However, an advantage of the latch block over using the dialog
parameter is that one can design the destination function-call subsystem or model in a
modular fashion and then use it either in or out of the context of loops.

The Function-Call Feedback Latch block is better suited than Unit Delay or Memory
blocks in breaking function-call feedback loops for the following reasons:

• The latch block delays the feedback signal for exactly one execution of the source
function-call block. This behavior is different from the Unit Delay or Memory blocks
for cases where the function-call subsystem blocks may execute multiple times in a
given simulation step.

• Unlike the Unit Delay or Memory blocks, the latch block may be used to break loops
involving asynchronous function-call subsystems.

• The latch block can result in better performance, in terms of memory optimization, for
generated code.

 Function-Call Feedback Latch

1-695

Ports
Input
In — Signal from a function-call subsystem block
scalar | vector | matrix
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Out — Signal to a function-call subsystem
scalar | vector | matrix
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Examples
In the following model, a single function-call subsystem output serves as its own input.

A more complex case occurs when a merged signal serves as the input to a function-call
subsystem. Latching is necessary if one of the signals entering the Merge block forms a
feedback loop with the function-call subsystem. In this example, one of the output signals
from FCSS2 combines with the output of an Enabled Subsystem block and then feeds
back into an inport of FCSS2.

1 Blocks — Alphabetical List

1-696

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Split | Function-
Call Subsystem | Trigger

Topics
“Using Function-Call Subsystems”

Introduced in R2011a

 Function-Call Feedback Latch

1-697

Function-Call Generator
Provide function-call signal to control execution of a subsystem or model
Library: Ports & Subsystems

Description
The Function-Call Generator block provides a function-call signal to execute a function-
call subsystem or function-call model at the rate that you specify with the Sample time
parameter. To iteratively execute each function-call block multiple times at each time
step, use the Number of Iterations parameter.

To execute multiple function-call subsystems or models in a specified order, use the
Function-Call Generator block with a Function-Call Split block. For an example, see the
Function-Call Split block documentation.

Ports
Output
Function Call — Function-call signal to a function-call subsystem or function-
call model
scalar

Parameters
Sample time — Specify time interval
-1 (default) | Ts | [Ts, To]

Specify the time interval between function calls to a subsystem or model containing a
Trigger block with Trigger type set to function-call. If the actual calling rate for the

1 Blocks — Alphabetical List

1-698

subsystem or model differs from the time interval this parameter specifies, Simulink
displays an error.

Settings

-1
Inherit time interval from the trigger signal.

Ts
Scalar where Ts is the time interval.

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Programmatic Use
Block parameter: sample_time
Type: character vector
Value: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

Number of iterations — Specify number of times to provide a function-call at
each time step
1 (default) | integer

The value of this parameter can be a vector where each element of the vector specifies a
number of times to execute a function-call subsystem. The total number of times that a
function-call subsystem executes per time step equals the sum of the values of the
elements of the generator signal entering its control port.

Suppose that you specify the number of iterations to be [2 2] and connect the output of
this block to the control port of a function-call subsystem. In this case, the function-call
subsystem executes four times at each time step.

Settings

1
Provide function-call once during each time step.

integer
Signed or unsigned integer number. Provide the specified number of function calls at
each time step.

 Function-Call Generator

1-699

Programmatic Use
Parameter: numberOfIterations
Type: character vector
Value: '1' | '<integer>'
Default: '1'

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Split | Function-
Call Subsystem | Trigger

Topics
“Using Function-Call Subsystems”

Introduced before R2006a

1 Blocks — Alphabetical List

1-700

Function-Call Split
Provide junction for splitting function-call signal
Library: Ports & Subsystems

Description
The Function-Call Split block allows a function-call signal to branch and connect to
several function-call subsystems or function-call models.

A Function-Call Split outputs multiple function-call signals to create multiple branches
from a single function-call signal. In some cases, when you use this block, you do not need
the function-call initiator to create multiple function-call signals to invoke a set of
function-call subsystems or function-call models.

The function-call subsystem or function-call model connected to the output port of the
Function-Call Split block that is marked with a dot execute before the subsystems or
models connected to other output ports. If data dependencies between subsystems or
models do not support the specified execution order, the Function-Call Split block returns
an error. To eliminate this error, consider selecting the Latch input for feedback
signals of function-call subsystem outputs parameter on one or more Inport blocks of
the function-call subsystems models involved in a data-dependency loop. Selecting this
option delays the corresponding input signal, thereby eliminating the data-dependency
loop.

For a model to contain Function-Call Split blocks, you must set the following diagnostic to
error: Model Configuration Parameters > Diagnostics > Connectivity > Invalid
function-call connection.

If you select the model menu option Display > Blocks > Sorted Execution Order, then
the execution order of function-call subsystems connected to branches of a given
function-call signal appears on the blocks . Each subsystem has an execution order of the
form s:[B#] where # is a number that ranges from 0 to one less than the total number of
subsystems or models connected to branches of a given signal. The subsystems execute in
ascending order based on this number.

The Function-Call Split block supports “Signal Label Propagation”.

 Function-Call Split

1-701

The following model shows how to apply the Latch input for feedback signals of
function-call subsystem outputs parameter to work around a data-dependency error
caused by using a Function-Call Split block. By turning this parameter on in the f1
subsystem Inport block, the Function-Call Split block ignores the data dependency of
signal b. The block breaks the loop of data dependencies between subsystems f1 and g1.
The model achieves the behavior of consistently calling f1 to execute before g1. For a
given execution step, subsystem f1 uses the g1 output computed at the previous
execution step.

Limitations
The Function-Call Split block has these limitations:

• All function-call subsystems and models connected to a given function-call signal must
reside within the same nonvirtual layer of the model hierarchy.

• You cannot connect branched function-call subsystems or models and their children
directly back to the function-call initiator.

• Function-call subsystems and models connected to branches of a function-call signal
cannot have multiple (muxed) initiators.

1 Blocks — Alphabetical List

1-702

• A Function-Call Split block cannot have its input from a signal with multiple function-
call elements.

Ports

Input
Function Call — Function-call signal
scalar

A Function-Call Generator block or a Stateflowchart can provide function-call signals.

Output
Function Call — Function-call signal
scalar

Function-call signal connected to a function-call subsystem or function-call model.

Parameters
Icon shape — Select block icon shape
distinctive (default) | round

Select block icon shape.

Settings

distinctive
Rectangular block icon.

round
Circular block icon.

Programmatic Use
Parameter: IconShape
Type: character vector
Value: 'distinctive' | 'round'

 Function-Call Split

1-703

Default: 'distinctive'

Number of output ports — Specify number of output ports
2 (default) | integer

Specify number of function-call signal output ports.
Settings

2
Two function-call signal output ports.

integer
Integer number

Programmatic Use
Parameter: NumOutputPorts
Type: character vector
Value: '2' | '<integer>'
Default: '2'

Output port layout — Select order of output ports
default (default) | reverse

Select the order of output ports with respect to which port provides a function-call first.
Settings

default
Top port provides function-call signal first.

reverse
Bottom port provides function-call signal first.

Programmatic Use
Parameter: OutputPortLayout
Type: character vector
Value: 'default' | 'reverse'
Default: 'default'

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Subsystem

1 Blocks — Alphabetical List

1-704

Topics
“Using Function-Call Subsystems”

Introduced in R2010a

 Function-Call Split

1-705

Function-Call Subsystem
Subsystem whose execution is triggered by external function call input
Library: Ports & Subsystems

Description
The Function-Call Subsystem block is a Subsystem block preconfigured as a starting point
for creating a subsystem that executes when a control signal has a function call event.

Use Function-Call Subsystem blocks to:

• Schedule the execution order of model components.
• Control the rate of model component execution.

For an explanation of Function-Call Subsystem blocks parameters, see Subsystem, Atomic
Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1 Blocks — Alphabetical List

1-706

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Function Call — Function-call control signal to a subsystem block
scalar

Placing a Trigger block in a subsystem block adds an external input port to the block.
Selecting function-call from the Trigger type list, allows the Trigger block to accept
function-call signals.

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Split | Subsystem,
Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

 Function-Call Subsystem

1-707

Topics
“Using Function-Call Subsystems”

Introduced before R2006a

1 Blocks — Alphabetical List

1-708

Function Caller
Call Simulink or exported Stateflow function
Library: User-Defined Functions

Description
A Function Caller block calls and executes a function defined with a Simulink Function
block or an exported Stateflow function. Using Function Caller blocks, you can call a
function from anywhere in a model or chart hierarchy.

Ports

Input
Input argument — Input signal for an input argument
scalar | vector | matrix

Input signal for an input argument that is sent to the function.

The function prototype determines the number and name of input ports that appear on
the Function Caller block. Connect signal lines to the input ports to send data to a
function through the function input arguments.

For example, y = myfunction(u) creates one input port (u) on the Function Caller
block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Function Caller

1-709

Output
Output argument — Output signal for an output argument
scalar | vector | matrix

Output signal for an output argument that the function returns.

The function prototype determines the number and name of output ports that appear on
the Function Caller block. Connect signal lines to the output ports to receive data from a
function through the function output arguments.

For example, y = myfunction(u) creates one output port (y) on the Function Caller
block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Function prototype — Specify function interface
y=f(u) (default) | <function prototype>

Specify the function interface between a Function Caller block and a Simulink function. A
Simulink function can be a Simulink Function block, an exported Stateflow graphical
function, or an exported Stateflow MATLAB function. For a call to a Simulink Function
block:

• Function call argument names must match the function arguments.
• Function names, input arguments, and output arguments must be valid MATLAB
identifiers.

Programmatic Use
Block Parameter: FunctionPrototype
Type: character vector
Values: 'y=f(u)' | '<function prototype>'
Default: 'y-f(u)'

Input argument specifications — Specify input argument data type,
dimensions, and complexity
<Enter example> (default) | <MATLAB expression>

1 Blocks — Alphabetical List

1-710

Specify a comma-separated list of MATLAB expressions that combine data type,
dimensions, and complexity (real or imaginary) for each input argument. For examples,
see “Argument Specification for Simulink Function Blocks”.

This specification must match the Simulink Function block data type specified with the
Data type parameter of the Argument Inport block.

Programmatic Use
Block Parameter: 'InputArgumentSpecifications'
Type: character vector
Values: '' | '<MATLAB expression>'
Default: ''

Output argument specifications — Specify output argument data type,
dimensions, and complexity
<Enter example> (default) | <MATLAB Expression>

Specify a comma-separated list of MATLAB expressions that combine data type,
dimensions, and complexity (real or imaginary) for each output argument. For examples,
see “Argument Specification for Simulink Function Blocks”.

This specification must match the Simulink Function block data type specified with the
Data type parameter of the Argument Outport Block.

Programmatic Use
Block Parameter: 'OutputArgumentSpecifications'
Type: character vector
Values: '' | '<MATLAB expression>'
Default: ''

Sample time — Time interval between function calls
-1 (default) | Ts | [Ts, To]

Specify the time interval between function calls to a subsystem or model containing this
Trigger block. If the actual calling rate for the subsystem or model differs from the time
interval this parameter specifies, Simulink displays an error.

Settings

-1
Inherit time interval from the trigger signal.

 Function Caller

1-711

Ts
Scalar where Ts is the time interval.

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Programmatic Use
Block parameter: SampleTime
Type: character vector
Value: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

See Also
Argument Inport | Argument Outport | Chart | Function Caller | Function-Call Subsystem |
Inport | MATLAB Function | Outport | Subsystem | Trigger

Topics
“Simulink Functions”
“Using Simulink Function Blocks”
“Argument Specification for Simulink Function Blocks”
“Simulink Functions in Referenced Models”
“Scoped Simulink Function Blocks in Subsystems”
“Diagnostics Using a Client-Server Architecture”

1 Blocks — Alphabetical List

1-712

Gain
Multiply input by constant
Library: Simulink / Commonly Used Blocks

Simulink / Math Operations

Description
The Gain block multiplies the input by a constant value (gain). The input and the gain can
each be a scalar, vector, or matrix.

You specify the value of gain in the Gain parameter. The Multiplication parameter lets
you specify element-wise or matrix multiplication. For matrix multiplication, this
parameter also lets you indicate the order of the multiplicands.

Gain is converted from doubles to the data type specified in the block mask offline using
round-to-nearest and saturation. The input and gain are then multiplied, and the result is
converted to the output data type using the specified rounding and overflow modes.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

The Gain block accepts real or complex-valued scalar, vector, or matrix input. The Gain
block supports fixed-point data types. If the input of the Gain block is real and gain is
complex, the output is complex.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

 Gain

1-713

Output
Port_1 — Input multiplied by gain
scalar | vector | matrix

The Gain block outputs the input multiplied by a constant gain value. When the input to
the Gain block is real and gain is complex, the output is complex.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Parameters
Main
Gain — Value by which to multiply the input
1 (default) | real or complex-valued scalar, vector, or matrix

Specify the value by which to multiply the input. Gain can be a real or complex-valued
scalar, vector, or matrix.
Programmatic Use
Block Parameter: Gain
Type: character vector
Values: '1' | real- or complex-valued scalar, vector, or matrix
Default: '1'

Multiplication — Specify the multiplication mode
Element-wise(K.*u) (default) | Matrix(K*u) | Matrix(u*K) | Matrix(K*u) (u
vector)

Specify one of these multiplication modes:

• Element-wise(K.*u) — Each element of the input is multiplied by each element of
the gain. The block performs expansions, if necessary, so that the input and gain have
the same dimensions.

• Matrix(K*u) — The input and gain are matrix-multiplied with the input as the
second operand.

• Matrix(u*K) — The input and gain are matrix-multiplied with the input as the first
operand.

1 Blocks — Alphabetical List

1-714

• Matrix(K*u) (u vector) — The input and gain are matrix multiplied with the
input as the second operand. This mode is identical to Matrix(K*u), except for how
dimensions are determined.

Suppose that K is an m-by-n matrix. Matrix(K*u)(u vector) sets the input to a
vector of length n and the output to a vector of length m. In contrast, Matrix(K*u)
uses propagation to determine dimensions for the input and output. For an m-by-n
gain matrix, the input can propagate to an n-by-q matrix, and the output becomes an
m-by-q matrix.

Programmatic Use
Parameter: Multiplication
Type: character vector
Value: 'Element-wise(K.*u)' | 'Matrix(K*u)' | 'Matrix(u*K)' |
'Matrix(K*u) (u vector)'
Default: 'Element-wise(K.*u)'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes
Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

 Gain

1-715

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

1 Blocks — Alphabetical List

1-716

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as input | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the block exhibits these behaviors:

• Inherit: Inherit via internal rule — Simulink chooses a data type to
balance numerical accuracy, performance, and generated code size, while taking into
account the properties of the embedded target hardware. If you change the embedded
target settings, the data type selected by the internal rule might change. For example,
if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is
specified as the targeted hardware type, the output data type is sfix24. If
Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If
none of the word lengths provided by the target microprocessor can accommodate the
output range, Simulink software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

 Gain

1-717

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as input — Use data type of input signal.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as input' |
'Inherit: Inherit via back propagation' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth

1 Blocks — Alphabetical List

1-718

Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

 Gain

1-719

Action Rationale Impact on Overflows Example
Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Parameter Attributes
Parameter minimum — Specify the minimum value of gain
[] (default) | scalar

Specify the minimum value of gain. The default value is [] (unspecified). Simulink uses
this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

1 Blocks — Alphabetical List

1-720

• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: ParamMin
Type: character vector
Value: scalar
Default: '[]'

Parameter maximum — Specify the maximum value of gain
[] (default) | scalar

Specify the maximum value of gain. The default value is [] (unspecified). Simulink uses
this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”)

• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: ParamMax
Type: character vector
Value: scalar
Default: '[]'

Parameter data type — Specify the data type of the Gain parameter
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
Inherit: Inherit from 'Gain' | double | single | int8 | uint8 | int16 | uint16
| int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data
type expression>

Specify the data type of the Gain parameter.

Programmatic Use
Block Parameter: ParamDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as input' |
'Inherit: Inherit via back propagation' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

 Gain

1-721

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Gain.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Product | Slider Gain

Topics
“Model a Continuous System”

1 Blocks — Alphabetical List

1-722

Introduced before R2006a

 Gain

1-723

Gauge
Display input value on circular scale
Library: Simulink / Dashboard

Description
The Gauge block displays the connected signal on a circular scale during simulation. You
can use the Gauge block with other Dashboard blocks to build an interactive dashboard of
controls and indicators for your model. The Gauge block provides an indication of the
instantaneous value of the connected signal throughout simulation. You can modify the
range of the Gauge block to fit your data. You can also customize the appearance of the
Gauge block to provide more information about your signal. For example, you can color-
code in-specification and out-of-specification ranges.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

1 Blocks — Alphabetical List

1-724

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• If you turn off logging for a signal connected to a Dashboard block, the model stops
sending data from that signal to the block. To view the signal again, reconnect the
signal.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

Minimum — Minimum tick mark value
0 (default) | scalar

A finite, real, double, scalar value specifying the minimum tick mark value for the scale.
The minimum must be less than the value entered for the maximum.

Maximum — Maximum tick mark value
100 (default) | scalar

A finite, real, double, scalar value specifying the maximum tick mark value for the scale.
The maximum must be greater than the value entered for the minimum.

Tick Interval — Interval between major tick marks
auto (default) | scalar

A finite, real, positive, integer, scalar value specifying the interval of major tick marks on
the scale. When set to auto, the block automatically adjusts the tick interval based on the
minimum and maximum values.

Scale Colors — Color indications on Gauge scale
colors for scale ranges

 Gauge

1-725

Color specifications for ranges on the scale. Press the + button to add a color. For each
color added, specify the minimum and maximum values of the range where you want to
display that color.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Half Gauge | Linear Gauge | Quarter Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

1 Blocks — Alphabetical List

1-726

Goto
Pass block input to From blocks
Library: Simulink / Signal Routing

Description
The Goto block passes its input to its corresponding From blocks. The input can be a real-
or complex-valued signal or vector of any data type. From and Goto blocks allow you to
pass a signal from one block to another without actually connecting them.

A Goto block can pass its input signal to more than one From block, although a From
block can receive a signal from only one Goto block. The input to that Goto block is
passed to the From blocks associated with it as though the blocks were physically
connected. Goto blocks and From blocks are matched by the use of Goto tags.

The Tag Visibility parameter determines whether the location of From blocks that access
the signal is limited:

• local, the default, means that From and Goto blocks using the same tag must be in
the same subsystem. A local tag name is enclosed in brackets ([]).

• scoped means that From and Goto blocks using the same tag must be in the same
subsystem or at any level in the model hierarchy below the Goto Tag Visibility block
that does not entail crossing a nonvirtual subsystem boundary, i.e., the boundary of an
atomic, conditionally executed, or function-call subsystem or a model reference. A
scoped tag name is enclosed in braces ({}).

• global means that From and Goto blocks using the same tag can be anywhere in the
model except in locations that span nonvirtual subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual subsystem boundaries
has the following exception. A Goto block connected to a state port in one conditionally
executed subsystem is visible to a From block inside another conditionally executed
subsystem.

 Goto

1-727

Note A scoped Goto block in a masked system is visible only in that subsystem and in
the nonvirtual subsystems it contains. Simulink generates an error if you run or update a
diagram that has a Goto Tag Visibility block at a higher level in the block diagram than
the corresponding scoped Goto block in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name reside in the
same subsystem. You must use global or scoped tags when the Goto and From blocks
using the same tag name reside in different subsystems. When you define a tag as global,
all uses of that tag access the same signal. A tag defined as scoped can be used in more
than one place in the model.

The Goto block supports signal label propagation.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal to be passed to the corresponding From block, specified as a scalar, vector,
matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Goto tag — Block identifier
A (default) | ...

The Goto block identifier. This parameter identifies the Goto block whose scope is defined
in this block.

Programmatic Use
Block Parameter: GotoTag
Type: character vector

1 Blocks — Alphabetical List

1-728

Values: 'A' | ...
Default: 'A'

Tag visibility — Scope of the Goto block tag
local (default) | scoped | global

The scope of the Goto block tag, specified as local, scoped, or global. When you set
this parameter to scoped, you must use a Goto Tag Visibility block to define the scope of
tag visibility.

Programmatic Use
Block Parameter: TagVisibility
Type: character vector
Values: 'local' | 'scoped' | 'global'
Default: 'local'

Icon display — Text to display on block icon
Tag (default) | Signal name | Tag and signal name

Specifies the text to display on the block's icon. The options are the block's tag, the name
of the signal that the block represents, or both the tag and the signal name.

Programmatic Use
Block Parameter: IconDisplay
Type: character vector
Values: 'Signal name' | 'Tag' | 'Tag and signal name'
Default: 'Tag'

Rename All — Propagate name throughout model
button

Rename the Goto tag. The new name propagates to all From and Goto Tag Visibility
blocks that are listed in the Corresponding blocks box.

Corresponding blocks — Blocks connected to this Goto block
block path | ...

List of the From blocks and Goto Tag Visibility blocks connected to this Goto block. Click
an entry in the list to display and highlight the corresponding From or Goto Tag Visibility
block.

 Goto

1-729

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Goto.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
From | Goto Tag Visibility

1 Blocks — Alphabetical List

1-730

Topics
“Signal Label Propagation”

Introduced before R2006a

 Goto

1-731

Goto Tag Visibility
Define scope of Goto block tag
Library: Simulink / Signal Routing

Description
The Goto Tag Visibility block defines the accessibility of Goto block tags that have scoped
visibility. The value you specify for the Goto tag block parameter is accessible by From
blocks in the same subsystem that contains the Goto Tag Visibility block and in
subsystems below it in the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag Visibility parameter
value is scoped. No Goto Tag Visibility block is needed if the tag visibility is either local
or global. The block shows the tag name enclosed in braces ({}).

Note A scoped Goto block in a masked system is visible only in that subsystem and in
the nonvirtual subsystems it contains. Simulink generates an error if you run or update a
diagram that has a Goto Tag Visibility block at a higher level in the block diagram than
the corresponding scoped Goto block in the masked subsystem.

Parameters
Goto tag — Goto block tag whose visibility is defined by the location of this
block
A (default) | ...

The Goto block tag whose visibility is defined by the location of this block. From and Goto
blocks using the specified tag must be in the same subsystem or at any level in the model
hierarchy below the Goto Tag Visibility block that does not entail crossing a nonvirtual

1 Blocks — Alphabetical List

1-732

subsystem boundary, i.e., the boundary of an atomic, conditionally executed, or function-
call subsystem or a model reference. A scoped tag name is enclosed in braces ({}).

Tip If you use multiple From and Goto Tag Visibility blocks to refer to the same Goto tag,
you can simultaneously rename the tag in all of the blocks. Use the Rename All button in
the Goto block dialog box.

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
From | Goto

 Goto Tag Visibility

1-733

Topics
“Signal Label Propagation”

Introduced before R2006a

1 Blocks — Alphabetical List

1-734

Ground
Ground unconnected input port
Library: Simulink / Commonly Used Blocks

Simulink / Sources

Description
The Ground block connects to blocks whose input ports do not connect to other blocks. If
you run a simulation with blocks that have unconnected input ports, Simulink issues
warnings. Using a Ground block to ground those unconnected blocks can prevent these
warnings.

Working with Fixed-Point Data Types
When working with fixed-point data types, there may be instances where the fixed-point
data type cannot represent zero exactly. In these cases, the Ground block outputs a
nonzero value that is the closest possible value to zero. This behavior applies only to
fixed-point data types with nonzero bias. These expressions are examples of fixed-point
data types that cannot represent zero:

• fixdt(0, 8, 1, 1) — an unsigned 8-bit type with slope of 1 and bias of 1
• fixdt(1, 8, 6, 3) — a signed 8-bit type with slope of 6 and bias of 3

Working with Enumerated Data Types
When working with enumerated data types, the Ground block outputs the default value of
the enumeration. This behavior applies whether:

• The enumeration can represent zero
• The default value of the enumeration is zero

If the enumerated type does not have a default value, the Ground block outputs the first
enumeration value in the type definition.

 Ground

1-735

Ports

Output
Port_1 — Ground signal
scalar

The Ground block outputs a scalar signal with zero value, and the same data type as the
port to which it connects.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Ground.

1 Blocks — Alphabetical List

1-736

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also

Topics
“Unconnected block input ports”

Introduced before R2006a

 Ground

1-737

Half Gauge
Display input value on semicircular scale
Library: Simulink / Dashboard

Description
The Half Gauge block displays the connected signal on a semicircular scale during
simulation. You can use the Half Gauge block with other Dashboard blocks to build an
interactive dashboard of controls and indicators for your model. The Half Gauge block
provides an indication of the instantaneous value of the connected signal throughout
simulation. You can modify the range of the Half Gauge block to fit your data. You can also
customize the appearance of the Half Gauge block to provide more information about
your signal. For example, you can color-code in-specification and out-of-specification
ranges.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.

1 Blocks — Alphabetical List

1-738

• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• If you turn off logging for a signal connected to a Dashboard block, the model stops
sending data from that signal to the block. To view the signal again, reconnect the
signal.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

Minimum — Minimum tick mark value
0 (default) | scalar

A finite, real, double, scalar value specifying the minimum tick mark value for the scale.
The minimum must be less than the value entered for the maximum.

Maximum — Maximum tick mark value
100 (default) | scalar

A finite, real, double, scalar value specifying the maximum tick mark value for the scale.
The maximum must be greater than the value entered for the minimum.

Tick Interval — Interval between major tick marks
auto (default) | scalar

A finite, real, positive, integer, scalar value specifying the interval of major tick marks on
the scale. When set to auto, the block automatically adjusts the tick interval based on the
minimum and maximum values.

Scale Colors — Color indications on Gauge scale
colors for scale ranges

 Half Gauge

1-739

Color specifications for ranges on the scale. Press the + button to add a color. For each
color added, specify the minimum and maximum values of the range where you want to
display that color.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Gauge | Linear Gauge | Quarter Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

1 Blocks — Alphabetical List

1-740

HDL Counter
Free-running or count-limited hardware counter

Library
HDL Coder / HDL Operations

Description
The HDL Counter block models a free-running or count-limited hardware counter that
supports signed and unsigned integer and fixed-point data types.

The counter emits its value for the current sample time.

This block does not report wrap on overflow warnings during simulation. To report these
warnings, see the Simulink.restoreDiagnostic reference page. The block does
report errors due to wrap on overflow.

Control Ports
By default, the counter does not have input ports. Optionally, you can add control ports
that enable, disable, load, reset or set the direction of the counter.

 HDL Counter

1-741

The table shows the priority of the control signals and how the counter value is updated
in relation to the control signals.

Local
reset, rst

Load
trigger,
load

Count
enable,
enb

Count
direction,
dir

Next Counter Value

1 – – – initial value
0 1 – – load_val value
0 0 0 – current value
0 0 1 1 current value + step value
0 0 1 0 current value - step value

Count direction
The Step value parameter and optional count direction port, dir, interact to determine
the actual count direction.

dir Signal Value Step Value Sign Actual Count Direction
1 + (positive) Up
1 - (negative) Down
0 + (positive) Down
0 - (negative) Up

Parameters
Counter type

Counter behavior.

• Free running (default): The counter continues to increment or decrement by the
Step value until reset.

• Count limited: The counter increments or decrements by the Step value until
it is exactly equal to the Count to value.

Initial value
Counter value after reset. The default is 0.

1 Blocks — Alphabetical List

1-742

Step value
Value added to counter at each sample time. The default is 1.

Count to value
When the count is exactly equal to Count to value, the count restarts at the Initial
value. This option is available when Counter type is set to Count limited. The
default is 100.

Count from
Specifies the parameter that sets the start value after rollover. When set to Specify,
the Count from value parameter is the start value after rollover. The default is
Initial value.

Count from value
Counter value after rollover when Count from is set to Specify. The default is 0.

Local reset port
When selected, creates a local reset port, rst.

Load ports
When selected, creates a load data port, load_val, and load trigger port, load.

Count enable port
When selected, creates a count enable port, enb.

Count direction port
When selected, creates a count direction port, dir.

Counter output data is
Output data type signedness. The default is Unsigned.

Word length
Bit width, including sign bit, for an integer counter; word length for a fixed-point data
type counter. The minimum value if Output data type is Unsigned is 1, 2 if Signed.
The maximum value is 125. The default is 8.

Fraction length
Fixed-point data type fraction length. The default is 0.

Sample time
Sample time. The default is 1.

This parameter is not available, and the block inherits its sample time from the input
ports when any of these parameters is selected:

 HDL Counter

1-743

• Local reset port
• Load ports
• Count enable port
• Count direction port

Ports
The block has the following ports:

rst
Resets the counter value. Active-high.

This port is available when you select Local reset port.

Data type: Boolean
load

Sets the counter to the load value, load_val. Active-high.

This port is available when you select Load ports.

Data type: Boolean
load_val

Data value to load.

This port is available when you select Load ports.

Data type: Same as count.
enb

Enables counter operation. Active-high.

This port is available when you select Count enable port.

Data type: Boolean
dir

Count direction. This port interacts with Step value to determine count direction.

1 Blocks — Alphabetical List

1-744

• 1: Step value is added to the current counter value to compute the next value.
• 0: Step value is subtracted from the current counter value to compute the next

value.

This port is available when you select Count direction port.

Data type: Boolean
count

Counter value.

Data type: Determined automatically based on Counter output data is, Word
length, and Fraction length.

Introduced in R2014a

 HDL Counter

1-745

HDL FIFO
Stores sequence of input samples in first in, first out (FIFO) register

Library
HDL Coder / HDL Operations

Description
The HDL FIFO block stores a sequence of input samples in a first in, first out (FIFO)
register.

HDL Code Generation
For simulation results that match the generated HDL code, in the Solver pane of the
Configuration Parameters dialog box, clear the checkbox for Treat each discrete rate as
a separate task. When the checkbox is cleared, single-tasking mode is enabled.

If you simulate this block with Treat each discrete rate as a separate task selected,
multitasking mode is enabled. The output data can update in the same cycle but in the
generated HDL code, the output data is updated one cycle later.

1 Blocks — Alphabetical List

1-746

Parameters
Register size

Specify the number of entries that the FIFO register can hold. The minimum is 4. The
default is 10.

The ratio of output sample time to input sample time
Inputs (In, Push) and outputs (Out, Pop) can run at different sample times. Enter the
ratio of output sample time to input sample time. Use a positive integer or 1/N, where
N is a positive integer. The default is 1.

For example:

• If you enter 2, the output sample time is twice the input sample time, meaning the
outputs run slower.

• If you enter 1/2, the output sample time is half the input sample time, meaning
the outputs run faster.

The Full, Empty, and Num signals run at the faster rate.
Push onto full register

Response (Ignore, Error, or Warning) to a trigger received at the Push port when
the register is full. The default is Warning.

Pop empty register
Response (Ignore, Error, or Warning) to a trigger received at the Pop port when
the register is empty. The default is Warning.

Show empty register indicator port (Empty)
Enable the Empty output port, which is high (1) when the FIFO register is empty and
low (0) otherwise.

Show full register indicator port (Full)
Enable the Full output port, which is high (1) when the FIFO register is full and low
(0) otherwise.

Show number of register entries port (Num)
Enable the Num output port, which tracks the number of entries currently in the
queue.

 HDL FIFO

1-747

Ports
The block has the following ports:

In
Data input signal.

Push
Control signal. When this port receives a value of 1, the block pushes the input at the
In port onto the end of the FIFO register.

Pop
Control signal. When this port receives a value of 1, the block pops the first element
off the FIFO register and holds the Out port at that value.

Out
Data output signal.

Empty
The block asserts this signal when the FIFO register is empty. This port is optional.

Full
The block asserts this signal when the FIFO register is full. This port is optional.

Num
Current number of data values in the FIFO register. This port is optional.

If two or more of the control input ports are triggered in the same time step, the
operations execute in the following order:

1 Pop
2 Push

See Also
Dual Rate Dual Port RAM

Introduced in R2014a

1 Blocks — Alphabetical List

1-748

HDL Reciprocal
Calculate reciprocal with Newton-Raphson approximation method

Library
HDL Coder / HDL Operations

Description
The HDL Reciprocal block uses the Newton-Raphson iterative method to compute the
reciprocal of the block input. The Newton-Raphson method uses linear approximation to
successively find better approximations to the roots of a real-valued function.

The reciprocal of a real number a is defined as a zero of the function:

f x
x

a() = -
1

HDL Coder chooses an initial estimate in the range
0

0

2
< <x

a as this is the domain of
convergence for the function.

To successively compute the roots of the function, specify the Number of iterations
parameter in the Block Parameters dialog box. The process is repeated as:

x x
f x

f x
x x ax x axi i

i

i
i i i i i+ = -

()

()
= + - = -1

2
2

’
() .()

 HDL Reciprocal

1-749

f x’() is the derivative of the function f x() .

Following table shows comparison of simulation behavior of HDL Reciprocal with Math
Reciprocal block:

Math Reciprocal HDL Reciprocal
Computes the reciprocal as 1/N
by using the HDL divide operator
(/) to implement the division.

Uses the Newton-Rapshon iterative method. The block
computes an approximate value of reciprocal of the
block input and can yield different simulation results
compared to the Math Reciprocal block.

To match the simulation results with the Math
Reciprocal block, increase the number of iterations for
the HDL Reciprocal block.

Parameters
Number of iterations

Number of Newton-Raphson iterations. The default is 3.

Ports
The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), double, single
• Minimum bit width: 2
• Maximum bit width: 128

Output

Input data type Output data type
double double
single single

1 Blocks — Alphabetical List

1-750

Input data type Output data type
built-in integer built-in integer
built-in fixed-point built-in fixed-point
fi (value, 0, word_length,
fraction_length)

fi (value, 0, word_length, word_length–
fraction_length–1)

fi (value, 1, word_length,
fraction_length)

fi (value, 1, word_length, word_length–
fraction_length–2)

See Also
Divide | Math Function

Introduced in R2014b

 HDL Reciprocal

1-751

Hit Crossing
Detect crossing point
Library: Simulink / Discontinuities

Description
The Hit Crossing block detects when the input reaches the Hit crossing offset
parameter value in the direction specified by the Hit crossing direction property.

You can configure the block to output a 1 or 0 signal or a SimEvents® message. See
“Output” on page 1-752 for more information.

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal that the block detects when it reaches the offset in the specified direction.
Data Types: double

Output
Port_1 — Output signal
scalar | vector | SimEvents message

Output indicating if the input signal crossed the hit offset. This port is only visible when
you select the Show output port parameter check box.

Signal Output

1 Blocks — Alphabetical List

1-752

If you select the Show output port check box and set the Output type parameter to
Signal, the block output indicates when the crossing occurs.

• If the input signal is exactly the value of the offset value after the hit crossing is
detected in the specified direction, the block continues to output a value of 1.

• If the input signals at two adjacent points brackets the offset value, the block outputs
a value of 1 at the second time step.

• If the Show output port check box is not selected, the block ensures that the
simulation finds the crossing point but does not generate output.

• If the initial signal is equal to the offset value, the block outputs 1 only if the Hit
crossing direction property is set to either.

• If Boolean logic signals are enabled, then the output is a Boolean.

SimEvents Message Output

The Hit Crossing block can also output a SimEvents message when the Output Type is
set to Message.

• If the input signal crosses the offset value in the specified direction, the block outputs
a message.

• If the input signal reaches the offset value in the specified direction and remains
there, block outputs one message at the hit time and one message when the signal
leaves the offset value.

• If the initial input signal is equal to the offset value, the block outputs a message with
Crossing Type value None only if the Hit crossing direction is set to either.

The SimEvents message output signal is a struct with four fields.

CrossingType — Direction of zero-crossing
None | NegativeToPositive | NegativeToZero | ZeroToPositive |
PositiveToNegative | PositiveToZero | ZeroToNegative

This field shows the direction in which the signal crosses the Hit crossing offset value.
Negative, Zero, and Positive are defined relative to the offset value. The data type is
slHitCrossingType which is an enumerated data type. See “Use Enumerated Data in
Simulink Models” for more information. For example, if HitCrossingOffset is set to 2,
a rising signal crossing this offset value would be recorded as a NegativeToPositive
hit crossing.

 Hit Crossing

1-753

Note A hit crossing is recorded based on the Hit crossing direction setting. In other
words, if you set Hit crossing direction to detect a falling hit crossing, a
NegativeToPositive hit is not recorded.

Note In a SimEvents block, if the Crossing Type of an entity is a
NegativeToPositive hitcrossing then entity.CrossingType ==
slHitCrossingType.NegativeToPositive returns logical 1 (true).

If the signal reaches the HitCrossingOffset value and holds it, a single
NegativeToZero or PositiveToZero, depending on the direction, hit is registered at
the time of the hit crossing.
Data Types: slHitCrossingType

Index — Index of the input signal at which the hit crossing event occurs
nonnegative integer

For n signals being passed to the Hit Crossing block, this field denotes which signal had a
hit crossing event. For a matrix input, this field follows MATLAB linear indexing. See
“Matrix Indexing” (MATLAB).
Data Types: uint32

Time — Time of hit crossing event
real, finite

Time T of the hit crossing event.
Data Types: double

Offset — Hit crossing value for detection
0 (default) | real values

Hit crossing offset value as specified by the “Hit crossing offset” on page 1-0
parameter.
Data Types: double

Data Types: double | Boolean | struct

1 Blocks — Alphabetical List

1-754

Note If the SimEvents message output signal crosses model reference boundaries or is
used as an input to a Stateflow chart, you need to create a bus object for the message.
See “Tips” on page 1-757.

Parameters
Hit crossing offset — Hit crossing value for detection
0 (default) | real values

Specify the value the block detects when the input crosses in the direction specified by
Hit crossing direction.

Programmatic Use
Block Parameter: HitCrossingOffset
Type: character vector
Values: real values
Default: '0'

Hit crossing direction — Input signal direction to hit crossing
either (default) | falling | rising

Direction from which the input signal approaches the hit crossing offset for a crossing to
be detected.

When set to either, the block serves as an almost equal block, useful in working around
limitations in finite mathematics and computer precision. Used for these reasons, this
block might be more convenient than adding logic to your model to detect this condition.

When the Hit crossing direction property is set to either and the model uses a fixed-
step solver, the block has the following behavior. If the output signal is 1, the block sets
the output signal to 0 at the next time step, unless the input signal equals the offset value.

Programmatic Use
Block Parameter: HitCrossingDirection
Type: character vector
Values: 'either' | 'rising' |'falling'
Default: 'either'

Show output port — Display an output port
off (default) | on

 Hit Crossing

1-755

If selected, create an output port on the block icon.

Programmatic Use
Block Parameter: ShowOutputPort
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Output type — Choose signal or message output
signal (default for Simulink) | message (default for SimEvents)

When Output type is set to Signal, the output signal is set to one whenever the input
signal crosses the Hit crossing offset value in the Hit crossing direction and is zero at
other times.

When the Output type is set to Message, the output signal becomes a SimEvents
message.

Programmatic Use
Block Parameter: HitCrossingOutputType
Type: character vector
Values: 'Signal' | 'Message'
Default: 'Signal'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

1 Blocks — Alphabetical List

1-756

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Tips
If the Hit Crossing block is configured to output a SimEvents message and the output
signal:

• Crosses into or out of a referenced model
• Is fed to the input of a Stateflow chart

then you need to create a bus object for the message signal. In the MATLAB Command
Window, run Simulink.createHitCrossMessage to check for and, if needed, create a
hit crossing message bus object in the base workspace.

Set the data type of the corresponding port to Bus: HitCrossMessage.

 Hit Crossing

1-757

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Does not support non-floating data type for ert targets.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Not supported for SimEvents messages.

See Also
“Zero-Crossing Detection” | “Implement logic signals as Boolean data (vs. double)”

Introduced before R2006a

1 Blocks — Alphabetical List

1-758

IC
Set initial value of signal

Library
Signal Attributes

Description
The IC block sets the initial condition of the signal at its input port, for example, the value
of the signal at the simulation start time (tstart). The block does this by outputting the
specified initial condition when you start the simulation, regardless of the actual value of
the input signal. Thereafter, the block outputs the actual value of the input signal.

Note If an IC block has a nonzero sample time offset (toffset), the IC block outputs its
initial value at time t,

t = n * tperiod + toffset

where n is the smallest integer such that t ≥ tstart.

That is, the IC block outputs its initial value the first time blocks with sample time
[tperiod, toffset] execute, which can be after tstart.

The IC block is useful for providing an initial guess for the algebraic state variables in a
loop. For more information, see “Algebraic Loops”.

 IC

1-759

Data Type Support
The IC block accepts and outputs signals of any Simulink built-in and fixed-point data
type. The Initial value parameter accepts any built-in data type that Simulink supports.
For more information, see “Data Types Supported by Simulink”.

Parameters
Initial value

Specify the initial value for the input signal.
Sample time

Note This parameter is not visible in the block dialog box unless it is explicitly set to
a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples
The following examples show how to use the IC block:

• sldemo_bounce
• sldemo_hardstop
• sldemo_enginewc

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No

1 Blocks — Alphabetical List

1-760

matlab:showdemo('sldemo_bounce')
matlab:showdemo('sldemo_hardstop')
matlab:showdemo('sldemo_enginewc')

Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 IC

1-761

If
Select subsystem execution using logic similar to if-else statement
Library: Simulink / Ports & Subsystems

Description
The If block, along with If Action Subsystem blocks containing an Action Port block,
implements if-else logic to control subsystem execution. For an example using the If
block, see If Action Subsystems.

Limitations
The If block has the following limitations:

1 Blocks — Alphabetical List

1-762

• It does not support tunable parameters. Values for an if or elseif expression cannot
be tuned during a simulation in normal or accelerator mode, or when running
generated code.

To implement tunable if-else expressions, tune the expression outside the If block. For
example, use the Relational Operator block to evaluate the expression outside of the If
block or add the tunable parameter as an input to the If block.

• It does not support custom storage classes. See “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

• The If expression and Elseif expressions cannot accept certain operators, such as
+, -, *, and /.

Ports

Input
Logical operands — Values for evaluating logical expressions
scalar | vector

Inputs u1,u2,...,un must have the same data type. The inputs cannot be of any user-
defined type, such as an enumerated type.

The If block does not directly support fixed-point data types. However, you can use the
Compare To Constant block to work around this limitation. See Support for Fixed-Point
Data Type in If Action Subsystems.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output
Action — Action signal for an If Action Subsystem block
scalar

Outputs from the if, else, and elseif ports are action signals to If Action Subsystem
blocks.

 If

1-763

Support for Fixed-Point Data Type

Parameters
Number of inputs — Specify number of input ports
1 (default) | integer

1
Specify one input port.

integer
Specify the number of input ports. Block ports are labeled with a 'u' character
followed by a number, 1,2,...,n, where n equals the number of inputs that you
specify.

Programmatic Use
Parameter: NumInputs
Type: character vector
Values: '1' | '<integer>'
Default: '1'

if expression — Specify logical expression
u1 > 0 (default) | logical expression

The If Action Subsystem attached to the if port executes when its associated expression
evaluates to true.

u1 > 0
Specify sending an action signal on the output port when the input u1 is greater than
0.

logical expression
Specify logical expression. This expression appears on the If block adjacent to the if
output port.

The expression can include only the operators <, <=, ==, ~=, >, >=, &, |, ~,
(), unary-minus. Operators such as +, -, *, /, and ^ are not allowed. The
expression must not contain data type expressions, for example, int8(6), and must
not reference workspace variables whose data type is other than double or single.

1 Blocks — Alphabetical List

1-764

Programmatic Use
Block Parameter: IfExpression
Type: character vector
Values: 'u1 > 0' | '<logical expression>'
Default: 'u1 > 0'

Elseif expressions — Specify logical expression
empty (default) | list of logical expressions

The If Action Subsystem attached to an elseif port executes when its expression
evaluates to true and all if and elseif expressions are false.

empty
Logical expressions not specified.

list of logical expressions
Specify a list of logical expressions delimited by commas. The expressions appear on
the If block below the if port and above the else port when you select the Show else
condition check box.

Expressions can include only the operators <, <=, ==, ~=, >, >=, &, |, ~,
(), unary-minus. Operators such as +, -, *, /, and ^ are not allowed. The
expressions must not contain data type expressions, for example, int8(6), and must
not reference workspace variables whose data type is other than double or single.

Programmatic Use
Block Parameter: ElseIfExpressions
Type: character vector
Values: '' | '<list of logical expressions>'
Default: ''

Show else condition — Control display of else port
on (default) | off

When the if port and all elseif port expressions are false, the else port sends an action
signal to execute the attached If Action Subsystem block.

 on
Display else port.

 off
Hide else port.

 If

1-765

Programmatic Use
Block Parameter: ShowElse
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Enable zero-crossing detection — Control zero-crossing detection
on (default) | off

Control zero-crossing detection.

 on
Detect zero crossings.

 off
Do not detect zero crossings.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double | single | Boolean | base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
Blocks
Action Port | If Action Subsystem | Subsystem

1 Blocks — Alphabetical List

1-766

Topics
Select Subsystem Execution

Introduced before R2006a

 If

1-767

If Action Subsystem
Subsystem whose execution is enabled by an If block
Library: Simulink / Ports & Subsystems

Description
The If Action Subsystem block is a Subsystem block preconfigured as a starting point for
creating a subsystem whose execution is controlled by an If block. The If block evaluates
a logical expression and then, depending on the result of the evaluation, outputs an action
signal.

Merge signals from If Action Subsystem blocks
This example shows how to merge signals controlled by an If block. The If block selects
the execution of an If Action Subsystem block from a set of subsystems. Regardless of
which subsystem the If block selects, you can create a single signal with a Merge block.
Open model

1 Blocks — Alphabetical List

1-768

matlab:ex_if_block

All blocks in an If Action Subsystem block must execute at the same rate as the driving If
block. You can satisfy this requirement by setting the sample time parameter for each
block to either inherited (-1) or the same value as the If block sample time.

Support for Fixed-Point Data Type
The If block does not directly support fixed-point data types. However, you can use the
Compare To Constant block to work around this limitation.

Consider the following floating-point model without fixed-point data types:

 If Action Subsystem

1-769

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_if_block_floating_point.slx')))

In this model, the If Action Subsystem blocks use their default configurations. The
simulation parameters are set to their default values except for the parameters listed in
the following table.

Configuration Parameter
Pane

Parameter Setting

Solver Start time 0.0
 Stop time 1.0
 Type Fixed-step
 Solver discrete (no

continuous states)
 Fixed-step size 0.1

The block parameters are set to their default values except for the parameters listed in
the following table.

Block Parameter Setting
Repeating Sequence Stair Vector of output values [-2 -1 1 2].'

1 Blocks — Alphabetical List

1-770

Block Parameter Setting
Repeating Sequence Stair1 Vector of output values [0 0 0 0 1 1 1 1].'
If Number of inputs 2
 If expression (u1 > 0) | (u2 > 0.5)
 Show else condition Selected
Constant Constant value -4
Constant1 Constant value 4
Scope Number of axes 3
 Time range 1

For this model, when input u1 is greater than 0 or input u2 is greater than 0.5, the
output is 4. Otherwise, the output is -4. The Scope block displays the output from the
Merge block with inputs u1, and u2.

 If Action Subsystem

1-771

You can implement this block diagram as a model with fixed-point data types:

1 Blocks — Alphabetical List

1-772

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_if_block_fixed_point.slx')))

The Repeating Sequence Stair blocks output fixed-point data types.

The Compare To Constant blocks implement two parts of the If expression that is used in
the If block in the floating-point version of the model, (u1 > 0) and (u2 > 0.5). The
OR operation, (u1|u2), can still be implemented inside the If block. For a fixed-point
model, the expression must be partially implemented outside of the If block as it is in this
model.

The block and simulation parameters for the fixed-point model are the same as for the
floating-point model with the following exceptions and additions:

Block Parameter Setting
Compare To Constant Operator >
 Constant value 0
 Output data type mode Boolean
 Enable zero-crossing

detection
off

Compare To Constant1 Operator >
 Constant value 0.5
 Output data type mode Boolean

 If Action Subsystem

1-773

Block Parameter Setting
 Enable zero-crossing

detection
off

If Number of inputs 2
 If expression u1|u2

Merge signals from If Action Subsystem blocks
This example shows how to merge signals controlled by an If block. The If block selects
the execution of an If Action Subsystem block from a set of subsystems. Regardless of
which subsystem the If block selects, you can create a single signal with a Merge block.
Open model

All blocks in an If Action Subsystem block must execute at the same rate as the driving If
block. You can satisfy this requirement by setting the sample time parameter for each
block to either inherited (-1) or the same value as the If block sample time.

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

1 Blocks — Alphabetical List

1-774

matlab:ex_if_block

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Action — Control signal input to a subsystem block
scalar | vector | matrix

Placing an Action Port block in a subsystem block adds an external input port to the block
and changes the block to an If Action Subsystem.

Dot-dash lines from a Switch Case block to an Switch Case Action Subsystem block
represent action signals. An action signal is a control signal connected to the action port
of a Switch Case Action Subsystem block. A message on the action signal initiates
execution of the subsystem.
Data Types: action

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa

 If Action Subsystem

1-775

Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Blocks
Action Port | If | Subsystem

Topics
Select Subsystem Execution

Introduced before R2006a

1 Blocks — Alphabetical List

1-776

In Bus Element
Select bus element or entire bus that is connected to subsystem input port
Library: Simulink / Ports & Subsystems

Simulink / Sources

Description

Note This block has two different names, depending on the library in which it appears.
The functionality of both blocks is the same.

• In the Sources library and the Ports & Subsystems library — In Bus Element
• In the Signal Routing library — Bus Element In

Select an element from a bus (or the entire bus) that is connected to the input port of the
subsystem. This block integrates into one block the functionality of using an Inport block
and a Bus Selector block. The In Bus Element block is of the Inport block type. There are
no specifications allowed on an In Bus Element block, which supports only an inherited
workflow. You cannot use the Block Parameters dialog box of an In Bus Element block to
specify bus element attributes, such as data type or dimensions.

To work with buses at subsystem interfaces, consider using In Bus Element and Out Bus
Element blocks. This bus element port block combination:

• Reduces signal line complexity and clutter in a block diagram.
• Makes it easy to change the interface incrementally.
• Allows access to a bus element closer to the point of usage.

• For input, avoid a duplicate Inport blocks and a Bus Selector, Goto, and From block
configuration.

• For output, avoid a Goto, From, and Bus Creator block configuration.

The In Bus Element block selects signals from a subsystem input port. Feed the output of
the In Bus Element block to another block in the subsystem.

 In Bus Element

1-777

For bus input signals, either specify the signal that you want to select from the input port
or to pass through the whole bus signal, leave the element empty. For a nonbus input
signal for a subsystem, leave the element section of the block icon text empty. The block
passes through the value of the nonbus signal. To select multiple signals from an input
bus signal, create multiple In Bus Element blocks, one for each selected signal.

To reduce the number of bus element signals displayed in the Block Parameters dialog
box, use the Filter box. The Filter box supports regular expressions. To use a regular
expression character as a literal, include an escape character (\). For example, to use a
question mark: sig\?1.

You can specify the background color for bus element port blocks, using the Block
Parameters dialog box Set color option. This action sets the color of blocks associated
with selected elements, or to all blocks if you do not select elements.

Ports
The block does not have an input port. Use the Block Parameters dialog box or Property
Inspector to specify the subsystem input port from which the block receives its input
signal.

Output
Port_1 — Pass selected signal to another block
signal

The output port passes the value of the selected input signal to another block. The signal
can have a real or complex value of any data type that Simulink supports.

Parameters
Port name — Name of associated subsystem input port
InBus (default) | text

Specify a name for a subsystem port. That name appears on the Subsystem and In Bus
Element block icons. If you specify a port name, that name cannot already be in use by
another In Bus Element block or port. All In Bus Element blocks that access the same
subsystem input port reflect the port name that you specify.

1 Blocks — Alphabetical List

1-778

Programmatic Use
Block Parameter: PortName
Type: text
Default: InBus

Port number — Position in which port appears for subsystem input ports
1 (default) | integer

Specify the order in which the port appears on the subsystem, with 1 being the top port, 2
the second port down, and so on.

• If you specify a number that exceeds the number of subsystem input ports, new ports
are added above the port associated with the In Bus Element block.

• If you add an In Bus Element block that creates another subsystem input port, the port
number is the next available number.

• If you delete all In Bus Element blocks associated with a port, other port numbers are
renumbered so that the blocks are in sequence and that no numbers are omitted.

Programmatic Use
Block Parameter: Port
Value: integer
Default: 1

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 In Bus Element

1-779

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Blocks
Bus Selector | Inport | Out Bus Element

Topics
“Simplify Subsystem Bus Interfaces”
“Composite Signal Techniques”
“Select a Composite Signal Technique”
“Getting Started with Buses”

Introduced in R2017a

1 Blocks — Alphabetical List

1-780

Increment Real World
Increase real world value of signal by one
Library: Simulink / Additional Math & Discrete / Additional

Math: Increment — Decrement

Description
The Increment Real World block increases the real world value of the signal by one.

Overflows always wrap.

Ports

Input
Port_1(u) — Input signal
Scalar

The Increment Real World block accepts signals of the data types listed below.

For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1(y) — Calculated output signal
Scalar

Output data type always matches input.

 Increment Real World

1-781

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Block Characteristics
Data Types double | single | base integer | fixed point
Sample Time Inherit
Direct
Feedthrough

Yes

Multidimensional
Signals

Scalar

Variable-Size
Signals

Yes

Zero-Crossing
Detection

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic
masked subsystem block in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat as atomic unit
option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block has a single, default HDL architecture.

1 Blocks — Alphabetical List

1-782

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.

See also “ConstrainedOutputPipeline” (HDL Coder).
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0.

See also “InputPipeline” (HDL Coder).
OutputPipeline

Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0.

See also “OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Decrement Real World | Increment Stored Integer

Introduced before R2006a

 Increment Real World

1-783

Increment Stored Integer
Increase stored integer value of signal by one

Library
Additional Math & Discrete / Additional Math: Increment - Decrement

Description
The Increment Stored Integer block increases the stored integer value of a signal by one.

Floating-point signals also increase by one, and overflows always wrap.

Data Type Support
The Increment Stored Integer block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-784

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Decrement Stored Integer, Increment Real World

Introduced before R2006a

 Increment Stored Integer

1-785

Index Vector
Switch output between different inputs based on value of first input
Library: Simulink / Signal Routing

Description
The Index Vector block is a special configuration of the Multiport Switch block in which
you specify one data input and the control input is zero-based. The block output is the
element of the input vector whose index matches the control input. For example, if the
input vector is [18 15 17 10] and the control input is 3, the element that matches the
index of 3 (zero-based) is 10, and that becomes the output value.

To configure a Multiport Switch block to work as an Index Vector block set Number of
data ports to 1 and Data port order to Zero-based contiguous.

For more information about the Multiport Switch block, see the Multiport Switch block
reference page.

Ports

Input
Port_1 — Control signal
scalar

Control signal, specified as a scalar. The control signal can be of any data type that
Simulink supports, including fixed-point and enumerated types. When the control input is
not an integer value, the block truncates the value to an integer by rounding to zero.

1 Blocks — Alphabetical List

1-786

For information on control signals of enumerated type, see “Guidelines on Setting
Parameters for Enumerated Control Port” on page 1-1118 on the Multiport Switch block
ref page.

Limitations

• If the control signal is numeric, the control signal cannot be complex.
• If the control signal is an enumerated signal, the block uses the value of the

underlying integer to select a data port.
• If the underlying integer does not correspond to a data input, an error occurs.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

0 or 1 — First data input
scalar | vector

First data input, specified as a scalar or vector. The port is labeled 0 when you set Data
port order to Zero-based contiguous, and labeled 1 when you set Data port order
to One-based contiguous. The input data signal can be of any data type that Simulink
supports.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Selected data input, based on control signal value
scalar | vector | matrix | N-D array

The block outputs the selected value from the input data vector, according to the control
signal value. The output is a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Index Vector

1-787

Parameters
Main
Data port order — Type of ordering for data input ports
Zero-based contiguous (default) | One-based contiguous | Specify indices

Specify the type of ordering for your data input ports.

• Zero-based contiguous — Block uses zero-based indexing for ordering contiguous
data ports. This is the default value of the Index Vector block.

• One-based contiguous — Block uses one-based indexing for ordering contiguous
data ports. This is the default value of the Multiport Switch block

• Specify indices — Block uses noncontiguous indexing for ordering data ports. This
value is supported only for configurations with two or more input data ports.

Tips

• When the control port is of enumerated type, select Specify indices.
• If you select Zero-based contiguous or One-based contiguous, verify that the

control port is not of enumerated type. This configuration is deprecated and produces
an error. You can run the Upgrade Advisor on your model to replace each Multiport
Switch block of this configuration with a block that explicitly specifies data port
indices. See “Model Upgrades”.

• Avoid situations where the block contains unused data ports for simulation or code
generation. When the control port is of fixed-point or built-in data type, verify that all
data port indices are representable with that type. Otherwise, the following block
behavior occurs:

If the block has unused data ports
and data port order is:

The block produces:

Zero-based contiguous or One-
based contiguous

A warning

Specify indices An error

Dependencies

Selecting Zero-based contiguous or One-based contiguous enables the Number
of data ports parameter.

1 Blocks — Alphabetical List

1-788

Selecting Specify indices enables the Data port indices parameter.

Programmatic Use
Block Parameter: DataPortOrder
Type: character vector
Values: 'Zero-based contiguous' | 'One-based contiguous' | 'Specify
indices'
Default: 'Zero-based contiguous'

Number of data ports — Number of data input ports
1 (default) | integer between 1 and 65536

Specify the number of data input ports to the block.

Dependencies

To enable this parameter, set Data port order to Zero-based contiguous or One-
based contiguous.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer between 1 and 65536
Default: '1'

Signal Attributes
Require all data port inputs to have the same data type — Require all
inputs to have the same data type
off (default) | on

Select this check box to require that all data input ports have the same data type. When
you clear this check box, the block allows data port inputs to have different data types.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking
[] (default) | scalar

 Index Vector

1-789

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

1 Blocks — Alphabetical List

1-790

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule—Simulink chooses a data type to balance
numerical accuracy, performance, and generated code size, while taking into account
the properties of the embedded target hardware. If you change the embedded target
settings, the data type selected by the internal rule might change. It is not always
possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy
or performance, use one of the following options:

• Specify the output data type explicitly.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Uses the data type of the driving
block.

 Index Vector

1-791

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

1 Blocks — Alphabetical List

1-792

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type

can represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or
127.

Tip

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

 Index Vector

1-793

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Allow different data input sizes (Results in variable-size output
signal) — Allow input signals with different sizes
off (default) | on

Select this check box to allow input signals with different sizes.

• On — Allows input signals with different sizes, and propagate the input signal size to
the output signal. In this mode, the block produces a variable-size output signal.

• Off — Requires that all non scalar data input signals be the same size.

Programmatic Use
Parameter: AllowDiffInputSizes
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus

1 Blocks — Alphabetical List

1-794

Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Index Vector.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Multiport Switch | Switch

Introduced before R2006a

 Index Vector

1-795

Initialize Function
Executes contents on a model initialize event
Library: User-Defined Functions

Description
The Initialize Function block is a pre-configured subsystem block that executes on a
model initialize event. By default, the Initialize Function block includes an Event Listener
block with Event set to Initialize, a Constant block with Constant value set to 0, and
a State Writer block.

Replace the Constant block with blocks that generate the state value for the State Writer
block.

For a list of unsupported blocks and features, see “Initialize, Reset, and Terminate
Function Limitations”.

The input and output ports of a component containing Initialize Function and Terminate
Function blocks must connect to input and output port blocks.

The code generated from this block is part of the model_initialize function that is
called once at the beginning of model execution.

1 Blocks — Alphabetical List

1-796

See Also
Event Listener | Reset Function | State Reader | State Writer | Terminate Function

Topics
“Customize Initialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”
“Generate Code That Responds to Initialize, Reset, and Terminate Events” (Simulink
Coder)

 Initialize Function

1-797

Inport
Create input port for subsystem or external input

Library
Ports & Subsystems, Sources

Description
Inport blocks are the links from outside a system into the system.

Simulink software assigns Inport block port numbers according to these rules:

• It automatically numbers the Inport blocks within a top-level system or subsystem
sequentially, starting with 1.

• If you add an Inport block, the label is the next available number.
• If you delete an Inport block, other port numbers are automatically renumbered to

ensure that the Inport blocks are in sequence and that no numbers are omitted.
• If you copy an Inport block into a system, its port number is not renumbered unless its

current number conflicts with an Inport block already in the system. If the copied
Inport block port number is not in sequence, renumber the block. Otherwise, you get
an error message when you run the simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block using the Port
dimensions parameter. Entering a value of -1 lets Simulink determine the port
dimension.

The Sample time parameter is the rate at which the signal is coming into the system. A
value of -1 causes the block to inherit its sample time from the block driving it. You might
need to set this parameter for:

1 Blocks — Alphabetical List

1-798

• Inport blocks in a top-level system.
• Models with blocks where Simulink cannot determine the sample time, but these

blocks drive Inport blocks.

For more information, see “Specify Sample Time”.

Inport Blocks in a Top-Level System
You can use an Inport block in a top-level system to:

• Supply external inputs from the workspace using one of these approaches. If no
external outputs are supplied, then the default output is the ground value.

• Use the Configuration Parameters > Data Import/Export > Input parameter.
See “Load Data to Root-Level Input Ports”.

Tip To import many signals to root-level input ports, consider using the Root Inport
Mapper tool. For more information, see “Map Data Using Root Inport Mapper
Tool”.

• Use the ut argument of the sim command (see sim) to specify the inputs.
• Provide a means for perturbation of the model by the linmod and trim analysis

functions.

• Use Inport blocks to inject inputs into the system. See “Linearizing Models”.
• To load logged signal data using root Inport blocks, you can use the

createInputDataset function to create a Dataset object that contains elements
that correspond to root-level Inport blocks in the model.

Inport Blocks in a Subsystem
Inport blocks in a subsystem represent inputs to the subsystem. A signal arriving at an
input port on a Subsystem block flows out of the associated Inport block in that
subsystem. The Inport block associated with an input port on a Subsystem block is the
block whose Port number parameter matches the relative position of the input port on
the Subsystem block. For example, the Inport block whose Port number parameter is 1
gets its signal from the block connected to the topmost port on the Subsystem block.

 Inport

1-799

If you renumber the Port number of an Inport block, the block becomes connected to a
different input port, although the block continues to receive its signal from the same
block outside the subsystem.

The Inport block name appears in the Subsystem icon as a port label. To suppress display
of the label, select the Inport block and choose Format > Hide Name.

Inport blocks inside a subsystem support signal label propagation, but root-level Inport
blocks do not.

You can use a subsystem inport to supply fixed-point data in a structure or any other
format.

Tip For models that include bus signals composed of many bus elements that feed
subsystems, consider using the In Bus Element and Out Bus Element blocks. You can use
these bus element port blocks instead of Inport with Bus Selector blocks for inputs, and
Outport with Bus Creator blocks for outputs. These bus element port blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus

Selector and Goto block configuration.

The In Bus Element block is of block type Inport. However, there are no specifications
allowed on bus element port blocks, which support inherited workflows. You cannot use
the Block Parameters dialog box of an In Bus Element block to specify bus element
attributes, such as data type or dimensions.

Creating Duplicate Inports
You can create any number of duplicates of an Inport block. The duplicates are graphical
representations of the original intended to simplify block diagrams by eliminating
unnecessary lines. The duplicate has the same port number, properties, and output as the
original. Changing properties of a duplicate changes properties of the original and vice
versa.

To create a duplicate of an Inport block:

1 In the block diagram, select the block that you want to duplicate.

1 Blocks — Alphabetical List

1-800

2 In the Model Editor menu bar, select Edit > Copy.
3 In the block diagram, place your cursor where you want to place the duplicate.
4 Select Edit > Paste Duplicate Inport.

Connecting Buses to Root-Level Inports
If you want a root-level Inport of a model to produce a bus signal, you must set the Data
type parameter to the name of a bus object that defines the bus that the Inport produces.
For more information, see “When to Use Bus Objects”.

Data Type Support
The Inport block accepts complex or real signals of any data type that Simulink supports,
including fixed-point and enumerated data types. The Inport block also accepts a bus
object as a data type.

Note If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “Data Types Supported by Simulink”.

The numeric and data types of the block output are the same as those of its input. You can
specify the signal type and data type of an external input to a root-level Inport block using
the Signal type and Data type parameters.

The elements of a signal array connected to a root-level Inport block must be of the same
numeric and data types. Signal elements connected to a subsystem input port can be of
differing numeric and data types, except in the following circumstance: If the subsystem
contains an Enable, Trigger, or Atomic Subsystem block and the input port, or an element
of the input port, connects directly to an output port, the input elements must be of the
same type. For example, consider the following enabled subsystem:

 Inport

1-801

In this example, the elements of a signal vector connected to In1 must be of the same
type. The elements connected to In2, however, can be of differing types.

Parameters
• “Port number” on page 1-803
• “Icon display” on page 1-803
• “Latch input by delaying outside signal” on page 1-804
• “Latch input for feedback signals of function-call subsystem outputs” on page 1-805
• “Interpolate data” on page 1-806
• “Connect Input” on page 1-807
• “Output function call” on page 1-807
• “Minimum” on page 1-807
• “Maximum” on page 1-808
• “Data type” on page 1-809
• “Show data type assistant” on page 1-810
• “Mode” on page 1-810
• “Data type override” on page 1-812
• “Signedness” on page 1-812
• “Word length” on page 1-813
• “Scaling” on page 1-813

1 Blocks — Alphabetical List

1-802

• “Fraction length” on page 1-814
• “Slope” on page 1-814
• “Bias” on page 1-814
• “Output as nonvirtual bus” on page 1-815
• “Lock output data type setting against changes by the fixed-point tools”

on page 1-816
• “Unit (e.g., m, m/s^2, N*m)” on page 1-816
• “Port dimensions (-1 for inherited)” on page 1-817
• “Variable-size signal” on page 1-817
• “Sample time (-1 for inherited)” on page 1-818
• “Signal type” on page 1-818

Port number
Specify the port number of the block.

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
on the parent subsystem or model block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Icon display
Specify the information to be displayed on the icon of this input port.

Default: Port number

Signal name
Display the name of the signal connected to this port (or signals if the input is a bus).

Port number
Display port number of this port.

 Inport

1-803

Port number and signal name
Display both the port number and the names of the signals connected to this port.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Latch input by delaying outside signal
Output the value of the input signal at the previous time step.

Default: Off

 On
Output the value of the input signal at the previous time step.

 Off
Do not output the value of the input signal at the previous time step.

• This option applies only to triggered subsystems and is enabled only if the Inport block
resides in a triggered subsystem.

• Selecting this check box enables Simulink to resolve data dependencies among
triggered subsystems that are part of a loop.

• Type sl_subsys_semantics at the MATLAB prompt for examples using latched
inputs with triggered subsystems.

• The Inport block indicates that this option is selected by displaying <Lo>.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-804

matlab:sl_subsys_semantics

Latch input for feedback signals of function-call subsystem
outputs
Latch the value of the input to this subsystem and prevent this value from changing
during the execution of the subsystem. For a single function call that is branched to
invoke multiple function-call subsystems, this option allows you to break a loop formed by
a signal fed back from one of these function-call subsystems into the other. A second
functionality of this option is to prevent any change to the values of a feedback signal
from a function-call subsystem that is invoked during the execution of this subsystem.

Default: Off

 On
Latch the input value.

 Off
Do not latch the input value.

• This parameter applies only to function-call subsystems and is enabled only if the
Inport block resides in a function-call subsystem.

• This parameter ensures that the subsystem inputs, including those generated within
the subsystem's context, do not change during execution of the subsystem.

• The Inport block indicates that this option is selected by displaying .

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Inport

1-805

Interpolate data
When loading data from the workspace to a root-level Inport block, cause the block to
linearly interpolate and extrapolate output at time steps for which no corresponding data
exists.

To load discrete signal data from the workspace, in the Inport block dialog box:

1 Set the Sample time parameter to a discrete value, such as 2.
2 Clear the Interpolate data parameter.

Specifying the discrete sample time causes the simulation to have hit times exactly at
those instances when the discrete data is sampled. You only need to specify the data
values, not time values.

Turning interpolation off avoids unexpected data values at other simulation time points as
a result of double precision arithmetic processing. For more information, see “Load Data
to Test a Discrete Algorithm”.

Default: On

 On
When loading data from the workspace, cause the block to linearly interpolate and
extrapolate output at time steps for which no corresponding data exists.

 Off
When loading data from the workspace, do not cause the block to linearly interpolate
or extrapolate output at time steps for which no corresponding data exists. Simulink
uses the following interpolation and extrapolation:

• For time steps between the first specified data point and the last specified data
point — zero-order hold

• For time steps before the first specified data point and after the last specified data
point — ground value

• For variable-sized signals for time steps before the first specified data point — a
NaN is logged for single or double data types and ground for other data types. For
time steps after the last specified data point, uses ground values.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-806

Connect Input
To import, visualize, and map signal and bus data to root-level inports, click this button.
The Root Inport Mapper tool displays.

This button appears only if this block is a root inport block.

Output function call
Specify that the input signal is outputting a function-call trigger signal.

Default: Off

 On
Input signal is a function-call trigger signal.

 Off
Input signal is not a function-call trigger signal.

• Select this option if it is necessary for a current model to accept a function-call trigger
signal when referenced in the top model.

• This feature is limited to an asynchronous function call.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Minimum
Specify the minimum value that the block should output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum

 Inport

1-807

values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Maximum
Specify the maximum value that the block should output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

1 Blocks — Alphabetical List

1-808

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Data type
Specify the output data type of the external input.

Default: Inherit: auto

Inherit: auto
A rule that inherits a data type

double
Data type is double.

single
Data type is single.

int8
Data type is int8.

uint8
Data type is uint8.

int16
Data type is int16.

uint16
Data type is uint16.

int32
Data type is int32.

uint32
Data type is uint32.

boolean
Data type is boolean.

fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).

 Inport

1-809

fixdt(1,16,2^0,0)
Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Data type is enumerated, for example, Enum: Basic Colors.

Bus: <object name>
Data type is a bus object.

<data type expression>
The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode
Select the category of data to specify.

Default: Inherit

Inherit
Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

1 Blocks — Alphabetical List

1-810

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Fixed point
Fixed-point data types.

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus object
Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details, see “Create Bus Objects with the
Bus Editor”.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

 Inport

1-811

Data type override
Specify data type override mode for this signal.

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-812

Word length
Specify the bit size of the word that holds the quantized integer.

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

 Inport

1-813

• Slope
• Bias
• Calculate Best-Precision Scaling

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

1 Blocks — Alphabetical List

1-814

Default: 0

Specify any real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Output as nonvirtual bus
Output a nonvirtual bus.

Default: Off

 On
Output a nonvirtual bus.

 Off
Output a virtual bus.

• All signals in a nonvirtual bus must have the same sample time, even if the elements of
the associated bus object specify inherited sample times. Any bus operation that would
result in a nonvirtual bus that violates this requirement generates an error. For
referenced models, buses are single-rate. For details, see “Connect Multirate Buses to
Referenced Models”.

• For the top model in a model reference hierarchy, code generation creates a C
structure to represent the bus signal output by this block.

• For referenced models, select this option to create a C structure. Otherwise, code
generation creates an argument for each leaf element of the bus used in the
referenced model.

Selecting Data type > Bus: <object name> enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Inport

1-815

Lock output data type setting against changes by the fixed-
point tools
Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor.

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Unit (e.g., m, m/s^2, N*m)
Specify physical unit of the input signal to the block.

Default: inherit

To specify a unit, begin typing in the text box. As you type, the parameter displays
potential matching units. For a list of supported units, see Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use
that dialog box to specify allowed and disallowed unit systems for the component.

• If a Unit System Configuration block does not exist in the component, the model
Configuration Parameters dialog box displays. Use that dialog box to specify allowed
and disallowed unit systems for the model.

1 Blocks — Alphabetical List

1-816

matlab:showunitslist

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Port dimensions (-1 for inherited)
Specify the dimensions of the input signal to the block.

Default: -1

Valid values are:

-1 Dimensions are inherited from input signal
n Vector signal of width n accepted
[m n] Matrix signal having m rows and n columns accepted

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Variable-size signal
Specify the type of signals allowed into this port.

Default: Inherit

Inherit
Allow variable-size and fixed-size signals.

No
Do not allow variable-size signals.

Yes
Allow only variable-size signals.

When the signal at this port is a variable-size signal, the Port dimensions parameter
specifies the maximum dimensions of the signal.

Parameter: VarSizeSig

 Inport

1-817

Type: character vector
Value: 'Inherit'| 'No' | 'Yes'
Default: 'Inherit'

Sample time (-1 for inherited)
Specify the time interval between samples.

Default: -1

To inherit the sample time, set this parameter to -1.

See “Specify Sample Time” in the online documentation for more information.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Signal type
Specify the numeric type of the external input.

Default: auto

auto
Accept either real or complex as the numeric type.

real
Specify the numeric type as a real number.

complex
Specify the numeric type as a complex number.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-818

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated | Bus
Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Outport

createInputDataset

Asynchronous Task Specification

“Load Data to Root-Level Input Ports”

“Map Data Using Root Inport Mapper Tool”

“Load Big Data for Simulations”

Introduced before R2006a

 Inport

1-819

Integrator
Integrate signal
Library: Simulink / Commonly Used Blocks

Simulink / Continuous

Description
The Integrator block outputs the value of the integral of its input signal with respect to
time.

Simulink treats the Integrator block as a dynamic system with one state. The block
dynamics are given by:

&x t u t

y t x t
x t x

() ()

() ()
()

=

=

Ï
Ì
Ó

= 0 0

where:

• u is the block input.
• y is the block output.
• x is the block state.
• x0 is the initial condition of x.

While these equations define an exact relationship in continuous time, Simulink uses
numerical approximation methods to evaluate them with finite precision. Simulink can
use several different numerical integration methods to compute the output of the block,
each with advantages in particular applications. Use the Solver pane of the Configuration
Parameters dialog box (see “Solver Pane”) to select the technique best suited to your
application.

The selected solver computes the output of the Integrator block at the current time step,
using the current input value and the value of the state at the previous time step. To

1 Blocks — Alphabetical List

1-820

support this computational model, the Integrator block saves its output at the current
time step for use by the solver to compute its output at the next time step. The block also
provides the solver with an initial condition for use in computing the block's initial state
at the beginning of a simulation. The default value of the initial condition is 0. Use the
block parameter dialog box to specify another value for the initial condition or create an
initial value input port on the block.

Use the parameter dialog box to:

• Define upper and lower limits on the integral
• Create an input that resets the block's output (state) to its initial value, depending on

how the input changes
• Create an optional state output so that the value of the block's output can trigger a

block reset

Use the Discrete-Time Integrator block to create a purely discrete system.

Defining Initial Conditions
You can define the initial conditions as a parameter on the block dialog box or input them
from an external signal:

• To define the initial conditions as a block parameter, specify the Initial condition
source parameter as internal and enter the value in the Initial condition field.

• To provide the initial conditions from an external source, specify the Initial condition
source parameter as external. An additional input port appears under the block
input.

Note If the integrator limits its output (see “Limiting the Integral” on page 1-822),
the initial condition must fall inside the integrator's saturation limits. If the initial
condition is outside the block saturation limits, the block displays an error message.

 Integrator

1-821

Limiting the Integral
To prevent the output from exceeding specifiable levels, select the Limit output check
box and enter the limits in the appropriate parameter fields. This action causes the block
to function as a limited integrator. When the output reaches the limits, the integral action
is turned off to prevent integral wind up. During a simulation, you can change the limits
but you cannot change whether the output is limited. The block determines output as
follows:

• When the integral is less than or equal to the Lower saturation limit, the output is
held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the Upper saturation
limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation limit, the output
is held at the Upper saturation limit.

To generate a signal that indicates when the state is being limited, select the Show
saturation port check box. A saturation port appears below the block output port.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• –1 indicates that the lower limit is being applied.

When you select this check box, the block has three zero crossings: one to detect when it
enters the upper saturation limit, one to detect when it enters the lower saturation limit,
and one to detect when it leaves saturation.

Note For the Integrator Limited block, by default, Limit output is selected, Upper
saturation limit is set to 1, and Lower saturation limit is set to 0.

1 Blocks — Alphabetical List

1-822

Wrapping Cyclic States
Several physical phenomena are cyclic, periodic, or rotary in nature. Objects or
machinery that exhibit rotational movement and oscillators are examples of such
phenomena.

Modeling these phenomena in Simulink involves integrating the rate of change of the
periodic or cyclic signals to obtain the state of the movement.

The drawback with this approach, however, is that over long simulation time spans, the
states representing periodic or cyclic signals integrate to large values. Further,
computing the sine or cosine of these signals takes an increasingly large amount of time
because of angle reduction. The large signals values also negatively impact solver
performance and accuracy.

One approach for overcoming this drawback is to reset the angular state to 0 when it
reaches 2π (or to –π when it reaches π, for numerical symmetry). This approach improves
the accuracy of sine and cosine computations and reduces angle reduction time. But it
also requires zero-crossing detection and introduces solver resets, which slow down the
simulation for variable step solvers, particularly in large models.

To eliminate solver resets at wrap points, the Integrator block supports wrapped states
that you can enable by checking Wrap state on the block parameter dialog box. When
you enable Wrap state, the block icon changes to indicate that the block has wrapping
states.

Simulink allows wrapping states that are bounded by upper and lower values parameters
of the wrapped state. The algorithm for determining wrapping states is given by:

y

x x

x x

x x

x
x x

x x

l u

u l
l

u l

=
-

Ï

Ì
Ô

Ó
Ô

Œ

-
-

-

Í

Î
Í

˙

˚
˙

[,)

)(otherwise

 Integrator

1-823

where:

• xl is the lower value of the wrapped state.
• xu is the upper value of the wrapped state.
• y is the output.

The support for wrapping states provides these advantages.

• It eliminates simulation instability when your model approaches large angles and large
state values.

• It reduces the number of solver resets during simulation and eliminates the need for
zero-crossing detection, improving simulation time.

• It eliminates large angle values, speeding up computation of trigonometric functions
on angular states.

• It improves solver accuracy and performance and enables unlimited simulation time.

Resetting the State
The block can reset its state to the specified initial condition based on an external signal.
To cause the block to reset its state, select one of the External reset choices. A trigger
port appears below the block's input port and indicates the trigger type.

• Select rising to reset the state when the reset signal rises from a negative or zero
value to a positive value.

• Select falling to reset the state when the reset signal falls from a positive value to a
zero or negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero
value, from a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time
step or changes from nonzero at the previous time step to zero at the current time
step.

• Select level hold to reset the state when the reset signal is nonzero at the current
time step.

1 Blocks — Alphabetical List

1-824

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results
(see “Algebraic Loops”). Use the Integrator block's state port to feed back the block's
output without creating an algebraic loop.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA®)
software standard, your model must use Boolean signals to drive the external reset ports
of Integrator blocks.

About the State Port
Selecting the Show state port check box on the Integrator block's parameter dialog box
causes an additional output port, the state port, to appear at the top of the Integrator
block.

The output of the state port is the same as the output of the block's standard output port
except for the following case. If the block is reset in the current time step, the output of
the state port is the value that would have appeared at the block's standard output if the
block had not been reset. The state port's output appears earlier in the time step than the
output of the Integrator block's output port. Use the state port to avoid creating algebraic
loops in these modeling scenarios:

• Self-resetting integrators (see “Creating Self-Resetting Integrators” on page 1-826)
• Handing off a state from one enabled subsystem to another (see “Handing Off States

Between Enabled Subsystems” on page 1-827)

Note When updating a model, Simulink checks that the state port applies to one of
these two scenarios. If not, an error message appears. Also, you cannot log the output
of this port in a referenced model that executes in Accelerator mode. If logging is
enabled for the port, Simulink generates a "signal not found" warning during
execution of the referenced model.

 Integrator

1-825

Creating Self-Resetting Integrators
The Integrator block's state port helps you avoid an algebraic loop when creating an
integrator that resets itself based on the value of its output. Consider, for example, the
following model.

This model tries to create a self-resetting integrator by feeding the integrator's output,
subtracted from 1, back into the integrator's reset port. However, the model creates an
algebraic loop. To compute the integrator block's output, Simulink software needs to
know the value of the block's reset signal, and vice versa. Because the two values are
mutually dependent, Simulink software cannot determine either. Therefore, an error
message appears if you try to simulate or update this model.

The following model uses the integrator's state port to avoid the algebraic loop.

In this version, the value of the reset signal depends on the value of the state port. The
value of the state port is available earlier in the current time step than the value of the

1 Blocks — Alphabetical List

1-826

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_integrator_selfreset_algebraic_loop_fixed.slx')))

integrator block's output port. Therefore, Simulink can determine whether the block
needs to be reset before computing the block's output, thereby avoiding the algebraic
loop.

Handing Off States Between Enabled Subsystems
The state port helps you avoid an algebraic loop when passing a state between two
enabled subsystems. Consider, for example, the following model.

The enabled subsystems, A and B, contain the following blocks:

Subsystem A Subsystem B

 Integrator

1-827

In this model, a constant input signal drives two enabled subsystems that integrate the
signal. A pulse generator generates an enabling signal that causes execution to alternate
between the two subsystems. The enable port of each subsystem is set to reset, which
causes the subsystem to reset its integrator when it becomes active. Resetting the
integrator causes the integrator to read the value of its initial condition port. The initial
condition port of the integrator in each subsystem is connected to the output port of the
integrator in the other subsystem.

This connection is intended to enable continuous integration of the input signal as
execution alternates between two subsystems. However, the connection creates an
algebraic loop. To compute the output of A, Simulink needs to know the output of B, and
vice versa. Because the outputs are mutually dependent, Simulink cannot compute the
output values. Therefore, an error message appears if you try to simulate or update this
model.

The following version of the same model uses the integrator state port to avoid creating
an algebraic loop when handing off the state.

The enabled subsystems, A and B, contain the following blocks:

1 Blocks — Alphabetical List

1-828

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_integrator_enabled_subsys_algebraic_loop_fixed.slx')))

Subsystem A Subsystem B

In this model, the initial condition of the integrator in A depends on the value of the state
port of the integrator in B, and vice versa. The values of the state ports are updated
earlier in the simulation time step than the values of the integrator output ports.
Therefore, Simulink can compute the initial condition of either integrator without
knowing the final output value of the other integrator. For another example of using the
state port to hand off states between conditionally executed subsystems, see the
sldemo_clutch model.

Specifying the Absolute Tolerance for the Block Outputs
By default Simulink software uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “Error Tolerances for Variable-Step Solvers”) to
compute the output of the Integrator block. If this value does not provide sufficient error
control, specify a more appropriate value in the Absolute tolerance field of the
Integrator block dialog box. The value that you specify is used to compute all the block
outputs.

Selecting All Options
When you select all options, the block icon looks like this.

 Integrator

1-829

matlab:sldemo_clutch

Ports
The Integrator block accepts and outputs signals of type double on its data ports. The
external reset port accepts signals of type double or Boolean.

Input
Port_1 — Integrand signal
real scalar or array

Signal that needs to be integrated.
Data Types: double

External Reset — Reset state to initial conditions
real scalar or array

Reset the state to the specified initial conditions based on an external signal. See
“Resetting the State” on page 1-824.
Dependencies

To enable this port, enable the External Reset parameter.
Data Types: Boolean

x0 — Initial condition
real scalar or array

Set the initial condition of the block's state from an external signal.
Dependencies

To enable this port, set the Initial Conditions parameter to external.
Data Types: double

Output
Port_1 — Output signal
real scalar or array

Output the integrated state.

1 Blocks — Alphabetical List

1-830

Data Types: double

Port_2 — Show output saturation
-1 | 0 | 1

Indicate when the state is being limited. The signal has a value of 1 when the integral is
limited by the specified Upper saturation limit. When the signal is limited by the Lower
saturation limit, the signal value is -1. When the integral is between the saturation
limits, the signal value is 0. See “Limiting the Integral” on page 1-822.
Data Types: double

Port_3 — State
real scalar or array

Output the state of the block. See “About the State Port” on page 1-825.
Dependencies

Enable this port by enabling the Show state port parameter.
Data Types: double

Parameters
External reset — Reset states to their initial conditions
none (default) | rising | falling | either | level | level hold

Specify the type of trigger to use for the external reset signal.

• Select rising to reset the state when the reset signal rises from a negative or zero
value to a positive value.

• Select falling to reset the state when the reset signal falls from a positive value to a
zero or negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero
value, from a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time
step or changes from nonzero at the previous time step to zero at the current time
step.

• Select level hold to reset the state when the reset signal is nonzero at the current
time step.

 Integrator

1-831

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'level hold'
Default: 'none'

Initial condition source — Select source of initial condition
internal (default) | external

Select source of initial condition:

• internal — Get the initial conditions of the states from the Initial condition block
parameter.

• external — Get the initial conditions of the states from an external block, via the IC
input port.

Dependencies

Selecting internal enables the Initial condition parameter.

Selecting external disables the Initial condition parameter and enables the IC input
port.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'internal' | 'external'
Default: 'internal'

Initial condition — Initial state
0 (default) | real scalar or array

Set the initial state of the Integrator block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source to internal enables this parameter.

Setting Initial condition source to external disables this parameter.

1 Blocks — Alphabetical List

1-832

Programmatic Use

Block Parameter: InitialCondition
Type: scalar or vector
Default: '0'

Limit output — Limit block output values to specified range
off (default for Integrator) | on (default for Integrator Limited)

Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

• Selecting this check box limits the block output to a value between the Lower
saturation limit and Upper saturation limit parameters.

• Clearing this check box does not limit the block output values.

Dependencies

Selecting this parameter enables the Lower saturation limit and Upper saturation
limit parameters.

Programmatic Use
Block Parameter: LimitOutput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Upper saturation limit — Upper limit for the integral
inf (default) | scalar | vector | matrix

Specify the upper limit for the integral as a scalar, vector, or matrix. You must specify a
value between the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: UpperSaturationLimit
Type: character vector
Values: scalar | vector | matrix
Default: 'inf'

 Integrator

1-833

Lower saturation limit — Lower limit for the integral
-inf (default) | scalar | vector | matrix

Specify the lower limit for the integral as a scalar, vector, or matrix. You must specify a
value between the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: LowerSaturationLimit
Type: character vector
Values: scalar | vector | matrix
Default: '-inf'

Wrap state — Enable wrapping of states
off (default) | on

Enable wrapping of states between the Wrapped state upper value and Wrapped state
lower value parameters. Enabling wrap states eliminates the need for zero-crossing
detection, reduces solver resets, improves solver performance and accuracy, and
increases simulation time span when modeling rotary and cyclic state trajectories.

If you specify Wrapped state upper value as inf and Wrapped state lower value as -
inf, wrapping does not occur.

Dependencies

Selecting this parameter enables Wrapped state upper value and Wrapped state
lower value parameters.

Programmatic Use
Block Parameter: WrapState
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Wrapped state upper value — Specify upper value for wrapped state
pi (default) | scalar or vector

Upper limit of the block output.

1 Blocks — Alphabetical List

1-834

Dependencies

Selecting Wrap state enables this parameter.

Programmatic Use
Block Parameter: WrappedStateUpperValue
Type: scalar or vector
Values: '2*pi'
Default: 'pi'

Wrapped state lower value — Specify lower value for wrap state
-pi (default) | scalar or vector

Lower limit of the block output.

Dependencies

Selecting Wrap state enables this parameter.

Programmatic Use
Block Parameter: WrappedStateLowerValue
Type: scalar or vector
Values: '0'
Default: '-pi'

Show saturation port — Enable saturation output port
off (default) | on

Select this check box to add a saturation output port to the block. When you clear this
check box, the block does not have a saturation output port.

Dependencies

Selecting this parameter enables a saturation output port.

Programmatic Use
Block Parameter: ShowSaturationPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show state port — Enable state output port
off (default) | on

 Integrator

1-835

Select this check box to add a state output port to the block. When you clear this check
box, the block does not have a state output port.

Dependencies

Selecting this parameter enables a state output port.

Programmatic Use
Block Parameter: ShowStatePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Absolute tolerance — Absolute tolerance for block states
auto (default) | real scalar or vector

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute block states.

• If you enter a real scalar, then that value overrides the absolute tolerance in the
Configuration Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension
of the continuous states in the block. These values override the absolute tolerance in
the Configuration Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, scalar, or vector
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

Ignore limit and reset when linearizing — Treat block as unresettable and
output unlimited
off (default) | on

Cause Simulink linearization commands to treat this block as unresettable and as having
no limits on its output, regardless of the settings of the reset and output limitation options
of the block.

Tip

Use this check box to linearize a model around an operating point that causes the
integrator to reset or saturate.

1 Blocks — Alphabetical List

1-836

Programmatic Use

Block Parameter: IgnoreLimit
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

State Name (e.g., 'position') — Assign unique name to each state
' ' (default) | character vector

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector, cell array, or structure.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector
Values: ' ' | user-defined

 Integrator

1-837

Default: ' '

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Consider discretizing the model
• Not recommended for production code

See Also
Discrete-Time Integrator | Second-Order Integrator, Second-Order Integrator Limited

Introduced before R2006a

1 Blocks — Alphabetical List

1-838

Integrator Limited
Integrate signal
Library: Simulink / Continuous

Description
The Integrator Limited block is identical to the Integrator block with the exception that
the output of the block is limited based on the upper and lower saturation limits. See
“Limiting the Integral” on page 1-842 for details.

Simulink treats the Integrator block as a dynamic system with one state. The block
dynamics are given by:

&x t u t

y t x t
x t x

() ()

() ()
()

=

=

Ï
Ì
Ó

= 0 0

where:

• u is the block input.
• y is the block output.
• x is the block state.
• x0 is the initial condition of x.

While these equations define an exact relationship in continuous time, Simulink uses
numerical approximation methods to evaluate them with finite precision. Simulink can
use several different numerical integration methods to compute the output of the block,
each with advantages in particular applications. Use the Solver pane of the Configuration
Parameters dialog box (see “Solver Pane”) to select the technique best suited to your
application.

The selected solver computes the output of the Integrator block at the current time step,
using the current input value and the value of the state at the previous time step. To

 Integrator Limited

1-839

support this computational model, the Integrator block saves its output at the current
time step for use by the solver to compute its output at the next time step. The block also
provides the solver with an initial condition for use in computing the block's initial state
at the beginning of a simulation. The default value of the initial condition is 0. Use the
block parameter dialog box to specify another value for the initial condition or create an
initial value input port on the block.

Use the parameter dialog box to:

• Define upper and lower limits on the integral
• Create an input that resets the block's output (state) to its initial value, depending on

how the input changes
• Create an optional state output so that the value of the block's output can trigger a

block reset

Use the Discrete-Time Integrator block to create a purely discrete system.

Defining Initial Conditions
You can define the initial conditions as a parameter on the block dialog box or input them
from an external signal:

• To define the initial conditions as a block parameter, specify the Initial condition
source parameter as internal and enter the value in the Initial condition field.

• To provide the initial conditions from an external source, specify the Initial condition
source parameter as external. An additional input port appears under the block
input.

Note If the integrator limits its output (see “Limiting the Integral” on page 1-842),
the initial condition must fall inside the integrator's saturation limits. If the initial
condition is outside the block saturation limits, the block displays an error message.

1 Blocks — Alphabetical List

1-840

Wrapping Cyclic States
Several physical phenomena are cyclic, periodic, or rotary in nature. Objects or
machinery that exhibit rotational movement and oscillators are examples of such
phenomena.

Modeling these phenomena in Simulink involves integrating the rate of change of the
periodic or cyclic signals to obtain the state of the movement.

The drawback with this approach, however, is that over long simulation time spans, the
states representing periodic or cyclic signals integrate to large values. Further,
computing the sine or cosine of these signals takes an increasingly large amount of time
because of angle reduction. The large signals values also negatively impact solver
performance and accuracy.

One approach for overcoming this drawback is to reset the angular state to 0 when it
reaches 2π (or to –π when it reaches π, for numerical symmetry). This approach improves
the accuracy of sine and cosine computations and reduces angle reduction time. But it
also requires zero-crossing detection and introduces solver resets, which slow down the
simulation for variable step solvers, particularly in large models.

To eliminate solver resets at wrap points, the Integrator block supports wrapped states
that you can enable by checking Wrap state on the block parameter dialog box. When
you enable Wrap state, the block icon changes to indicate that the block has wrapping
states.

Simulink allows wrapping states that are bounded by upper and lower values parameters
of the wrapped state. The algorithm for determining wrapping states is given by:

y

x x

x x

x x

x
x x

x x

l u

u l
l

u l

=
-

Ï

Ì
Ô

Ó
Ô

Œ

-
-

-

Í

Î
Í

˙

˚
˙

[,)

)(otherwise

 Integrator Limited

1-841

where:

• xl is the lower value of the wrapped state.
• xu is the upper value of the wrapped state.
• y is the output.

The support for wrapping states provides these advantages.

• It eliminates simulation instability when your model approaches large angles and large
state values.

• It reduces the number of solver resets during simulation and eliminates the need for
zero-crossing detection, improving simulation time.

• It eliminates large angle values, speeding up computation of trigonometric functions
on angular states.

• It improves solver accuracy and performance and enables unlimited simulation time.

Limiting the Integral
To prevent the output from exceeding specifiable levels, select the Limit output check
box and enter the limits in the appropriate parameter fields. This action causes the block
to function as a limited integrator. When the output reaches the limits, the integral action
is turned off to prevent integral wind up. During a simulation, you can change the limits
but you cannot change whether the output is limited. The block determines output as
follows:

• When the integral is less than or equal to the Lower saturation limit, the output is
held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the Upper saturation
limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation limit, the output
is held at the Upper saturation limit.

To generate a signal that indicates when the state is being limited, select the Show
saturation port check box. A saturation port appears below the block output port.

1 Blocks — Alphabetical List

1-842

The signal has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• –1 indicates that the lower limit is being applied.

When you select this check box, the block has three zero crossings: one to detect when it
enters the upper saturation limit, one to detect when it enters the lower saturation limit,
and one to detect when it leaves saturation.

Note For the Integrator Limited block, by default, Limit output is selected, Upper
saturation limit is set to 1, and Lower saturation limit is set to 0.

Resetting the State
The block can reset its state to the specified initial condition based on an external signal.
To cause the block to reset its state, select one of the External reset choices. A trigger
port appears below the block's input port and indicates the trigger type.

• Select rising to reset the state when the reset signal rises from a negative or zero
value to a positive value.

• Select falling to reset the state when the reset signal falls from a positive value to a
zero or negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero
value, from a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time
step or changes from nonzero at the previous time step to zero at the current time
step.

• Select level hold to reset the state when the reset signal is nonzero at the current
time step.

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results

 Integrator Limited

1-843

(see “Algebraic Loops”). Use the Integrator block's state port to feed back the block's
output without creating an algebraic loop.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA)
software standard, your model must use Boolean signals to drive the external reset ports
of Integrator blocks.

About the State Port
Selecting the Show state port check box on the Integrator block's parameter dialog box
causes an additional output port, the state port, to appear at the top of the Integrator
block.

The output of the state port is the same as the output of the block's standard output port
except for the following case. If the block is reset in the current time step, the output of
the state port is the value that would have appeared at the block's standard output if the
block had not been reset. The state port's output appears earlier in the time step than the
output of the Integrator block's output port. Use the state port to avoid creating algebraic
loops in these modeling scenarios:

• Self-resetting integrators (see “Creating Self-Resetting Integrators” on page 1-845)
• Handing off a state from one enabled subsystem to another (see “Handing Off States

Between Enabled Subsystems” on page 1-846)

Note When updating a model, Simulink checks that the state port applies to one of
these two scenarios. If not, an error message appears. Also, you cannot log the output
of this port in a referenced model that executes in Accelerator mode. If logging is
enabled for the port, Simulink generates a "signal not found" warning during
execution of the referenced model.

1 Blocks — Alphabetical List

1-844

Creating Self-Resetting Integrators
The Integrator block's state port helps you avoid an algebraic loop when creating an
integrator that resets itself based on the value of its output. Consider, for example, the
following model.

This model tries to create a self-resetting integrator by feeding the integrator's output,
subtracted from 1, back into the integrator's reset port. However, the model creates an
algebraic loop. To compute the integrator block's output, Simulink software needs to
know the value of the block's reset signal, and vice versa. Because the two values are
mutually dependent, Simulink software cannot determine either. Therefore, an error
message appears if you try to simulate or update this model.

The following model uses the integrator's state port to avoid the algebraic loop.

In this version, the value of the reset signal depends on the value of the state port. The
value of the state port is available earlier in the current time step than the value of the

 Integrator Limited

1-845

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_integrator_selfreset_algebraic_loop_fixed.slx')))

integrator block's output port. Therefore, Simulink can determine whether the block
needs to be reset before computing the block's output, thereby avoiding the algebraic
loop.

Handing Off States Between Enabled Subsystems
The state port helps you avoid an algebraic loop when passing a state between two
enabled subsystems. Consider, for example, the following model.

The enabled subsystems, A and B, contain the following blocks:

Subsystem A Subsystem B

1 Blocks — Alphabetical List

1-846

In this model, a constant input signal drives two enabled subsystems that integrate the
signal. A pulse generator generates an enabling signal that causes execution to alternate
between the two subsystems. The enable port of each subsystem is set to reset, which
causes the subsystem to reset its integrator when it becomes active. Resetting the
integrator causes the integrator to read the value of its initial condition port. The initial
condition port of the integrator in each subsystem is connected to the output port of the
integrator in the other subsystem.

This connection is intended to enable continuous integration of the input signal as
execution alternates between two subsystems. However, the connection creates an
algebraic loop. To compute the output of A, Simulink needs to know the output of B, and
vice versa. Because the outputs are mutually dependent, Simulink cannot compute the
output values. Therefore, an error message appears if you try to simulate or update this
model.

The following version of the same model uses the integrator state port to avoid creating
an algebraic loop when handing off the state.

The enabled subsystems, A and B, contain the following blocks:

 Integrator Limited

1-847

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_integrator_enabled_subsys_algebraic_loop_fixed.slx')))

Subsystem A Subsystem B

In this model, the initial condition of the integrator in A depends on the value of the state
port of the integrator in B, and vice versa. The values of the state ports are updated
earlier in the simulation time step than the values of the integrator output ports.
Therefore, Simulink can compute the initial condition of either integrator without
knowing the final output value of the other integrator. For another example of using the
state port to hand off states between conditionally executed subsystems, see the
sldemo_clutch model.

Specifying the Absolute Tolerance for the Block Outputs
By default Simulink software uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “Error Tolerances for Variable-Step Solvers”) to
compute the output of the Integrator block. If this value does not provide sufficient error
control, specify a more appropriate value in the Absolute tolerance field of the
Integrator block dialog box. The value that you specify is used to compute all the block
outputs.

Selecting All Options
When you select all options, the block icon looks like this.

1 Blocks — Alphabetical List

1-848

matlab:sldemo_clutch

Ports

Input
Port_1 — Integrand signal
real scalar or array

Signal that needs to be integrated.
Data Types: double

External Reset — Reset state to initial conditions
real scalar or array

Reset the state to the specified initial conditions based on an external signal. See
“Resetting the State” on page 1-843.

Dependencies

To enable this port, enable the External Reset parameter.
Data Types: Boolean

x0 — Initial condition
real scalar or array

Set the initial condition of the block's state from an external signal.

Dependencies

To enable this port, set the Initial Conditions parameter to external.
Data Types: double

Output
Port_1 — Output signal
real scalar or array

Output the integrated state.
Data Types: double

 Integrator Limited

1-849

Port_2 — Show output saturation
-1 | 0 | 1

Indicate when the state is being limited. The signal has a value of 1 when the integral is
limited by the specified Upper saturation limit. When the signal is limited by the Lower
saturation limit, the signal value is -1. When the integral is between the saturation
limits, the signal value is 0. See “Limiting the Integral” on page 1-842.
Data Types: double

Port_3 — State
real scalar or array

Output the state of the block. See “About the State Port” on page 1-844.

Dependencies

Enable this port by enabling the Show state port parameter.
Data Types: double

Parameters
External reset — Reset states to their initial conditions
none (default) | rising | falling | either | level | level hold

Specify the type of trigger to use for the external reset signal.

• Select rising to reset the state when the reset signal rises from a negative or zero
value to a positive value.

• Select falling to reset the state when the reset signal falls from a positive value to a
zero or negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero
value, from a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time
step or changes from nonzero at the previous time step to zero at the current time
step.

• Select level hold to reset the state when the reset signal is nonzero at the current
time step.

1 Blocks — Alphabetical List

1-850

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'level hold'
Default: 'none'

Initial condition source — Select source of initial condition
internal (default) | external

Select source of initial condition:

• internal — Get the initial conditions of the states from the Initial condition block
parameter.

• external — Get the initial conditions of the states from an external block, via the IC
input port.

Dependencies

Selecting internal enables the Initial condition parameter.

Selecting external disables the Initial condition parameter and enables the IC input
port.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'internal' | 'external'
Default: 'internal'

Initial condition — Initial state
0 (default) | real scalar or array

Set the initial state of the Integrator block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source to internal enables this parameter.

Setting Initial condition source to external disables this parameter.

 Integrator Limited

1-851

Programmatic Use

Block Parameter: InitialCondition
Type: scalar or vector
Default: '0'

Limit output — Limit block output values to specified range
off (default for Integrator) | on (default for Integrator Limited)

Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

• Selecting this check box limits the block output to a value between the Lower
saturation limit and Upper saturation limit parameters.

• Clearing this check box does not limit the block output values.

Dependencies

Selecting this parameter enables the Lower saturation limit and Upper saturation
limit parameters.

Programmatic Use
Block Parameter: LimitOutput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Upper saturation limit — Upper limit for the integral
inf (default) | scalar | vector | matrix

Specify the upper limit for the integral as a scalar, vector, or matrix. You must specify a
value between the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: UpperSaturationLimit
Type: character vector
Values: scalar | vector | matrix
Default: 'inf'

1 Blocks — Alphabetical List

1-852

Lower saturation limit — Lower limit for the integral
-inf (default) | scalar | vector | matrix

Specify the lower limit for the integral as a scalar, vector, or matrix. You must specify a
value between the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: LowerSaturationLimit
Type: character vector
Values: scalar | vector | matrix
Default: '-inf'

Wrap state — Enable wrapping of states
off (default) | on

Enable wrapping of states between the Wrapped state upper value and Wrapped state
lower value parameters. Enabling wrap states eliminates the need for zero-crossing
detection, reduces solver resets, improves solver performance and accuracy, and
increases simulation time span when modeling rotary and cyclic state trajectories.

If you specify Wrapped state upper value as inf and Wrapped state lower value as -
inf, wrapping does not occur.

Dependencies

Selecting this parameter enables Wrapped state upper value and Wrapped state
lower value parameters.

Programmatic Use
Block Parameter: WrapState
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Wrapped state upper value — Specify upper value for wrapped state
pi (default) | scalar or vector

Upper limit of the block output.

 Integrator Limited

1-853

Dependencies

Selecting Wrap state enables this parameter.

Programmatic Use
Block Parameter: WrappedStateUpperValue
Type: scalar or vector
Values: '2*pi'
Default: 'pi'

Wrapped state lower value — Specify lower value for wrap state
-pi (default) | scalar or vector

Lower limit of the block output.

Dependencies

Selecting Wrap state enables this parameter.

Programmatic Use
Block Parameter: WrappedStateLowerValue
Type: scalar or vector
Values: '0'
Default: '-pi'

Show saturation port — Enable saturation output port
off (default) | on

Select this check box to add a saturation output port to the block. When you clear this
check box, the block does not have a saturation output port.

Dependencies

Selecting this parameter enables a saturation output port.

Programmatic Use
Block Parameter: ShowSaturationPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show state port — Enable state output port
off (default) | on

1 Blocks — Alphabetical List

1-854

Select this check box to add a state output port to the block. When you clear this check
box, the block does not have a state output port.

Dependencies

Selecting this parameter enables a state output port.

Programmatic Use
Block Parameter: ShowStatePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Absolute tolerance — Absolute tolerance for block states
auto (default) | real scalar or vector

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute block states.

• If you enter a real scalar, then that value overrides the absolute tolerance in the
Configuration Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension
of the continuous states in the block. These values override the absolute tolerance in
the Configuration Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, scalar, or vector
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

Ignore limit and reset when linearizing — Treat block as unresettable and
output unlimited
off (default) | on

Cause Simulink linearization commands to treat this block as unresettable and as having
no limits on its output, regardless of the settings of the reset and output limitation options
of the block.

Tip

Use this check box to linearize a model around an operating point that causes the
integrator to reset or saturate.

 Integrator Limited

1-855

Programmatic Use

Block Parameter: IgnoreLimit
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

State Name (e.g., 'position') — Assign unique name to each state
' ' (default) | character vector

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector, cell array, or structure.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector
Values: ' ' | user-defined

1 Blocks — Alphabetical List

1-856

Default: ' '

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Consider discretizing the model
• Not recommended for production code

See Also
Discrete-Time Integrator | Second-Order Integrator, Second-Order Integrator Limited

Introduced before R2006a

 Integrator Limited

1-857

Interpolation Using Prelookup
Use precalculated index and fraction values to accelerate approximation of N-dimensional
function
Library: Simulink / Lookup Tables

Description
The Interpolation Using Prelookup block is most efficient when used with the Prelookup
block. The Prelookup block calculates the index and interval fraction that specify how its
input value u relates to the breakpoint data set. Feed the resulting index and fraction
values into an Interpolation Using Prelookup block to interpolate an n-dimensional table.
These two blocks have distributed algorithms. When combined together, they perform the
same operation as the integrated algorithm in the n-D Lookup Table block. However, the
Prelookup and Interpolation Using Prelookup blocks offer greater flexibility that can
provide more efficient simulation and code generation. For more information, see
“Efficiency of Performance”.

Supported Block Operations
To use the Interpolation Using Prelookup block, you specify a set of table data values
directly on the dialog box or feed values into the T input port. Typically, these table values
correspond to the breakpoint data sets specified in Prelookup blocks. The Interpolation
Using Prelookup block generates output by looking up or estimating table values based
on index and interval fraction values fed from Prelookup blocks. Labels for the index and
interval fraction appear as k and f on the Interpolation Using Prelookup block icon.

1 Blocks — Alphabetical List

1-858

When inputs for index and interval
fraction...

The Interpolation Using Prelookup
block...

Map to values in breakpoint data sets Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not map to values in breakpoint data
sets, but are within range

Interpolates appropriate table values using
the Interpolation method you select

Do not map to values in breakpoint data
sets, and are out of range

Extrapolates the output value using the
Extrapolation method you select

How The Block Interpolates a Subset of Table Data
You can use the Number of sub-table selection dimensions parameter to specify that
interpolation occur only on a subset of the table data. To activate this interpolation mode,
set this parameter to a positive integer. This value defines the number of dimensions to
select, starting from the highest dimension of table data. Therefore, the value must be
less than or equal to the Number of table dimensions.

Suppose that you have 3-D table data in your Interpolation Using Prelookup block. This
behavior applies.

Number of Selection
Dimensions

Action by the Block Block Appearance

0 Interpolates the entire table
and does not activate subtable
selection

Does not change

1 Interpolates the first two
dimensions and selects the
third dimension

Displays an input port with the
label s3 that you use to select
and interpolate 2-D tables

2 Interpolates the first dimension
and selects the second and
third dimensions

Displays two input ports with
the labels s2 and s3 that you
use to select and interpolate 1-
D tables

Subtable selection uses zero-based indexing. For an example of interpolating a subset of
table data, type sldemo_bpcheck at the MATLAB command prompt.

 Interpolation Using Prelookup

1-859

matlab:sldemo_bpcheck

Ports

Input
k1 — Index, k, for the first dimension of the table
scalar | vector | matrix

Zero-based index, k, specifying the interval containing the input u for the first dimension
of the table.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

f1 — Fraction, f, for the first dimension of the table
scalar | vector | matrix

Fraction, f, representing the normalized position of the input within the interval, k, for
the first dimension of the table.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

kn — Index, k, for the n-th dimension of the table
scalar | vector | matrix

Zero-based index, k, specifying the interval containing the input u for the n-th dimension
of the table.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

fn — Fraction, f, for the n-th dimension of the table
scalar | vector | matrix

Fraction, f, representing the normalized position of the input within the interval, k, for
the n-th dimension of the table.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

kf1 — Input containing index k and fraction f
bus object

1 Blocks — Alphabetical List

1-860

Inputs to the kf1 port contain index k and fraction f specified as a bus object.

Dependencies

To enable this port, select the Require index and fraction as a bus check box.

The number of available kf input ports depends on the value of the Number of
dimensions and Number of sub-table selection dimensions parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | bus

kfn — Input containing index k and fraction f
bus object

Inputs to the kfn port contain index k and fraction f for the n-th dimension of the input,
specified as a bus object.

Dependencies

To enable this port, select the Require index and fraction as a bus check box.

The number of available kf input ports depends on the value of the Number of
dimensions and Number of sub-table selection dimensions parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | bus

sm — Select and interpolate a subset of the table data
scalar | vector | matrix

The block uses inputs to the sm, sm-1... port to perform selection and interpolation within
the subtables. m equals the Number of dimensions - Number of sub-table selection
dimensions.

Dependencies

To enable this port, the Number of sub-table selection dimensions must be a positive
integer less than or equal to the Number of dimensions.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

T — Table data
scalar | vector | matrix | n-d array

 Interpolation Using Prelookup

1-861

Table data values provided as input to port T. Typically, these table values correspond to
the breakpoint data sets specified in Prelookup blocks. The Interpolation Using Prelookup
block generates output by looking up or estimating table values based on index (k) and
interval fraction (f) values fed from Prelookup blocks.

Dependencies

To enable this port, set Source to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Approximation of N-dimensional function
scalar | vector | matrix

Approximation of N-dimensional function, computed by interpolating (or extrapolating)
table data using values from the input index, k, and fraction, f.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters

Main
Table data

Number of dimensions — Number of table data dimensions
2 (default) | integer between 1 and 30

Specify the number of dimensions that the table data must have. The Number of
dimensions defines the number of independent variables for the table.

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.

1 Blocks — Alphabetical List

1-862

To specify... Do this...
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions
that this block supports is 30.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' |'4' | ... | '30'
Default: '2'

Require index and fraction as bus — Index and fraction inputs must be
combined in a nonvirtual bus
off (default) | on

If you select this parameter, subtable selection ports continue to work in nonbus mode.

To enable the Prelookup block to supply input to the Interpolation Using Prelookup block,
set:

• Output selection to Index and fraction as bus
• Output to Bus: <object name>, where <object name> must be a valid bus object

name accessible to the model

Programmatic Use
Block Parameter: RequireIndexFractionAsBus
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Specification — Choose how to enter table data
Explicit values (default) | Lookup table object

Specify whether to enter table data directly or use a lookup table object. If you set this
parameter to:

• Explicit values, the Source and Value parameters are visible on the dialog box.
• Lookup table object, the Name parameter is visible on the dialog box.

 Interpolation Using Prelookup

1-863

Programmatic Use
Block Parameter: TableSpecification
Type: character vector
Values: 'Explicit values' | 'Lookup table object'
Default: 'Explicit values'

Source — Source of table data
Dialog (default) | Input port

Specify whether to enter table data in the dialog box or to inherit the data from an input
port. If you set Source to:

• Dialog, enter table data in the text box under Value
• Input port, verify that an upstream signal supplies table data to the table input port

Dependencies

To enable this parameter, set Specification to Explicit values.

Programmatic Use
Block Parameter: TableSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Value — Specify table data values
sqrt([1:11]' * [1:11]) (default) | multidimensional array of table data

Specify table data as an N-D array, where N is the value of the Number of dimensions
parameter. You can edit the block diagram without specifying a correctly dimensioned
matrix by entering an empty matrix ([]) or an undefined workspace variable in the Value
edit field. For information about how to construct multidimensional arrays in MATLAB,
see “Multidimensional Arrays” (MATLAB).

If you set Source to Input port, verify that an upstream signal supplies table data to
the T input port. The size of table data must match the Number of table dimensions.
For this option, the block inherits table attributes from the T input port.

To edit lookup tables using the Lookup Table Editor, click Edit (see “Edit Lookup Tables”).

1 Blocks — Alphabetical List

1-864

Dependencies

To enable this parameter and explicitly specify table values on the dialog box, you must
set Specification to Explicit values and Source to Dialog.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: scalar, vector, matrix, or N-D array
Default: 'sqrt([1:11]' * [1:11])'

Name — Name of an existing Simulink.LookupTable object
Simulink.LookupTable object

Specify the name of an existing Simulink.LookupTable object. An existing lookup table
object references Simulink breakpoint objects.

Dependencies

To enable this parameter, set Specification to Lookup table object.

Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Value: Simulink.LookupTable object
Default: ''

Algorithm

Interpolation method — Select Linear point-slope, Flat, Nearest, or
Linear Lagrange
Linear point-slope (default) | Nearest | Flat | Linear Lagrange

Specify the method the block uses to interpolate table data. You can select Linear
point-slope, Flat, Nearest, or Linear Lagrange. See “Interpolation Methods” for
more information.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector
Values: 'Flat' | 'Linear point-slope' | 'Nearest' | 'Linear Lagrange'
Default: 'Linear point-slope'

 Interpolation Using Prelookup

1-865

Extrapolation method — Method of handling input that falls outside the range
of the breakpoint data set
Linear (default) | Clip

Specify the method the block uses to extrapolate values for all inputs that fall outside the
range of the breakpoint data set. You can select Clip or Linear. See “Extrapolation
Methods” for more information.

Dependencies

To enable the Extrapolation method parameter, set the Interpolation method to
Linear.

The Interpolation Using Prelookup block does not support Linear extrapolation when the
input or output signals specify integer or fixed-point data types.

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Clip' | 'Linear'
Default: 'Linear'

Valid index input may reach last index — Allow inputs to access the last
elements of table data
off (default) | on

Specify how block inputs for index (k) and interval fraction (f) access the last elements of
n-dimensional table data. Index values are zero based.

Check Box Block Behavior
on Returns the value of the last element in a dimension of its table

when:

• k indexes the last table element in the corresponding
dimension

• f is 0

1 Blocks — Alphabetical List

1-866

Check Box Block Behavior
off Returns the value of the last element in a dimension of its table

when:

• k indexes the next-to-last table element in the corresponding
dimension

• f is 1

Dependencies

This check box is visible only when:

• Interpolation method is Linear
• Extrapolation method is Clip

Tip When you select Valid index input may reach last index for an Interpolation Using
Prelookup block, you must also select Use last breakpoint for input at or above upper
limit for all Prelookup blocks that feed it. This action allows the blocks to use the same
indexing convention when accessing the last elements of their breakpoint and table data
sets.

Programmatic Use
Block Parameter: ValidIndexMayReachLast
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range
None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options
include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

 Interpolation Using Prelookup

1-867

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Number of sub-table selection dimensions — Number of dimensions of the
output computation subtable
0 (default) | positive integer, less than or equal to the number of table dimensions

Specify the number of dimensions of the subtable that the block uses to compute the
output. Follow these rules:

• To enable subtable selection, enter a positive integer.

This integer must be less than or equal to the Number of table dimensions.
• To disable subtable selection, enter 0 to interpolate the entire table.

For more information, see “How The Block Interpolates a Subset of Table Data” on page
1-859.

Programmatic Use
Block Parameter: NumSelectionDims
Type: character vector
Values: '0' | '1' | '2' | '3' | '4' | ... | Number of table dimensions
Default: '0'

Code generation

Remove protection against out-of-range index in generated code —
Remove code that checks for out-of-range index inputs
off (default) | on

1 Blocks — Alphabetical List

1-868

Check Box Result When to Use
on Generated code does not

include conditional
statements to check for out-
of-range index inputs.

When the input k or f is out
of range, it may cause
undefined behavior for
generated code and
simulations using
accelerator mode.

For code efficiency

off Generated code includes
conditional statements to
check for out-of-range index
inputs.

For safety-critical
applications

If your input is not out of range, you can select the Remove protection against out-of-
range index in generated code check box for code efficiency. By default, this check box
is cleared. For safety-critical applications, do not select this check box. If you want to
select the Remove protection against out-of-range index in generated code check
box, first check that your model inputs are in range. For example:

1 Clear the Remove protection against out-of-range index in generated code
check box.

2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the

Remove protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in
generated code check box and the input k or f is out of range, the behavior is
undefined for generated code and simulations using accelerator mode.

Depending on your application, you can run the following Model Advisor checks to verify
the usage of this check box:

 Interpolation Using Prelookup

1-869

• By Product > Embedded Coder > Identify lookup table blocks that generate
expensive out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331
Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks”.

This check box has no effect on the generated code when one of the following is true:

• The Prelookup block feeds index values to the Interpolation Using Prelookup block.

Because index values from the Prelookup block are always valid, no check code is
necessary.

• The data type of the input k restricts the data to valid index values.

For example, unsigned integer data types guarantee nonnegative index values.
Therefore, unsigned input values of k do not require check code for negative values.

Programmatic Use
Block Parameter: RemoveProtectionIndex
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

1 Blocks — Alphabetical List

1-870

Data Types
Table data — Data type of table values
Inherit: Same as output (default) | Inherit: Inherit from 'Table data' |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the table data type.

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the
output signal

• Sharing of prescaled table data between two Interpolation Using Prelookup blocks
with different output data types

• Sharing of custom storage table data in Simulink Coder generated code for blocks
with different output data types

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from table data' | 'Inherit: Same as output'
| 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Same as input'

Table minimum — Minimum value of table data
[] (default) | scalar

 Interpolation Using Prelookup

1-871

Specify the minimum value for table data as a finite, real, double, scalar. The default value
is [] (unspecified).

Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table maximum — Maximum value of table data
[] (default) | scalar

Specify the maximum value for table data as a finite, real, double, scalar. The default
value is [] (unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Intermediate results — Data type of intermediate results
Inherit: Inherit via internal rule (default) | Inherit: Same as output |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Use this parameter to specify higher precision for internal computations than for
table data or output data.

1 Blocks — Alphabetical List

1-872

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as
output' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Same as input'

Output — Output data type
Inherit: Inherit from 'Table data' (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the output data type.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit
from table data' | 'double' | 'single' | 'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' | 'uint32' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit from table data'

Output minimum — Minimum value the block can output
[] (default) | scalar

Specify the minimum value that the block should output as a finite, real-valued scalar. The
default value is [] (unspecified). Simulink software uses this value to perform:

 Interpolation Using Prelookup

1-873

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output maximum — Maximum value the block can output
[] (default) | scalar

Specify the maximum value that the block should output as a finite, real-valued scalar.
The default value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Internal rule priority — Internal rule for intermediate calculations
Speed (default) | Precision

1 Blocks — Alphabetical List

1-874

Specify the internal rule for intermediate calculations. Select Speed for faster
calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.

Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector
Values: 'Speed' | 'Precision'
Default: 'Speed'

Lock data type settings against changes by the fixed-point tools —
Prevent fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on this block. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Convergent | Ceiling | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function in
the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

 Interpolation Using Prelookup

1-875

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

1 Blocks — Alphabetical List

1-876

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see “Supported Blocks” (HDL Coder).

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Prelookup

 Interpolation Using Prelookup

1-877

Topics
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

Introduced in R2006b

1 Blocks — Alphabetical List

1-878

Interpreted MATLAB Function
Apply MATLAB function or expression to input

Library
User-Defined Functions

Description
The Interpreted MATLAB Function block applies the specified MATLAB function or
expression to the input. The output of the function must match the output dimensions of
the block.

Some valid expressions for this block are:

sin
atan2(u(1), u(2))
u(1)^u(2)

Note This block is slower than the Fcn block because it calls the MATLAB parser during
each integration step. Consider using built-in blocks (such as the Fcn block or the Math
Function block) instead. Alternatively, you can write the function as a MATLAB S-function
or MEX-file S-function, then access it using the S-Function block.

Data Type Support
The Interpreted MATLAB Function block accepts one real or complex input of type
double and generates real or complex output of type double, depending on the setting
of the Output signal type parameter.

 Interpreted MATLAB Function

1-879

Parameters
MATLAB function

Specify the function or expression. If you specify a function only, it is not necessary to
include the input argument in parentheses.

Output dimensions
Specify the dimensions of the block output signal, for example, 2 for a two-element
vector. The output dimensions must match the dimensions of the value returned by
the function or expression in the MATLAB function field.

Specify -1 to inherit the dimensions from the output of the specified function or
expression. To determine the output dimensions, Simulink runs the function or
expression once before simulation starts.

Note If you specify -1 for this parameter and your function has persistent variables,
then the variables might update before the simulation starts. If you need to use
persistent variables, consider setting this parameter to a value other than -1.

Output signal type
Specify the output signal type of the block as real, complex, or auto. A value of
auto sets the output type to be the same as the type of the input signal.

Collapse 2-D results to 1-D
Select this check box to output a 2-D array as a 1-D array containing the 2-D array's
elements in column-major order.

Sample time

Note This parameter is not visible in the block dialog box unless it is explicitly set to
a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics
Data Types Double

1 Blocks — Alphabetical List

1-880

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation No

Introduced in R2011a

 Interpreted MATLAB Function

1-881

Interval Test
Determine if signal is in specified interval
Library: Simulink / Logic and Bit Operations

Description
The Interval Test block outputs true (1) if the input is between the values specified by the
Lower limit and Upper limit parameters. The block outputs false (0) if the input is
outside those values. The output of the block when the input is equal to the Lower limit
or the Upper limit is determined by whether you select the Interval closed on left and
Interval closed on right check boxes.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.

Limitations

When the input signal is an enumerated type, the Upper limit and Lower limit values
must be of the same enumerated type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Output
Port_1 — Output signal
scalar | vector | matrix | N-D array

1 Blocks — Alphabetical List

1-882

Output signal indicating whether the input values fall within the specified interval. You
can specify the Output data type as boolean or uint8.
Data Types: uint8 | Boolean

Parameters
Interval closed on right — Include upper limit value
on (default) | off

When you select this check box, the Upper limit is included in the interval for which the
block outputs true (1).

Programmatic Use
Block Parameter: IntervalClosedRight
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Upper limit — Upper limit of interval
0.5 (default) | scalar | vector | matrix | N-D array

The upper limit of the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: uplimit
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0.5'

Interval closed on left — Include lower limit value
on (default) | off

When you select this check box, the Lower limit is included in the interval for which the
block outputs true (1).

Programmatic Use
Block Parameter: IntervalClosedLeft
Type: character vector
Values: 'on' | 'off'
Default: 'on'

 Interval Test

1-883

Lower limit — Lower limit of interval
-0.5 (default) | scalar | vector | matrix | N-D array

The lower limit of the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: lowlimit
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '-0.5'

Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-884

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Interval Test Dynamic

Introduced before R2006a

 Interval Test

1-885

Interval Test Dynamic
Determine if signal is in specified interval
Library: Simulink / Logic and Bit Operations

Description
The Interval Test Dynamic block outputs true (1) if the input is between the values of the
external signals up and lo. The block outputs false (0) if the input is outside those values.
To control how the block handles input values that are equal to the signal lo or the signal
up, use the Interval closed on left and Interval closed on right check boxes.

Ports

Input
up — Upper limit of interval
scalar | vector | matrix | N-D array

Upper limit of interval, specified as a scalar, vector, matrix, or N-D array.

Limitations

When the input signal is an enumerated type, the up and lo signals must be of the same
enumerated type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

u — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.

1 Blocks — Alphabetical List

1-886

Limitations

When the input signal is an enumerated type, the up and lo signals must be of the same
enumerated type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

lo — Lower limit of interval
scalar | vector | matrix | N-D array

Lower limit of interval, specified as a scalar, vector, matrix, or N-D array.

Limitations

When the input signal is an enumerated type, the up and lo signals must be of the same
enumerated type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Output
y — Output signal
scalar | vector | matrix | N-D array

Output signal indicating whether the input values fall within the specified interval. You
can specify the Output data type as boolean or uint8.
Data Types: uint8 | Boolean

Parameters
Interval closed on right — Include upper limit value
on (default) | off

When you select this check box, the value of the signal connected to the up input port is
included in the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: IntervalClosedRight
Type: character vector

 Interval Test Dynamic

1-887

Values: 'on' | 'off'
Default: 'on'

Interval closed on left — Include lower limit value
on (default) | off

When you select this check box, the value of the signal connected to the lo input port is
included in the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: IntervalClosedLeft
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

1 Blocks — Alphabetical List

1-888

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Interval Test

Introduced before R2006a

 Interval Test Dynamic

1-889

Knob
Tune parameter value with dial
Library: Simulink / Dashboard

Description
The Knob block tunes the value of the connected block parameter to during simulation.
For example, you can connect the Knob block to a Gain block in your model and adjust its
value during simulation. You can modify the range of the Knob block's scale to fit your
data. Use the Knob block with other Dashboard blocks to create an interactive dashboard
to control your model.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

1 Blocks — Alphabetical List

1-890

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

 Knob

1-891

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

Scale Type — Type of scale
'Linear' (default) | 'Log'

Type of scale displayed on the control. Linear specifies a linear scale, and Log specifies a
logarithmic scale.

Minimum — Minimum tick mark value
0 (default) | scalar

A finite, real, double, scalar value specifying the minimum tick mark value for the scale.
The minimum must be less than the value entered for the maximum.

Maximum — Maximum tick mark value
100 (default) | scalar

A finite, real, double, scalar value specifying the maximum tick mark value for the scale.
The maximum must be greater than the value entered for the minimum.

Tick Interval — Interval between major tick marks
auto (default) | scalar

A finite, real, positive, integer, scalar value specifying the interval of major tick marks on
the scale. When set to auto, the block automatically adjusts the tick interval based on the
minimum and maximum values.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Rotary Switch | Slider

1 Blocks — Alphabetical List

1-892

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

 Knob

1-893

Lamp
Display color reflecting input value
Library: Simulink / Dashboard

Description
The Lamp block displays a color indicating the value of the input signal. You can use the
Lamp block with other Dashboard blocks to build an interactive dashboard of controls and
indicators for your model. You can specify pairs of input values and colors to provide the
information you want during simulation.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

1 Blocks — Alphabetical List

1-894

• If you turn off logging for a signal connected to a Dashboard block, the model stops
sending data from that signal to the block. To view the signal again, reconnect the
signal.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

States

State — Input value corresponding to a color
0 (default) | scalar

Input value that causes the specified color indication. The [undefined] state specifies
the Lamp block's behavior when the input value is anything other than values specified in
the States table. Click the + button to add another state.

Color — Color of lamp indicating input value
green (default)

Color indicating the input value specified in the corresponding State. You can select from
a palette of standard colors or specify a custom color with RGB values. The Lamp block
displays the color specified for the [undefined] state when the input's value does not
correspond to a value in the States table. Click the + button to add another state.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
MultiStateImage

 Lamp

1-895

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

1 Blocks — Alphabetical List

1-896

Level-2 MATLAB S-Function
Use Level-2 MATLAB S-function in model
Library: User-Defined Functions

Description
This block allows you to use a Level-2 MATLAB S-function (see “Write Level-2 MATLAB S-
Functions”) in a model. To do this, create an instance of this block in the model. Then
enter the name of the Level-2 MATLAB S-function in the S-function name field of the
block's parameter dialog box.

Note Use the S-Function block to include a Level-1 MATLAB S-function in a block.

If the Level-2 MATLAB S-function defines any additional parameters, you can enter them
in the Parameters field of the block's parameter dialog box. Enter the parameters as
MATLAB expressions that evaluate to their values in the order defined by the MATLAB S-
function. Use commas to separate each expression.

If a model includes a Level-2 MATLAB S-Function block, and an error occurs in the S-
function, the Level-2 MATLAB S-Function block displays MATLAB stack trace information
for the error in a dialog box. Click OK to close the dialog box.

Parameters
S-Function Name — Specify S-Function name
no default (default)

Specify the name of a MATLAB function that defines the behavior of this block. The
MATLAB function must follow the Level-2 standard for writing MATLAB S-functions (see
“Write Level-2 MATLAB S-Functions” for details).

 Level-2 MATLAB S-Function

1-897

Parameters — Specify values of parameters for this block
no default (default)

Specify values of parameters for this block.

See Also
Blocks
MATLAB Function | MATLAB System | S-Function | S-Function Builder | Simulink
Function | Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

Topics
“What Is an S-Function?”
“Write Level-2 MATLAB S-Functions”
“Create a Custom Block”

Introduced in R2010b

1 Blocks — Alphabetical List

1-898

Linear Gauge
Display input value on linear scale
Library: Simulink / Dashboard

Description
The Linear Gauge block displays the connected signal on a straight linear scale during
simulation. Use the Linear Gauge block with other Dashboard blocks to build an
interactive dashboard of controls and indicators for your model. The Linear Gauge block
provides an indication of the instantaneous value of the connected signal throughout
simulation. You can modify the range of the Linear Gauge block to fit your data. You can
also customize the appearance of the Linear Gauge block to provide more information
about your signal. For example, you can color-code in-specification and out-of-
specification ranges.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.

 Linear Gauge

1-899

• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• If you turn off logging for a signal connected to a Dashboard block, the model stops
sending data from that signal to the block. To view the signal again, reconnect the
signal.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

Minimum — Minimum tick mark value
0 (default) | scalar

A finite, real, double, scalar value specifying the minimum tick mark value for the scale.
The minimum must be less than the value entered for the maximum.

Maximum — Maximum tick mark value
100 (default) | scalar

A finite, real, double, scalar value specifying the maximum tick mark value for the scale.
The maximum must be greater than the value entered for the minimum.

Tick Interval — Interval between major tick marks
auto (default) | scalar

A finite, real, positive, integer, scalar value specifying the interval of major tick marks on
the scale. When set to auto, the block automatically adjusts the tick interval based on the
minimum and maximum values.

Scale Colors — Color indications on Gauge scale
colors for scale ranges

1 Blocks — Alphabetical List

1-900

Color specifications for ranges on the scale. Press the + button to add a color. For each
color added, specify the minimum and maximum values of the range where you want to
display that color.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Gauge | Half Gauge | Quarter Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

 Linear Gauge

1-901

Logical Operator
Perform specified logical operation on input

Library
Logic and Bit Operations

Description
The Logical Operator block performs the specified logical operation on its inputs. An
input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero.

You select the Boolean operation connecting the inputs with the Operator parameter list.
If you select rectangular as the Icon shape property, the block updates to display the
name of the selected operator. The supported operations are given below.

Operation Description
AND TRUE if all inputs are TRUE
OR TRUE if at least one input is TRUE
NAND TRUE if at least one input is FALSE
NOR TRUE when no inputs are TRUE
XOR TRUE if an odd number of inputs are TRUE
NXOR TRUE if an even number of inputs are TRUE
NOT TRUE if the input is FALSE

1 Blocks — Alphabetical List

1-902

If you select distinctive as the Icon shape, the block's appearance indicates its
function. Simulink software displays a distinctive shape for the selected operator,
conforming to the IEEE Standard Graphic Symbols for Logic Functions:

The number of input ports is specified with the Number of input ports parameter. The
output type is specified with the Output data type parameter. An output value is 1 if
TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types that satisfy this
condition include signed and unsigned integers, and any floating-point data type.

The size of the output depends on input vector size and the selected operator:

• If the block has more than one input, any nonscalar inputs must have the same
dimensions. For example, if any input is a 2-by-2 array, all other nonscalar inputs must
also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the nonscalar inputs.

If the block has more than one input, the output has the same dimensions as the inputs
(after scalar expansion) and each output element is the result of applying the specified
logical operation to the corresponding input elements. For example, if the specified
operation is AND and the inputs are 2-by-2 arrays, the output is a 2-by-2 array whose
top left element is the result of applying AND to the top left elements of the inputs,
etc.

• For a single vector input, the block applies the operation (except the NOT operator) to
all elements of the vector. The output is always a scalar.

• The NOT operator accepts only one input, which can be a scalar or a vector. If the
input is a vector, the output is a vector of the same size containing the logical
complements of the input vector elements.

 Logical Operator

1-903

When configured as a multi-input XOR gate, this block performs an addition- modulo-two
operation as mandated by the IEEE Standard for Logic Elements.

Data Type Support
The Logical Operator block accepts real signals of any numeric data type that Simulink
supports, including fixed-point data types.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Operator
Select logical operator to apply to block inputs.

Default: AND

AND
TRUE if all inputs are TRUE

OR
TRUE if at least one input is TRUE

NAND
TRUE if at least one input is FALSE

1 Blocks — Alphabetical List

1-904

NOR
TRUE when no inputs are TRUE

XOR
TRUE if an odd number of inputs are TRUE

NXOR
TRUE if an even number of inputs are TRUE

NOT
TRUE if the input is FALSE

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Number of input ports
Specify number of block inputs.

Default: 2

• The value must be appropriate for the selected operator.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Icon shape
Specify shape of the block icon.

Default: rectangular

rectangular
Result in a rectangular block that displays the name of the selected operator.

distinctive
Use the graphic symbol for the selected operator as specified by the IEEE standard.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Logical Operator

1-905

Sample time

Note This parameter is not visible in the block dialog box unless it is explicitly set to a
value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Require all inputs and output to have the same data type
Require all inputs and the output to have the same data type.

Default: Off

 On
Require all inputs and the output to have the same data type.

 Off
Do not require all inputs and the output to have the same data type.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Output data type
Specify the output data type.

Default: boolean

Inherit: Logical (see Configuration Parameters: Optimization)
Uses the Implement logic signals as Boolean data configuration parameter (see
“Implement logic signals as Boolean data (vs. double)”) to specify the output data
type.

Note This option supports models created before the boolean option was available.
Use one of the other options, preferably boolean, for new models.

1 Blocks — Alphabetical List

1-906

boolean
Specifies output data type is boolean.

fixdt(1,16)
Specifies output data type is fixdt(1,16).

<data type expression>
Uses the name of a data type object, for example, Simulink.NumericType.

Tip To enter a built-in data type (double, single, int8, uint8, int16, uint16,
int32, or uint32), enclose the expression in single quotes. For example, enter
'double' instead of double.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Mode
Select the category of data to specify.

Default: Built in

Inherit
Specifies inheritance rules for data types. Selecting Inherit enables Logical (see
Configuration Parameters: Optimization).

Built in
Specifies built-in data types. Selecting Built in enables boolean.

Fixed point
Specifies fixed-point data types.

Expression
Specifies expressions that evaluate to data types.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Logical Operator

1-907

See “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

1 Blocks — Alphabetical List

1-908

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that holds the quantized integer.

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Integer

Integer
Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type”.

 Logical Operator

1-909

Examples

Logical Operator Block: AND Operator
In the sldemo_fuelsys model, the fuel_rate_control/airflow_calc subsystem
uses a Logical Operator block as an AND operator:

The output of the Logical Operator block (the enable_integration signal) feeds into
the control port of a Switch block that activates feedback control.

When the Logical Operator block
output is...

Feedback control...

1 Occurs
0 Does not occur

1 Blocks — Alphabetical List

1-910

matlab:showdemo('sldemo_fuelsys')

Logical Operator Block: OR Operator
In the sldemo_hardstop model, the Logical Operator block appears as an OR operator:

The output of the Logical Operator block feeds into the trigger port of an Integrator block
to control whether velocity resets to the initial condition.

 Logical Operator

1-911

matlab:showdemo('sldemo_hardstop')

When the Logical Operator block
output changes...

The Integrator block...

From 0 to 1 Resets the velocity
From 1 to 0 Does not reset velocity

Logical Operator Block: NOT Operator
In the sldemo_clutch model, the Logical Operator block appears as a NOT operator:

1 Blocks — Alphabetical List

1-912

matlab:showdemo('sldemo_clutch')

The output of the Logical Operator block (the clutch slipping signal) feeds into the
trigger port of an enabled subsystem.

 Logical Operator

1-913

When the Logical Operator block
outputs...

The Unlocked subsystem is...

1 Enabled
0 Disabled

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-914

1-D Lookup Table
Approximate one-dimensional function
Library: Simulink / Lookup Tables

Description
Supported Block Operations
The 1-D, 2-D, and n-D Lookup Table blocks evaluate a sampled representation of a
function in N variables

y F x x x xN= (, , ,...,)1 2 3

where the function F can be empirical. The block maps inputs to an output value by
looking up or interpolating a table of values you define with block parameters. The block
supports flat (constant), linear (Linear point-slope), Lagrange (Linear Lagrange), nearest,
and cubic-spline interpolation methods. You can apply these methods to a table of any
dimension from 1 through 30.

In the following block, the first input identifies the first dimension (row) breakpoints, the
second input identifies the second dimension (column) breakpoints, and so on.

See “Port Location After Rotating or Flipping” for a description of the port order for
various block orientations.

 1-D Lookup Table

1-915

Specification of Breakpoint and Table Data
These block parameters define the breakpoint and table data.

Block Parameter Purpose
Number of table dimensions Specifies the number of dimensions of your

lookup table.
Breakpoints Specifies a breakpoint vector that

corresponds to each dimension of your
lookup table.

Table data Defines the associated set of output values.

Tip Evenly spaced breakpoints can make the generated code division-free. For more
information, see fixpt_evenspace_cleanup and “Identify questionable fixed-point
operations” (Embedded Coder).

How the Block Generates Output
The n-D, 1-D and 2-D Lookup Table blocks generate output by looking up or estimating
table values based on the input values.

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint
data sets

Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not match the values of indices in
breakpoint data sets, but are within range

Interpolates appropriate table values, using
the Interpolation method you select

Do not match the values of indices in
breakpoint data sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Other Blocks that Perform Equivalent Operations
You can use the Interpolation Using Prelookup block with the Prelookup block to perform
the equivalent operation of one n-D Lookup Table block. This combination of blocks offers
greater flexibility that can result in more efficient simulation performance for linear
interpolations.

1 Blocks — Alphabetical List

1-916

When the lookup operation is an array access that does not require interpolation, use the
Direct Lookup Table (n-D) block. For example, if you have an integer value k and you want
the kth element of a table, y = table(k), interpolation is unnecessary.

Ports

Input
u1 — First-dimension (row) inputs
scalar | vector | matrix

Real-valued inputs to the u1 port, mapped to an output value by looking up or
interpolating the table of values that you define.
Example: 0:10
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output computed by looking up or estimating table values
scalar | vector | matrix

Output generated by looking up or estimating table values based on the input values.

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint
data sets

Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not match the values of indices in
breakpoint data sets, but are within range

Interpolates appropriate table values, using
the Interpolation method you select

Do not match the values of indices in
breakpoint data sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

 1-D Lookup Table

1-917

Parameters

Table and Breakpoints
Number of table dimensions — Number of lookup table dimensions
1 (default) | 2 | 3 | 4 | ... | 30

Enter the number of dimensions of the lookup table. This parameter determines:

• The number of independent variables for the table and the number of block inputs
• The number of breakpoint sets to specify

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions
that this block supports is 30.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' | '4' | ... | 30
Default: '1'

Data specification — Method of table and breakpoint specification
Table and breakpoints (default) | Lookup table object

From the list, select:

• Table and breakpoints — Specify the table data and breakpoints. Selecting this
option enables these parameters:

• Table data
• Breakpoints specification
• Breakpoints 1
• Edit table and breakpoints

1 Blocks — Alphabetical List

1-918

• Lookup table object — Use an existing lookup table (Simulink.LookupTable)
object. Selecting this option enables the Name field and Edit table and breakpoints
button.

Programmatic Use
Block Parameter: DataSpecification
Type: character vector
Values: 'Table and breakpoints' | 'Lookup table object'
Default: 'Table and breakpoints'

Name — Name of the lookup table object
[] (default) | Simulink.LookupTable object

Enter the name of the lookup table (Simulink.LookupTable) object.

Dependencies

To enable this parameter, set Data specification to Lookup table object.

Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Values: name of a Simulink.LookupTable object
Default: ''

Table data — Define the table of output values
tanh([-5:5]) (default) | vector of values

Enter the table of output values.

During simulation, the matrix size must match the dimensions defined by the Number of
table dimensions parameter. However, during block diagram editing, you can enter an
empty matrix (specified as []) or an undefined workspace variable. This technique lets
you postpone specifying a correctly dimensioned matrix for the table data and continue
editing the block diagram.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: Table
Type: character vector

 1-D Lookup Table

1-919

Values: vector of table values
Default: 'tanh([-5:5])'

Breakpoints specification — Method of breakpoint specification
Explicit values (default) | Even spacing

Specify whether to enter data as explicit breakpoints or as parameters that generate
evenly spaced breakpoints.

• To explicitly specify breakpoint data, set this parameter to Explicit values and
enter breakpoint data in the text box next to the Breakpoints parameters.

• To specify parameters that generate evenly spaced breakpoints, set this parameter to
Even spacing and enter values for the First point and Spacing parameters for
each dimension of breakpoint data. The block calculates the number of points to
generate from the table data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector
Values: 'Explicit values' | 'Even spacing'
Default: 'Explicit values'

Breakpoints — Explicit breakpoint values, or first point and spacing of
breakpoints
[10,22,31] (default) | 1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly or as evenly-spaced breakpoints, based on the value
of the Breakpoints specification parameter.

• If you set Breakpoints specification to Explicit values, enter the breakpoint set
that corresponds to each dimension of table data in each Breakpoints row. For each
dimension, specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly
monotonically increasing.

• If you set Breakpoints specification to Even spacing, enter the parameters First
point and Spacing in each Breakpoints row to generate evenly spaced breakpoints
in the respective dimension. Your table data determines the number of evenly spaced
points.

1 Blocks — Alphabetical List

1-920

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsForDimension1
Type: character vector
Values: 1-by-n or n-by-1 vector of monotonically increasing values
Default: '[10, 22, 31]'

First point — First point in evenly spaced breakpoint data
1 (default) | scalar

Specify the first point in your evenly spaced breakpoint data as a real-valued, finite,
scalar. This parameter is available when Breakpoints specification is set to Even
spacing.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and
Breakpoints specification to Even spacing.

Programmatic Use
Block Parameter: BreakpointsForDimension1FirstPoint
Type: character vector
Values: real-valued, finite, scalar
Default: '1'

Spacing — Spacing between evenly spaced breakpoints
1 (default) | scalar

Specify the spacing between points in your evenly spaced breakpoint data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and
Breakpoints specification to Even spacing.

Programmatic Use
Block Parameter: BreakpointsForDimension1Spacing
Type: character vector
Values: positive, real-valued, finite, scalar
Default: '1'

 1-D Lookup Table

1-921

Edit table and breakpoints — Launch Lookup Table Editor dialog box
button

Click this button to open the Lookup Table Editor. For more information, see “Edit Lookup
Tables” in the Simulink documentation.

Clicking this button for a lookup table object lets you edit the object and save the new
values for the object.

Algorithm
Lookup method

Interpolation method — Method of interpolation between breakpoint values
Linear point-slope (default) | Flat | Nearest | Linear Lagrange | Cubic
spline

When an input falls between breakpoint values, the block interpolates the output value
using neighboring breakpoints. For more information on interpolation methods, see
“Interpolation Methods”.

Dependencies

If you select Cubic spline, the block supports only scalar signals. The other
interpolation methods support nonscalar signals.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector
Values: 'Linear point-slope' | 'Flat' | 'Nearest' | 'Linear Lagrange'
| 'Cubic spline'
Default: 'Linear point-slope'

Extrapolation method — Method of handling input values that fall outside the
range of a breakpoint data set
Clip (default) | Linear | Cubic spline

Select Clip, Linear, or Cubic spline. See “Extrapolation Methods” for more
information.

1 Blocks — Alphabetical List

1-922

Dependencies

To select Cubic spline for Extrapolation method, you must also select Cubic
spline for Interpolation method.

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Linear' | 'Clip' | 'Cubic spline'
Default: 'Linear'

Index search method — Method of calculating table indices
Evenly spaced points (default) | Linear search | Binary search

Select Evenly spaced points, Linear search, or Binary search. Each search
method has speed advantages in different circumstances:

• For evenly spaced breakpoint sets (for example, 10, 20, 30, and so on), you achieve
optimal speed by selecting Evenly spaced points to calculate table indices.

This algorithm uses only the first two breakpoints of a set to determine the offset and
spacing of the remaining points.

Note Set Index search method to Evenly spaced points when using the
Simulink.LookupTable object to specify table data and the Breakpoints
Specification parameter of the referenced Simulink.LookupTable object is set to
Even spacing.

• For unevenly spaced breakpoint sets, follow these guidelines:

• If input signals do not vary much between time steps, selecting Linear search
with Begin index search using previous index result produces the best
performance.

• If input signals jump more than one or two table intervals per time step, selecting
Binary search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that
rely heavily on lookup tables.

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

 1-D Lookup Table

1-923

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Programmatic Use
Block Parameter: IndexSearchMethod
Type: character vector
Values: 'Binary search' | 'Evenly spaced points' | 'Linear search'
Default: 'Binary search'

Begin index search using previous index result — Start using the index
from the previous time step
off (default) | on

Select this check box when you want the block to start its search using the index found at
the previous time step. For inputs that change slowly with respect to the interval size,
enabling this option can improve performance. Otherwise, the linear search and binary
search methods can take longer, especially for large breakpoint sets.

Dependencies

To enable this parameter, set Index search method to Linear search or Binary
search.

Programmatic Use
Block Parameter: BeginIndexSearchUsing PreviousIndexResult
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range
None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options
include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

1 Blocks — Alphabetical List

1-924

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Use last table value for inputs at or above last breakpoint — Method
for computing output for inputs at or above last breakpoint
off (default) | on

Using this check box, specify the indexing convention that the block uses to address the
last element of a breakpoint set and its corresponding table value. This check box is
relevant if the input is larger than the last element of the breakpoint data.

Check Box Block Uses Index Of The... Interval Fraction
Selected Last element of breakpoint data on

the Table and Breakpoints tab
0

Cleared Next-to-last element of breakpoint
data on the Table and
Breakpoints tab

1

Given an input u within range of a breakpoint set bp, the interval fraction f, in the range 0
f 1, is computed as shown below.

 1-D Lookup Table

1-925

Suppose the breakpoint set is [1 4 5] and input u is 5.5. If you select this check box,
the index is that of the last element (5) and the interval fraction is 0. If you clear this
check box, the index is that of the next-to-last element (4) and the interval fraction is 1.
Dependencies

To enable this parameter, set:

• Interpolation method to Linear.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: UseLastTableValue
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input settings

Use one input port for all input data — Use only one input port
off (default) | on

Select this check box to use only one input port that expects a signal that is n elements
wide for an n-dimensional table. This option is useful for removing line clutter on a block
diagram with many lookup tables.

Note When you select this check box, one input port with the label u appears on the
block.

Programmatic Use
Block Parameter: UseOneInputPortForAllInputData
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Code generation

Remove protection against out-of-range input in generated code —
Remove code that checks for out-of-range input values
off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

1 Blocks — Alphabetical List

1-926

Check Box Result When to Use
on Generated code does not

include conditional
statements to check for out-
of-range breakpoint inputs.

When the input is out-of-
range, it may cause
undefined behavior for
generated code and
simulations using
accelerator mode.

For code efficiency

off Generated code includes
conditional statements to
check for out-of-range
inputs.

For safety-critical
applications

If your input is not out of range, you can select the Remove protection against out-of-
range index in generated code check box for code efficiency. By default, this check box
is cleared. For safety-critical applications, do not select this check box. If you want to
select the Remove protection against out-of-range index in generated code check
box, first check that your model inputs are in range. For example:

1 Clear the Remove protection against out-of-range index in generated code
check box.

2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the

Remove protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in
generated code check box and the input k or f is out of range, the behavior is
undefined for generated code and simulations using accelerator mode.

Depending on your application, you can run the following Model Advisor checks to verify
the usage of this check box:

 1-D Lookup Table

1-927

• By Product > Embedded Coder > Identify lookup table blocks that generate
expensive out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331
Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks”.

Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Support tunable table size in code generation — Enable tunable table
size in the generated code
off (default) | on

Select this check box to enable tunable table size in the generated code. This option
enables you to change the size and values of the lookup table and breakpoint data in the
generated code without regenerating or recompiling the code.

Dependencies

If you set Interpolation method to Cubic spline, this check box is not available.

Programmatic Use
Block Parameter: SupportTunableTableSize
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

1 Blocks — Alphabetical List

1-928

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Maximum indices for each dimension — Maximum index value for each table
dimension
[] (default) | scalar or vector of positive integer values
Example: [4 6] for a 5-by-7 table

Specify the maximum index values for each table dimension using zero-based indexing.
You can specify a scalar or vector of positive integer values using the following data
types:

• Built-in floating-point types: double and single
• Built-in integer types: int8, int16, int32, uint8, uint16, and uint32

Examples of valid specifications include:

• [4 6] for a 5-by-7 table
• [int8(2) int16(5) int32(9)] for a 3-by-6-by-10 table
• A Simulink.Parameter whose value on generating code is one less than the

dimensions of the table data. For more information, see “Tunable Table Size in the
Generated Code” on page 1-939.

Dependencies

To enable this parameter, select Support tunable table size in code generation. On
tuning this parameter in the generated code, provide the new table data and breakpoints
along with the tuned parameter value.

Programmatic Use
Block Parameter: MaximumIndicesForEachDimension
Type: character vector
Values: scalar or vector of positive integer values
Default: '[]'

 1-D Lookup Table

1-929

Data Types
Table data — Data type of table data
Inherit: Same as output (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the
output signal

• Sharing of prescaled table data between two n-D Lookup Table blocks with different
output data types

• Sharing of custom storage table data in the generated code for blocks with different
output data types

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'Inherit: Same as
output' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

1 Blocks — Alphabetical List

1-930

Table data Minimum — Minimum value of the table data
[] | scalar

Specify the minimum value for table data. The default value is [] (unspecified).
Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table data Maximum — Maximum value of the table data
[] | scalar

Specify the maximum value for table data. The default value is [] (unspecified).
Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Breakpoints — Breakpoint data type
Inherit: Same as corresponding input (default) | double | single | int8 |
uint8 | int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for a set of breakpoint data. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as corresponding
input

• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Tip

• Breakpoints support unordered enumerated data. As a result, linear searches are also
unordered, which offers flexibility but can impact performance. The search begins
from the first element in the breakpoint.

 1-D Lookup Table

1-931

• If the Begin index search using previous index result check box is selected, you
must use ordered monotonically increasing data. This ordering improves performance.

• For enumerated data, Extrapolation method must be Clip.
• The block does not support out-of-range input for enumerated data. When specifying

enumerated data, include the entire enumeration set in the breakpoint data set. For
example, use the enumeration function.

This is a limitation for using enumerated data with this block:

• The block does not support out-of-range input for enumerated data. When specifying
enumerated data, include the entire enumeration set in the breakpoint data set. For
example, use the enumeration function.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Specify a breakpoint data type different from the corresponding input data type for
these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type than
the input signal

• Sharing of prescaled breakpoint data between two n-D Lookup Table blocks with
different input data types

• Sharing of custom storage breakpoint data in the generated code for blocks with
different input data types

Programmatic Use
Block Parameter: BreakpointsForDimension1DataTypeStr |
BreakpointsForDimension2DataTypeStr| ... |
BreakpointsForDimension30DataTypeStr
Type: character vector
Values: 'Inherit: Same as corresponding input' | 'Inherit: Inherit
from 'Breakpoint data'' | 'double' | 'single' | 'int8' | 'uint8' |

1 Blocks — Alphabetical List

1-932

'int16' | 'uint16' | 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as corresponding input'

Breakpoints Minimum — Minimum value breakpoint data can have
[] | scalar

Specify the minimum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Min |
BreakpointsForDimension2Min | ... | BreakpointsForDimension30Min
Type: character vector
Values: scalar
Default: '[]'

Breakpoints Maximum — Maximum value breakpoint data can have
[] | scalar

Specify the maximum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Max |
BreakpointsForDimension2Max | ... | BreakpointsForDimension30Max
Type: character vector
Values: scalar
Default: '[]'

Fraction — Fraction data type
Inherit: Inherit via internal rule (default) | double | single |
fixdt(1,16,0) | <data type expression>

Specify the fraction data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

 1-D Lookup Table

1-933

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: FractionDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)'|'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Intermediate results — Intermediate results data type
Inherit: Same as output (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Use this parameter to specify higher (or lower) precision for internal computations
than for table data or output data.

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as
output' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'

1 Blocks — Alphabetical List

1-934

Default: 'Inherit: Same as output'

Output — Output data type
Inherit: Same as input (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit
from table data' | 'Inherit: Same as first input' | 'double' |
'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type
expression'
Default: 'Inherit: Same as first input'

Output Minimum — Minimum value the block can output
[] | scalar

Specify the minimum value that the block outputs. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.

 1-D Lookup Table

1-935

• Optimization of the code that you generate from the model. This optimization can
remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output Maximum — Maximum value the block can output
[] | scalar

Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Internal rule priority — Internal rule for intermediate calculations
Speed (default) | Precision

Specify the internal rule for intermediate calculations. Select Speed for faster
calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.

Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector

1 Blocks — Alphabetical List

1-936

Values: 'Speed' | 'Precision'
Default: 'Speed'

Require all inputs to have the same data type — Require all inputs to
have the same data type
on (default) | off

Select to require all inputs to have the same data type.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Lock data type settings against changes by the fixed-point tools —
Prevent fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on this block. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Simplest (default) | Ceiling | Convergent | Floor | Nearest | Round | Zero

Specify the rounding mode for fixed-point lookup table calculations that occur during
simulation or execution of code generated from the model. For more information, see
“Rounding” (Fixed-Point Designer).

This option does not affect rounding of values of block parameters. Simulink rounds such
values to the nearest representable integer value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the edit field on
the block dialog box.

 1-D Lookup Table

1-937

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Simplest'

Saturate on integer overflow — Method of overflow action
off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box (on).

Your model has possible
overflow and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

An overflow associated
with a signed 8-bit integer
can saturate to -128 or
127.

Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not
fit in a signed 8-bit integer
and wraps to -126.

Tip If you save your model as version R2009a or earlier, this check box setting has no
effect and no saturation code appears. This behavior preserves backward compatibility.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow

1 Blocks — Alphabetical List

1-938

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | base integer | fixed point | enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Definitions

Tunable Table Size in the Generated Code
Suppose that you have a lookup table and want to make the size tunable in the generated
code. When you use Simulink.LookupTable and Simulink.Breakpoint objects to
configure lookup table data for calibration in the generated code, use the
SupportTunableSize property of the objects to enable a tunable table size. When you
do not use these classes, use the Support tunable table size in code generation
parameter in an n-D Lookup Table block to enable a tunable table size.

Assume that:

• You define a Simulink.Parameter structure in the preload function of your model:

p = Simulink.Parameter;
p.Value.MaxIdx = [2 2];
p.Value.BP1 = [1 2 3];
p.Value.BP2 = [1 4 16];
p.Value.Table = [4 5 6; 16 19 20; 10 18 23];
p.DataType = 'Bus: slLookupTable';
p.CoderInfo.StorageClass = 'ExportedGlobal';

% Create bus object slBus1 from MATLAB structure
Simulink.Bus.createObject(p.Value);

 1-D Lookup Table

1-939

slLookupTable = slBus1;
slLookupTable.Elements(1).DataType = 'uint32';

• These block parameters apply in the n-D Lookup Table block dialog box.

Parameter Value
Number of table dimensions 2
Table data p.Table
Breakpoints 1 p.BP1
Breakpoints 2 p.BP2
Support tunable table size in code
generation

on

Maximum indices for each
dimension

p.MaxIdx

The generated model_types.h header file contains a type definition that looks
something like this.

typedef struct {
 uint32_T MaxIdx[2];
 real_T BP1[3];
 real_T BP2[3];
 real_T Table[9];
} slLookupTable;

The generated model.c file contains code that looks something like this.

/* Exported block parameters */
slLookupTable p = {
 { 2U, 2U },

 { 1.0, 2.0, 3.0 },

 { 1.0, 4.0, 16.0 },

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 }
} ;

/* More code */

/* Model output function */
static void ex_lut_nd_tunable_table_output(int_T tid)

1 Blocks — Alphabetical List

1-940

{
 /* Lookup_n-D: '<Root>/n-D Lookup Table' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 Y = look2_binlcpw(U1, U2, p.BP1, p.BP2, p.Table, ...
p.MaxIdx, p.MaxIdx[0] + 1U);

 /* Outport: '<Root>/Out1' */
 ex_lut_nd_tunable_table_Y.Out1 = Y;

 /* tid is required for a uniform function interface.
 * Argument tid is not used in the function. */
 UNUSED_PARAMETER(tid);
}

The highlighted line of code specifies a tunable table size for the lookup table. You can
change the size and values of the lookup table and breakpoint data without regenerating
or recompiling the code.

Enumerated Values in Lookup Tables
Suppose that you have a lookup table with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

n-D Lookup block has these settings:

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Breakpoints 1 value is enumeration('Gears').
• Interpolation method is Flat.

 1-D Lookup Table

1-941

• For an unordered search, set Index search method to Linear search and clear the
Begin index search using previous index result check box.

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and
SPORTS.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The 1-D, 2-D, and N-D Lookup Table blocks have restrictions for HDL code generation. For
more information, see “Restrictions” (HDL Coder).

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Direct Lookup Table (n-D) | Interpolation Using Prelookup | Lookup Table Dynamic |
Prelookup | Simulink.Breakpoint | Simulink.LookupTable

Topics
“Import Lookup Table Data from MATLAB”

1 Blocks — Alphabetical List

1-942

“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

Introduced in R2011a

 1-D Lookup Table

1-943

2-D Lookup Table
Approximate two-dimensional function
Library: Simulink / Lookup Tables

Description

Supported Block Operations
The 1-D, 2-D, and n-D Lookup Table blocks evaluate a sampled representation of a
function in N variables

y F x x x xN= (, , ,...,)1 2 3

where the function F can be empirical. The block maps inputs to an output value by
looking up or interpolating a table of values you define with block parameters. The block
supports flat (constant), linear (Linear point-slope), Lagrange (Linear Lagrange), nearest,
and cubic-spline interpolation methods. You can apply these methods to a table of any
dimension from 1 through 30.

In the following block, the first input identifies the first dimension (row) breakpoints, the
second input identifies the second dimension (column) breakpoints, and so on.

1 Blocks — Alphabetical List

1-944

See “Port Location After Rotating or Flipping” for a description of the port order for
various block orientations.

Specification of Breakpoint and Table Data
These block parameters define the breakpoint and table data.

Block Parameter Purpose
Number of table dimensions Specifies the number of dimensions of your

lookup table.
Breakpoints Specifies a breakpoint vector that

corresponds to each dimension of your
lookup table.

Table data Defines the associated set of output values.

Tip Evenly spaced breakpoints can make the generated code division-free. For more
information, see fixpt_evenspace_cleanup and “Identify questionable fixed-point
operations” (Embedded Coder).

How the Block Generates Output
The n-D, 1-D and 2-D Lookup Table blocks generate output by looking up or estimating
table values based on the input values.

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint
data sets

Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not match the values of indices in
breakpoint data sets, but are within range

Interpolates appropriate table values, using
the Interpolation method you select

Do not match the values of indices in
breakpoint data sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

 2-D Lookup Table

1-945

Other Blocks that Perform Equivalent Operations
You can use the Interpolation Using Prelookup block with the Prelookup block to perform
the equivalent operation of one n-D Lookup Table block. This combination of blocks offers
greater flexibility that can result in more efficient simulation performance for linear
interpolations.

When the lookup operation is an array access that does not require interpolation, use the
Direct Lookup Table (n-D) block. For example, if you have an integer value k and you want
the kth element of a table, y = table(k), interpolation is unnecessary.

Ports
Input
u1 — First-dimension (row) inputs
scalar | vector | matrix

Real-valued inputs to the u1 port, mapped to an output value by looking up or
interpolating the table of values that you define.
Example: 0:10
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

u2 — Second-dimension (column) inputs
scalar | vector | matrix

Real-valued inputs to the u2 port, mapped to an output value by looking up or
interpolating the table of values that you define.
Example: 0:10
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output computed by looking up or estimating table values
scalar | vector | matrix

1 Blocks — Alphabetical List

1-946

Output generated by looking up or estimating table values based on the input values.

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint
data sets

Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not match the values of indices in
breakpoint data sets, but are within range

Interpolates appropriate table values, using
the Interpolation method you select

Do not match the values of indices in
breakpoint data sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters

Table and Breakpoints
Number of table dimensions — Number of lookup table dimensions
2 (default) | 1 | 3 | 4 | ... | 30

Enter the number of dimensions of the lookup table. This parameter determines:

• The number of independent variables for the table and the number of block inputs
• The number of breakpoint sets to specify

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions
that this block supports is 30.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' | '4' | ... | 30

 2-D Lookup Table

1-947

Default: '2'

Data specification — Method of table and breakpoint specification
Table and breakpoints (default) | Lookup table object

From the list, select:

• Table and breakpoints — Specify the table data and breakpoints. Selecting this
option enables these parameters:

• Table data
• Breakpoints specification
• Breakpoints 1
• Breakpoints 2
• Edit table and breakpoints

• Lookup table object — Use an existing lookup table (Simulink.LookupTable)
object. Selecting this option enables the Name field and Edit table and breakpoints
button.

Programmatic Use
Block Parameter: DataSpecification
Type: character vector
Values: 'Table and breakpoints' | 'Lookup table object'
Default: 'Table and breakpoints'

Name — Name of the lookup table object
[] (default) | Simulink.LookupTable object

Enter the name of the lookup table (Simulink.LookupTable) object.
Dependencies

To enable this parameter, set Data specification to Lookup table object.
Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Values: name of a Simulink.LookupTable object
Default: ''

Table data — Define the table of output values
[4 5 6; 16 19 20; 10 18 23] (default) | matrix of values

1 Blocks — Alphabetical List

1-948

Enter the table of output values.

During simulation, the matrix size must match the dimensions defined by the Number of
table dimensions parameter. However, during block diagram editing, you can enter an
empty matrix (specified as []) or an undefined workspace variable. This technique lets
you postpone specifying a correctly dimensioned matrix for the table data and continue
editing the block diagram.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: matrix of table values
Default: '[4 5 6; 16 19 20; 10 18 23]'

Breakpoints specification — Method of breakpoint specification
Explicit values (default) | Even spacing

Specify whether to enter data as explicit breakpoints or as parameters that generate
evenly spaced breakpoints.

• To explicitly specify breakpoint data, set this parameter to Explicit values and
enter breakpoint data in the text box next to the Breakpoints parameters.

• To specify parameters that generate evenly spaced breakpoints, set this parameter to
Even spacing and enter values for the First point and Spacing parameters for
each dimension of breakpoint data. The block calculates the number of points to
generate from the table data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector
Values: 'Explicit values' | 'Even spacing'
Default: 'Explicit values'

 2-D Lookup Table

1-949

Breakpoints — Explicit breakpoint values, or first point and spacing of
breakpoints
[1:3] (default) | 1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly or as evenly-spaced breakpoints, based on the value
of the Breakpoints specification parameter.

• If you set Breakpoints specification to Explicit values, enter the breakpoint set
that corresponds to each dimension of table data in each Breakpoints row. For each
dimension, specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly
monotonically increasing.

• If you set Breakpoints specification to Even spacing, enter the parameters First
point and Spacing in each Breakpoints row to generate evenly-spaced breakpoints
in the respective dimension. Your table data determines the number of evenly spaced
points.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsForDimension1
Type: character vector
Values: 1-by-n or n-by-1 vector of monotonically increasing values
Default: '[1:3]'

First point — First point in evenly spaced breakpoint data
1 (default) | scalar

Specify the first point in your evenly spaced breakpoint data as a real-valued, finite,
scalar. This parameter is available when Breakpoints specification is set to Even
spacing.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and
Breakpoints specification to Even spacing.

Programmatic Use
Block Parameter: BreakpointsForDimension1FirstPoint |
BreakpointsForDimension2FirstPoint
Type: character vector

1 Blocks — Alphabetical List

1-950

Values: real-valued, finite, scalar
Default: '1'

Spacing — Spacing between evenly spaced breakpoints
1 (default) | scalar

Specify the spacing between points in your evenly-spaced breakpoint data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and
Breakpoints specification to Even spacing.

Programmatic Use
Block Parameter: BreakpointsForDimension1Spacing |
BreakpointsForDimension2Spacing
Type: character vector
Values: positive, real-valued, finite, scalar
Default: '1'

Edit table and breakpoints — Launch Lookup Table Editor dialog box
button

Click this button to open the Lookup Table Editor. For more information, see “Edit Lookup
Tables” in the Simulink documentation.

Clicking this button for a lookup table object lets you edit the object and save the new
values for the object.

Algorithm
Lookup method

Interpolation method — Method of interpolation between breakpoint values
Linear point-slope (default) | Flat | Nearest | Linear Lagrange | Cubic
spline

When an input falls between breakpoint values, the block interpolates the output value
using neighboring breakpoints. For more information on interpolation methods, see
“Interpolation Methods”.

 2-D Lookup Table

1-951

Dependencies

If you select Cubic spline, the block supports only scalar signals. The other
interpolation methods support nonscalar signals.
Programmatic Use
Block Parameter: InterpMethod
Type: character vector
Values: 'Linear point-slope' | 'Flat' | 'Nearest' | 'Linear Lagrange'
| 'Cubic spline'
Default: 'Linear point-slope'

Extrapolation method — Method of handling input values that fall outside the
range of a breakpoint data set
Clip (default) | Linear | Cubic spline

Select Clip, Linear, or Cubic spline. See “Extrapolation Methods” for more
information.
Dependencies

To select Cubic spline for Extrapolation method, you must also select Cubic
spline for Interpolation method.
Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Linear' | 'Clip' | 'Cubic spline'
Default: 'Linear'

Index search method — Method of calculating table indices
Evenly spaced points (default) | Linear search | Binary search

Select Evenly spaced points, Linear search, or Binary search. Each search
method has speed advantages in different circumstances:

• For evenly spaced breakpoint sets (for example, 10, 20, 30, and so on), you achieve
optimal speed by selecting Evenly spaced points to calculate table indices.

This algorithm uses only the first two breakpoints of a set to determine the offset and
spacing of the remaining points.

Note Set Index search method to Evenly spaced points when using the
Simulink.LookupTable object to specify table data and the Breakpoints

1 Blocks — Alphabetical List

1-952

Specification parameter of the referenced Simulink.LookupTable object is set to
Even spacing.

• For unevenly spaced breakpoint sets, follow these guidelines:

• If input signals do not vary much between time steps, selecting Linear search
with Begin index search using previous index result produces the best
performance.

• If input signals jump more than one or two table intervals per time step, selecting
Binary search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that
rely heavily on lookup tables.

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Programmatic Use
Block Parameter: IndexSearchMethod
Type: character vector
Values: 'Binary search' | 'Evenly spaced points' | 'Linear search'
Default: 'Binary search'

Begin index search using previous index result — Start using the index
from the previous time step
off (default) | on

Select this check box when you want the block to start its search using the index found at
the previous time step. For inputs that change slowly with respect to the interval size,
enabling this option can improve performance. Otherwise, the linear search and binary
search methods can take longer, especially for large breakpoint sets.

Dependencies

To enable this parameter, set Index search method to Linear search or Binary
search.

 2-D Lookup Table

1-953

Programmatic Use
Block Parameter: BeginIndexSearchUsing PreviousIndexResult
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range
None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options
include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Use last table value for inputs at or above last breakpoint — Method
for computing output for inputs at or above last breakpoint
off (default) | on

Using this check box, specify the indexing convention that the block uses to address the
last element of a breakpoint set and its corresponding table value. This check box is
relevant if the input is larger than the last element of the breakpoint data.

Check Box Block Uses Index Of The... Interval Fraction
Selected Last element of breakpoint data on

the Table and Breakpoints tab
0

Cleared Next-to-last element of breakpoint
data on the Table and
Breakpoints tab

1

Given an input u within range of a breakpoint set bp, the interval fraction f, in the range 0
f 1, is computed as shown below.

1 Blocks — Alphabetical List

1-954

Suppose the breakpoint set is [1 4 5] and input u is 5.5. If you select this check box,
the index is that of the last element (5) and the interval fraction is 0. If you clear this
check box, the index is that of the next-to-last element (4) and the interval fraction is 1.

Dependencies

To enable this parameter, set:

• Interpolation method to Linear.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: UseLastTableValue
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input settings

Use one input port for all input data — Use only one input port
off (default) | on

Select this check box to use only one input port that expects a signal that is n elements
wide for an n-dimensional table. This option is useful for removing line clutter on a block
diagram with many lookup tables.

 2-D Lookup Table

1-955

Note When you select this check box, one input port with the label u appears on the
block.

Programmatic Use
Block Parameter: UseOneInputPortForAllInputData
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Code generation

Remove protection against out-of-range input in generated code —
Remove code that checks for out-of-range input values
off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

Check Box Result When to Use
on Generated code does not

include conditional
statements to check for out-
of-range breakpoint inputs.

When the input is out-of-
range, it may cause
undefined behavior for
generated code and
simulations using
accelerator mode.

For code efficiency

off Generated code includes
conditional statements to
check for out-of-range
inputs.

For safety-critical
applications

If your input is not out of range, you can select the Remove protection against out-of-
range index in generated code check box for code efficiency. By default, this check box
is cleared. For safety-critical applications, do not select this check box. If you want to
select the Remove protection against out-of-range index in generated code check
box, first check that your model inputs are in range. For example:

1 Blocks — Alphabetical List

1-956

1 Clear the Remove protection against out-of-range index in generated code
check box.

2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the

Remove protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in
generated code check box and the input k or f is out of range, the behavior is
undefined for generated code and simulations using accelerator mode.

Depending on your application, you can run the following Model Advisor checks to verify
the usage of this check box:

• By Product > Embedded Coder > Identify lookup table blocks that generate
expensive out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331
Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks”.

Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Support tunable table size in code generation — Enable tunable table
size in the generated code
off (default) | on

Select this check box to enable tunable table size in the generated code. This option
enables you to change the size and values of the lookup table and breakpoint data in the
generated code without regenerating or recompiling the code.

Dependencies

If you set Interpolation method to Cubic spline, this check box is not available.

 2-D Lookup Table

1-957

Programmatic Use
Block Parameter: SupportTunableTableSize
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Maximum indices for each dimension — Maximum index value for each table
dimension
[] (default) | scalar or vector of positive integer values
Example: [4 6] for a 5-by-7 table

Specify the maximum index values for each table dimension using zero-based indexing.
You can specify a scalar or vector of positive integer values using the following data
types:

• Built-in floating-point types: double and single
• Built-in integer types: int8, int16, int32, uint8, uint16, and uint32

Examples of valid specifications include:

• [4 6] for a 5-by-7 table
• [int8(2) int16(5) int32(9)] for a 3-by-6-by-10 table
• A Simulink.Parameter whose value on generating code is one less than the

dimensions of the table data. For more information, see “Tunable Table Size in the
Generated Code” on page 1-968.

1 Blocks — Alphabetical List

1-958

Dependencies

To enable this parameter, select Support tunable table size in code generation. On
tuning this parameter in the generated code, provide the new table data and breakpoints
along with the tuned parameter value.
Programmatic Use
Block Parameter: MaximumIndicesForEachDimension
Type: character vector
Values: scalar or vector of positive integer values
Default: '[]'

Data Types
Table data — Data type of table data
Inherit: Same as output (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the
output signal

• Sharing of prescaled table data between two n-D Lookup Table blocks with different
output data types

• Sharing of custom storage table data in the generated code for blocks with different
output data types

 2-D Lookup Table

1-959

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'Inherit: Same as
output' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

Table data Minimum — Minimum value of the table data
[] | scalar

Specify the minimum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table data Maximum — Maximum value of the table data
[] | scalar

Specify the maximum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Breakpoints — Breakpoint data type
Inherit: Same as corresponding input (default) | double | single | int8 |
uint8 | int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for a set of breakpoint data. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as corresponding
input

• The name of a built-in data type, for example, single

1 Blocks — Alphabetical List

1-960

• The name of a data type class, for example, an enumerated data type class
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Tip

• Breakpoints support unordered enumerated data. As a result, linear searches are also
unordered, which offers flexibility but can impact performance. The search begins
from the first element in the breakpoint.

• If the Begin index search using previous index result check box is selected, you
must use ordered monotonically increasing data. This ordering improves performance.

• For enumerated data, Extrapolation method must be Clip.
• The block does not support out-of-range input for enumerated data. When specifying

enumerated data, include the entire enumeration set in the breakpoint data set. For
example, use the enumeration function.

This is a limitation for using enumerated data with this block:

• The block does not support out-of-range input for enumerated data. When specifying
enumerated data, include the entire enumeration set in the breakpoint data set. For
example, use the enumeration function.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Specify a breakpoint data type different from the corresponding input data type for
these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type than
the input signal

• Sharing of prescaled breakpoint data between two n-D Lookup Table blocks with
different input data types

• Sharing of custom storage breakpoint data in the generated code for blocks with
different input data types

 2-D Lookup Table

1-961

Programmatic Use
Block Parameter: BreakpointsForDimension1DataTypeStr |
BreakpointsForDimension2DataTypeStr| ... |
BreakpointsForDimension30DataTypeStr
Type: character vector
Values: 'Inherit: Same as corresponding input' | 'Inherit: Inherit
from 'Breakpoint data'' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as corresponding input'

Breakpoints Minimum — Minimum value breakpoint data can have
[] | scalar

Specify the minimum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Min |
BreakpointsForDimension2Min | ... | BreakpointsForDimension30Min
Type: character vector
Values: scalar
Default: '[]'

Breakpoints Maximum — Maximum value breakpoint data can have
[] | scalar

Specify the maximum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Max |
BreakpointsForDimension2Max | ... | BreakpointsForDimension30Max
Type: character vector
Values: scalar
Default: '[]'

Fraction — Fraction data type
Inherit: Inherit via internal rule (default) | double | single |
fixdt(1,16,0) | <data type expression>

Specify the fraction data type. You can set it to:

1 Blocks — Alphabetical List

1-962

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: FractionDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)'|'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Intermediate results — Intermediate results data type
Inherit: Same as output (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Use this parameter to specify higher (or lower) precision for internal computations
than for table data or output data.

 2-D Lookup Table

1-963

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as
output' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

Output — Output data type
Inherit: Same as input (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit
from table data' | 'Inherit: Same as first input' | 'double' |
'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type
expression'
Default: 'Inherit: Same as first input'

Output Minimum — Minimum value the block can output
[] | scalar

1 Blocks — Alphabetical List

1-964

Specify the minimum value that the block outputs. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output Maximum — Maximum value the block can output
[] | scalar

Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

 2-D Lookup Table

1-965

Internal rule priority — Internal rule for intermediate calculations
Speed (default) | Precision

Specify the internal rule for intermediate calculations. Select Speed for faster
calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.

Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector
Values: 'Speed' | 'Precision'
Default: 'Speed'

Require all inputs to have the same data type — Require all inputs to
have the same data type
on (default) | off

Select to require all inputs to have the same data type.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Lock data type settings against changes by the fixed-point tools —
Prevent fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on this block. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Simplest (default) | Ceiling | Convergent | Floor | Nearest | Round | Zero

1 Blocks — Alphabetical List

1-966

Specify the rounding mode for fixed-point lookup table calculations that occur during
simulation or execution of code generated from the model. For more information, see
“Rounding” (Fixed-Point Designer).

This option does not affect rounding of values of block parameters. Simulink rounds such
values to the nearest representable integer value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the edit field on
the block dialog box.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Simplest'

Saturate on integer overflow — Method of overflow action
off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box (on).

Your model has possible
overflow and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

An overflow associated
with a signed 8-bit integer
can saturate to -128 or
127.

Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not
fit in a signed 8-bit integer
and wraps to -126.

Tip If you save your model as version R2009a or earlier, this check box setting has no
effect and no saturation code appears. This behavior preserves backward compatibility.

 2-D Lookup Table

1-967

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.
Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | base integer | fixed point | enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Definitions
Tunable Table Size in the Generated Code
Suppose that you have a lookup table and want to make the size tunable in the generated
code. When you use Simulink.LookupTable and Simulink.Breakpoint objects to
configure lookup table data for calibration in the generated code, use the
SupportTunableSize property of the objects to enable a tunable table size. When you
do not use these classes, use the Support tunable table size in code generation
parameter in an n-D Lookup Table block to enable a tunable table size.

Assume that:

• You define a Simulink.Parameter structure in the preload function of your model:

p = Simulink.Parameter;
p.Value.MaxIdx = [2 2];
p.Value.BP1 = [1 2 3];

1 Blocks — Alphabetical List

1-968

p.Value.BP2 = [1 4 16];
p.Value.Table = [4 5 6; 16 19 20; 10 18 23];
p.DataType = 'Bus: slLookupTable';
p.CoderInfo.StorageClass = 'ExportedGlobal';

% Create bus object slBus1 from MATLAB structure
Simulink.Bus.createObject(p.Value);
slLookupTable = slBus1;
slLookupTable.Elements(1).DataType = 'uint32';

• These block parameters apply in the n-D Lookup Table block dialog box.

Parameter Value
Number of table dimensions 2
Table data p.Table
Breakpoints 1 p.BP1
Breakpoints 2 p.BP2
Support tunable table size in code
generation

on

Maximum indices for each
dimension

p.MaxIdx

The generated model_types.h header file contains a type definition that looks
something like this.

typedef struct {
 uint32_T MaxIdx[2];
 real_T BP1[3];
 real_T BP2[3];
 real_T Table[9];
} slLookupTable;

The generated model.c file contains code that looks something like this.

/* Exported block parameters */
slLookupTable p = {
 { 2U, 2U },

 { 1.0, 2.0, 3.0 },

 { 1.0, 4.0, 16.0 },

 2-D Lookup Table

1-969

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 }
} ;

/* More code */

/* Model output function */
static void ex_lut_nd_tunable_table_output(int_T tid)
{
 /* Lookup_n-D: '<Root>/n-D Lookup Table' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 Y = look2_binlcpw(U1, U2, p.BP1, p.BP2, p.Table, ...
p.MaxIdx, p.MaxIdx[0] + 1U);

 /* Outport: '<Root>/Out1' */
 ex_lut_nd_tunable_table_Y.Out1 = Y;

 /* tid is required for a uniform function interface.
 * Argument tid is not used in the function. */
 UNUSED_PARAMETER(tid);
}

The highlighted line of code specifies a tunable table size for the lookup table. You can
change the size and values of the lookup table and breakpoint data without regenerating
or recompiling the code.

Enumerated Values in Lookup Tables
Suppose that you have a lookup table with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

n-D Lookup block has these settings:

1 Blocks — Alphabetical List

1-970

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Breakpoints 1 value is enumeration('Gears').
• Interpolation method is Flat.
• For an unordered search, set Index search method to Linear search and clear the

Begin index search using previous index result check box.

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and
SPORTS.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The 1-D, 2-D, and N-D Lookup Table blocks have restrictions for HDL code generation. For
more information, see “Restrictions” (HDL Coder).

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 2-D Lookup Table

1-971

See Also
Direct Lookup Table (n-D) | Interpolation Using Prelookup | Lookup Table Dynamic |
Prelookup | Simulink.Breakpoint | Simulink.LookupTable

Topics
“Import Lookup Table Data from MATLAB”
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

Introduced in R2011a

1 Blocks — Alphabetical List

1-972

n-D Lookup Table
Approximate n-dimensional function
Library: Simulink / Lookup Tables

Description
Supported Block Operations
The 1-D, 2-D, and n-D Lookup Table blocks evaluate a sampled representation of a
function in N variables

y F x x x xN= (, , ,...,)1 2 3

where the function F can be empirical. The block maps inputs to an output value by
looking up or interpolating a table of values you define with block parameters. The block
supports flat (constant), linear (Linear point-slope), Lagrange (Linear Lagrange), nearest,
and cubic-spline interpolation methods. You can apply these methods to a table of any
dimension from 1 through 30.

In the following block, the first input identifies the first dimension (row) breakpoints, the
second input identifies the second dimension (column) breakpoints, and so on.

See “Port Location After Rotating or Flipping” for a description of the port order for
various block orientations.

 n-D Lookup Table

1-973

Specification of Breakpoint and Table Data
These block parameters define the breakpoint and table data.

Block Parameter Purpose
Number of table dimensions Specifies the number of dimensions of your

lookup table.
Breakpoints Specifies a breakpoint vector that

corresponds to each dimension of your
lookup table.

Table data Defines the associated set of output values.

Tip Evenly spaced breakpoints can make the generated code division-free. For more
information, see fixpt_evenspace_cleanup and “Identify questionable fixed-point
operations” (Embedded Coder).

How the Block Generates Output
The n-D, 1-D and 2-D Lookup Table blocks generate output by looking up or estimating
table values based on the input values.

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint
data sets

Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not match the values of indices in
breakpoint data sets, but are within range

Interpolates appropriate table values, using
the Interpolation method you select

Do not match the values of indices in
breakpoint data sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Other Blocks that Perform Equivalent Operations
You can use the Interpolation Using Prelookup block with the Prelookup block to perform
the equivalent operation of one n-D Lookup Table block. This combination of blocks offers
greater flexibility that can result in more efficient simulation performance for linear
interpolations.

1 Blocks — Alphabetical List

1-974

When the lookup operation is an array access that does not require interpolation, use the
Direct Lookup Table (n-D) block. For example, if you have an integer value k and you want
the kth element of a table, y = table(k), interpolation is unnecessary.

Ports

Input
u1 — First-dimension (row) inputs
scalar | vector | matrix

Real-valued inputs to the u1 port, mapped to an output value by looking up or
interpolating the table of values that you define.
Example: 0:10
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

uN — n-th dimension input values
scalar | vector | matrix

Real-valued inputs to the uN port, mapped to an output value by looking up or
interpolating the table of values that you define.
Example: 0:10
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output computed by looking up or estimating table values
scalar | vector | matrix

Output generated by looking up or estimating table values based on the input values:

 n-D Lookup Table

1-975

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint
data sets

Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not match the values of indices in
breakpoint data sets, but are within range

Interpolates appropriate table values, using
the Interpolation method you select

Do not match the values of indices in
breakpoint data sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters

Table and Breakpoints
Number of table dimensions — Number of lookup table dimensions
3 (default) | 1 | 2 | 4 | ... | 30

Enter the number of dimensions of the lookup table. This parameter determines:

• The number of independent variables for the table and the number of block inputs
• The number of breakpoint sets to specify

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions
that this block supports is 30.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' | '4' | ... | 30
Default: '3'

1 Blocks — Alphabetical List

1-976

Data specification — Method of table and breakpoint specification
Table and breakpoints (default) | Lookup table object

From the list, select:

• Table and breakpoints — Specify the table data and breakpoints. Selecting this
option enables the following parameters:

• Table data
• Breakpoints specification
• Breakpoints 1
• Breakpoints 2
• Breakpoints 3
• Edit table and breakpoints

• Lookup table object — Use an existing lookup table (Simulink.LookupTable)
object. Selecting this option enables the Name field and Edit table and breakpoints
button.

Programmatic Use
Block Parameter: DataSpecification
Type: character vector
Values: 'Table and breakpoints' | 'Lookup table object'
Default: 'Table and breakpoints'

Name — Name of the lookup table object
[] (default) | Simulink.LookupTable object

Enter the name of the lookup table (Simulink.LookupTable) object.

Dependencies

To enable this parameter, set Data specification to Lookup table object.

Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Values: name of a Simulink.LookupTable object
Default: ''

 n-D Lookup Table

1-977

Table data — Define the table of output values
reshape(repmat([4 5 6;16 19 20;10 18 23],1,2),[3,3,2]) (default) | matrix
of values with dimensions that match the Number of table dimensions

Enter the table of output values.

During simulation, the matrix size must match the dimensions defined by the Number of
table dimensions parameter. However, during block diagram editing, you can enter an
empty matrix (specified as []) or an undefined workspace variable. This technique lets
you postpone specifying a correctly dimensioned matrix for the table data and continue
editing the block diagram.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: matrix of table values
Default: 'reshape(repmat([4 5 6;16 19 20;10 18 23],1,2),[3,3,2])'

Breakpoints specification — Method of breakpoint specification
Explicit values (default) | Even spacing

Specify whether to enter data as explicit breakpoints or as parameters that generate
evenly spaced breakpoints.

• To explicitly specify breakpoint data, set this parameter to Explicit values and
enter breakpoint data in the text box next to the Breakpoints parameters.

• To specify parameters that generate evenly spaced breakpoints, set this parameter to
Even spacing and enter values for the First point and Spacing parameters for
each dimension of breakpoint data. The block calculates the number of points to
generate from the table data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector

1 Blocks — Alphabetical List

1-978

Values: 'Explicit values' | 'Even spacing'
Default: 'Explicit values'

Breakpoints — Explicit breakpoint values, or first point and spacing of
breakpoints
[10,22,31] (default) | 1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly or as evenly-spaced breakpoints, based on the value
of the Breakpoints specification parameter.

• If you set Breakpoints specification to Explicit values, enter the breakpoint set
that corresponds to each dimension of table data in each Breakpoints row. For each
dimension, specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly
monotonically increasing.

• If you set Breakpoints specification to Even spacing, enter the parameters First
point and Spacing in each Breakpoints row to generate evenly-spaced breakpoints
in the respective dimension. Your table data determines the number of evenly spaced
points.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsForDimension1 | BreakpointsForDimension2
| ... | BreakpointsForDimension30 |
Type: character vector
Values: 1-by-n or n-by-1 vector of monotonically increasing values
Default: '[10, 22, 31]'

First point — First point in evenly spaced breakpoint data
1 (default) | scalar

Specify the first point in your evenly spaced breakpoint data as a real-valued, finite,
scalar. This parameter is available when Breakpoints specification is set to Even
spacing.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and
Breakpoints specification to Even spacing.

 n-D Lookup Table

1-979

Programmatic Use
Block Parameter: BreakpointsForDimension1FirstPoint |
BreakpointsForDimension2FirstPoint | ... |
BreakpointsForDimension30FirstPoint |
Type: character vector
Values: real-valued, finite, scalar
Default: '1'

Spacing — Spacing between evenly spaced breakpoints
1 (default) | scalar

Specify the spacing between points in your evenly-spaced breakpoint data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and
Breakpoints specification to Even spacing.

Programmatic Use
Block Parameter: BreakpointsForDimension1Spacing |
BreakpointsForDimension2Spacing | ... |
BreakpointsForDimension30Spacing |
Type: character vector
Values: positive, real-valued, finite, scalar
Default: '1'

Edit table and breakpoints — Launch Lookup Table Editor dialog box
button

Click this button to open the Lookup Table Editor. For more information, see “Edit Lookup
Tables” in the Simulink documentation.

Clicking this button for a lookup table object lets you edit the object and save the new
values for the object.

Algorithm
Lookup method

Interpolation method — Method of interpolation between breakpoint values
Linear point-slope (default) | Flat | Nearest | Linear Lagrange | Cubic
spline

1 Blocks — Alphabetical List

1-980

When an input falls between breakpoint values, the block interpolates the output value
using neighboring breakpoints. For more information on interpolation methods, see
“Interpolation Methods”.

Dependencies

If you select Cubic spline, the block supports only scalar signals. The other
interpolation methods support nonscalar signals.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector
Values: 'Linear point-slope' | 'Flat' | 'Nearest' | 'Linear Lagrange'
| 'Cubic spline'
Default: 'Linear point-slope'

Extrapolation method — Method of handling input values that fall outside the
range of a breakpoint data set
Clip (default) | Linear | Cubic spline

Select Clip, Linear, or Cubic spline. See “Extrapolation Methods” for more
information.

Dependencies

To select Cubic spline for Extrapolation method, you must also select Cubic
spline for Interpolation method.

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Linear' | 'Clip' | 'Cubic spline'
Default: 'Linear'

Index search method — Method of calculating table indices
Evenly spaced points (default) | Linear search | Binary search

Select Evenly spaced points, Linear search, or Binary search. Each search
method has speed advantages in different circumstances:

• For evenly spaced breakpoint sets (for example, 10, 20, 30, and so on), you achieve
optimal speed by selecting Evenly spaced points to calculate table indices.

 n-D Lookup Table

1-981

This algorithm uses only the first two breakpoints of a set to determine the offset and
spacing of the remaining points.

Note Set Index search method to Evenly spaced points when using the
Simulink.LookupTable object to specify table data and the Breakpoints
Specification parameter of the referenced Simulink.LookupTable object is set to
Even spacing.

• For unevenly spaced breakpoint sets, follow these guidelines:

• If input signals do not vary much between time steps, selecting Linear search
with Begin index search using previous index result produces the best
performance.

• If input signals jump more than one or two table intervals per time step, selecting
Binary search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that
rely heavily on lookup tables.

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Programmatic Use
Block Parameter: IndexSearchMethod
Type: character vector
Values: 'Binary search' | 'Evenly spaced points' | 'Linear search'
Default: 'Binary search'

Begin index search using previous index result — Start using the index
from the previous time step
off (default) | on

Select this check box when you want the block to start its search using the index found at
the previous time step. For inputs that change slowly with respect to the interval size,
enabling this option can improve performance. Otherwise, the linear search and binary
search methods can take longer, especially for large breakpoint sets.

1 Blocks — Alphabetical List

1-982

Dependencies

To enable this parameter, set Index search method to Linear search or Binary
search.

Programmatic Use
Block Parameter: BeginIndexSearchUsing PreviousIndexResult
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range
None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options
include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Use last table value for inputs at or above last breakpoint — Method
for computing output for inputs at or above last breakpoint
off (default) | on

Using this check box, specify the indexing convention that the block uses to address the
last element of a breakpoint set and its corresponding table value. This check box is
relevant if the input is larger than the last element of the breakpoint data.

Check Box Block Uses Index Of The... Interval Fraction
Selected Last element of breakpoint data on

the Table and Breakpoints tab
0

 n-D Lookup Table

1-983

Check Box Block Uses Index Of The... Interval Fraction
Cleared Next-to-last element of breakpoint

data on the Table and
Breakpoints tab

1

Given an input u within range of a breakpoint set bp, the interval fraction f, in the range 0
f 1, is computed as shown below.

Suppose the breakpoint set is [1 4 5] and input u is 5.5. If you select this check box,
the index is that of the last element (5) and the interval fraction is 0. If you clear this
check box, the index is that of the next-to-last element (4) and the interval fraction is 1.

Dependencies

To enable this parameter, set:

• Interpolation method to Linear.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: UseLastTableValue
Type: character vector
Values: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-984

Input settings

Use one input port for all input data — Use only one input port
off (default) | on

Select this check box to use only one input port that expects a signal that is n elements
wide for an n-dimensional table. This option is useful for removing line clutter on a block
diagram with many lookup tables.

Note When you select this check box, one input port with the label u appears on the
block.

Programmatic Use
Block Parameter: UseOneInputPortForAllInputData
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Code generation

Remove protection against out-of-range input in generated code —
Remove code that checks for out-of-range input values
off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

Check Box Result When to Use
on Generated code does not

include conditional
statements to check for out-
of-range breakpoint inputs.

When the input is out-of-
range, it may cause
undefined behavior for
generated code and
simulations using
accelerator mode.

For code efficiency

 n-D Lookup Table

1-985

Check Box Result When to Use
off Generated code includes

conditional statements to
check for out-of-range
inputs.

For safety-critical
applications

If your input is not out of range, you can select the Remove protection against out-of-
range index in generated code check box for code efficiency. By default, this check box
is cleared. For safety-critical applications, do not select this check box. If you want to
select the Remove protection against out-of-range index in generated code check
box, first check that your model inputs are in range. For example:

1 Clear the Remove protection against out-of-range index in generated code
check box.

2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the

Remove protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in
generated code check box and the input k or f is out of range, the behavior is
undefined for generated code and simulations using accelerator mode.

Depending on your application, you can run the following Model Advisor checks to verify
the usage of this check box:

• By Product > Embedded Coder > Identify lookup table blocks that generate
expensive out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331
Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks”.

Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'

1 Blocks — Alphabetical List

1-986

Default: 'off'

Support tunable table size in code generation — Enable tunable table
size in the generated code
off (default) | on

Select this check box to enable tunable table size in the generated code. This option
enables you to change the size and values of the lookup table and breakpoint data in the
generated code without regenerating or recompiling the code.

Dependencies

If you set Interpolation method to Cubic spline, this check box is not available.

Programmatic Use
Block Parameter: SupportTunableTableSize
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Maximum indices for each dimension — Maximum index value for each table
dimension
[] (default) | scalar or vector of positive integer values
Example: [4 6] for a 5-by-7 table

 n-D Lookup Table

1-987

Specify the maximum index values for each table dimension using zero-based indexing.
You can specify a scalar or vector of positive integer values using the following data
types:

• Built-in floating-point types: double and single
• Built-in integer types: int8, int16, int32, uint8, uint16, and uint32

Examples of valid specifications include:

• [4 6] for a 5-by-7 table
• [int8(2) int16(5) int32(9)] for a 3-by-6-by-10 table
• A Simulink.Parameter whose value on generating code is one less than the

dimensions of the table data. For more information, see “Tunable Table Size in the
Generated Code” on page 1-998.

Dependencies

To enable this parameter, select Support tunable table size in code generation. On
tuning this parameter in the generated code, provide the new table data and breakpoints
along with the tuned parameter value.

Programmatic Use
Block Parameter: MaximumIndicesForEachDimension
Type: character vector
Values: scalar or vector of positive integer values
Default: '[]'

Data Types
Table data — Data type of table data
Inherit: Same as output (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object

1 Blocks — Alphabetical List

1-988

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the
output signal

• Sharing of prescaled table data between two n-D Lookup Table blocks with different
output data types

• Sharing of custom storage table data in the generated code for blocks with different
output data types

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'Inherit: Same as
output' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

Table data Minimum — Minimum value of the table data
[] | scalar

Specify the minimum value for table data. The default value is [] (unspecified).
Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table data Maximum — Maximum value of the table data
[] | scalar

Specify the maximum value for table data. The default value is [] (unspecified).

 n-D Lookup Table

1-989

Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Breakpoints — Breakpoint data type
Inherit: Same as corresponding input (default) | double | single | int8 |
uint8 | int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for a set of breakpoint data. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as corresponding
input

• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Tip

• Breakpoints support unordered enumerated data. As a result, linear searches are also
unordered, which offers flexibility but can impact performance. The search begins
from the first element in the breakpoint.

• If the Begin index search using previous index result check box is selected, you
must use ordered monotonically increasing data. This ordering improves performance.

• For enumerated data, Extrapolation method must be Clip.
• The block does not support out-of-range input for enumerated data. When specifying

enumerated data, include the entire enumeration set in the breakpoint data set. For
example, use the enumeration function.

This is a limitation for using enumerated data with this block:

• The block does not support out-of-range input for enumerated data. When specifying
enumerated data, include the entire enumeration set in the breakpoint data set. For
example, use the enumeration function.

1 Blocks — Alphabetical List

1-990

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Specify a breakpoint data type different from the corresponding input data type for
these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type than
the input signal

• Sharing of prescaled breakpoint data between two n-D Lookup Table blocks with
different input data types

• Sharing of custom storage breakpoint data in the generated code for blocks with
different input data types

Programmatic Use
Block Parameter: BreakpointsForDimension1DataTypeStr |
BreakpointsForDimension2DataTypeStr| ... |
BreakpointsForDimension30DataTypeStr
Type: character vector
Values: 'Inherit: Same as corresponding input' | 'Inherit: Inherit
from 'Breakpoint data'' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as corresponding input'

Breakpoints Minimum — Minimum value breakpoint data can have
[] | scalar

Specify the minimum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Min |
BreakpointsForDimension2Min | ... | BreakpointsForDimension30Min
Type: character vector
Values: scalar
Default: '[]'

 n-D Lookup Table

1-991

Breakpoints Maximum — Maximum value breakpoint data can have
[] | scalar

Specify the maximum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Max |
BreakpointsForDimension2Max | ... | BreakpointsForDimension30Max
Type: character vector
Values: scalar
Default: '[]'

Fraction — Fraction data type
Inherit: Inherit via internal rule (default) | double | single |
fixdt(1,16,0) | <data type expression>

Specify the fraction data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: FractionDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)'|'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Intermediate results — Intermediate results data type
Inherit: Same as output (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

1 Blocks — Alphabetical List

1-992

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip Use this parameter to specify higher (or lower) precision for internal computations
than for table data or output data.

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as
output' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

Output — Output data type
Inherit: Same as input (default) | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

 n-D Lookup Table

1-993

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit
from table data' | 'Inherit: Same as first input' | 'double' |
'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type
expression'
Default: 'Inherit: Same as first input'

Output Minimum — Minimum value the block can output
[] | scalar

Specify the minimum value that the block outputs. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output Maximum — Maximum value the block can output
[] | scalar

Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

1 Blocks — Alphabetical List

1-994

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”).

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Internal rule priority — Internal rule for intermediate calculations
Speed (default) | Precision

Specify the internal rule for intermediate calculations. Select Speed for faster
calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.
Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector
Values: 'Speed' | 'Precision'
Default: 'Speed'

Require all inputs to have the same data type — Require all inputs to
have the same data type
on (default) | off

Select to require all inputs to have the same data type.
Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Lock data type settings against changes by the fixed-point tools —
Prevent fixed-point tools from overriding data types
off (default) | on

 n-D Lookup Table

1-995

Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on this block. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Simplest (default) | Ceiling | Convergent | Floor | Nearest | Round | Zero

Specify the rounding mode for fixed-point lookup table calculations that occur during
simulation or execution of code generated from the model. For more information, see
“Rounding” (Fixed-Point Designer).

This option does not affect rounding of values of block parameters. Simulink rounds such
values to the nearest representable integer value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the edit field on
the block dialog box.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Simplest'

Saturate on integer overflow — Method of overflow action
off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box (on).

Your model has possible
overflow and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

An overflow associated
with a signed 8-bit integer
can saturate to -128 or
127.

1 Blocks — Alphabetical List

1-996

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not
fit in a signed 8-bit integer
and wraps to -126.

Tip If you save your model as version R2009a or earlier, this check box setting has no
effect and no saturation code appears. This behavior preserves backward compatibility.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | base integer | fixed point | enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

No

 n-D Lookup Table

1-997

Definitions

Tunable Table Size in the Generated Code
Suppose that you have a lookup table and want to make the size tunable in the generated
code. When you use Simulink.LookupTable and Simulink.Breakpoint objects to
configure lookup table data for calibration in the generated code, use the
SupportTunableSize property of the objects to enable a tunable table size. When you
do not use these classes, use the Support tunable table size in code generation
parameter in an n-D Lookup Table block to enable a tunable table size.

Assume that:

• You define a Simulink.Parameter structure in the preload function of your model:

p = Simulink.Parameter;
p.Value.MaxIdx = [2 2];
p.Value.BP1 = [1 2 3];
p.Value.BP2 = [1 4 16];
p.Value.Table = [4 5 6; 16 19 20; 10 18 23];
p.DataType = 'Bus: slLookupTable';
p.CoderInfo.StorageClass = 'ExportedGlobal';

% Create bus object slBus1 from MATLAB structure
Simulink.Bus.createObject(p.Value);
slLookupTable = slBus1;
slLookupTable.Elements(1).DataType = 'uint32';

• These block parameters apply in the n-D Lookup Table block dialog box.

Parameter Value
Number of table dimensions 2
Table data p.Table
Breakpoints 1 p.BP1
Breakpoints 2 p.BP2
Support tunable table size in code
generation

on

Maximum indices for each
dimension

p.MaxIdx

1 Blocks — Alphabetical List

1-998

The generated model_types.h header file contains a type definition that looks
something like this.

typedef struct {
 uint32_T MaxIdx[2];
 real_T BP1[3];
 real_T BP2[3];
 real_T Table[9];
} slLookupTable;

The generated model.c file contains code that looks something like this.

/* Exported block parameters */
slLookupTable p = {
 { 2U, 2U },

 { 1.0, 2.0, 3.0 },

 { 1.0, 4.0, 16.0 },

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 }
} ;

/* More code */

/* Model output function */
static void ex_lut_nd_tunable_table_output(int_T tid)
{
 /* Lookup_n-D: '<Root>/n-D Lookup Table' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 Y = look2_binlcpw(U1, U2, p.BP1, p.BP2, p.Table, ...
p.MaxIdx, p.MaxIdx[0] + 1U);

 /* Outport: '<Root>/Out1' */
 ex_lut_nd_tunable_table_Y.Out1 = Y;

 /* tid is required for a uniform function interface.
 * Argument tid is not used in the function. */
 UNUSED_PARAMETER(tid);
}

 n-D Lookup Table

1-999

The highlighted line of code specifies a tunable table size for the lookup table. You can
change the size and values of the lookup table and breakpoint data without regenerating
or recompiling the code.

Enumerated Values in Lookup Tables
Suppose that you have a lookup table with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

n-D Lookup block has these settings:

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Breakpoints 1 value is enumeration('Gears').
• Interpolation method is Flat.
• For an unordered search, set Index search method to Linear search and clear the

Begin index search using previous index result check box.

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and
SPORTS.

1 Blocks — Alphabetical List

1-1000

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL Code Generation, see n-D Lookup Table.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Simulink PLC Coder™ has limited support for lookup table blocks. The coder does not
support:

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode
• Cubic spline extrapolation method

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Direct Lookup Table (n-D) | Interpolation Using Prelookup | Lookup Table Dynamic |
Prelookup | Simulink.Breakpoint | Simulink.LookupTable

Topics
“Import Lookup Table Data from MATLAB”
“About Lookup Table Blocks”

 n-D Lookup Table

1-1001

“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

Introduced in R2011a

1 Blocks — Alphabetical List

1-1002

Lookup Table Dynamic
Approximate a one-dimensional function using dynamic table
Library: Simulink / Lookup Tables

Description
How This Block Differs from Other Lookup Table Blocks
The Lookup Table Dynamic block computes an approximation of a function y = f(x)
using xdat and ydat vectors. The lookup method can use interpolation, extrapolation, or
the original values of the input.

Using the Lookup Table Dynamic block, you can change the table data without stopping
the simulation. For example, you can incorporate new table data if the physical system
you are simulating changes.

Inputs for Breakpoint and Table Data
The xdat vector is the breakpoint data, which must be strictly monotonically increasing.
The value of the next element in the vector must be greater than the value of the
preceding element after conversion to a fixed-point data type. Due to quantization, xdat
can be strictly monotonic for a floating-point data type, but not after conversion to a fixed-
point data type.

The ydat vector is the table data, which is an evaluation of the function at the breakpoint
values.

Note The inputs to xdat and ydat cannot be scalar (one-element array) values. If you
provide a scalar value to either of these inputs, you see an error upon simulation. Provide
a 1-by-n vector to both the xdat and ydat inputs.

 Lookup Table Dynamic

1-1003

Lookup Table Definition
You define the lookup table by feeding xdat and ydat as 1-by-n vectors to the block. To
reduce ROM usage in the generated code for this block, you can use different data types
for xdat and ydat. However, these restrictions apply:

• The xdat breakpoint data and the x input vector must have the same sign, bias, and
fractional slope. Also, the precision and range for x must be greater than or equal to
the precision and range for xdat.

• The ydat table data and the y output vector must have the same sign, bias, and
fractional slope.

Tip Breakpoints with even spacing can make Simulink Coder generated code division-
free. For more information, see fixpt_evenspace_cleanup in the Simulink
documentation and “Identify questionable fixed-point operations” (Embedded Coder) in
the Simulink Coder documentation.

How the Block Generates Output
The block uses the input values to generate output using the method you select for
Lookup Method:

Lookup Method Block Action
Interpolation-Extrapolation Performs linear interpolation and extrapolation of the

inputs.

• If the input matches a breakpoint, the output is the
corresponding element in the table data.

• If the input does not match a breakpoint, the block
performs linear interpolation between two elements
of the table to determine the output. If the input falls
outside the range of breakpoint values, the block
extrapolates using the first two or last two points.

Note If you select this lookup method, Simulink Coder
software cannot generate code for this block.

1 Blocks — Alphabetical List

1-1004

Lookup Method Block Action
Interpolation-Use End Values
(default)

Performs linear interpolation but does not extrapolate
outside the end points of the breakpoint data. Instead,
the block uses the end values.

Use Input Nearest Finds the element in xdat nearest the current input. The
corresponding element in ydat is the output.

Use Input Below Finds the element in xdat nearest and below the current
input. The corresponding element in ydat is the output.
If there is no element in xdat below the current input,
the block finds the nearest element.

Use Input Above Finds the element in xdat nearest and above the current
input. The corresponding element in ydat is the output.
If there is no element in xdat above the current input,
the block finds the nearest element.

Note The Use Input Nearest, Use Input Below, and Use Input Above methods
perform the same action when the input x matches a breakpoint value.

Some continuous solvers subdivide the simulation time span into major and minor time
steps. A minor time step is a subdivision of the major time step. The solver produces a
result at each major time step and uses results at minor time steps to improve the
accuracy of the result at the major time step. For continuous solvers, the output of the
Lookup Table Dynamic block can appear like a stair step because the signal is fixed in
minor time step to avoid incorrect results. For more information about the effect of
solvers on block output, see “Solvers” in the Simulink documentation.

Ports
Input
x — input vector
n-dimensional array

The block accepts real-valued or complex-valued multidimensional inputs.
Example: 2:12

 Lookup Table Dynamic

1-1005

Dependencies

The x input vector and the xdat breakpoint data must have the same sign, bias, and
fractional slope. Also, the precision and range for x must be greater than or equal to the
precision and range for xdat.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

xdat — breakpoint data
1-by-n vector of strictly monotonically increasing values

The xdat vector is the breakpoint data, which must be strictly monotonically increasing.
The value of the next element in the vector must be greater than the value of the
preceding element after conversion to a fixed-point data type. Due to quantization, xdat
can be strictly monotonic for a floating-point data type, but not after conversion to a fixed-
point data type.

Tip Breakpoints with even spacing can make Simulink Coder generated code division-
free. For more information, see fixpt_evenspace_cleanup in the Simulink
documentation and “Identify questionable fixed-point operations” (Embedded Coder) in
the Simulink Coder documentation.

Example: 1:10

Dependencies

The xdat breakpoint data and the x input vector must have the same sign, bias, and
fractional slope. Also, the precision and range for x must be greater than or equal to the
precision and range for xdat.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

ydat — table data
1-by-n vector

The ydat input is a 1-by-n vector of real-valued or complex-valued table data, which is an
evaluation of the function at the breakpoint values.
Example: [0 3 12 27 48 75 108 147 192 243 300]

1 Blocks — Alphabetical List

1-1006

Dependencies

The ydat table data and the y output vector must have the same sign, bias, and fractional
slope.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Output
y — Approximation of y = f(x) using dynamic table data
1-by-n vector

The block computes an approximation of a function y = f(x) using the xdat and ydat
input vectors. The lookup method can use interpolation, extrapolation, or the original
values of the input.

Dependencies

The ydat table data and the y output vector must have the same sign, bias, and fractional
slope.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters

Main Tab
Lookup Method — Specify the lookup method
Interpolation-Use End Values (default) | Interpolation-Extrapolation | Use
Input Nearest | Use Input Below | Use Input Above

The block computes output by applying the Lookup Method you select to the input
vectors of breakpoint data (xdat) and table data (ydat). For details, see “How the Block
Generates Output” on page 1-1004.

Programmatic Use
Block Parameter: LookUpMeth
Type: character vector

 Lookup Table Dynamic

1-1007

Values: 'Interpolation-Extrapolation' | 'Interpolation-Use End Values'
| 'Use Input Nearest' | 'Use Input Below' | 'Use Input Above'
Default: 'Interpolation-Use End Values'

Signal Attributes Tab
Output data type — Output data type
double (default) | 'Inherit: Inherit via back propagation' | single | int8 |
uint8 | int16 | uint16 | int32 | uint32 | boolean | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the data type of the output signal y.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Dependencies

The ydat table data and the y output vector must have the same sign, bias, and fractional
slope.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'double' | 'single'
| 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'boolean' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|<data type
expression>
Default: 'double'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale

1 Blocks — Alphabetical List

1-1008

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action
off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value
that the data type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 Lookup Table Dynamic

1-1009

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

The Simulink PLC Coder software does not support the SimulinkSimulink Lookup Table
Dynamic block. For your convenience, the plclib/Simulink/Lookup Tables library contains
an implementation of a dynamic table lookup block using the Prelookup and Interpolation
Using Prelookup blocks.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
n-D Lookup Table

Topics
“Entering Data Using Inports of the Lookup Table Dynamic Block”
“Nonlinearity”

1 Blocks — Alphabetical List

1-1010

“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Guidelines for Choosing a Lookup Table”

Introduced before R2006a

 Lookup Table Dynamic

1-1011

Magnitude-Angle to Complex
Convert magnitude and/or a phase angle signal to complex signal
Library: Simulink / Math Operations

Description
Supported Operations
The Magnitude-Angle to Complex block converts magnitude and phase angle inputs to a
complex output. The angle input must be in rad.

The block supports the following combinations of input dimensions when there are two
block inputs:

• Two inputs of equal dimensions
• One scalar input and the other an n-dimensional array

If the block input is an array, the output is an array of complex signals. The elements of a
magnitude input vector map to the magnitudes of the corresponding complex output
elements. Similarly, the elements of an angle input vector map to the angles of the
corresponding complex output elements. If one input is a scalar, it maps to the
corresponding component (magnitude or angle) of all the complex output signals.

Effect of Out-of-Range Input on CORDIC Approximations
If you use the CORDIC approximation method (see “Definitions” on page 1-1019), the
block input for phase angle has the following restrictions:

• For signed fixed-point types, the input angle must fall within the range [–2π, 2π) rad.
• For unsigned fixed-point types, the input angle must fall within the range [0, 2π) rad.

The following table summarizes what happens for an out-of-range input:

1 Blocks — Alphabetical List

1-1012

Block Usage Effect of Out-of-Range Input
Simulation An error appears.
Generated code Undefined behavior occurs.
Accelerator modes

Ensure that you use an in-range input for the Magnitude-Angle to Complex block when
you use the CORDIC approximation. Avoid relying on undefined behavior for generated
code or accelerator modes.

Ports

Input
|u| — Magnitude
scalar | vector | matrix

Magnitude, specified as a real-valued scalar, vector, or matrix.

Dependencies

• To enable this port, set Input to Magnitude and angle.

Limitations

• If one input has a floating-point data type, the other input must use the same data
type. For example, both signals must be double or single.

• Fixed-point data types are supported only when you set the Approximation method
to CORDIC. When one input has a fixed-point data type, the other input must also have
a fixed-point data type.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

∠u — Radian phase angle
scalar | vector | matrix

Radian phase angle, specified as a real-valued scalar, vector, or matrix. To compute the
CORDIC approximation, the input angle must be between:

 Magnitude-Angle to Complex

1-1013

• [–2π, 2π) rad, for signed fixed-point types
• [0, 2π) rad, for unsigned fixed-point types

For more information, see “Effect of Out-of-Range Input on CORDIC Approximations” on
page 1-1012.

Dependencies

• To enable this port, set Input to Magnitude and angle.

Limitations

• If one input has a floating-point data type, the other input must use the same data
type. For example, both signals must be double or single.

• Fixed-point data types are supported only when you set the Approximation method
to CORDIC. If one input has a fixed-point data type, the other input must also have a
fixed-point data type.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Port_1 — Magnitude or radian phase angle
scalar | vector | matrix

Magnitude, or radian phase angle, specified as a real-valued scalar, vector, or matrix.

• When you set Input to Magnitude, you specify the magnitude at the input port, and
the angle on the dialog box.

• When you set Input to Angle, you specify the angle at the input port, and the
magnitude on the dialog box.

Dependencies

To enable this port, set Input to Magnitude or Angle.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Complex signal
scalar | vector | matrix

1 Blocks — Alphabetical List

1-1014

Complex signal, formed from the magnitude and phase angle you specify.

If the block input is an array, the output is an array of complex signals. The elements of a
magnitude input vector map to the magnitudes of the corresponding complex output
elements. Similarly, the elements of an angle input vector map to the angles of the
corresponding complex output elements. If one input is a scalar, it maps to the
corresponding component (magnitude or angle) of all the complex output signals.
Data Types: single | double | fixed point

Parameters
Input — Type of input
Magnitude (default) | Angle | Magnitude and angle

Specify the kind of input: a magnitude input, an angle input, or both.

Programmatic Use
Block Parameter: Input
Type: character vector
Values: 'Magnitude' | 'Angle' | 'Magnitude and angle'
Default: 'Magnitude and angle'

Angle — Phase angle of output
0 (default) | real-valued scalar, vector, or matrix

Constant phase angle of the output signal, in rad. To compute the CORDIC approximation,
the input angle must be between:

• [–2π, 2π) rad, for signed fixed-point types
• [0, 2π) rad, for unsigned fixed-point types

For more information, see “Effect of Out-of-Range Input on CORDIC Approximations” on
page 1-1012.

Dependencies

To enable this parameter, set Input to Magnitude.

Programmatic Use
Block Parameter: ConstantPart

 Magnitude-Angle to Complex

1-1015

Type: character vector
Values: constant scalar
Default: '0'

Magnitude — Magnitude of output
0 (default) | real-valued scalar, vector, or matrix

Constant magnitude of the output signal, specified as a real-valued scalar, vector, or
matrix.

Dependencies

To enable this parameter, set Input to Angle.

Programmatic Use
Block Parameter: ConstantPart
Type: character vector
Values: constant scalar
Default: '0'

Approximation method — CORDIC or none
None (default) | CORDIC

Specify the type of approximation for computing output.

Approximation Method Data Types Supported When to Use This Method
None (default) Floating point You want to use the default

Taylor series algorithm.
CORDIC Floating point and fixed

point
You want a fast,
approximate calculation.

When you use the CORDIC approximation, follow these guidelines for the input angle:

• For signed fixed-point types, the input angle must fall within the range [–2π, 2π) rad.
• For unsigned fixed-point types, the input angle must fall within the range [0, 2π) rad.

The block uses the following data type propagation rules:

1 Blocks — Alphabetical List

1-1016

Data Type of
Magnitude Input

Approximation Method Data Type of Complex Output

Floating point None or CORDIC Same as input
Signed, fixed point CORDIC fixdt(1, WL + 2, FL)

where WL and FL are the word length
and fraction length of the magnitude

Unsigned, fixed point CORDIC fixdt(1, WL + 3, FL)

where WL and FL are the word length
and fraction length of the magnitude

Programmatic Use
Block Parameter: ApproximationMethod
Type: character vector
Values: 'None' | 'CORDIC'
Default: 'None'

Number of iterations — Number of iterations for CORDIC algorithm
11 (default) | positive integer, less than or equal to word length of fixed-point input

Number of iterations to perform the CORDIC algorithm. The range of possible values
depends on the data type of the input:

Data Type of Block Inputs Value You Can Specify
Floating point A positive integer
Fixed point A positive integer that does not exceed the

word length of the magnitude input or the
word length of the phase angle input,
whichever value is smaller

Dependencies

To enable this parameter, set Approximation method to CORDIC.

Programmatic Use
Block Parameter: NumberOfIterations
Type: character vector
Values: positive integer, less than or equal to word length of fixed-point input

 Magnitude-Angle to Complex

1-1017

Default: '11'

Scale output by reciprocal of gain factor — Scale real and imaginary
parts of complex output
on (default) | off

Select this check box to scale the real and imaginary parts of the complex output by a
factor of (1/CORDIC gain). This value depends on the number of iterations you specify.
As the number of iterations goes up, the value approaches 1.647.

This check box is selected by default, which leads to a more numerically accurate result
for the complex output, X + iY. However, scaling the output adds two extra
multiplication operations, one for X and one for Y.

Dependencies

To enable this parameter, set Approximation method to CORDIC.

Programmatic Use
Block Parameter: ScaleReciprocalGainFactor
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

1 Blocks — Alphabetical List

1-1018

Block Characteristics
Data Types double | single
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Definitions

CORDIC
CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

References
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on

Electronic Computers EC-8 (1959); 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24 (1998): 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference (1971): 379–386. (from the
collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

 Magnitude-Angle to Complex

1-1019

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical
Monthly 90, no. 5 (1983): 317–325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Magnitude-Angle to Complex.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

The Magnitude-Angle to Complex block supports fixed-point and base integer data types
when you set Approximation method to CORDIC.

See Also
Complex to Magnitude-Angle | Complex to Real-Imag | Real-Imag to Complex

Topics
“Complex Signals”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1020

Manual Switch
Switch between two inputs
Library: Simulink / Signal Routing

Description
The Manual Switch block is a toggle switch that selects one of its two inputs to pass
through to the output. To toggle between inputs, double-click the block. You control the
signal flow by setting the switch before you start the simulation or by changing the switch
while the simulation is executing. The Manual Switch block retains its current state when
you save the model.

Note Double-clicking the Manual Switch block does not open the block dialog box
instead it toggles the input choice.

Ports
Input
Port_1 — First input signal
scalar | vector

First of two inputs to the Manual Switch block. The block propagates the selected input to
the output. To select the input signal, toggle the switch by double-clicking the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_2 — Second input signal
scalar | vector

 Manual Switch

1-1021

Second of two inputs to the Manual Switch block. The block propagates the selected input
to the output. To select which input signal, toggle the switch by double-clicking the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
scalar | vector

Output signal progagated from either the first or second input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
To view the block parameters, right-click the block and select Block Parameters
(ManualSwitch) .

Allow the two inputs to differ in size (Results in variable-size
output signal) — Allow inputs of different sizes
off (default) | on

Select this check box to allow inputs with different sizes. If you select the box, the block
allows inputs with different sizes, and propagates the selected input signal size to the
output signal. If you clear the box, the block exapands scalar inputs to have the same
dimensions as nonscalar inputs. See “Scalar Expansion of Inputs and Parameters”.
Command-Line Information
Parameter: varsize
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

1 Blocks — Alphabetical List

1-1022

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Manual Variant Sink | Manual Variant Source | Multiport Switch | Switch

 Manual Switch

1-1023

Introduced before R2006a

1 Blocks — Alphabetical List

1-1024

Manual Variant Sink
Switch between multiple variant choices at output
Library: Simulink / Signal Routing

Description
The Manual Variant Sink block is a toggle switch that activates one of its variant choices
at the output to pass the input.

The block can have two or more output ports and has one input port. Each output port is
associated with a variant control. To change the number of output ports, right-click the
block and select MaskMask Parameters, then type a value in the Number of choices
box.

To toggle between the variant choices at output, double-click the block. The block
displays the active choice with a line connecting the input to the output. The block
propagates the active variant choice at output and discards the blocks connected to
inactive output ports during simulation.

Note Double-clicking the Manual Variant Sink block does not open the block dialog box
instead it toggles the output choice.

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal passed to the active output port.

 Manual Variant Sink

1-1025

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — First variant output
scalar | vector

First variant output signal. The block passes the input signal to this output port when you
connect the toggle switch to this port.

.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_n — nth variant output
scalar | vector

nth variant output signal. The block passes the input signal to this output port when you
connect the toggle switch to this port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
To access the block parameter, right-click the block and select Mask > Mask
Parameters.

Number of choices — Number of output choices
2 (default) | scalar

Specify the number of vairant output ports.

Programmatic Use
Block Parameter: NumChoices
Type: character vector
Value: integer
Default: '2'

1 Blocks — Alphabetical List

1-1026

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Manual Variant Source | Variant Sink | Variant Source

Topics
“Introduction to Variant Controls”
“Define, Configure, and Activate Variants”
“Working with Variant Choices”
“Variant Systems” (Embedded Coder)
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)
“Variants Example Models”

Introduced in R2016b

 Manual Variant Sink

1-1027

Manual Variant Source
Switch between multiple variant choices at input
Library: Simulink / Signal Routing

Description
The Manual Variant Source block is a toggle switch that activates one of its variant
choices at the input to pass through to the output.

A Manual Variant Source block can have two or more input ports and has one output port.
Each input port is associated with a variant control. To change the number of input ports,
right-click the block and select MaskMask Parameters, then type a value in the
Number of choices box.

To toggle between the variant choices at input, double-click the block. The block displays
the active choice with a line connecting the input to the output. The block propagates the
active variant choice at input directly to the output and discards the blocks connected to
inactive input ports during simulation.

Note Double-clicking the Manual Variant Source block does not open the block dialog
box instead it toggles the output choice.

Ports

Input
Port_1 — First variant input signal
scalar | vector

1 Blocks — Alphabetical List

1-1028

First variant input signal. The block passes this input signal to the output port when you
connect the toggle switch to this port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_n — nth variant input signal
scalar | vector

nth variant input signal. The block passes this input signal to the output port when you
connect the toggle switch to this port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
scalar | vector

Output signal passed from the active variant input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
To access the block parameter, right-click the block and select Mask > Mask
Parameters.

Number of choices — Number of input choices
2 (default) | scalar

Specify the number of variant input ports.

Programmatic Use
Block Parameter: NumChoices
Type: character vector
Value: integer
Default: '2'

 Manual Variant Source

1-1029

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Manual Variant Source and Sink Blocks | Variant Sink | Variant Source

Topics
“Introduction to Variant Controls”
“Define, Configure, and Activate Variants”
“Working with Variant Choices”
“Variant Systems” (Embedded Coder)
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)
“Variants Example Models”

Introduced in R2016b

1 Blocks — Alphabetical List

1-1030

matlab: open_system([docroot '/toolbox/simulink/examples/slexVariantManualBlocks'])

Math Function
Perform mathematical function
Library: Simulink / Math Operations

Description
The Math Function block performs numerous common mathematical functions.

Tip To perform square root calculations, use the Sqrt block.

You can select one of these functions from the Function parameter list.

Function Description Mathematical
Expression

MATLAB Equivalent

exp Exponential eu exp
log Natural logarithm ln u log
10^u Power of base 10 10u 10.^u

(see power)
log10 Common (base 10)

logarithm
log u log10

magnitude^2 Complex modulus |u|2 (abs(u)).^2
(see abs and power)

square Power 2 u2 u.^2
(see power)

pow Power uv power
conj Complex conjugate ū conj

 Math Function

1-1031

Function Description Mathematical
Expression

MATLAB Equivalent

reciprocal Reciprocal 1/u 1./u
(see rdivide)

hypot Square root of sum
squares

(u2+v2)0.5 hypot

rem Remainder after
division

— rem

mod Modulus after division — mod
transpose Transpose uT u.'

(see “Array vs. Matrix
Operations” (MATLAB))

hermitian Complex conjugate
transpose

uH u'
(see “Array vs. Matrix
Operations” (MATLAB))

The block output is the result of the operation of the function on the input or inputs. The
functions support these types of operations.

Function Scalar Operations Element-Wise Vector
and Matrix
Operations

Vector and Matrix
Operations

exp Yes Yes —
log Yes Yes —
10^u Yes Yes —
log10 Yes Yes —
magnitude^2 Yes Yes —
square Yes Yes —
pow Yes Yes —
conj Yes Yes —
reciprocal Yes Yes —

1 Blocks — Alphabetical List

1-1032

Function Scalar Operations Element-Wise Vector
and Matrix
Operations

Vector and Matrix
Operations

hypot Yes, on two inputs Yes, on two inputs (two
vectors or two matrices
of the same size, a
scalar and a vector, or a
scalar and a matrix)

—

rem Yes, on two inputs Yes, on two inputs (two
vectors or two matrices
of the same size, a
scalar and a vector, or a
scalar and a matrix)

—

mod Yes, on two inputs Yes, on two inputs (two
vectors or two matrices
of the same size, a
scalar and a vector, or a
scalar and a matrix)

—

transpose Yes — Yes
hermitian Yes — Yes

The name of the function appears on the block. The appropriate number of input ports
appears automatically.

Tip Use the Math Function block instead of the Fcn block when you want vector or
matrix output because the Fcn block produces only scalar output.

Data Type Support
This table shows the input data types that each function of the block can support.

Function single double boolean built-in
integer

fixed point

exp Yes Yes — — —
log Yes Yes — — —

 Math Function

1-1033

Function single double boolean built-in
integer

fixed point

10^u Yes Yes — — —
log10 Yes Yes — — —
magnitude^2 Yes Yes — Yes Yes
square Yes Yes — Yes Yes
pow Yes Yes — — —
conj Yes Yes — Yes Yes
reciprocal Yes Yes — Yes Yes
hypot Yes Yes — — —
rem Yes Yes — Yes —
mod Yes Yes — Yes —
transpose Yes Yes Yes Yes Yes
hermitian Yes Yes — Yes Yes

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal specified as a scalar, vector, or matrix. All supported modes accept both real
and complex inputs, except for reciprocal, which does not accept complex fixed-point
inputs. See Description on page 1-1031 for more information.

Dependencies

Data type support for this block depends on the Function you select and the size of the
input(s). For more information, see “Data Type Support” on page 1-1033.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

1 Blocks — Alphabetical List

1-1034

Port_2 — Input signal
scalar | vector | matrix

Input signal specified as a scalar, vector, or matrix. All supported modes accept both real
and complex inputs, except for reciprocal, which does not accept complex fixed-point
inputs.

Dependencies

To enable this port, set Function to hypot, rem, or mod.

Data type support for this block depends on the Function you select, and the size of the
input(s). For more information, see “Data Type Support” on page 1-1033.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Output
Port_1 — Result of the operation of the function on the input or inputs
scalar | vector | matrix

Output signal specified as a scalar, vector, or matrix. The dimensions of the block output
depend on the Function you select and the size of the inputs. The block output is real or
complex, depending on what you select for Output signal type. See Description on page
1-1031 for more information.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters

Main
Function — Math function
exp (default) | log | 10^u | log10 | magnitude^2 | square | pow | conj | reciprocal |
hypot | rem | mod | transpose | hermitian

Specify the mathematical function. See Description on page 1-1031 for more information
about the options for this parameter.

 Math Function

1-1035

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'exp' | 'log' | '10^u' | 'log10' | 'magnitude^2' | 'square' |
'pow' | 'conj' | 'reciprocal' | 'hypot' | 'rem' | 'mod' |
'transpose' | 'hermitian'
Default: 'exp'

Output signal type — Complexity of output signal
auto (default) | real | complex

Specify the output signal type of the Math Function block as auto, real, or complex.

Function Input Signal
Type

Output Signal Type
Auto Real Complex

exp, log, 10u,
log10, square,
pow, reciprocal,
conjugate,
transpose,
hermitian

real

complex

real

complex

real

error

complex

complex

magnitude
squared

real

complex

real

real

real

real

complex

complex
hypot, rem, mod real

complex

real

error

real

error

complex

error

Programmatic Use
Block Parameter: OutputSignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

1 Blocks — Alphabetical List

1-1036

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes
Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

 Math Function

1-1037

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Same as first input (default) | Inherit: Inherit via internal
rule | Inherit: Inherit via back propagation | double | single | int8 |
uint8 | int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object

1 Blocks — Alphabetical List

1-1038

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Dependencies

To enable this parameter, set the Function to magnitude^2, square, or reciprocal.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first
input' | 'Inherit: Inherit via back propagation' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' | 'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Same as first input'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Dependencies

To enable this parameter, set the Function to magnitude^2, square, or reciprocal.

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

 Math Function

1-1039

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Dependencies

To enable this parameter, set the Function to magnitude^2, square, or reciprocal.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Choose the behavior when integer overflow
occurs
on (default) | boolean

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks — Alphabetical List

1-1040

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Dependencies

To enable this parameter, set the Function to magnitude^2, square, conj,
reciprocal, or hermitian.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'on'

 Math Function

1-1041

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The Math Function block has HDL code generation restrictions when you set the
Function to reciprocal. For more information, see Math Function.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

The Math Function block only supports fixed-point conversion in certain configurations.
For more information, see the Block Support Table.

See Also
Fcn | Sqrt, Signed Sqrt, Reciprocal Sqrt | Trigonometric Function

1 Blocks — Alphabetical List

1-1042

Topics
“hisl_0004: Usage of Math Function blocks (natural logarithm and base 10 logarithm)”

Introduced before R2006a

 Math Function

1-1043

MATLAB Function
Include MATLAB code in models that generate embeddable C code

Library
User-Defined Functions

Description
With a MATLAB Function block, you can write a MATLAB function for use in a Simulink
model. The MATLAB function you create executes for simulation and generates code for a
Simulink Coder target. If you are new to the Simulink and MATLAB products, see “What
Is a MATLAB Function Block?” and “Create Model That Uses MATLAB Function Block” for
an overview.

Double-clicking the MATLAB Function block opens its editor, where you write the
MATLAB function, as in this example:

1 Blocks — Alphabetical List

1-1044

To learn more about this editor, see “MATLAB Function Block Editor”.

You specify input and output data to the MATLAB Function block in the function header
as arguments and return values. The argument and return values of the preceding
example function correspond to the inputs and outputs of the block in the model:

You can also define data, input triggers, and function call outputs using the Ports and
Data Manager, which you access from the MATLAB Function Block Editor by selecting
Edit Data. See “Ports and Data Manager”.

 MATLAB Function

1-1045

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_eml_block_call_stats.slx')))

The MATLAB Function block generates efficient embeddable code based on an analysis
that determines the size, class, and complexity of each variable. This analysis imposes the
following restrictions:

• The first assignment to a variable defines its, size, class, and complexity.

See “Best Practices for Defining Variables for C/C++ Code Generation”.
• You cannot reassign variable properties after the initial assignment except when using

variable-size data or reusing variables in the code for different purposes.

See “Reassignment of Variable Properties”.

In addition to language restrictions, the MATLAB Function block supports a subset of the
functions available in MATLAB. A list of supported functions is given in “Functions and
Objects Supported for C/C++ Code Generation — Alphabetical List”. These functions
include functions in common categories, such as:

• Arithmetic operators like plus, minus, and power. For more information, see “Array
vs. Matrix Operations” (MATLAB).

• Matrix operations like size, and length
• Advanced matrix operations like lu, inv, svd, and chol
• Trigonometric functions like sin, cos, sinh, and cosh

See “Functions and Objects Supported for C/C++ Code Generation — Category List” for a
complete list of function categories.

Note Although the code for this block attempts to produce exactly the same results as
MATLAB, differences might occur due to rounding errors. These numerical differences,
which might be a few eps initially, can magnify after repeated operations. Reliance on the
behavior of nan is not recommended. Different C compilers can yield different results for
the same computation.

Note In the MATLAB Function block, the %#codegen directive is included to emphasize
that the block’s MATLAB algorithm is always intended for code generation. The
%#codegen directive, or the absence of it, does not change the error checking behavior
in the context of the MATLAB Function block. For more information see “Compilation
Directive %#codegen”.

1 Blocks — Alphabetical List

1-1046

To support visualization of data, the MATLAB Function block supports calls to MATLAB
functions for simulation only. See “Extrinsic Functions” to understand some of the
limitations of this capability, and how it integrates with code analysis for this block. If
these function calls do not directly affect any of the Simulink inputs or outputs, the calls
do not appear in Simulink Coder generated code.

From MATLAB Function blocks, you can also call functions defined in a Simulink Function
block. You can call Stateflow functions with Export Chart Level Functions (Make
Global) and Allow exported functions to be called by Simulink checked in the chart
Properties dialog box.

In the Ports and Data Manager, you can declare a block input to be a Simulink parameter
instead of a port. The MATLAB Function block also supports inheritance of types and size
for inputs, outputs, and parameters. You can also specify these properties explicitly. See
“Type Function Arguments”, “Size Function Arguments”, and “Add Parameter Arguments”
for descriptions of variables that you use in MATLAB Function blocks.

Recursive calls are not allowed in MATLAB Function blocks.

By default, MATLAB Function blocks have direct feedthrough enabled. To disable it, in the
Ports and Data Manager, clear the Allow direct feedthrough check box. Nondirect
feedthrough enables semantics to ensure that outputs rely only on current state. Using
nondirect feedthrough enables you to use MATLAB Function blocks in a feedback loop
and prevent algebraic loops.

Data Type Support
The MATLAB Function block accepts inputs of any type that Simulink supports, including
fixed-point and enumerated types. For more information, see “Data Types Supported by
Simulink”.

Data types supported by MATLAB but not supported by Simulink may not be passed
between the Simulink model and the function within the MATLAB Function block. These
types may be used within the MATLAB Function block.

For more information on fixed-point support for this block, refer to “Fixed-Point Data
Types with MATLAB Function Block” (Fixed-Point Designer) and “MATLAB Function Block
with Data Type Override” (Fixed-Point Designer).

 MATLAB Function

1-1047

Parameters
See the reference page for the Subsystem, Atomic Subsystem, Nonvirtual Subsystem,
CodeReuse Subsystem blocks for information about each block parameter.

Examples
The following models shows how to use the MATLAB Function block:

• sldemo_radar_eml
• sldemo_eml_galaxy

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes (default). To disable, in the Ports and Data

Manager, clear the Allow direct feedthrough
check box.

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced in R2011a

1 Blocks — Alphabetical List

1-1048

MATLAB System
Include System object in model

Library
User-Defined Functions

Description
The MATLAB System block brings existing System objects (based on matlab.System)
into Simulink. It also enables you to use System object APIs to develop new blocks for
Simulink. For more information on this block, see “MATLAB System Block”.

For interpreted execution, the model simulates the block using the MATLAB execution
engine.

For code generation, the model simulates the block using code generation (using the
subset of MATLAB® code supported for code generation). The MATLAB System block
supports only a subset of the functions available in MATLAB. See “Functions and Objects
Supported for C/C++ Code Generation — Alphabetical List” for a complete list of
functions. These functions include those in common categories, such as:

• “Array vs. Matrix Operations” (MATLAB), like plus, minus, and power
• Matrix operations, like size and length
• Advanced matrix operations, like lu, inv, svd, and chol
• Trigonometric functions, like sin, cos, sinh, and cosh

 MATLAB System

1-1049

System Objects
To use the MATLAB System block, you must first have a new System object or use an
existing one. For more information, see “System Object Integration”.

Data Type Support
The MATLAB System block accepts inputs of most types that Simulink supports. It does
not support virtual buses as input or output. It does not support nonvirtual buses that
contain variable-size signals. For more information, see “Data Types Supported by
Simulink”.

For information on fixed-point support for this block, see “Code Acceleration and Code
Generation from MATLAB” (Fixed-Point Designer).

The MATLAB System block supports Simulink frames. For more information, see “Sample-
and Frame-Based Concepts” (DSP System Toolbox).

Parameters

System object name
Specify the full name of the user-defined System object class without the file extension.
This entry is case sensitive. The class name must exist on the MATLAB path.

You can specify a System object name in one of these ways:

• Enter the name in the text box.
• Click the list arrow attached to the text box. If valid System objects exist in the current

folder, the names appear in the list. Select a System object from this list.
• Browse to a folder that contains a valid System object. If the folder is not on your

MATLAB path, the software prompts you to add it.

If you need to create a System object, you can create one from a template by clicking
New.

After you save the System object, the name appears in the System object name text box.

1 Blocks — Alphabetical List

1-1050

Default: None

Use the full name of the user-defined System object class name. The block does not
accept a MATLAB variable that you have assigned to a System object class name.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

New
Click this button to create a System object from a template.

Select one of these options.

• Basic

Starts MATLAB Editor and displays a template for a simple System object using the
fewest System object methods.

• Advanced

Starts MATLAB Editor and displays a template for a more advanced System object
using most of the System object methods.

• Simulink Extension

Starts MATLAB Editor and displays a file that contains utilities for customizing the
block for Simulink. This is the same file available in MATLAB when you select New >
System Object > Simulink Extension.

After you save the System object, you can enter the name in the System object name
text box.

Default: Basic

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Simulate using
Select the simulation mode.

 MATLAB System

1-1051

Default: Code generation

Code generation
On the first model run, simulate and generate code for MATLAB System block using
only MATLAB functions supported for code generation. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, system objects accept a maximum of 32
inputs.

Interpreted execution
Simulate model using all supported MATLAB functions. Choosing this option can slow
simulation performance.

After you assign a valid System object class name to the block, the next time you open the
block dialog box, the parameter is visible. This parameter appears for every MATLAB
System block. You cannot remove it.

• If the block has no tabs, this parameter appears at the bottom of the dialog box.
• If the block has multiple tabs, this parameter appears at the bottom of the first tab of

the dialog box.

Saturate on integer overflow
Specify whether overflows saturate.

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

1 Blocks — Alphabetical List

1-1052

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

This check box appears when you use the showFiSettingsImpl method in the System
object.

Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Treat these inherited Simulink signal types as fi objects
Specify which inherited data types to treat as fi data types.

Default: Fixed-point

Fixed-point
Treat fixed-point data types as fi data types.

Fixed-point & Integer
Treat fixed-point and integer data types as fi data types.

This check box appears when you use the showFiSettingsImpl method in the System
object.

 MATLAB System

1-1053

MATLAB System fimath
Specify which fixed-point math settings to use.

Default: Same as MATLAB

Fixed-point
Use the current MATLAB fixed-point math settings.

Specify Other
Enable the edit box for specifying the desired fixed-point math settings. For
information on setting fixed-point math, see fimath.

This check box appears when you use the showFiSettingsImpl method in the System
object.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point
Sample Time Inherited
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
MATLAB Function

Topics
“MATLAB System Block”
“What Are System Objects?” (MATLAB)

1 Blocks — Alphabetical List

1-1054

Introduced in R2013b

 MATLAB System

1-1055

Memory
Output input from previous time step
Library: Simulink / Discrete

Description
The Memory block holds and delays its input by one major integration time step. When
placed in an iterator subsystem, it holds and delays its input by one iteration. This block
accepts continuous and discrete signals. The block accepts one input and generates one
output. Each signal can be a scalar, vector, matrix, or N-D array. If the input is non-scalar,
the block holds and delays all elements of the input by the same time step.

You specify the block output for the first time step using the Initial condition parameter.
Careful selection of this parameter can minimize unwanted output behavior. However, you
cannot specify the sample time. This block’s sample time depends on the type of solver
used, or you can specify to inherit it. The Inherit sample time parameter determines
whether sample time is inherited or based on the solver.

Tip Avoid using the Memory block when both these conditions are true:

• Your model uses the variable-step solver ode15s or ode113.
• The input to the block changes during simulation.

When the Memory block inherits a discrete sample time, the block is analogous to the
Unit Delay block. However, the Memory block does not support state logging. If logging
the final state is necessary, use a Unit Delay block instead.

Comparison with Similar Blocks
The Memory, Unit Delay, and Zero-Order Hold blocks provide similar functionality but
have different capabilities. Also, the purpose of each block is different.

This table shows recommended usage for each block.

1 Blocks — Alphabetical List

1-1056

Block Purpose of the Block Reference Examples
Unit Delay Implement a delay using a

discrete sample time that you
specify. The block accepts and
outputs signals with a discrete
sample time.

• sldemo_enginewc
(Compression subsystem)

Memory on page
1-1056

Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed
in minor time step) signals and
outputs a signal that is fixed in
minor time step.

• sldemo_bounce
• sldemo_clutch (Friction

Mode Logic/Lockup FSM
subsystem)

Zero-Order Hold Convert an input signal with a
continuous sample time to an
output signal with a discrete
sample time.

• sldemo_radar_eml
• aero_dap3dof

Each block has the following capabilities.

Capability Memory Unit Delay Zero-Order Hold
Specification of
initial condition

Yes Yes No, because the block
output at time t = 0
must match the input
value.

Specification of
sample time

No, because the block
can only inherit
sample time from the
driving block or the
solver used for the
entire model.

Yes Yes

Support for frame-
based signals

No Yes Yes

Support for state
logging

No Yes No

 Memory

1-1057

matlab:sldemo_enginewc
matlab:sldemo_bounce
matlab:sldemo_clutch
matlab:sldemo_radar_eml
matlab:aero_dap3dof

Bus Support
The Memory block is a bus-capable block. The input can be a virtual or nonvirtual bus
signal subject to the following restrictions:

• Initial condition must be zero, a nonzero scalar, or a finite numeric structure.
• If Initial condition is zero or a structure, and you specify a State name, the input

cannot be a virtual bus.
• If Initial condition is a nonzero scalar, you cannot specify a State name.

For information about specifying an initial condition structure, see “Specify Initial
Conditions for Bus Signals”.

All signals in a nonvirtual bus input to a Memory block must have the same sample time,
even if the elements of the associated bus object specify inherited sample times. You can
use a Rate Transition block to change the sample time of an individual signal, or of all
signals in a bus. See “Specify Bus Signal Sample Times” and Bus-Capable Blocks for more
information.

You can use an array of buses as an input signal to a Memory block. You can specify the
Initial condition parameter with:

• The value 0. In this case, all the individual signals in the array of buses use the initial
value 0.

• An array of structures that specifies an initial condition for each of the individual
signals in the array of buses.

• A single scalar structure that specifies an initial condition for each of the elements
that the bus type defines. Use this technique to specify the same initial conditions for
each of the buses in the array.

For details about defining and using an array of buses, see “Combine Buses into an Array
of Buses”.

1 Blocks — Alphabetical List

1-1058

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. The input can be
continuous or discrete, containing real, or complex values of any data type Simulink
supports.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Input delayed by one major integration time step
scalar | vector | matrix | N-D array

Output is the input from the previous time step.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Main
Initial condition — Initial condition
0 (default) | scalar | vector | matrix | N-D array

Specify the output at the initial integration step. This value must be 0 when you do not
use a built-in input data type. Simulink does not allow the initial output of this block to be
inf or NaN.

Programmatic Use
Block Parameter: InitialCondition
Type: character vector

 Memory

1-1059

Values: scalar | vector
Default: '0'

Inherit sample time — Inherit sample time
off (default) | on

Select to inherit the sample time from the driving block:

• If the driving block has a discrete sample time, the block inherits the sample time.
• If the driving block has a continuous sample time, selecting this check box has no
effect. The sample time depends on the type of solver used for simulating the model.

When this check box is cleared, the block sample time depends on the type of solver used
for simulating the model:

• If the solver is a variable-step solver, the block sample time is continuous but fixed in
minor time step: [0, 1].

• If the solver is a fixed-step solver, the [0, 1] sample time converts to the solver step
size after sample-time propagation.

Programmatic Use
Block Parameter: InheritSampleTime
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Direct feedthrough of input during linearization — Output the input
during linearization and trim
off (default) | on

Select to output the input during linearization and trim. This selection sets the block
mode to direct feedthrough.

Selecting this check box can cause a change in the ordering of states in the model when
using the functions linmod, dlinmod, or trim. To extract this new state ordering, use
the following commands.

First compile the model using the following command, where model is the name of the
Simulink model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with this command.

1 Blocks — Alphabetical List

1-1060

 model([],[],[],'term');

The output argument, x_str, which is a cell array of the states in the Simulink model,
contains the new state ordering. When passing a vector of states as input to the linmod,
dlinmod, or trim functions, the state vector must use this new state ordering.

Programmatic Use
Block Parameter: LinearizeMemory
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Treat as a unit delay when linearizing with discrete sample time —
Linearize to unit delay for discrete inputs
off (default) | on

Select to linearize the Memory block to a unit delay when the Memory block is driven by a
signal with a discrete sample time.

Programmatic Use
Block Parameter: LinearizeAsDelay
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you
click Apply.

 Memory

1-1061

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).
Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name
resolve to a signal object
off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.
Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if
you set the model configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.
Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default) | <StorageClass.PackageName>

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

1 Blocks — Alphabetical List

1-1062

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'
Default: 'Simulink.Signal'

Code generation storage class — State storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | BitField (Custom) | Model default | ExportToFile
(Custom) | ImportFromFile (Custom) | FileScope (Custom) | AutoScope
(Custom) | Struct (Custom) | GetSet (Custom) | Reusable (Custom)

Select state storage class for code generation.

• Auto is the appropriate storage class for states that you do not need to interface to
external code.

• StorageClass applies the storage class or custom storage class that you select from
the list. For information about storage classes, see “Apply Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Simulink Coder). For
information about custom storage classes, see “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.

Dependencies

To enable this parameter, specify a value for State name.

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'SimulinkGlobal' | 'ExportedGlobal' |
'ImportedExtern' | 'ImportedExternPointer' | 'Custom' | ...
Default: 'Auto'

TypeQualifier — Storage type qualifier
'' (default) | const | volatile | ...

Specify a storage type qualifier such as const or volatile.

 Memory

1-1063

Note TypeQualifier will be removed in a future release. To apply storage type qualifiers
to data, use custom storage classes and memory sections. Unless you use an ERT-based
code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

For more information, see “Data Objects”.

Dependencies

To enable this parameter, set Code generation storage class to ExportedGlobal,
ImportedExtern, ImportedExternPointer, or Model default. This parameter is
hidden unless you previously set its value.

Programmatic Use
Block Parameter: RTWStateStorageTypeQualifier
Type: character vector
Values: '' | 'const' | 'volatile' | ...
Default: ''

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

1 Blocks — Alphabetical List

1-1064

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Memory.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Unit Delay | Zero-Order Hold

Topics
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Apply Custom Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Embedded Coder)
“Data Objects”

Introduced before R2006a

 Memory

1-1065

Merge
Combine multiple signals into single signal
Library: Simulink / Signal Routing

Description
The Merge block combines inputs into a single output. The output value at any time is
equal to the most recently computed output of its driving blocks. Specify the number of
inputs by setting the parameter Number of inputs parameter.

Use Merge blocks to interleave input signals that update at different times into a
combined signal in which the interleaved values retain their separate identities and times.
To combine signals that update at the same time into an array or matrix signal, use a
Concatenate block.

Guidelines for Using the Merge Block
When you use the Merge block, follow these guidelines:

• Always use conditionally executed subsystems to drive Merge blocks.
• Ensure that at most one of the driving conditionally executed subsystems executes at

any time step.
• Ensure that all input signals have the same sample time.
• Do not branch a signal that inputs to a Merge block, if you use the default setting of

Classic for the Model Configuration Parameters > Diagnostics >
Underspecified initialization detection parameter.

• For all conditionally executed subsystem Outport blocks that drive Merge blocks, set
the Output when disabled parameter to held.

• If the output of a Model block is coming from a MATLAB Function block or a Stateflow
chart, do not connect that output port to the input port of the Merge block.

1 Blocks — Alphabetical List

1-1066

Merge Block Usage
For each input of a Merge block, the topmost non-atomic and nonvirtual source must be a
conditionally executed subsystem that is not an Iterator Subsystem.

The following shows valid Merge block usage, merging signals from two conditionally
executed subsystems.

Bus Support
The Merge block is a bus-capable block. The inputs can be virtual or nonvirtual bus
signals subject to the following restrictions:

• The number of inputs must be greater than one.
• Initial output must be zero, a nonzero scalar, or a finite numeric structure.
• Allow unequal port widths must be disabled.
• All inputs to the merge must be buses and must be equivalent (same hierarchy with

identical names and attributes for all elements).

All signals in a nonvirtual bus input to a Merge block must have the same sample time.
You can use a Rate Transition block to change the sample time of an individual signal, or
of all signals in a bus.

You can use an array of buses as an input signal to a Merge block with these limitations:

 Merge

1-1067

• Allow unequal port widths — Clear this parameter.
• Initial condition — You can specify this parameter with:

• The value 0. In this case, each of the individual signals in the array of buses use the
initial value 0.

• An array of structures that specifies an initial condition for each of the individual
signals in the array of buses.

• A single scalar structure that specifies an initial condition for each of the elements
that the bus type defines. Use this technique to specify the same initial conditions
for each of the buses in the array.

Merging S-Function Outputs
The Merge block can merge a signal from an S-Function block only if the memory used to
store the output from the S-Function is reusable. Simulink software displays an error
message if you attempt to update or simulate a model that connects a nonreusable port of
an S-Function block to a Merge block. See ssSetOutputPortOptimOpts.

Limitations
• All signals that connect to a Merge block, are functionally the same signal. Therefore,

they are subject to the restriction that a given signal can have at most one associated
signal object. See Simulink.Signal for more information.

• Run-time diagnostics do not run if the inputs to a merge block are from a single
initiator. For example, a single initiator could be a Stateflow chart executing function-
call subsystems that are connected to a Merge block.

• Do not set the outports of conditionally executed subsystems being merged to reset
when disabled. This action can cause multiple subsystems to update the block at the
same time. Specifically, the disabled subsystem updates the Merge block by resetting
its output, while the enabled subsystem updates the block by computing its output.

To prevent this behavior, set the Outport block parameter Output when disabled to
held for each conditionally executed subsystem being merged.

Note If you are using Simplified Initialization Mode, set the Outport block parameter
Output when disabled to held.

1 Blocks — Alphabetical List

1-1068

• A Merge block does not accept input signals whose elements have been reordered or
partially selected. In addition, do not connect input signals to the block that have been
combined outside of a conditionally executed subsystem.

Ports

Input
Port_1 — First input signal
scalar | vector

First input signal merged with the other input signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_n — nth input signal
scalar | vector

nth input signal merged with the other input signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
scalar | vector

Ouput signal merged from the input signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Number of inputs — Number of input signals to merge
2 (default) | integer

 Merge

1-1069

Specify the number of input signals to merge. The block creates a port for each input
signal.
Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer
Default: '2'

Initial output — Initial output value
[] (default) | scalar | vector

Specify the initial value of the output signal. If you do not specify an initial output value,
then initial output depends on the initialization mode and the driving blocks.

In Simplified initialization mode, for an unspecified (empty matrix []) value of Initial
output, the block uses the default initial value of the output data type. For information on
the default initial value, see “Initializing Signal Values”. In Classic initialization mode, for
an unspecified (empty matrix []) value of Initial output, the initial output of the block
equals the most recently evaluated initial output of the driving blocks. Since the
initialization ordering for these sources can vary, initialization can be inconsistent for the
simulation and the code generation of a model.
Programmatic Use
Block Parameter: InitialOutput
Type: character vector
Values: scalar | vector
Default: '[]'

Allow unequal port widths — Allow inputs of unequal dimensions
off (default) | on

Select this check box to allow the block to accept inputs having different numbers of
elements. The block allows you to specify an offset for each input signal relative to the
beginning of the output signal. The width of the output signal is

max(w1+o1, w2+o2, ... wn+on)

where w1, ... wn are the widths of the input signals and o1, ... on are the offsets for the
input signals.

If you clear this check box, the Merge block accepts only inputs of equal dimensions and
outputs a signal of the same dimensions as the inputs.

1 Blocks — Alphabetical List

1-1070

Programmatic Use
Block Parameter: AllowUnequalInputPortWidths
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input port offsets — Offset for input signals
[] (default) | vector

Enter a vector to specify the offset of each input signal relative to the beginning of the
output signal.
Programmatic Use
Block Parameter: InputPortOffsets
Type: character vector
Values: scalar | vector
Default: '[]'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

In the code generation workflow, when the Merge block receives a constant value and
non-constant sample times, one of these conditions must hold. Otherwise Simulink
displays an error.

 Merge

1-1071

• The source of the constant value is a grounded signal.
• The source of the constant value is a constant block with a non-tunable parameter.

• There is only one constant block that feeds the Merge block.
• All other input signals to the Merge block are from conditionally executed

subsystems.
• The Merge block and outport blocks of all conditionally executed subsystems does

not specify any initial outputs.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Manual Switch | Switch

Topics
“Conditionally Executed Subsystems Overview”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1072

MinMax
Output minimum or maximum input value
Library: Simulink / Math Operations

Description
The MinMax block outputs either the minimum or the maximum element or elements of
the inputs. You choose whether the block outputs the minimum or maximum values by
setting the Function parameter.

The MinMax block ignores any input value that is NaN, except when every input value is
NaN. When all input values are NaN, the output is NaN, either as a scalar or the value of
each output vector element.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Provide an input signal from which the block outputs the maximum or minimum values.

• When the block has one input port, the input must be a scalar or a vector. The block
outputs a scalar equal to the minimum or maximum element of the input vector.

• When the block has multiple input ports, all nonscalar inputs must have the same
dimensions. The block expands any scalar inputs to have the same dimensions as the
nonscalar inputs. The block outputs a signal having the same dimensions as the input.
Each output element equals the minimum or maximum of the corresponding input
elements.

 MinMax

1-1073

Dependencies

To support matrix input, you must set the Number of input ports parameter to an
integer greater than one. All nonscalar inputs must have the same dimensions.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Port_N — N-th input signal
scalar | vector | matrix

Provide an input signal from which the block outputs the maximum or minimum values.

When the block has multiple input ports, all nonscalar inputs must have the same
dimensions. The block expands any scalar inputs to have the same dimensions as the
nonscalar inputs. The block outputs a signal having the same dimensions as the input.
Each output element equals the minimum or maximum of the corresponding input
elements.

Dependencies

To provide more than one input signal, set the Number of input ports to an integer
greater than 1.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Output
Port_1 — Minimum or maximum values of inputs
scalar | vector | matrix

When the block has one input, the output is a scalar value, equal to the minimum or
maximum of the input elements. When the block has multiple inputs, the output is a
signal having the same dimensions as the input. Each output element equals the minimum
or maximum of the corresponding input elements.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

1 Blocks — Alphabetical List

1-1074

Parameters

Main
Function — Specify minimum or maximum
min (default) | max

Specify whether to apply the function min or max to the input.

Programmatic Use
Block Parameter: Function
Type: character vector
Values: 'min' | 'max'
Default: 'min'

Number of input ports — Specify number of input ports
1 (default) | positive integer

Specify the number of inputs to the block.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '1'
Default: '1'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

 MinMax

1-1075

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes
Require all inputs to have the same data type — Inputs must have the
same data type
off (default) | on

Select this check box to require that all inputs have the same data type.
Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL

1 Blocks — Alphabetical List

1-1076

or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

 MinMax

1-1077

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via
back propagation' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32'
| 'uint32' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type
expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

1 Blocks — Alphabetical List

1-1078

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

 MinMax

1-1079

Action Rationale Impact on Overflows Example
Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

1 Blocks — Alphabetical List

1-1080

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about generating HDL code, see MinMax.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
MinMax Running Resettable

Introduced before R2006a

 MinMax

1-1081

MinMax Running Resettable
Determine minimum or maximum of signal over time
Library: Simulink / Math Operations

Description
The MinMax Running Resettable block outputs the minimum or maximum of all past
inputs u. You specify whether the block outputs the running minimum or maximum with
the Function parameter.

The block can reset its state based on an external reset signal R. When the reset signal R
is nonzero (true), the block resets the output to the value of the Initial condition
parameter.

The input can be a scalar, vector, or matrix signal. The block outputs a signal having the
same dimensions as the input. Each output element equals the running minimum or
maximum of the corresponding input elements.

Ports

Input
u — Input signal
scalar | vector | matrix

Input signal as a scalar, vector, or matrix. Based on what you specify for the Function
parameter, the block outputs the minimum or maximum value of all past inputs u.

If you specify a scalar value for the Initial condition parameter, the block expands the
parameter to have the same dimensions as nonscalar input u.

1 Blocks — Alphabetical List

1-1082

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

R — Reset signal
scalar | vector | matrix

The input port accepting the reset signal as a scalar, vector, or matrix. When the reset
signal is nonscalar, it must have the same dimensions as input signal u. As long as the
reset signal has a value of zero, the block outputs the running minimum or maximum
value of input u. Whenever the reset signal has a nonzero value (true), the block resets
the output to the value of the Initial condition parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Output
y — Running minimum or maximum value
scalar | vector | matrix

Output signal, specified as a scalar, vector, or matrix, where each output element equals
the running minimum or maximum value of the corresponding input elements. Output
signal y has the same data type and dimensions as input signal u.

When the block receives a nonzero (true) reset signal, the block resets the output to the
value of the Initial condition parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters
Function — Specify minimum or maximum
min (default) | max

Specify whether the block outputs the running minimum or maximum value of the
corresponding input elements.

Programmatic Use
Block Parameter: Function

 MinMax Running Resettable

1-1083

Type: character vector
Values: 'min' | 'max'
Default: 'min'

Initial condition — Value to reset output to
0.0 (default) | scalar or vector

Specify the initial condition value. When the reset input signal R is true, the block resets
the output to the value you specify.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar or vector
Default: '0.0'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks — Alphabetical List

1-1084

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
MinMax

Introduced before R2006a

 MinMax Running Resettable

1-1085

Model
Include multiple model implementations as block in another model through model
reference
Library: Ports & Subsystems

Description
The Model block allows you to include a model as a block in another model. The included
model is called a referenced model, and the model containing it (using the Model block) is
called the parent model.

The Model block displays input and output ports corresponding to the top-level input and
output ports of the referenced model. Using these ports allow you to connect the
referenced model to other blocks in the parent model. See “Model Referencing” for more
information.

As an alternative to specifying a particular referenced model in the Main tab, you can
dynamically reference one of several model variants, depending on a model workspace
value. A variant describes one possible mode in which a Model block can operate. Each
variant of the Model block references a specific model with optional model-specific
arguments. Only one variant is active for simulation. To create model variants, click
Enable Variants button, which opens a dialog box for implementing model variants. For
more information about how to specify a referenced model for multiple specifications, see
“Set up Model Variants Using a Model Block”.

Note For new models, use a Model block for model variants only if you need to use
variants that are conditionally executed models (models with control ports). Model
variants are supported for backward compatibility. However, support for model variants
will be removed in a future release. Use of a Variant Subsystem block provides these
advantages:

• Allows you to mix Model and Subsystem blocks as variant systems

1 Blocks — Alphabetical List

1-1086

• Supports flexible I/O, so that all variants do not need to have the same number of input
and output ports

To convert a Model block that contains variant models to a Variant Subsystem block that
contains Model blocks that reference the variant models, right-click the Model block and
select Subsystems & Model Reference > Convert to > Variant Subsystem.
Alternatively, you can use the Simulink.VariantManager.convertToVariant
function. Specify the Model block path or block handle. The converted model produces
the same results as the original model.

Alternatively, to set up model variants for a new model, you can use the Variant Model
block, which is a subsystem variant template block that contains two Model blocks that
you can use for variants.

By default, the contents of a referenced model are user-visible by double-clicking the
Model block. However, you can hide the contents of a referenced model by making the
model a protected model.

Depending on whether you want to reference a single model or variant models, and
whether you want to use model arguments, you need to use different parts of the Model
block interface.

Modeling Goal Model Block Interface to Use
Reference a single model (nonvariant
model)

Use the Main tab.

Reference variant models On the Main tab, click Enable Variants,
which opens the model variants dialog box.

Specify values for model arguments For a nonvariant model reference, use the
Arguments tab.

For variant models, use the variant dialog
box.

To manage various variants that are modeled using variant blocks in a model, in the
model variants dialog box click Open block in Variant Manager link.

 Model

1-1087

Ports

Input
Input_Port_1 — Input port corresponding to root-level Inport, Enable, and
Trigger blocks of referenced model
real or complex values of any data type supported by Simulink

The Model block has an input port for each root-level Inport, Enable, or Trigger block in
the referenced model. The name of the Model block port matches the name of the
corresponding referenced model input block. The Model block input signals must be valid
for the corresponding referenced model input blocks. See “Define Referenced Model
Inputs and Outputs”.

Input signals can have real or complex values of any data type supported by Simulink,
including bus objects, arrays of buses, fixed-point, and enumerated data types. For details
about data types, see Simulink, “Data Types Supported by Simulink”.

Output
Output_Port_1 — Output port corresponding to root-level Outport block of
referenced model
real or complex values of any data type supported by Simulink

The Model block has an output port for each root-level Outport block in the referenced
model. The name of the Model block port matches the name of the corresponding Outport
block. The Model block output signals are the signals from the corresponding referenced
model Outport blocks. See “Define Referenced Model Inputs and Outputs”.

Output signals can have real or complex values of any data type supported by Simulink,
including bus objects, arrays of buses, fixed-point, and enumerated data types. For details
about data types, see Simulink, “Data Types Supported by Simulink”.

1 Blocks — Alphabetical List

1-1088

Parameters

Main Tab
Model name — File name of referenced model
'' (default) | character vector

Path to the referenced model. The file name must be a valid MATLAB identifier. The
extension, for example, .slx, is optional. The file name must contain fewer than 60
characters, exclusive of the .slx or .mdl suffix.

To navigate to the model that you want to reference, click Browse.

To view the model that you specified, click Open Model.
Programmatic Use
Parameter: ModelFile
Type: character vector
Value: '' | '<file name>'
Default: ''

Simulation mode — Simulation mode for referenced model
Normal (default) | Accelerator | Software-in-the-loop (SIL) | Processor-in-
the-loop (PIL)

Specify the simulation mode for the referenced model. The simulation mode for models in
a model referencing hierarchy do not have to match. For information about model
reference simulation modes and precedence of the simulation mode in a hierarchy, see
“Simulate Model Reference Hierarchies”.

• Accelerator — Create a MEX-file for the referenced model and then executes the
referenced model by running the S-function.

• Normal — Execute the referenced model interpretively, as if the referenced model is
an atomic subsystem implemented directly within the parent model.

• Software-in-the-loop (SIL) — This option requires the Embedded Coder
software. Generate production code based on the Code Interface parameter setting.
The code is compiled for, and executed on, the host platform.

• Processor-in-the-loop (PIL) — This option requires the Embedded Coder
software. Generate production code based on the Code Interface parameter setting.
This code is compiled for, and executed on, the target platform. A documented target

 Model

1-1089

connectivity API supports exchange of data between the host and target at each time
step during the PIL simulation.

The corners of the Model block reflect the simulation mode for the referenced model. For
normal mode, the corners have empty triangles. For accelerator mode, the corner
triangles are filled in. For SIL and PIL modes, the corners are filled in and the word
(SIL) or (PIL) appears on the block icon.

Programmatic Use
Parameter: SimulationMode
Type: character vector
Value: 'Normal' | 'Accelerator' | 'Software-in-the-loop' | 'Processor-in-
the-loop'
Default: 'Normal'

Code interface — Generate code from top model or referenced model
Model reference (default) | Top model

Specify whether to generate the code from the top model or the referenced model for SIL
and PIL simulation modes. To deploy the generated code as part of a larger application
that uses the referenced model, specify Model reference. To deploy the generated
code as a standalone application, specify Top model.

Model reference
Code generated from referenced model as part of a model reference hierarchy. Code
generation uses the slbuild('model', 'ModelReferenceRTWTarget')
command.

Top model
Code generated from top model with the standalone code interface. Code generation
uses the slbuild('model') command.

Dependencies

To display and enable this parameter, select either Software-in-the-loop (SIL) or
Processor-in-the-loop (SIL) from the Simulation mode drop-down list.

Programmatic Use
Parameter: CodeInterface
Type: character vector
Value: 'Model reference' | 'Top model'
Default: 'Model reference'

1 Blocks — Alphabetical List

1-1090

Show model initialize port — Control display of initialize event port
off (default) | on

Control display of initialize event port on the Model block.

 off
Remove port.

 on
Display model initialize event port.

Programmatic Use
Block parameter: ShowModelInitializePort
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show model reset port — Control display of reset event ports
off (default) | on

Control display of reset event ports on the Model block.

 off
Remove port.

 on
Display model reset event ports.

Programmatic Use
Block parameter: ShowModelResetPorts
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show model terminate port — Control display of terminate event port
off (default) | on

Control display of terminate event port on Model block.

 Model

1-1091

 off
Remove port.

 on
Display model block port.

Programmatic Use
Block parameter: ShowModelTerminatePort
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show model periodic event ports — Control display of periodic event ports
off (default) | on

Control display of periodic event ports on Model block.

 off
Hide ports.

 on
Display ports for rate-based models. A rate-based model is a model with the Sample
time for a connected Inport block specified.

If you want to manually specify the port rates, set the parameter
AutoFillPortDiscreteRates to 'off', and then add the port rates to the
parameter PortDiscreteRates.

Programmatic Use
Block parameter: ShowModelPeriodicEventPorts
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Enable variants — Enable variants and open dialog box for defining model
variants
off (default) | on

Opens a dialog box for defining model variants. The dialog box includes a Variant
choices table, with a separate row for defining each variant.

1 Blocks — Alphabetical List

1-1092

Programmatic Use
Block parameter: Variants
Type: array
Value: array of variant structures where each element specifies one variant. The
structure fields are:

• variant.Name (character vector) — The variant control can be a boolean condition
expression, or a Simulink.Variant object representing a boolean condition
expression. If you want to generate code for your model, you must define the control
variables as Simulink.Parameter objects.

• variant.ModelName (character vector) — The name of the referenced model
associated with the specified variant control in the Model block.

• variant.ParameterArgumentNames (character vector) — Read-only character
vector containing the names of the model arguments for which the Model block must
supply values.

• variant.ParameterArgumentValues (character vector) — The values to supply for
the model arguments when this variant is the active variant.

• variant.SimulationMode (character vector) — The execution mode to use when
this variant is the active variant. Possible values are 'Accelerator' | 'Normal' |
'Software-in-the-loop (SIL)' | 'Processor-in-the-loop (PIL)'

Arguments Tab
Model arguments — Display model arguments and specify argument values for
referenced model
number | workspace variable | mathematical expression | structure or structure field

Display model arguments and specify model argument values. Model arguments enable
the referenced model to use a different value for a variable used by a referenced model.
To specify model argument values, use the Value column in the table. For more
information about configuring model arguments in a referenced model and specifying
argument values, see “Parameterize Instances of a Reusable Referenced Model”.

Programmatic Use
Block parameter: ParameterArgumentValues (corresponding to the Value column in
the table)
Type: structure

 Model

1-1093

Value: Structure with one field for each model argument that the referenced model
defines. Fields of the structure are names of the model arguments. Values are character
vector representations of the values.
Default: Structure with no fields

Model Variants Dialog Box
Variant choices — Table of variant models
row for the model specified in Model name parameter in the Main tab (default)

Table containing a row for each variant object in the base workspace. The Variant
choices table includes the Model name, associated Variant control, and Condition
(read-only) columns. For details, see the descriptions of each of the parameters.

To modify the table, use buttons to the left of the Variant choices table.

Function Button
Add a new variant: Add a new, empty row below the currently
selected row
Delete selected variant: Delete the currently selected row.
Models and objects are not affected.v
Create/Edit selected variant object: Creates a
Simulink.Variant object in the base workspace and opens the
Simulink.Variant object parameter dialog box for specifying
the variant Condition. This button is enabled only for valid
Simulink.Variant objects.
Move variant up: Move up the currently selected row one slot in
the table
Move variant down: Move the currently selected row down one
slot in the table

Dependency

Enable variants on the Main tab opens the variant model dialog box that contains this
parameter.

Programmatic Use
Block parameter: Variants

1 Blocks — Alphabetical List

1-1094

Type: array
Value: array of variant structures where each element specifies one variant. The
structure fields are:

• variant.Name (character vector) — The variant control can be a Boolean condition
expression, or a Simulink.Variant object representing a Boolean condition
expression. To generate code for your model, define the control variables as
Simulink.Parameter objects.

• variant.ModelName (character vector) — The name of the referenced model
associated with the specified variant control in the Model block.

• variant.ParameterArgumentNames (character vector) — Read-only character
vector containing the names of the model arguments for which the Model block must
supply values.

• variant.ParameterArgumentValues (character vector) — The values to supply for
the model arguments when this variant is the active variant.

• variant.SimulationMode (character vector) — The execution mode to use when
this variant is the active variant.

• Possible values are 'Accelerator' | 'Normal' | 'Software-in-the-loop
(SIL)' | 'Processor-in-the-loop (PIL)'

Model name — Display or enter name of model associated with variant control
'' (default) | character vector

Path to the variant model, specified as a character vector. The name must be a valid
MATLAB identifier. The extension, for example, .slx, is optional. The model name must
contain fewer than 60 characters, exclusive of the .slx or .mdl suffix.

To navigate to the model that you want to reference for the selected variant in the table,
click Browse.

To view the model that you specified is the model you want to reference, click Open
Model.
Dependency

Enable variants on the Main tab opens the variant model dialog box that contains this
parameter.

Programmatic Use
Parameter: ModelName

 Model

1-1095

Type: character vector
Value: '' | '<file name>'
Default: ''

Variant control — Variant activation condition or variant control that contains
expression for variant activation
Variant (default) | Simulink.Variant object representing a Boolean condition
expression | Simulink.Parameter object

The variant control can be a boolean condition expression or a Simulink.Variant
object representing a boolean condition expression. If you want to generate code for your
model, define control variables as Simulink.Parameter objects.

The variant condition must be a Boolean expression that references at least one base
workspace variable or parameter. For example, FUEL== 2 && EMIS == 1. Do not
surround the condition with parentheses or single quotes. The expression can include:

• MATLAB variables defined in the base workspace
• Simulink parameter objects defined in the base workspace
• Scalar variables
• Enumerated values
• Operators ==, ~=, &&, ||, ~
• Parentheses for grouping

During model compilation, Simulink evaluates variant objects before calling the InitFcn
callback. Therefore, do not modify the condition of the variant object in the InitFcn
callback.

Dependency

Enable variants on the Main tab opens the variant model dialog box that contains this
parameter.

Programmatic Use
Structure field: Represented by the variant.Name field in the Variants parameter
structure
Type: character vector
Value: Variant control associated with the variant
Default: ''

1 Blocks — Alphabetical List

1-1096

Condition (read-only) — Display condition for Simulink.Variant object
a Boolean expression that references at least one base workspace variable or parameter

This read-only field displays the condition for the associated model variant in the base
workspace. To specify the condition for the selected variant object, click the Edit
selected variant object button.

The variant condition must be a Boolean expression that references at least one base
workspace variable or parameter. For example, FUEL== 2 && EMIS == 1. Do not
surround the condition with parentheses or single quotes. The expression can include:

• MATLAB variables defined in the base workspace
• Simulink parameter objects defined in the base workspace
• Scalar variables
• Enumerated values
• Operators ==, ~=, &&, ||, ~
• Parentheses for grouping

Dependency

Enable variants on the Main tab opens the variant model dialog box that contains this
parameter.

Override variant conditions and use the following variant — Override
variant conditions and make variant the active variant
off (default) | on

By default, Simulink determines the active variant by the value of the variant conditions.
To override the variant conditions and set the active variant to the value of the Variant,
enable the Override variant conditions and use the following variant parameter.

Dependency

Selecting this parameter, enables the Variant parameter.

Programmatic Use
Parameter: OverrideUsingVariant
Type: character vector
Value: 'off'| 'on'
Default: 'off'

 Model

1-1097

Variant — Specify variant
varObject(<Enter Model Name>) (default) | character vector

Specify overriding variant.

Dependency

To enable this parameter, either variant condition must be true or Override variant
conditions must be selected.

Programmatic Use
Parameter: ActiveVariant
Type: character vector
Value: '' if no variant is active, the value is either empty or the name of the active
variant.
Default: ''

Model name — Display or enter name of model associated with variant control
'' (default) | character vector

Path to the variant model, specified as a character vector. The name must be a valid
MATLAB identifier. The extension, for example, .slx, is optional. The model name must
contain fewer than 60 characters, exclusive of the .slx or .mdl suffix.

To navigate to the model that you want to reference for the selected variant in the table,
click Browse.

To view the model that you specified is the model you want to reference, click Open
Model.

Dependency

Enable variants on the Main tab opens the variant model dialog box that contains this
parameter.

Model arguments — Display model arguments
comma-separated list of argument names

Display model arguments for the selected referenced model. For more information about
configuring model arguments in a referenced model and specifying argument values, see
“Parameterize Instances of a Reusable Referenced Model”.

1 Blocks — Alphabetical List

1-1098

Dependency

Enable variants enables this parameter.

Programmatic Use
Structure field: Represented by the variant.ParameterArgumentNames field in the
Variants parameter structure OneArgName
Type: character vector
Value: Enter model arguments as a comma separated list
Default: ''

Model argument values (for this instance) — Specify model argument
values for referenced model variant
number | workspace variable | mathematical expression | structure or structure field

Enter the argument values in this parameter as a list, in the same order as the
corresponding argument names in the Model arguments parameter. To separate the
items in the list, use commas, spaces, or semicolons. For information about valid values,
see “Set Block Parameter Values”.

To define model arguments, see “Model Arguments for Model Blocks That Contain Model
Variants”.

Dependency

Enable variants on the Main tab opens the variant model dialog box that contains this
parameter.

Programmatic Use
Structure field: Represented by the variant.ParameterArgumentValues field in the
Variants parameter structureOneArgName
Type: character vector
Value: Any valid value
Default: ''

Simulation mode — Simulation mode for model variant
Accelerator (default) | Normal | Software-in-the-loop (SIL) | Processor-in-
the-loop (PIL)

Simulation mode for the highlighted model variant control.

• Accelerator — Creates a MEX-file for the referenced model and then executes the
referenced model by running the S-function.

 Model

1-1099

• Normal — Executes the referenced model interpretively, as if the referenced model is
an atomic subsystem implemented directly within the parent model.

• Software-in-the-loop (SIL) — This option requires the Embedded Coder
software. Generates production code using model reference target for the referenced
model. This code is compiled for, and executed on, the host platform.

• Processor-in-the-loop (PIL) — This option requires the Embedded Coder
software. Generates production code using a model reference target for the
referenced model. This code is compiled for, and executed on, the target platform. A
documented target connectivity API supports exchange of data between the host and
target at each time step during the PIL simulation.

Generate preprocessor conditionals — For ERT target, specify whether
variant choices are enclosed within C preprocessor conditional statements
off (default) | on

When generating code for an ERT target, this parameter determines whether variant
choices are enclosed within C preprocessor conditional statements (#if). When you
enable this option, Simulink analyzes all variant choices during an update diagram or
simulation. This analysis provides early validation of the code generation readiness of all
variant choices.

Dependencies

• The check box is available for generating only ERT targets.
• Override variant conditions and use following variant is cleared.

Programmatic Use
Parameter: GeneratePreprocessorConditionals
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Disable variants — Disable model reference variants and display Main tab
off (default) | on

Disable model reference variants and display the Main tab. The block retains any
information you have entered and approved by clicking Apply or OK.

Programmatic Use
Parameter: Variant
Type: character vector

1 Blocks — Alphabetical List

1-1100

Value: 'off' | 'on'
Default: 'off'

See Also
Simulink.SubSystem.convertToModelReference |
Simulink.VariantManager.convertToVariant | find_mdlrefs | view_mdlrefs

Topics
“Create a Referenced Model”
“Simulate Model Reference Hierarchies”
“Set up Model Variants Using a Model Block”
“Parameterize Instances of a Reusable Referenced Model”

Introduced before R2006a

 Model

1-1101

Model Info
Display model properties and text in model

Library
Model-Wide Utilities

Description
The Model Info block displays model properties and text about a model on the mask of the
block. Use the Model Info block dialog box to specify the content and format of the text
that the block displays. You can select model properties to display on the block. In the text
displayed on the block mask, Simulink replaces the property name with the current value
of the property in the model.

Data Type Support
Not applicable.

Parameters

Specify Text and Properties to Display
Use the Enter text and tokens to display on Model Info block edit box to specify the
text and properties to display.

1 Blocks — Alphabetical List

1-1102

• In the edit box, enter any text you want to display on the block mask. Edit the default
text Model Info.

• To display a model property on the block mask, select a property in the Model
properties list and click the right arrow button.

The block adds a token of the form %<modelpropertyname> to the edit box. In the
text the block mask displays, Simulink will replace the token with the value of the
property.

1 For example, if you select Description in the Model properties list and click
the right arrow button, then the token

%<Description>

appears in the right edit box.
2 You could add some explanatory text before the model property, e.g. “Model

description:”.
3 When you click Apply or OK, Simulink displays your new text and the current

value of the model property on the block mask in the Model Editor.

See “Version Information Properties” for descriptions of the model properties.

If you are interested in source control information, for a flexible interface to source
control tools, use Simulink Project. See “Source Control in Simulink Project”.

Tip To add text, images, links, and equation annotations to a model, see instead
“Describe Models Using Annotations”.

Characteristics
Data Types Not applicable
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

 Model Info

1-1103

Multiply-Accumulate
Perform a multiply-accumulate operation on the inputs
Library: HDL Coder / HDL Operations / Multiply-Accumulate

Description
The Multiply-Accumulate block performs this operation on the inputs u1 and u2, and the
bias k, to compute the result y.

y = sum(u1.* u2) + k

The inputs u1 and u2 can be scalars or vectors. By default, the bias k is equal to zero, and
the block computes the dot product of the inputs u1 and u2. You can specify a nonzero
value for k using Dialog or Input port as the Source. The block adds this bias to the
dot product of u1 and u2. The multiplication operation is full precision irrespective of the
Output data type setting. The Output data type and Integer rounding mode settings
apply to the addition operation.

Ports

Input
a — Input signal
vector | matrix | array | bus

Port to provide input to the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

1 Blocks — Alphabetical List

1-1104

b — Input signal
scalar | vector | matrix | array | bus

Port to provide input to the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

c — Bias signal
scalar | vector | matrix | array | bus

Port to provide the bias signal to the block. The block adds this bias to the inputs. Make
sure that the bias signal data type matches that of the dot product of the inputs.

Dependencies

To enable this port, set Source to external.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
y — Output signal
scalar | vector | matrix | array | bus

Port that generates output of the multiply-accumulate operation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Bias — Offset to add to the input dot product
{'0.0} (default)

You can specify the bias with:

• Source as Dialog. Then, specify the Value.
• Source as Input port. This setting creates an external input port c to input the bias

signal to the block.

 Multiply-Accumulate

1-1105

Output data type — Data type of the block output
Inherit: Inherit via internal rule (default)

Set the output data type to:

• A rule that inherits a data type, such as Inherit: Same as first input.
• A built-in data type, such as single or int16.
• The name of a data type object. for instance, a Simulink.NumericType object.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

When you set the Output data type, you can use the Data Type Assistant. To display

the assistant, click the Show data type assistant .
Programmatic Use
Block parameter: OutDataTypeStr
Type: character vector
Default: {'Inherit: Inherit via internal rule'}

To see possible values that you can specify for this parameter, see “Block-Specific
Parameters” on page 6-130.

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding action as:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds the number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

1 Blocks — Alphabetical List

1-1106

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block parameter: RndMeth
Type: character vector
Default: {'Floor'}

To see possible values that you can specify for this parameter, see “Block-Specific
Parameters” on page 6-130.

Block Characteristics
Data Types double | single | base integer | fixed point | bus
Sample Time Inherit
Direct
Feedthrough

Yes

Multidimensional
Signals

Scalar

Variable-Size
Signals

Yes

Zero-Crossing
Detection

No

 Multiply-Accumulate

1-1107

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

If have HDL Coder installed, you can map the generated HDL code for the block
efficiently to DSP slices on the FPGA when you synthesize your design. For more
information, see Multiply-Accumulate.

You can use the data types listed above for the ports when you simulate the block. To
generate HDL code, make sure that you use vector inputs and a scalar bias signal. If
you use single or double data types for the inputs, the block may not map the
generated code to DSP slices on the FPGA.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Dot Product | Multiply-Add

Introduced in R2017b

1 Blocks — Alphabetical List

1-1108

Multiply-Add
Multiply-add combined operation

Library
HDL Coder / HDL Operations

Description
The Multiply-Add block computes the product of the first two inputs, a and b, and adds
the result to the third input, c. The inputs can be vectors or scalars.

Operation Precision
The multiplication operation is full precision, regardless of the output type. The Integer
rounding mode, Output data type, and Saturate on integer overflow settings apply
only to the addition operation.

HDL Code Generation
Use the Multiply-Add block to map a combined multiply-add or a multiply-subtract
operation to a DSP unit in your target hardware.

 Multiply-Add

1-1109

When you generate HDL code for your model, HDL Coder configures the multiply-add
operation so that your synthesis tool can map to a DSP unit.

Data Type Support
The Multiply-Add block accepts and outputs signals of any numeric data type that
Simulink supports, including fixed-point data types.

For more information, see “Data Types Supported by Simulink”.

Parameters

Function
Specify the function to perform a combined multiply and add or a multiply and subtract
operation.

Default: c+(a.*b)

You can set the function to:

• c+(a.*b)
• c-(a.*b)
• (a.*b)-c

Output data type
Specify the output data type.

Default: Inherit: Inherit via internal rule

Set the output data type to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

1 Blocks — Alphabetical List

1-1110

Click the Show data type assistant button to display the Data Type Assistant
dialog box, which helps you to set the Output data type parameter.

For more information, see “Control Signal Data Types” in Simulink User's Guide .

Integer rounding mode
Specify the rounding mode for fixed-point operations.

Default: Floor

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Multiply-Add

1-1111

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow
Specify whether overflows saturate.

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1112

See Also
Introduced in R2015b

 Multiply-Add

1-1113

Multiport Switch
Choose between multiple block inputs
Library: Simulink / Signal Routing

Description
The Multiport Switch block determines which of several inputs to the block passes to the
output. The block bases this decision on the value of the first input. The first input is the
control input and the remaining inputs are the data inputs. The value of the control input
determines which data input passes to the output.

The table summarizes how the block interprets the control input and determines the data
input that is passed to the output.

Control
Input

Truncation Setting for
Data Port
Order

Block Behavior During Simulation
Indexing to select data
input

Out-of-range condition

Integer
value

None Zero-based
contiguous

Zero-based indexing The control input is less
than 0 or greater than the
number of data inputs
minus one.

One-based
contiguous

One-based indexing The control input is less
than 1 or greater than the
number of data inputs.

Specify
indices

Indices you specify The control input does not
correspond to any
specified data port index.

1 Blocks — Alphabetical List

1-1114

Control
Input

Truncation Setting for
Data Port
Order

Block Behavior During Simulation
Indexing to select data
input

Out-of-range condition

Not an
integer
value

The block
truncates the
value to an
integer by
rounding to
zero.

Zero-based
contiguous

Zero-based indexing The truncated control
input is less than 0 or
greater than the number
of data inputs minus one.

One-based
contiguous

One-based indexing The truncated control
input is less than 1 or
greater than the number
of data inputs.

Specify
indices

Indices you specify The truncated control
input does not correspond
to any specified data port
index.

For information on how the block handles the out-of-range condition, see “How the Block
Handles an Out-of-Range Control Input” on page 1-1115.

Multiport Switch Configured as an Index Vector Block
An Index Vector is a special configuration of a Multiport Switch block in which you specify
one data input and the control input is zero-based. The block output is the element of the
input vector whose index matches the control input. For example, if the input vector is
[18 15 17 10] and the control input is 3, the element that matches the index of 3 (zero-
based) is 10, and that becomes the output value.

To configure a Multiport Switch block to work as an Index Vector block set Number of
data ports to 1 and Data port order to Zero-based contiguous.

How the Block Handles an Out-of-Range Control Input
For an input with an integer value less than intmax(‘int32’), the input is out of range
when the value does not match any data port indices. For a control input that is not an
integer value, the input is out of range when the truncated value does not match any data
port indices. In both cases, the block behavior depends on your settings for Data port for
default case and Diagnostic for default case.

 Multiport Switch

1-1115

Note If the control input is larger than intmax(‘int32’), the block wraps the input
value to an integer.

The following behavior applies only to simulation for your model.

Data port for
default case

Diagnostic for default case
None Warning Error

Last data port Use the last data
port and do not
report any warning
or error.

Use the last data
port and report a
warning.

Report an error and
stop simulation.

Additional data
port

Use the additional
data port with a *
label and do not
report any warning
or error.

Use the additional
data port with a *
label and report a
warning.

Report an error and
stop simulation.

The following behavior applies to code generation for your model.

1 Blocks — Alphabetical List

1-1116

Data port for
default case

Diagnostic for default case
None Warning Error

Last data port Use the last data
port.

Use the last data
port.

Use the last data
port.

Additional data
port

Use the additional
data port with a *
label.

Use the additional
data port with a *
label.

Use the additional
data port with a *
label.

Use Data Inputs That Have Different Dimensions
If two signals have a different number of dimensions or different dimension lengths, you
can use the signals as data inputs to a Multiport Switch block. In the block dialog box,
select the parameter Allow different data input sizes. In this case, the output of the
block is a variable-size signal. If you do not select this parameter, the block generates an
error.

For more information about the parameter, see “Allow different data input sizes (Results
in variable-size output signal)” on page 1-0 . For more information about variable-size
signals, see “Variable-Size Signal Basics”.

 Multiport Switch

1-1117

Rules That Determine the Block Behavior
You specify the number of data inputs with Number of data ports.

• If you set Number of data ports to 1, the block behaves as an index selector or index
vector and not as a multiport switch. For more details, see “Multiport Switch
Configured as an Index Vector Block” on page 1-1115.

• If you set Number of data ports to an integer greater than 1, the block behaves as a
multiport switch. The block output is the data input that corresponds to the value of
the control input. If at least one of the data inputs is a vector, the block output is a
vector. In this case, the block expands any scalar inputs to vectors.

• If all the data inputs are scalar, the output is a scalar.

Guidelines on Setting Parameters for Enumerated Control
Port
When the control port on the Multiport Switch block is of enumerated type, follow these
guidelines:

Scenario What to Do Rationale
The enumerated
type contains a
value that
represents invalid,
out-of-range, or
uninitialized
values.

• Set Data port order to
Specify indices.

• Set Data port indices to use
this value for the last data
port.

• Set Data port for default
case to Last data port.

This block configuration handles
invalid values that the
enumerated type explicitly
represents.

The enumerated
type contains only
valid enumerated
values. However, a
data input port can
get invalid values
of enumerated
type.

• Set Data port for default
case to Additional data
port.

This block configuration handles
invalid values that the
enumerated type does not
explicitly represent.

1 Blocks — Alphabetical List

1-1118

Scenario What to Do Rationale
The enumerated
type contains only
valid enumerated
values. Data input
ports can never get
invalid values of
enumerated type.

• Set Data port for default
case to Last data port.

• Set Diagnostic for default
case to None.

This block configuration avoids
unnecessary diagnostic action.

The block does not
have a data input
port for every value
of the enumerated
type.

• Set Data port for default
case to Additional data
port.

This block configuration handles
enumerated values that do not
have a data input port, along
with invalid values.

Ports

Input
Port_1 — Control signal
scalar | vector | matrix | N-D array

The control signal can be of any data type that Simulink supports, including fixed-point
and enumerated types. When the control input is not an integer value, the block truncates
the value to an integer by rounding to zero.

For information on control signals of enumerated type, see “Guidelines on Setting
Parameters for Enumerated Control Port” on page 1-1118.

For information on how the block handles the out-of-range condition, see “How the Block
Handles an Out-of-Range Control Input” on page 1-1115.

Limitations

• If the control signal is numeric, the control signal cannot be complex.
• If the control signal is an enumerated signal, the block uses the value of the

underlying integer to select a data port.
• If the underlying integer does not correspond to a data port, an error occurs.

 Multiport Switch

1-1119

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

1 — First data input
scalar | vector | matrix | N-D array

First data input, specified as a scalar, vector, matrix, or N-D array. All input data signals
can be of any data type that Simulink supports.

• If all the data inputs are scalar, the output is scalar
• If at least one of the data inputs is a vector, the block output is a vector. In this case,

the block expands any scalar inputs to vectors.
• If any two nonscalar signals have a different number of dimensions or different

dimension lengths, select the Allow different data input sizes check box. For more
information, see “Use Data Inputs That Have Different Dimensions” on page 1-1117

• If any data signal is of an enumerated type, all others must be of the same enumerated
type.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

2 — Second data input
scalar | vector | matrix | N-D array

Second data input, specified as a scalar, vector, matrix, or N-D array. All input data signals
can be of any data type that Simulink supports.

• If all the data inputs are scalar, the output is scalar
• If at least one of the data inputs is a vector, the block output is a vector. In this case,

the block expands any scalar inputs to vectors.
• If any two non scalar signals have a different number of dimensions or different

dimension lengths, select the Allow different data input sizes check box. For more
information, see “Use Data Inputs That Have Different Dimensions” on page 1-1117

• If any data signal is of an enumerated type, all others must be of the same enumerated
type.

Dependencies

To enable this port, set Number of data ports to an integer greater than 1.

1 Blocks — Alphabetical List

1-1120

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

N — Nth data input
scalar | vector | matrix | N-D array

Nth data input, specified as a scalar, vector, matrix, or N-D array. All input data signals
can be of any data type that Simulink supports.

• If all the data inputs are scalar, the output is scalar
• If at least one of the data inputs is a vector, the block output is a vector. In this case,

the block expands any scalar inputs to vectors.
• If any two non scalar signals have a different number of dimensions or different

dimension lengths, select the Allow different data input sizes check box. For more
information, see “Use Data Inputs That Have Different Dimensions” on page 1-1117

• If any data signal is of an enumerated type, all others must be of the same enumerated
type.

Dependencies

To enable the Nth input port, set Number of data ports to an integer value greater than
or equal to N.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

* — Data port for out-of-range inputs
scalar | vector | matrix | N-D array

Input data port for out-of-range control signal inputs, specified as a scalar, vector, matrix,
or N-D array. All input data signals can be of any data type that Simulink supports. If any
data signal is of an enumerated type, all others must be of the same enumerated type. If
any two signals have a different number of dimensions or different dimension lengths,
select the Allow different data input sizes check box. For more information, see “Use
Data Inputs That Have Different Dimensions” on page 1-1117.
Dependencies

To create an additional data port for out-of-range control signal inputs, set Data port for
default case to Additional data port. When you set Data port for default case to
Last data port, the block uses the last data port for output when the control signal
value does not match any data port indices.

 Multiport Switch

1-1121

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Selected data input, based on control signal value
scalar | vector | matrix | N-D array

The block outputs one of the data inputs, selected according to the control signal value.
The output has the same dimensions as the corresponding data input. When you select
the Allow different data input sizes check box, the output of the block is a variable size
signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Main
Data port order — Type of ordering for data input ports
One-based contiguous | Zero-based contiguous | Specify indices

Specify the type of ordering for your data input ports.

• Zero-based contiguous — Block uses zero-based indexing for ordering contiguous
data ports. This is the default value of the Index Vector block.

• One-based contiguous — Block uses one-based indexing for ordering contiguous
data ports. This is the default value of the Multiport Switch block

• Specify indices — Block uses noncontiguous indexing for ordering data ports.

Tips

• When the control port is of enumerated type, select Specify indices.
• If you select Zero-based contiguous or One-based contiguous, verify that the

control port is not of enumerated type. This configuration is deprecated and produces
an error. You can run the Upgrade Advisor on your model to replace each Multiport
Switch block of this configuration with a block that explicitly specifies data port
indices. See “Model Upgrades”.

1 Blocks — Alphabetical List

1-1122

• Avoid situations where the block contains unused data ports for simulation or code
generation. When the control port is of fixed-point or built-in data type, verify that all
data port indices are representable with that type. Otherwise, the following block
behavior occurs:

If the block has unused data ports
and data port order is:

The block produces:

Zero-based contiguous or One-
based contiguous

A warning

Specify indices An error

Dependencies

Selecting Zero-based contiguous or One-based contiguous enables the Number
of data ports parameter.

Selecting Specify indices enables the Data port indices parameter.

Programmatic Use
Block Parameter: DataPortOrder
Type: character vector
Values: 'Zero-based contiguous' | 'One-based contiguous' | 'Specify
indices'
Default: 'One-based contiguous' (Multiport Switch) 'Zero-based contiguous'
(Index Vector)

Number of data ports — Number of data input ports
1 | 3 | integer between 1 and 65536

Specify the number of data input ports to the block. The total number of input ports will
be the number you specify, plus one for the control signal input port, and plus one more if
you set Data port for default case to Additional data port.

Dependencies

To enable this parameter, set Data port order to Zero-based contiguous or One-
based contiguous.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer between 1 and 65536

 Multiport Switch

1-1123

Default: '3' (Multiport Switch) '1' (Index Vector)

Data port indices — Array of indices for data ports
{1,2,3} (default) | array of indices

Specify an array of indices for your data ports. The block icon changes to match the data
port indices you specify.

Tips

• To specify an array of indices that correspond to all values of an enumerated type,
enter enumeration('type_name') for this parameter. Do not include braces.

For example, enumeration('MyColors') is a valid entry.
• To enter specific values of an enumerated type, use the

type_name.enumerated_name format. Do not enter the underlying integer value.

For example, {MyColors.Red, MyColors.Green, MyColors.Blue} is a valid
entry.

• To indicate that more than one value maps to a data port, use brackets.

For example, the following entries are both valid:

• {MyColors.Red, MyColors.Green, [MyColors.Blue,
MyColors.Yellow]}

• {[3,5],0,18}
• If the control port is of fixed-point or built-in data type, the values for Data port

indices must be representable with that type. Otherwise, an error appears at compile
time to alert you to unused data ports.

• If the control port is of enumerated data type, the values for Data port indices must
be enumerated values of that type.

• If Data port indices contains values of enumerated type, the control port must be of
that data type.

Dependencies

To enable this parameter, set Data port order to Specify indices.

Programmatic Use
Block Parameter: DataPortIndices
Type: character vector

1 Blocks — Alphabetical List

1-1124

Values: array of indices
Default: '{1,2,3}'

Data port for default case — Port to use for out-of-range inputs
Last data port (default) | Additional data port

Specify whether to use the last data port for out-of-range inputs, or to use an additional
port. The port the block uses when the control port value does not match any data port
indices is indicated by an asterisk (*) next to the port name.

• Last data port — Block uses the last data port for output when the control port
value does not match any data port indices.

• Additional data port — Block uses an additional data port for output when the
control port value does not match any data port indices.

Tip

If you set this parameter to Additional data port and Number of data ports is 3,
the number of input ports on the block is 5. The first input is the control port, the next
three inputs are data ports, and the fifth input is the default port for out-of-range inputs.

Programmatic Use
Block Parameter: DataPortForDefault
Type: character vector
Values: 'Last data port' | 'Additional data port'
Default: 'Last data port'

Diagnostic for default case — Diagnostic action when control port value
does not match data port indices
Error (default) | Warning | None

Specify the diagnostic action to take when the control port value does not match any data
port indices. Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error. In this case, the Data port

for default case is used only for code generation and not simulation.

For more information, see “How the Block Handles an Out-of-Range Control Input” on
page 1-1115.

 Multiport Switch

1-1125

Programmatic Use
Block Parameter: DiagnosticForDefault
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes
Require all data port inputs to have the same data type — Require all
inputs to have the same data type
off (default) | on

Select this check box to require that all data input ports have the same data type. When
you clear this check box, the block allows data port inputs to have different data types.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

1 Blocks — Alphabetical List

1-1126

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

 Multiport Switch

1-1127

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule—Simulink chooses a data type to balance
numerical accuracy, performance, and generated code size, while taking into account
the properties of the embedded target hardware. If you change the embedded target
settings, the data type selected by the internal rule might change. It is not always
possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy
or performance, use one of the following options:

• Specify the output data type explicitly.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Uses the data type of the driving
block.

1 Blocks — Alphabetical List

1-1128

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

 Multiport Switch

1-1129

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type

can represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or
127.

Tip

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

1 Blocks — Alphabetical List

1-1130

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Allow different data input sizes (Results in variable-size output
signal) — Allow input signals with different sizes
off (default) | on

Select this check box to allow input signals with different sizes.

• On — Allows input signals with different sizes, and propagate the input signal size to
the output signal. In this mode, the block produces a variable-size output signal.

• Off — Requires that all non scalar data input signals be the same size.

Programmatic Use
Parameter: AllowDiffInputSizes
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus

 Multiport Switch

1-1131

Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Multiport Switch.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Index Vector | Switch

Topics
“Variable-Size Signal Basics”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1132

MultiStateImage
Display image reflecting input value
Library: Simulink / Dashboard

Description
The MultiStateImage block displays an image to indicate the value of the input signal. You
can use the MultiStateImage block with other Dashboard blocks to build an interactive
dashboard of controls and indicators for your model. You can specify pairs of input values
and images to provide the information you want during simulation.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

 MultiStateImage

1-1133

• If you turn off logging for a signal connected to a Dashboard block, the model stops
sending data from that signal to the block. To view the signal again, reconnect the
signal.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

Scale Mode — Specify how to scale image
'Fill with fixed Aspect Ratio' (default) | Fixed | Fill

Specify how to scale the image.

Fill with fixed Aspect Ratio scales the image to the size of the block while retaining its
original aspect ratio.

Fixed displays the image with its fixed true size.

Fill adjusts the image to fill the block.

States

State — Input signal value
1 (default) | scalar

Input signal value that causes the block to display an image. Click the + button to add
another state.

Thumbnail — Image to display
image file

Image the block displays when the input signal has the value specified in State. The
MultiStateImage block can display png, jpg, tif, and bmp image files.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

1 Blocks — Alphabetical List

1-1134

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Lamp

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2016b

 MultiStateImage

1-1135

Mux
Combine input signals of same data type and numeric type into virtual vector
Library: Simulink / Commonly Used Blocks

Simulink / Signal Routing

Description
The Mux block combines its inputs into a single vector output. An input can be a scalar or
vector signal. All inputs must be of the same data type and numeric type. For information
about creating and decomposing vectors, see “Mux Signals”.

The elements of the vector output signal take their order from the top to bottom, or left to
right, input port signals. See “Port Location After Rotating or Flipping” for a description
of the port order for various block orientations.

The nonvirtual components of a virtual signal are called regions. A virtual signal can
contain the same region more than once. For example, if the same nonvirtual signal is
connected to two input ports of a Mux block, the block outputs a virtual signal that has
two regions. The regions behave as they would if they had originated in two different
nonvirtual signals, even though the resulting behavior duplicates information.

Note Simulink provides several techniques for combining signals into a composite signal.
For more information, see “Composite Signal Techniques”.

Ports

Input
Port_1 — Accept nonbus vector signal to extract and output signals from
real or complex values of any nonbus data type supported by Simulink

1 Blocks — Alphabetical List

1-1136

Port that accepts the input nonbus vector signal from which to extract and output signals.

Output
Port_1 — Output signals extracted from input vector signal
nonbus signal with real or complex values of any data type supported by Simulink

Output signals extracted from the input vector. The output signal ports are ordered from
top to bottom. See “Port Location After Rotating or Flipping” for a description of the port
order for various block orientations.

Parameters
Number of inputs — Inputs
2 (default) | scalar | vector | cell array | comma-separated list of signal names

Specify the number of input signals. You can also specify signal names and sizes. Use one
of these formats.

Format Block Behavior
Scalar Specifies the number of inputs to the Mux block.

When you use this format, the block accepts scalar or
vector signals of any size. Simulink assigns each input the
name signalN, where N is the input port number.

Vector The length of the vector specifies the number of inputs.
Each element specifies the size of the corresponding input.

A positive value specifies that the corresponding port can
accept only vectors of that size. For example, [2 3]
specifies two input ports of sizes 2 and 3, respectively. If an
input signal width does not match the expected width, an
error message appears. A value of -1 specifies that the
corresponding port can accept scalars or vectors of any
size.

 Mux

1-1137

Format Block Behavior
Cell array The length of the cell array specifies the number of inputs.

The value of each cell specifies the size of the
corresponding input.

A scalar value N specifies a vector of size N. A value of -1
means that the corresponding port can accept scalar or
vector signals of any size.

Signal name list You can enter a list of signal names separated by commas.
Simulink assigns each name to the corresponding port and
signal. For example, if you enter position,velocity,
the Mux block has two inputs, named position and
velocity.

Tip If you specify a scalar for the Number of inputs parameter and all of the input ports
are connected, as you draw a new signal line close to input side of a Mux block, Simulink
adds a port and updates the parameter.

Programmatic Use
Block Parameter: Inputs
Type: scalar, vector, cell array, signal name list
Values: number, vector of port numbers, cell array, or list of signal names
Default: {'2'}

Display option — Displayed block icon
bar (default) | nonesignal

By default, the block icon is a solid bar of the block foreground color. To display the icon
as a hollow bar containing input signal names, select signals. To display the icon as a
box containing the block type name, select none.

Programmatic Use
Block Parameter: DisplayOption
Type: character vector
Values: 'bar' 'signals' 'none''bar'
Default: 'bar'

1 Blocks — Alphabetical List

1-1138

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block has a single, default HDL architecture. See Mux.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

 Mux

1-1139

See Also
Bus Creator | Bus to Vector | Demux | Vector Concatenate

Topics
“Virtual Signals”
“Composite Signal Techniques”
“Simplify Subsystem Bus Interfaces”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1140

Out Bus Element
Output signals from a subsystem as a virtual bus
Library: Simulink / Ports & Subsystems

Simulink / Sinks

Description

Note This block has two different names, depending on the library in which it appears.
The functionality of both blocks is the same.

• In the Sinks library and the Ports & Subsystems library— Out Bus Element
• In the Signal Routing library — Bus Element Out

To output signals in a virtual bus from a subsystem, use an Out Bus Element block for
each signal in the subsystem that you want the bus to contain. This block integrates into
one block the functionality of using an Outport block and a Bus Creator block. The Out
Bus Element block is of the Outport block type. There are no specifications allowed on an
Out Bus Element block, which supports only an inherited workflow. You cannot use the
Block Parameters dialog box of an Out Bus Element block to specify bus element
attributes, such as data type or dimensions.

To work with buses at subsystem interfaces, consider using In Bus Element and Out Bus
Element blocks. This bus element port block combination:

• Reduces signal line complexity and clutter in a block diagram.
• Makes it easy to change the interface incrementally.
• Allows access to a bus element closer to the point of usage.

• For output, avoid a Goto, From, and Bus Creator block configuration.
• For input, avoid a duplicate Outport blocks and a Bus Selector, Goto, and From

block configuration.

To output multiple signals from a subsystem as a bus signal, create multiple Out Bus
Element blocks, one for each signal.

 Out Bus Element

1-1141

If an Out Bus Element block creates a signal A, then another Out Bus Element block for
the same port cannot specify signal A (or a child of signal A) as an element

To add a subbus, in the Block Parameters dialog box, click . To remove blocks
associated with selected elements, click .

To reduce the number of bus element signals displayed in the Block Parameters dialog
box, use the Filter box. The Filter box supports regular expressions. To use a regular
expression character as a literal, include an escape character (\). For example, to use a
question mark: sig\?1.

You can reorder bus elements by dragging and dropping a signal in the list of signals in
the Block Parameters dialog box.

You can specify the background color for bus element port blocks, using the Block
Parameters dialog box Set color option. This action sets the color of blocks associated
with selected elements, or to all blocks if you do not select elements.

Ports
The block does not have an output port. Use the Block Parameters dialog box to specify
the subsystem output port to which the block sends its input signal.

Input
Port_1 — Input port for bus signal or bus element from within subsystem
signal

The selected input signal is included in a bus signal that the subsystem outputs. The
signal can have a real or complex values of any data type that Simulink supports.

Parameters
Port name — Name of subsystem output port
OutBus (default) | text

Specify a name for a subsystem port. That name appears on the Subsystem and Out Bus
Element block icons. If you specify a port name, that name cannot already be in use by

1 Blocks — Alphabetical List

1-1142

another block or port. All Out Bus Element blocks that access the same subsystem output
port reflect the port name that you specify.

Programmatic Use
Block Parameter: PortName
Type: text
Default: OutBus

Port number — Order in which port appears for subsystem output ports
1 (default) | integer

Specify the order in which the port appears on the subsystem, with 1 being the top port, 2
the second port down, and so on.

• If you specify a number that exceeds the number of subsystem output ports, new ports
are added above the port associated with the Outport Bus Element block.

• If you add an Out Bus Element block that creates another subsystem output port, the
port number is the next available number.

• If you delete all Out Bus Element blocks associated with a port, other port numbers
are renumbered so that the blocks are in sequence and that no numbers are omitted.

Programmatic Use
Block Parameter: Port
Value: integer
Default: 1

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 Out Bus Element

1-1143

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Blocks
Bus Creator | In Bus Element | Outport

Topics
“Simplify Subsystem Bus Interfaces”
“Composite Signal Techniques”
“Select a Composite Signal Technique”
“Getting Started with Buses”

Introduced in R2017a

1 Blocks — Alphabetical List

1-1144

Outport
Create output port for subsystem or external output

Library
Ports & Subsystems, Sinks

Description
Outport blocks are the links from a system to a destination outside the system.

Simulink software assigns Outport block port numbers according to these rules:

• It automatically numbers the Outport blocks within a root-level system or subsystem
sequentially, starting with 1.

• If you add an Outport block, it is assigned the next available number.
• If you delete an Outport block, other port numbers are automatically renumbered to

ensure that the Outport blocks are in sequence and that no numbers are omitted.

Outport Blocks in a Subsystem
Outport blocks in a subsystem represent outputs from the subsystem. A signal arriving at
an Outport block in a subsystem flows out of the associated output port on that
Subsystem block. The Outport block associated with an output port on a Subsystem block
is the block whose Port number parameter matches the relative position of the output
port on the Subsystem block. For example, the Outport block whose Port number
parameter is 1 sends its signal to the block connected to the topmost output port on the
Subsystem block.

 Outport

1-1145

If you renumber the Port number of an Outport block, the block becomes connected to a
different output port, although the block continues to send the signal to the same block
outside the subsystem.

When you create a subsystem by selecting existing blocks, if more than one Outport block
is included in the grouped blocks, Simulink software automatically renumbers the ports
on the blocks.

The Outport block name appears in the Subsystem icon as a port label. To suppress
display of the label, click the Outport block and select Format > Hide Name.

Tip For models that include bus signals composed of many bus elements that feed
subsystems, consider using the In Bus Element and Out Bus Element blocks. You can use
these bus element port blocks instead of Inport with Bus Selector blocks for inputs, and
Outport with Bus Creator blocks for outputs. These bus element port blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus

Selector and Goto block configuration.

The Out Bus Element block is of block type Outport. However, there are no specifications
allowed on bus element port blocks, which support inherited workflows. You cannot use
the Block Parameters dialog box of an Out Bus Element block to specify bus element
attributes, such as data type or dimensions.

Initializing Outport Blocks in Conditionally Executed Contexts
To set initial conditions for an Outport block in a conditionally executed subsystem, use
one of these approaches.

• Inherit initial values from input signals for the subsystem.
• Explicitly specify initial values

For details, see “Conditional Subsystem Initial Output Values”.

Note If the conditional subsystem is driving a Merge block in the same model, you do not
need to specify an Initial Condition (IC) for the subsystem’s Outport block. For more
information, see “Underspecified initialization detection” .

1 Blocks — Alphabetical List

1-1146

Top-level Outport Block in a Model Hierarchy
Outport blocks at the top-level of a model hierarchy have two uses: to supply external
outputs to the base MATLAB workspace, which you can do by using either Configuration
Parameters pane parameters or the sim command, and to provide a means for analysis
functions to obtain output from the system.

• To supply external outputs to the workspace, use the Configuration Parameters >
Data Import/Export pane (see Exporting Output Data to the MATLAB Workspace) or
the sim command. For example, if a system has more than one Outport block and the
save format is array, the following command

[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different Outport block.
The column order matches the order of the port numbers for the Outport blocks.

If you specify more than one variable name after the second (state) argument, data
from each Outport block is written to a different variable. For example, if the system
has two Outport blocks, to save data from Outport block 1 to speed and the data from
Outport block 2 to dist, you could specify this command:

[t,x,speed,dist] = sim(...);

• To provide a means for the linmod and trim analysis functions to obtain output from
the system (see “Linearizing Models”).

Connecting Buses to Root-level Outports
A root-level Outport of a model can accept a virtual bus only if all elements of the bus
have the same data type. The Outport block automatically unifies the bus to a vector
having the same number of elements as the bus, and outputs that vector.

If you want a root-level Outport of a model to accept a bus signal that contains mixed
types, you must set the Outport block Data type parameter to use a bus object name for
the Bus: <object name> or <data type expression> option, to define the type of
bus that the Outport produces. If the bus signal is virtual, it will be converted to
nonvirtual, as described in “Bus Conversion”. For more information, see “When to Use
Bus Objects”.

 Outport

1-1147

Associate Root-Level Outport Block with Simulink.Signal
Object
To associate a root-level Outport block with a Simulink.Signal object, use the Model
Data Editor. See “For Signals”.

Data Type Support
The Outport block accepts real or complex signals of any data type that Simulink
supports. An Outport block can also accept fixed-point and enumerated data types when
the block is not a root-level output port. The complexity and data type of the block output
are the same as those of its input. The Outport block also accepts a bus object as a data
type.

Note If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “Data Types Supported by Simulink”.

The elements of a signal array connected to an Outport block can be of differing
complexity and data types except in the following circumstance: If the output port is in a
conditionally executed subsystem and the initial output is specified, all elements of an
input array must be of the same complexity and data types.

Typical Simulink data type conversion rules apply to an output port's Initial output
parameter. If the initial output value is in the range of the block's output data type,
Simulink software converts the initial output to the output data type. If the specified
initial output is out of the range of the output data type, Simulink software halts the
simulation and signals an error.

1 Blocks — Alphabetical List

1-1148

Parameters
• “Port number” on page 1-1150
• “Specify output when source is unconnected” on page 1-1150
• “Signal name” on page 1-1150
• “Icon display” on page 1-1151
• “Ensure outport is virtual” on page 1-1151
• “Source of initial output value” on page 1-1152
• “Output when disabled” on page 1-1152
• “Initial output” on page 1-1153
• “Minimum” on page 1-1154
• “Maximum” on page 1-1154
• “Data type” on page 1-1155
• “Show data type assistant” on page 1-1156
• “Mode” on page 1-1157
• “Data type override” on page 1-1158
• “Signedness” on page 1-1158
• “Word length” on page 1-1159
• “Scaling” on page 1-1159
• “Fraction length” on page 1-1160
• “Slope” on page 1-1160
• “Bias” on page 1-1161
• “Lock output data type setting against changes by the fixed-point tools”

on page 1-1161
• “Output as nonvirtual bus in parent model” on page 1-1162
• “Unit (e.g., m, m/s^2, N*m)” on page 1-1163
• “Port dimensions (-1 for inherited)” on page 1-1163
• “Variable-size signal” on page 1-1164
• “Sample time (-1 for inherited)” on page 1-1164
• “Signal type” on page 1-1165

 Outport

1-1149

Port number
Specify the port number of the block.

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
on the parent subsystem or model block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Specify output when source is unconnected
Specify a constant output value to be displayed when source is not connected.

Default: Off

When this option is selected on a non-driven Output block of a Variant Subsystem block,
you can specify a constant value as an output of that block.

Specify a constant value as an output for the block.

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

Signal name
Specify the name of the corresponding signal data in the generated code. Use this
parameter to specify a name for the signal data when you apply a storage class to a root-
level Outport block by using View > Model Data Editor.

Default: '' (empty character vector)

Specify a name by using text.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-1150

Icon display
Specify the information to be displayed on the icon of this input port.

Default: Port number

Signal name
Display the name of the signal connected to this port (or signals if the input is a bus).

Port number
Display port number of this port.

Port number and signal name
Display both the port number and the names of the signals connected to this port.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Ensure outport is virtual
This parameter applies to these blocks:

• Conditional subsystem
• Assignment
• Merge
• Model with root Outport block

For examples with conditional writes and partial writes, see “Ensure Outport is Virtual”.

Default: Clear

 Clear
Use signal buffer on output port. This buffer ensures consistent initialization of the
Outport block signal.

 Select
Simulink tries to remove the signal buffer.

 Outport

1-1151

• If the signal buffer is not needed, Simulink remove the buffer.
• If the signal buffer is needed for data consistency and proper execution, Simulink

displays an error indicating the buffer could not be removed.

Allow partial writes through Assignment blocks.

Source of initial output value
Select the source of the initial output value of the block.

Default: Dialog

Dialog
The initial output value is specified by the Initial output parameter on the dialog.

Input signal
The initial output value is inherited from the input signal. See “Conditional Subsystem
Initial Output Values”.

• If you are using classic initialization mode, selecting Input signal will cause an
error. To inherit the initial output value from the input signal, set this parameter to
Dialog and specify [] (empty matrix) for the Initial output value. For more
information, see “Conditional Subsystem Initial Output Values”.

This parameter is enabled when the Outport resides in an Conditional Subsystem.

Selecting Dialog enables the following parameters:

• Output when disabled
• Initial output

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Output when disabled
Specify what happens to the block output when the subsystem is disabled.

1 Blocks — Alphabetical List

1-1152

Default: held

held
Output is held when the subsystem is disabled.

reset
Output is reset to the value given by Initial output when the subsystem is disabled.

• When connecting the output of a conditional subsystem to a Merge block, set this
parameter to held. Setting it to reset will return an error.

• Selecting Dialog in Source of initial output value enables this parameter.
• This parameter is enabled when the Outport resides in a conditional subsystem with

valid enabling and disabling semantics. For example, this parameter is disabled when
the Outport is placed inside a Triggered Subsystem but is enabled when the Outport is
placed inside an Enabled Subsystem.

• If an Outport is placed inside a function-call subsystem, this parameter is meaningful
only if the function-call subsystem is bound to a state in a Stateflow chart. For more
information, see “Bind a Function-Call Subsystem to a State” (Stateflow).

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Initial output
For conditionally executed subsystems, specify the block output before the subsystem
executes and while it is disabled.

Default: []

Simulink does not allow the initial output of this block to be inf or NaN. When the input
is a virtual bus, an Initial output value [] is treated as double(0).

• Specify [] (empty matrix) to inherit the initial output value from the input signal. For
more information, see “Conditional Subsystem Initial Output Values”.

• For information about specifying an initial condition structure, see “Specify Initial
Conditions for Bus Signals”

 Outport

1-1153

• Selecting Dialog in Source of initial output value enables this parameter.
• This parameter is enabled when the Outport resides in an Conditional Subsystem.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Minimum
Specify the minimum value that the block should output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Maximum
Specify the maximum value that the block should output.

Default: [] (unspecified)

1 Blocks — Alphabetical List

1-1154

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Data type
Specify the output data type of the external input.

Default: Inherit: auto

Inherit: auto
A rule that inherits a data type

double
Data type is double.

single
Data type is single.

int8
Data type is int8.

uint8
Data type is uint8.

 Outport

1-1155

int16
Data type is int16.

uint16
Data type is uint16.

int32
Data type is int32.

uint32
Data type is uint32.

boolean
Data type is boolean.

fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Data type is enumerated, for example, Enum: BasicColors.

Bus: <object name>
Data type is a bus object.

<data type expression>
The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-1156

Mode
Select the category of data to specify.

Default: Inherit

Inherit
Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Fixed point
Fixed-point data types.

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus object
Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details, see “Create Bus Objects with the
Bus Editor”.

 Outport

1-1157

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

1 Blocks — Alphabetical List

1-1158

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that holds the quantized integer.

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision

Binary point
Specify binary point location.

 Outport

1-1159

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

1 Blocks — Alphabetical List

1-1160

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Lock output data type setting against changes by the fixed-
point tools
Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor.

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

 Outport

1-1161

Parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Output as nonvirtual bus in parent model
Select this parameter if you want the bus emerging in the parent model to be nonvirtual.
The bus that is input to the port can be virtual or nonvirtual, regardless of the setting of
Output as nonvirtual bus in parent model.

Default: Off

 On
Select this parameter if you want the bus emerging in the parent model to be
nonvirtual.

 Off
Clear this parameter if you want the bus emerging in the parent model to be virtual.

• In a nonvirtual bus, all signals must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error. For
details, see “Connect Multirate Buses to Referenced Models”.

• For a virtual bus, to use a multirate signal, in the root-level Outport block, set the
Sample time parameter to inherited (-1).

• For the top model in a model reference hierarchy, code generation creates a C
structure to represent the bus signal output by this block.

• For referenced models, select this option to create a C structure. Otherwise, code
generation creates an argument for each leaf element of the bus.

Selecting Data type > Bus: <object name> enables this parameter.

1 Blocks — Alphabetical List

1-1162

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Unit (e.g., m, m/s^2, N*m)
Specify physical unit of the input signal to the block.

Default: inherit

To specify a unit, begin typing in the text box. As you type, the parameter displays
potential matching units. For a list of supported units, see Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use
that dialog box to specify allowed and disallowed unit systems for the component.

• If a Unit System Configuration block does not exist in the component, the model
Configuration Parameters dialog box displays. Use that dialog box to specify allowed
and disallowed unit systems for the model.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Port dimensions (-1 for inherited)
Specify the dimensions that a signal must have in order to be connected to this Outport
block.

Default: -1

Valid values are:

-1 A signal of any dimensions can be connected to this port.
N The signal connected to this port must be a vector of size N.
[R C] The signal connected to this port must be a matrix having R rows

and C columns.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Outport

1-1163

matlab:showunitslist

Variable-size signal
Specify the type of signals allowed out of this port.

Default: Inherit

Inherit
Allow variable-size and fixed-size signals.

No
Do not allow variable-size signals.

Yes
Allow only variable-size signals.

When the signal at this port is a variable-size signal, the Port dimensions parameter
specifies the maximum dimensions of the signal.

Parameter: VarSizeSig
Type: character vector
Value: 'Inherit'| 'No' | 'Yes'
Default: 'Inherit'

Sample time (-1 for inherited)
Enter the discrete interval between sample time hits or specify another appropriate
sample time such as continuous or inherited.

Default: -1

By default, the block inherits its sample time based upon the context of the block within
the model. To set a different sample time, enter a valid sample time based upon the table
in “Types of Sample Time”.

See also “Specify Sample Time” in the online documentation for more information.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-1164

Signal type
Specify the numeric type of the signal output by this block.

Default: auto

auto
Output the numeric type of the signal that is connected to its input.

real
Output a real-valued signal. The signal connected to this block must be real. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

complex
Output a complex signal. The signal connected to this block must be complex. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time Inherited from the driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
• Inport

 Outport

1-1165

• Out Bus Element
• “Simplify Subsystem Bus Interfaces”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1166

Permute Dimensions
Rearrange dimensions of multidimensional array dimensions
Library: Simulink / Math Operations

Description
The Permute Dimensions block reorders the elements of the input signal by permuting its
dimensions. You specify the permutation to be applied to the input signal using the Order
parameter.

For example, to transpose a 3-by-5 input signal, specify the permutation vector [2 1] for
the Order parameter. When you do, the block reorders the elements of the input signal
and outputs a 3-by-5 matrix.

You can use an array of buses as an input signal to a Permute Dimensions block. For
details about defining and using an array of buses, see “Combine Buses into an Array of
Buses”.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | N-D array

This port accepts scalar, vector, matrix, and N-dimensional signals of any data type that
Simulink supports, including fixed-point, enumerated, and nonvirtual bus data types.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Permute Dimensions

1-1167

Output
Port_2 — Permutation of input signal
scalar | vector | matrix | N-D array

The block outputs the permutation of the input signal, according to the value of the
Order parameter. The output has the same data type as the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Order — Permutation vector
[2,1] (default) | N-element vector, where N is the number of dimensions of the input
signal

Specify the permutation order to apply to the dimensions of the input signal. The value of
this parameter must be an N-element vector where N is the number of dimensions of the
input signal. The elements of the permutation vector must be a rearrangement of the
values from 1 to N.

For example, the permutation vector [2 1] applied to a 5-by-3 input signal results in a 3-
by-5 output signal, in other words, the transpose of the input signal.

Programmatic Use
Block Parameter: Order
Type: character vector
Value: N-element vector
Default: '[2 1]'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

1 Blocks — Alphabetical List

1-1168

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Math Function | permute

Topics
“Manipulating Multidimensional Arrays” (MATLAB)

Introduced in R2007a

 Permute Dimensions

1-1169

PID ControllerDiscrete PID Controller
Simulate continuous- or discrete-time PID controllers

Library
Continuous, Discrete

Description
Implement a continuous- or discrete-time controller (PID, PI, PD, P, or I) in your Simulink
model. PID controller gains are tunable either manually or automatically. Automatic
tuning requires Simulink Control Design™ software.

The PID Controller block output is a weighted sum of the input signal, the integral of the
input signal, and the derivative of the input signal. The weights are the proportional,
integral, and derivative gain parameters. A first-order pole filters the derivative action.

Configurable options in the PID Controller block include:

• Controller type (PID, PI, PD, P, or I)
• Controller form (Parallel or Ideal)
• Time domain (continuous or discrete)
• Initial conditions and reset trigger
• Output saturation limits and built-in anti-windup mechanism
• Signal tracking for bumpless control transfer and multiloop control

In one common implementation, the PID Controller block operates in the feedforward
path of the feedback loop:

1 Blocks — Alphabetical List

1-1170

The input of the block is typically an error signal, which is the difference between a
reference signal and the system output. For a two-input block that permits setpoint
weighting, see the PID Controller (2 DOF) block reference page.

You can generate code to implement your controller using any Simulink data type,
including fixed-point data types. (Code generation requires Simulink Coder software;
fixed-point implementation requires the Fixed-Point Designer product.)

For examples illustrating some applications of the PID Controller block, see the following
Simulink examples:

• Anti-Windup Control Using a PID Controller
• Bumpless Control Transfer Between Manual and PID Control

Data Type Support
The PID Controller block accepts real signals of any numeric data type that Simulink
software supports, including fixed-point data types. See “Data Types Supported by
Simulink” in the Simulink documentation for more information.

Parameters
The following table summarizes the PID Controller block parameters, accessible on the
block parameter dialog box.

 PID ControllerDiscrete PID Controller

1-1171

matlab:showdemo('sldemo_antiwindup')
matlab:showdemo('sldemo_bumpless')

Task Parameters
Choose controller form and type. • Controller Form on page 1-1174 in Main tab

• Controller on page 1-1177
Choose discrete or continuous time. • Time-domain on page 1-1178

• Sample time on page 1-1180
Choose an integration method (discrete time). • Integrator method on page 1-1179

• Filter method on page 1-1180
Set and tune controller gains. • Controller Parameters Source on page 1-

1181 in Main tab
• Proportional (P) on page 1-1182 in Main tab
• Integral (I) on page 1-1182 in Main tab
• Derivative (D) on page 1-1183 in Main tab
• Filter coefficient (N) on page 1-1183 in

Main tab
• Use filtered derivative on page 1-1184 in

Main tab
Set integrator and filter initial conditions. • Initial conditions Source on page 1-1186 in

Main tab
• Integrator Initial condition on page 1-1186

in Main tab
• Filter Initial condition on page 1-1186 in

Main tab
• Initial condition setting on page 1-1187

(command line only)
• External reset on page 1-1187 in Main tab
• Ignore reset when linearizing on page 1-

1189 in Main tab

1 Blocks — Alphabetical List

1-1172

Task Parameters
Limit block output. • Limit output on page 1-1190 in PID

Advanced tab
• Lower saturation limit on page 1-1190 in

PID Advanced tab
• Upper saturation limit on page 1-1190 in

PID Advanced tab
• Ignore saturation when linearizing on

page 1-1192 in PID Advanced tab
Configure anti-windup mechanism (when you
limit block output).

• Anti-windup method on page 1-1190 in PID
Advanced tab

• Back-calculation gain (Kb) on page 1-1192
in PID Advanced tab

Enable signal tracking. • Enable tracking mode on page 1-1193 in
PID Advanced tab

• Tracking gain (Kt) on page 1-1196 in PID
Advanced tab

 PID ControllerDiscrete PID Controller

1-1173

Task Parameters
Configure data types. • Parameter data type on page 1-1196 in

Data Type Attributes tab
• Product output data type on page 1-1198

in Data Type Attributes tab
• Summation output data type on page 1-

1199 in Data Type Attributes tab
• Accumulator data type on page 1-1201 in

Data Type Attributes tab
• Integrator output data type on page 1-

1202 in Data Type Attributes tab
• Filter output data type on page 1-1203 in

Data Type Attributes tab
• Saturation output data type on page 1-

1204 in Data Type Attributes tab
• Lock output data type setting against

changes by the fixed-point tools on page 1-
1215 in Data Type Attributes tab

• Saturate on integer overflow on page 1-
1216 in Data Type Attributes tab

• Integer rounding mode on page 1-1217 in
Data Type Attributes tab

Configure block for code generation. • State name on page 1-1218 in State
Attributes tab

• State name must resolve to Simulink
signal object on page 1-1218 in State
Attributes tab

• Code generation storage class on page 1-
1219 in State Attributes tab

• Code generation storage type qualifier on
page 1-1219 in State Attributes tab

Controller form
Select the controller form.

1 Blocks — Alphabetical List

1-1174

Parallel (Default)
Selects a controller form in which the output is the sum of the proportional, integral,
and derivative actions, weighted according to the independent gain parameters P, I,
and D. The filter coefficient N sets the location of the pole in the derivative filter. For
a continuous-time parallel PID controller, the transfer function is:

C s P I
s

D
Ns

s N
par () = + Ê

Ë
Á

ˆ
¯
˜ +

+
Ê
Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

1

For a discrete-time parallel PID controller, the transfer function takes the form:

C z P Ia z D
N

Nb z
par() ()

()
= + +

+

È

Î
Í

˘

˚
˙

1

where the Integrator method determines a(z) and the Filter method determines
b(z) (for sampling time Ts):

 Forward Euler
method

Backward Euler
method

Trapezoidal
method

a z()

(determined by
Integrator method)

T

z

s

-1

T z

z

s

-1

T z

z

s

2

1

1

+

-

b z()

(determined by
Filter method)

T

z

s

-1

T z

z

s

-1

T z

z

s

2

1

1

+

-

The controller transfer function for the current settings is displayed in the block
dialog box.

 PID ControllerDiscrete PID Controller

1-1175

Parallel PID Controller

Ideal
Selects a controller form in which the proportional gain P acts on the sum of all
actions. The transfer functions are the same as for the parallel form, except that P
multiplies all terms. For a continuous-time ideal PID controller, the transfer function
is:

C s P I
s

D
Ns

s N
id

() = + Ê
Ë
Á

ˆ
¯
˜ +

+
Ê
Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙1

1

For a discrete-time ideal PID controller the transfer function is:

C z P Ia z D
N

Nb z
id () ()

()
= + +

+

È

Î
Í

˘

˚
˙1

1

1 Blocks — Alphabetical List

1-1176

where the Integrator method determines a(z) and the Filter method determines
b(z) as described previously for the parallel controller form.

Ideal PID Controller

Controller
Specify the controller type.

PID (Default)
Implements a controller with proportional, integral, and derivative action.

PI
Implements a controller with proportional and integral action.

PD
Implements a controller with proportional and derivative action.

P
Implements a controller with proportional action.

I
Implements a controller with integral action.

 PID ControllerDiscrete PID Controller

1-1177

The controller transfer function for the current settings is displayed in the block dialog
box.

Time-domain
Select continuous or discrete time domain. The appearance of the block changes to reflect
your selection.

Continuous-time (Default)
Selects the continuous-time representation.

When the PID Controller block is in a model with synchronous state control (see the
State Control block), you cannot select Continuous-time.

Discrete-time
Selects the discrete-time representation. Selecting Discrete-time also allows you
to specify the:

• Sample time, which is the discrete interval between samples.
• Discrete integration methods for the integrator and the derivative filter using the

Integrator method and Filter method menus.

1 Blocks — Alphabetical List

1-1178

Integrator method
(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the integrator output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is stable
in continuous time.

Backward Euler
Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.

Trapezoidal
Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Of all
available integration methods, the Trapezoidal method yields the closest match
between frequency-domain properties of the discretized system and the
corresponding continuous-time system.

Note For integrator methods BackwardEuler or Trapezoidal, you cannot generate
HDL code for the block if either:

• Limit output is selected and Anti-windup method is set to back-calculation or
clamping.

• Enable tracking mode is selected.

 PID ControllerDiscrete PID Controller

1-1179

Filter method
(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the derivative filter output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is stable
in continuous time.

Backward Euler
Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.
Any filter parameter value N > 0 yields a stable result with this method.

Trapezoidal
Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Any filter
parameter value N > 0 yields a stable result with this method. Of all available filter
methods, the Trapezoidal method yields the closest match between frequency-
domain properties of the discretized system and the corresponding continuous-time
system.

Sample time (-1 for inherited)
(Available only when you set Time-domain to Discrete-time.) Specify the discrete
interval between samples.

Default: 1

By default, the block uses a discrete sample time of 1. To specify a different sample time,
enter another discrete value, such as 0.1.

1 Blocks — Alphabetical List

1-1180

If you specify a value of -1, the PID Controller block inherits the sample time from the
upstream block. Do not enter a value of 0; to implement a continuous-time controller,
select the Time-domain Continuous-time.

See “Specify Sample Time” in the online documentation for more information.

Controller Parameters Source
Select the source of the controller gains and filter coefficient. You can provide these
parameters explicitly in the block dialog box, or enable external inputs for them on the
block. Enabling external inputs for the parameters allows you to compute PID gains and
filter coefficients externally to the block and provide them to the block as signal inputs.

External gain input is useful, for example, when you want to map a different PID
parameterization to the PID gains of the block. You can also use external gain input to
implement gain-scheduled PID control, in which controller gains are determined by logic
or other calculation in the Simulink model and passed to the block.

internal (Default)
Specify the PID gains and filter coefficient explicitly using the P, I, D, and N
parameters.

external
Specify the PID gains and filter coefficient externally. An additional input port appears
under the block input for each parameter that is required for the current controller
type:

When you supply gains externally, time variations in the integral and derivative gain
values are integrated and differentiated, respectively. This result occurs because of the
way the PID gains are implemented within the block. For example, for a continuous-time
PID controller with external inputs, the integrator term is implemented as shown in the
following illustration.

 PID ControllerDiscrete PID Controller

1-1181

Within the block, the block’s input signal is multiplied by the externally-supplied
integrator gain, I, before integration. This implementation yields:

y uI dti = Ú .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of
the block, multiplication by the derivative gain precedes the differentiation, which causes
the derivative gain D to be differentiated.

Proportional (P)
(Available for PID, PD, PI, and P controllers.) Specify the proportional gain P.

Default: 1

Enter a finite, real gain value into the Proportional (P) field. Use either scalar or vector
gain values. For a Parallel PID Controller form, the proportional action is
independent of the integral and derivative actions. For an Ideal PID Controller form,
the proportional action acts on the integral and derivative actions. See “Controller form”
on page 1-1174 for more information about the role of P in the controller transfer
function.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains. See “Choose a Control Design Approach” (Simulink Control Design).

Integral (I)
(Available for PID, PI, and I controllers.) Specify the integral gain I.

Default: 1

Enter a finite, real gain value into the Integral (I) field. Use either scalar or vector gain
values.

1 Blocks — Alphabetical List

1-1182

When you have Simulink Control Design software installed, you can automatically tune
the controller gains. See “Choose a Control Design Approach” (Simulink Control Design).

Derivative (D)
(Available for PID and PD controllers.) Specify the derivative gain D.

Default: 0

Enter a finite, real gain value into the Derivative (D) field. Use either scalar or vector
gain values.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains. See “Choose a Control Design Approach” (Simulink Control Design).

Filter coefficient (N)
(Available for PID and PD controllers, when Use filtered derivative is checked.) Specify
the filter coefficient N, which determines the pole location of the filter in the derivative
action:

The filter pole falls at s = -N in the Continuous-time Time-domain. For Discrete-
time, the location of the pole depends on which Filter method you select (for sampling
time Ts):

• Forward Euler:

z NTpole s= -1

 PID ControllerDiscrete PID Controller

1-1183

• Backward Euler:

z
NT

pole
s

=

+

1

1

• Trapezoidal:

z
NT

NT
pole

s

s

=

-

+

1 2

1 2

/

/

Default: 100.

Enter a finite, real gain value into the Filter Coefficient (N) field. Use either scalar or
vector gain values. Note that the PID controller block does not support N = inf (ideal
unfiltered derivative).

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using. See “Choose a Control Design Approach” (Simulink Control
Design). Automatic tuning requires N > 0.

Use Filtered Derivative
Specify whether derivative term is filtered (finite N) or unfiltered. Unfiltered derivative is
available only for discrete-time controllers.

Unchecking this option replaces the filtered derivative with a discrete differentiator. For
example, if Filter Method is Forward Euler, then the filtered derivative term is
represented by:

1 Blocks — Alphabetical List

1-1184

When you uncheck Use filtered derivative, the derivative term becomes:

 On (Default)
Use derivative filter (finite N).

 Off
Derivative is unfiltered.

Select Tuning Method
(Requires Simulink Control Design) Select a PID tuning tool. The specified tool opens
when you click Tune.

Transfer Function Based (PID Tuner App) (Default)
Clicking Tune opens the PID Tuner, which lets you interactively tune PID gains while
examining relevant system responses to validate performance. By default, PID Tuner
works with a linearization of your plant model. For models that cannot be linearized,
you can tune PID gains against a plant model estimated from simulated or measured
response data. For more information, see “Introduction to Model-Based PID Tuning in
Simulink” (Simulink Control Design).

Frequency Response Based
Clicking Tune opens the Frequency Response Based PID Tuner, which tunes PID
controller gains based on a frequency-response estimation experiment. Frequency
Response Based PID Tuner is especially useful for plants that are not linearizable. For
more information, see “Design PID Controller from Plant Frequency-Response Data”
(Simulink Control Design).

 PID ControllerDiscrete PID Controller

1-1185

Initial conditions Source
(Only available for controllers with integral or derivative action.) Select the source of the
integrator and filter initial conditions. Simulink uses initial conditions to initialize the
integrator and filter output at the start of a simulation or at a specified trigger event (See
“External reset” on page 1-1187). The integrator and filter initial conditions in turn
determine the initial block output.

internal (Default)
Specifies the integrator and filter initial conditions explicitly using the Integrator
Initial condition and Filter Initial condition parameters.

external
Specifies the integrator and filter initial conditions externally. An additional input port
appears under the block input for each initial condition: I0 for the integrator and D0
for the filter:

Integrator Initial condition
(Available only when Initial conditions Source is internal and the controller includes
integral action.) Specify the integrator initial value. Simulink uses the initial condition to
initialize the integrator output at the start of a simulation or at a specified trigger event
(see “External reset” on page 1-1187). The integrator initial condition, together with the
filter initial condition, determines the initial output of the PID controller block.

Default: 0

Simulink does not permit the integrator initial condition to be inf or NaN.

Filter Initial condition
(Available only when Initial conditions Source is internal, the controller includes
derivative action, and Use filtered derivative is checked.) Specify the filter initial value.

1 Blocks — Alphabetical List

1-1186

Simulink uses the initial condition to initialize the filter output at the start of a simulation
or at a specified trigger event (see “External reset” on page 1-1187). The filter initial
condition, together with the integrator initial condition, determines the initial output of
the PID controller block.

Default: 0

Simulink does not permit the filter initial condition to be inf or NaN.

Initial condition setting
Specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. This parameter can be
changed only at the command line using set_param to set the
InitialConditionSetting parameter of the block.

Auto (Default)
Block uses the initial condition setting Output when the block is in a triggered
subsystem or a function-call subsystem and simplified initialization mode is enabled,
and State (most efficient) otherwise.

State (most efficient)
Use this option in all situations except when the block is in a triggered subsystem or a
function-call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call
subsystem and simplified initialization mode is enabled.

For more information about these Initial condition setting parameters, see the
Discrete-Time Integrator block.

External reset
Select the trigger event that resets the integrator and filter outputs to the initial
conditions you specify in the Integrator Initial condition and Filter Initial condition
fields. Selecting any option other than none enables a reset input on the block for the
external reset signal, as shown:

 PID ControllerDiscrete PID Controller

1-1187

Or, if the Initial conditions Source is External,

The reset signal must be a scalar of type single, double, boolean, or integer. Fixed
point data types, except for ufix1, are not supported.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA)
software standard, your model must use Boolean signals to drive the external reset ports
of the PID controller block.

none (Default)
Does not reset the integrator and filter outputs to initial conditions.

rising
Resets the outputs when the reset signal has a rising edge.

falling
Resets the outputs when the reset signal has a falling edge.

either
Resets the outputs when the reset signal either rises or falls.

level
Resets and holds the outputs to the initial conditions while the reset signal is nonzero.

1 Blocks — Alphabetical List

1-1188

Ignore reset when linearizing
Force Simulink linearization commands to ignore any reset mechanism that you have
chosen with the External reset menu. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the PID Controller
block to reset.

 Off (Default)
Simulink linearization commands do not ignore states corresponding to the reset
mechanism.

 On
Simulink linearization commands ignore states corresponding to the reset
mechanism.

Enable zero-crossing detection
Enable zero-crossing detection in continuous-time models upon reset and upon entering
or leaving a saturation state.

Zero-crossing detection can accurately locate signal discontinuities without resorting to
excessively small time steps that can lead to lengthy simulation times. If you select Limit
output or activate an External reset in your PID Controller block, activating zero-
crossing detection can reduce computation time in your simulation. For more information,
see “Zero-Crossing Detection” in the Simulink documentation.

 On (Default)
Uses zero-crossing detection at any of the following events: reset; entering or leaving
an upper saturation state; and entering or leaving a lower saturation state.

 Off
Does not use zero-crossing detection.

Enabling zero-crossing detection for the PID Controller block also enables zero-crossing
detection for all under-mask blocks that include the zero-crossing detection feature.

 PID ControllerDiscrete PID Controller

1-1189

Limit output
Limit the block output to values you specify as the Lower saturation limit and Upper
saturation limit parameters.

Activating this option limits the block output internally to the block, obviating the need
for a separate Saturation on page 1-1456 block after the controller in your Simulink
model. It also allows you to activate the block's built-in anti-windup mechanism (see “Anti-
windup method” on page 1-1190).

 Off (Default)
Does not limit the block output, which equals the weighted sum of the proportional,
integral, and derivative actions.

 On
Limits the block output to the Lower saturation limit or the Upper saturation
limit whenever the weighted sum exceeds those limits. Allows you to select an Anti-
windup method.

Lower saturation limit
(Available only when you select the Limit output check box.) Specify the lower limit for
the block output. The block output is held at the Lower saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions goes below that value.

Default: -inf

Upper saturation limit
(Available only when you select the Limit output check box.) Specify the upper limit for
the block output. The block output is held at the Upper saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions exceeds that value.

Default: inf

Anti-windup method
(Available only when you select the Limit output option and the controller includes
integral action.) Select an anti-windup mechanism to discharge the integrator when the

1 Blocks — Alphabetical List

1-1190

block is saturated, which occurs when the sum of the block components exceeds the
output limits.

When you select the Limit output check box and the weighted sum of the controller
components exceeds the specified output limits, the block output holds at the specified
limit. However, the integrator output can continue to grow (integrator wind-up),
increasing the difference between the block output and the sum of the block components.
Without a mechanism to prevent integrator wind-up, two results are possible:

• If the sign of the input signal never changes, the integrator continues to integrate until
it overflows. The overflow value is the maximum or minimum value for the data type of
the integrator output.

• If the sign of the input signal changes once the weighted sum has grown beyond the
output limits, it can take a long time to discharge the integrator and return the
weighted sum within the block saturation limit.

In both cases, controller performance can suffer. To combat the effects of wind-up without
an anti-windup mechanism, it may be necessary to detune the controller (for example, by
reducing the controller gains), resulting in a sluggish controller. Activating an anti-
windup mechanism can improve controller performance.

none (Default)
Does not use an anti-windup mechanism. This setting may cause the block's internal
signals to be unbounded even if the output appears to be bounded by the saturation
limits. This can result in slow recovery from saturation or unexpected overflows.

back-calculation
Discharges the integrator when the block output saturates using the integral-gain
feedback loop:

 PID ControllerDiscrete PID Controller

1-1191

You can also specify a value for the Back-calculation coefficient (Kb).
clamping

Stops integration when the sum of the block components exceeds the output limits
and the integrator output and block input have the same sign. Resumes integration
when the sum of the block components exceeds the output limits and the integrator
output and block input have opposite sign. The integrator portion of the block is:

The clamping circuit implements the logic necessary to determine whether
integration continues.

Back-calculation gain (Kb)
(Available only when the back-calculation Anti-windup method is active.) Specify
the gain coefficient of the anti-windup feedback loop.

The back-calculation anti-windup method discharges the integrator on block
saturation using a feedback loop having gain coefficient Kb.

Default: 1

Ignore saturation when linearizing
Force Simulink linearization commands to ignore PID Controller block output limits.
Ignoring output limits allows you to linearize a model around an operating point even if
that operating point causes the PID Controller block to exceed the output limits.

1 Blocks — Alphabetical List

1-1192

 On (Default)
Simulink linearization commands ignore states corresponding to saturation.

 Off
Simulink linearization commands do not ignore states corresponding to saturation.

Enable tracking mode
(Available for any controller with integral action.) Activate signal tracking, which lets the
output of the PID Controller block follow a tracking signal. Provide the tracking signal to
the block at the TR port, which becomes active when you select Enable tracking mode.

When signal tracking is active, the difference between the tracked signal and the block
output is fed back to the integrator input with a gain Kt. The structure is illustrated for a
PI controller:

 PID ControllerDiscrete PID Controller

1-1193

You can also specify the Tracking coefficient (Kt).

1 Blocks — Alphabetical List

1-1194

Use signal tracking, for example, to achieve bumpless control transfer in systems that
switch between two controllers. You can make one controller track the output of the other
controller by connecting the TR port to the signal you want to track. For example:

In this example, the outputs Out1 and Out2 can drive a controlled system (not shown)
through a switch that transfers control between the “Active controller” block and the PID
Controller block. The signal tracking feature of the PID Controller block provides smooth
operation upon transfer of control from one controller to another, ensuring that the two
controllers have the same output at the time of transfer.

Use signal tracking to prevent block wind-up in multiloop control approaches, as this
example illustrates:

The inner-loop subsystem contains the following blocks:

 PID ControllerDiscrete PID Controller

1-1195

In this example, the inner loop has an effective gain of 1 when it does not saturate.
Without signal tracking, the inner loop winds up in saturation. Signal tracking ensures
that the PID Controller output does not exceed the saturated output of the inner loop.

 Off (Default)
Disables signal tracking and removes TR block input.

 On
Enables signal tracking and activates TR input.

Tracking gain (Kt)
(Available only when you select Enable tracking mode.) Specify Kt, which is the gain of
the signal tracking feedback loop.

Default: 1

Parameter data type
Select the data type of the gain parameters P, I, D, N, Kb, and Kt.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the

1 Blocks — Alphabetical List

1-1196

internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

Inherit: Inherit via back propagation
Use data type of the driving block.

Inherit: Same as input
Use data type of input signal.

double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

 PID ControllerDiscrete PID Controller

1-1197

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Product output data type
Select the product output data type of the gain parameters P, I, D, N, Kb, or Kt, or the
product output data type of the derivative filter numerator and denominator.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

Inherit: Inherit via back propagation
Use data type of the driving block.

Inherit: Same as input
Use data type of input signal.

double

1 Blocks — Alphabetical List

1-1198

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Summation output data type
Select the summation output data type of the sums Sum, Sum D, Sum I1 , SumI2 ,
SumI3, and the summations in the trapezoidal discrete filter numerator and denominator,
SumNum and SumDen. These sums are computed internally within the block, and might
not all be present, depending upon the controller configuration. To see where Simulink
computes each of these sums , right-click the PID Controller block in your model and
select Look Under Mask:

• Sum is the weighted sum of the proportional, derivative, and integral signals.
• SumD is the sum in the derivative filter feedback loop.
• SumI1 is the sum of the block input signal (weighted by the integral gain I) and

SumI2. SumI1 is computed only when Limit output and Anti-windup method
back-calculation are active.

• SumI2 is the difference between the weighted sum Sum and the limited block output.
SumI2 is computed only when Limit output and Anti-windup method back-
calculation are active.

 PID ControllerDiscrete PID Controller

1-1199

• SumI3 is the difference between the block output and the signal at the block's
tracking input. SumI3 is computed only when you select the Enable tracking mode
box.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Note The accumulator internal rule favors greater numerical accuracy, possibly at
the cost of less efficient generated code. To get the same accuracy for the output, set
the output data type to Inherit: Same as accumulator.

Inherit: Inherit via back propagation
Use data type of the driving block.

Inherit: Same as first input
Use data type of first input signal.

Inherit: Same as accumulator
Use the same data type as the corresponding accumulator on page 1-1201.

double

single

1 Blocks — Alphabetical List

1-1200

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Accumulator data type
Specify the accumulator data type.

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule
Use internal rule to determine accumulator data type.

Inherit: Same as first input
Use data type of first input signal.

double
Accumulator data type is double.

single
Accumulator data type is single.

int8
Accumulator data type is int8.

uint8
Accumulator data type is uint8.

 PID ControllerDiscrete PID Controller

1-1201

int16
Accumulator data type is int16.

uint16
Accumulator data type is uint16.

int32
Accumulator data type is int32.

uint32
Accumulator data type is uint32.

fixdt(1,16,0)
Accumulator data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Accumulator data type is fixed point fixdt(1,16,2^0,0).

<data type expression>
The name of a data type object, for example Simulink.NumericType

See “Block-Specific Parameters” on page 6-130 for the command-line information.

For more information, see “Specify Data Types Using Data Type Assistant”.

Integrator output data type
Select the data type of the integrator output.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

1 Blocks — Alphabetical List

1-1202

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation
Use data type of the driving block.

double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Filter output data type
Select the data type of the filter output.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target

 PID ControllerDiscrete PID Controller

1-1203

hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation
Use data type of the driving block.

double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Saturation output data type
Select the saturation output data type.

1 Blocks — Alphabetical List

1-1204

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Same as input (Default)
Use data type of input signal.

Inherit: Inherit via back propagation
Use data type of the driving block.

double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Mode
Select the category of data to specify.

Default: Inherit

Inherit
Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

 PID ControllerDiscrete PID Controller

1-1205

• Inherit via internal rule (default)
• Inherit via back propagation
• Same as first input
• Same as accumulator

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32

Fixed point
Fixed-point data types.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Mode
Select the category of data to specify.

1 Blocks — Alphabetical List

1-1206

Default: Inherit

Inherit
Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via back propagation
• Same as input (default)

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32

Fixed point
Fixed-point data types.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

 PID ControllerDiscrete PID Controller

1-1207

Mode
Select the category of accumulator data to specify

Default: Inherit

Inherit
Specifies inheritance rules for data types. Selecting Inherit enables a list of
possible values:

• Inherit via internal rule (default)
• Same as first input

Built in
Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32

Fixed point
Specifies fixed-point data types.

Expression
Specifies expressions that evaluate to data types. Selecting Expression enables you
to enter an expression.

Clicking the Show data type assistant button for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-1208

See “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

 PID ControllerDiscrete PID Controller

1-1209

For more information, see “Specifying a Fixed-Point Data Type”.

Signedness
Specify whether you want the fixed-point data to be signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data to be signed.

Unsigned
Specify the fixed-point data to be unsigned.

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision, Binary point, Integer

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values. This option appears for some blocks.

1 Blocks — Alphabetical List

1-1210

Integer
Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0. This option appears for some blocks.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See “Block-Specific Parameters” on page 6-130 for the command-line information.

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Binary point

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Selecting Binary point enables:

 PID ControllerDiscrete PID Controller

1-1211

• Fraction length

Selecting Slope and bias enables:

• Slope
• Bias

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Word length
Specify the bit size of the word that holds the quantized integer.

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that will hold the quantized integer.

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

1 Blocks — Alphabetical List

1-1212

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

 PID ControllerDiscrete PID Controller

1-1213

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

1 Blocks — Alphabetical List

1-1214

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Lock output data type setting against changes by the fixed-
point tools
Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor.

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

 PID ControllerDiscrete PID Controller

1-1215

Parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Saturate on integer overflow
Specify whether overflows saturate.

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

1 Blocks — Alphabetical List

1-1216

Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Integer rounding mode
Specify the rounding mode for fixed-point operations.

Default: Floor

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Parameter: RndMeth
Type: character vector

 PID ControllerDiscrete PID Controller

1-1217

Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

For more information, see “Rounding” (Fixed-Point Designer).

State name
Assign unique name to each state. The state names apply only to the selected block.

To assign a name to a single state, enter the name between quotes; for example,
'velocity'.

To assign names to multiple states, enter a comma-delimited list surrounded by braces;
for example, {'a', 'b', 'c'}. Each name must be unique. To assign state names with
a variable that has been defined in the MATLAB workspace, enter the variable without
quotes. The variable can be a character vector, cell, or structure.

Default: ' ' (no name)

State name must resolve to Simulink signal object
Require that state name resolve to Simulink signal object.

Default: Off

 On
Require that state name resolve to Simulink signal object.

 Off
Do not require that state name resolve to Simulink signal object.

State name enables this parameter. This parameter appears only if you set the model
configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.

1 Blocks — Alphabetical List

1-1218

Parameter: StateMustResolveToSignalObject
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Code generation storage class
Select state storage class for code generation.

Default: Auto

Auto
Auto is the appropriate storage class for states that you do not need to interface to
external code.

StorageClass
Applies the storage class or custom storage class that you select from the list. For
information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.

State name enables this parameter.

Command-Line Information
Parameter: StateStorageClass
Type: character vector
Value: 'Auto' | 'ExportedGlobal' | 'ImportedExtern' |
'ImportedExternPointer' | 'Model default' | 'Custom'
Default: 'Auto'

TypeQualifier

Note TypeQualifier will be removed in a future release. To apply storage type qualifiers
to data, use custom storage classes and memory sections. Unless you use an ERT-based

 PID ControllerDiscrete PID Controller

1-1219

code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

Specify a storage type qualifier such as const or volatile.

• Default: ' ' (empty character vector)
• const
• volatile

Setting Code generation storage class to ExportedGlobal, ImportedExtern,
ImportedExternPointer, or Model default enables this parameter. This parameter
is hidden unless you previously set its value.

Parameter Name: RTWStateStorageTypeQualifier
Value Type: character vector
Default: ' ' (empty character vector)

Characteristics
Direct Feedthrough The following ports support direct feedthrough:

• Reset port
• Integrator and filter initial condition port
• Input port, for every integration method except

Forward Euler
Sample Time Specified in the Sample time parameter
Scalar Expansion Supported for gain parameters P, I, and D and for

filter coefficient N
States Inherited from driving block and parameters
Dimensionalized Yes
Zero-Crossing Detection Yes (in continuous-time domain)

1 Blocks — Alphabetical List

1-1220

See Also
Derivative | Discrete Derivative | Discrete-Time Integrator | Gain | Integrator | PID
Controller (2 DOF)

Introduced in R2009b

 PID ControllerDiscrete PID Controller

1-1221

PID Controller (2 DOF)Discrete PID
Controller (2 DOF)
Simulate continuous- or discrete-time two-degree-of-freedom PID controllers

Library
Continuous, Discrete

Description
Implement a continuous- or discrete-time two-degree-of-freedom controller (PID, PI, or
PD) in your Simulink model. The PID Controller (2DOF) block allows you to implement
setpoint weighting in your controller to achieve both smooth setpoint tracking and good
disturbance rejection.

The PID Controller (2DOF) block generates an output signal based on the difference
between a reference signal and a measured system output. The block computes a
weighted difference signal for each of the proportional, integral, and derivative actions
according to the setpoint weights you specify. The block output is the sum of the
proportional, integral, and derivative actions on the respective difference signals, where
each action is weighted according to the gain parameters. A first-order pole filters the
derivative action. Controller gains are tunable either manually or automatically.
Automatic tuning requires Simulink Control Design software.

Configurable options in the PID Controller (2DOF) block include:

• Controller type (PID, PI, or PD)
• Controller form (Parallel or Ideal)

1 Blocks — Alphabetical List

1-1222

• Time domain (continuous or discrete)
• Initial conditions and reset trigger
• Output saturation limits and built-in anti-windup mechanism
• Signal tracking for bumpless control transfer and multiloop control

In one common implementation, the PID Controller (2DOF) block operates in the
feedforward path of the feedback loop. The block receives a reference signal at the Ref
input and a measured system output at the other input. For example:

For a single-input block that accepts an error signal (a difference between a setpoint and
a system output), see the PID Controller block reference page.

You can generate code to implement your controller using any Simulink data type,
including fixed-point data types. (Code generation requires Simulink Coder software;
fixed-point implementation requires the Fixed-Point Designer product.)

For an example illustrating an application of the PID Controller (2 DOF) block, see the
Simulink example Two Degree-of-Freedom PID Control for Setpoint Tracking.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1223

matlab:showdemo('sldemo_pid2dof')

Data Type Support
The PID Controller (2DOF) block accepts real signals of any numeric data type that
Simulink software supports, including fixed-point data types. See “Data Types Supported
by Simulink” in the Simulink documentation for more information.

Parameters
The following table summarizes the PID Controller (2DOF)block parameters, accessible
via the block parameter dialog box.

Task Parameters
Choose controller form and type. • Controller Form on page 1-1226 in Main tab

• Controller on page 1-1231
Choose discrete or continuous time. • Time-domain on page 1-1231

• Sample time on page 1-1234
Choose an integration method (discrete time). • Integrator method on page 1-1232

• Filter method on page 1-1233
Set and tune controller gains. • Controller Parameters Source on page 1-

1234 in Main tab
• Proportional (P) on page 1-1236 in Main tab
• Integral (I) on page 1-1236 in Main tab
• Derivative (D) on page 1-1236 in Main tab
• Filter coefficient (N) on page 1-1237 in

Main tab
• Use filtered derivative on page 1-1238 in

Main tab
• Setpoint weight (b) on page 1-1239 in Main

tab
• Setpoint weight (c) on page 1-1240 in Main

tab

1 Blocks — Alphabetical List

1-1224

Task Parameters
Set integrator and filter initial conditions. • Initial conditions Source on page 1-1242 in

Main tab
• Integrator Initial condition on page 1-1243

in Main tab
• Filter Initial condition on page 1-1243 in

Main tab
• Initial condition setting on page 1-1243

(command line only)
• External reset on page 1-1244 in Main tab
• Ignore reset when linearizing on page 1-

1245 in Main tab
Limit block output. • Limit output on page 1-1246 in PID

Advanced tab
• Lower saturation limit on page 1-1247 in

PID Advanced tab
• Upper saturation limit on page 1-1247 in

PID Advanced tab
• Ignore saturation when linearizing on

page 1-1249 in PID Advanced tab
Configure anti-windup mechanism (when you
limit block output).

• Anti-windup method on page 1-1247 in PID
Advanced tab

• Back-calculation gain (Kb) on page 1-1249
in PID Advanced tab

Enable signal tracking. • Enable tracking mode on page 1-1250 in
PID Advanced tab

• Tracking gain (Kt) on page 1-1250 in PID
Advanced tab

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1225

Task Parameters
Configure data types. • Parameter data type on page 1-1250 in

Data Type Attributes tab
• Product output data type on page 1-1252

in Data Type Attributes tab
• Summation output data type on page 1-

1253 in Data Type Attributes tab
• Accumulator data type on page 1-1255 in

Data Type Attributes tab
• Integrator output data type on page 1-

1257 in Data Type Attributes tab
• Filter output data type on page 1-1258 in

Data Type Attributes tab
• Saturation output data type on page 1-

1259 in Data Type Attributes tab
• Lock output data type setting against

changes by the fixed-point tools on page 1-
1270 in Data Type Attributes tab

• Saturate on integer overflow on page 1-
1270 in Data Type Attributes tab

• Integer rounding mode on page 1-1271 in
Data Type Attributes tab

Configure block for code generation. • State name on page 1-1272 in State
Attributes tab

• State name must resolve to Simulink
signal object on page 1-1273 in State
Attributes tab

• Code generation storage class on page 1-
1273 in State Attributes tab

• Code generation storage type qualifier on
page 1-1274 in State Attributes tab

Controller form
Select the controller form.

1 Blocks — Alphabetical List

1-1226

Parallel (Default)
Selects a controller form in which the proportional, integral, and derivative gains P, I,
and D operate independently. The filter coefficient N sets the location of the pole in
the derivative filter.

Parallel two-degree-of-freedom PID controller, where input 1 receives a reference
signal and input 2 receives feedback from the measured system output:

The parallel two-degree-of-freedom PID controller can be equivalently modeled by the
following block diagram:

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1227

R(s) represents the reference signal and Y(s) represents the feedback from
measured system output. In this model, C(s) is a single degree-of-freedom controller,
and F(s) acts as a prefilter on the reference signal. For a parallel two-degree-of-
freedom PID controller in the Continuous-time Time-domain, the transfer
functions F(s) and C(s) are:

F s
bP cDN s bPN I s IN

P DN s PN I s IN

C s

par

par

()
() ()

() ()

()
(

=
+ + + +

+ + + +

=

2

2

PP DN s PN I s IN

s s N

+ + + +

+

) ()

()

2

where b and c are the Setpoint weight parameters.

Alternatively, the parallel two-degree-of-freedom PID controller can be modeled by the
following block diagram:

1 Blocks — Alphabetical List

1-1228

R(s), Y(s), and C(s) are as discussed previously. In this realization, Q(s) acts as
feed-forward conditioning on the reference signal R(s). For a parallel PID controller
in the Continuous-time Time-domain, the transfer function Q(s) is:

Q s
b P c DN s b PN

s N
par

()
() () ()

=
- + -() + -

+

1 1 1

Ideal
Selects a controller form in which the proportional gain P acts on the sum of all
actions.

Ideal two-degree-of-freedom PID controller, where input 1 receives a reference signal
and input 2 receives feedback from the measured system output:

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1229

Similarly to the parallel controller form discussed previously, the ideal two-degree-of-
freedom PID controller can be modeled as a single degree-of-freedom controller C(s)
with a prefilter F(s). For an ideal two-degree-of-freedom PID controller in the
Continuous-time Time-domain, the transfer functions F(s) and C(s) are:

F s
b cDN s bN I s IN

DN s N I s IN

C s P
DN

id

id

()
() ()

() ()

()
(

=
+ + + +

+ + + +

=
+

2

2
1

1)) ()

()

s N I s IN

s s N

2
+ + +

+

where b and c are the Setpoint weight parameters.

Alternatively, modeling the ideal two-degree-of-freedom PID controller as a one-
degree-of-freedom controller C(s) with feed-forward conditioning Q(s) on the
reference signal gives, in continuous-time:

Q s P
b c DN s b N

s N
id

()
() () ()

=
- + -() + -

+

1 1 1

1 Blocks — Alphabetical List

1-1230

The controller transfer function for the current settings is displayed in the block dialog
box.

Controller
Specify the controller type.

PID (Default)
Implements a controller with proportional, integral, and derivative action.

PI
Implements a controller with proportional and integral action.

PD
Implements a controller with proportional and derivative action.

The controller transfer function for the current settings is displayed in the block dialog
box.

Time-domain
Select continuous or discrete time domain. The appearance of the block changes to reflect
your selection.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1231

Continuous-time (Default)
Selects the continuous-time representation.

When the PID Controller (2DOF) block is in a model with synchronous state control
(see the State Control block), you cannot select Continuous-time.

Discrete-time
Selects the discrete-time representation. Selecting Discrete-time also allows you
to specify the:

• Sample time, which is the discrete interval between samples.
• Discrete integration methods for the integrator and the derivative filter using the

Integrator method and Filter method menus.

Integrator method
(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the integrator output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is stable
in continuous time.

Backward Euler
Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.

Trapezoidal
Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Of all

1 Blocks — Alphabetical List

1-1232

available integration methods, the Trapezoidal method yields the closest match
between frequency-domain properties of the discretized system and the
corresponding continuous-time system.

Note For integrator methods BackwardEuler or Trapezoidal, you cannot generate
HDL code for the block if either:

• Limit output is selected and Anti-windup method is set to back-calculation or
clamping.

• Enable tracking mode is selected.

Filter method
(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the derivative filter output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is stable
in continuous time.

Backward Euler
Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.
Any filter parameter value N > 0 yields a stable result with this method.

Trapezoidal
Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Any filter
parameter value N > 0 yields a stable result with this method. Of all available filter

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1233

methods, the Trapezoidal method yields the closest match between frequency-
domain properties of the discretized system and the corresponding continuous-time
system.

Sample time (-1 for inherited)
(Available only when you set Time-domain to Discrete-time.) Specify the discrete
interval between samples.

Default: 1

By default, the block uses a discrete sample time of 1. To specify a different sample time,
enter another discrete value, such as 0.1.

If you specify a value of –1, the PID Controller (2DOF) block inherits the sample time from
upstream blocks. Do not enter a value of 0; to implement a continuous-time controller,
select the Time-domain Continuous-time.

See “Specify Sample Time” in the online documentation for more information.

Controller Parameters Source
Select the source of the controller gains, filter coefficient, and setpoint weights. You can
provide these parameters explicitly in the block dialog box, or enable external inputs for
them on the block. Enabling external inputs for the parameters allows you to compute
PID gains and filter coefficients externally to the block and provide them to the block as
signal inputs.

External gain input is useful, for example, when you want to map a different PID
parameterization to the PID gains of the block. You can also use external gain input to
implement gain-scheduled PID control, in which controller gains are determined by logic
or other calculation in the Simulink model and passed to the block.

internal (Default)
Specify the PID gains and filter coefficient explicitly using the P, I, D, N, b, and c
parameters.

1 Blocks — Alphabetical List

1-1234

external
Specify the PID gains and filter coefficient externally. An additional input port appears
under the block input for each parameter that is required for the current controller
type:

When you supply gains externally, time variations in the integral and derivative gain
values are integrated and differentiated, respectively. This result occurs because of the
way the PID gains are implemented within the block. For example, for a continuous-time
PID controller with external inputs, the integrator term is implemented as shown in the
following illustration.

Within the block, the signal to be integrated is multiplied by the externally-supplied
integrator gain, I, before integration. This implementation yields:

y uI dti = Ú .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of
the block, multiplication by the derivative gain precedes the differentiation, which causes
the derivative gain D to be differentiated.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1235

Proportional (P)
Specify the proportional gain P.

Default: 1

Enter a finite, real gain value into the Proportional (P) field. Use either scalar or vector
gain values. For a parallel PID Controller form, the proportional action is
independent of the integral and derivative actions. For an ideal PID Controller form,
the proportional action acts on the integral and derivative actions. See “Controller form”
on page 1-1226 for more information about the role of P in the controller transfer
function.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains. See “Choose a Control Design Approach” (Simulink Control Design).

Integral (I)
(Available for PID and PI controllers.) Specify the integral gain I.

Default: 1

Enter a finite, real gain value into the Integral (I) field. Use either scalar or vector gain
values.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains. See “Choose a Control Design Approach” (Simulink Control Design).

Derivative (D)
(Available for PID and PD controllers.) Specify the derivative gain D.

Default: 0

Enter a finite, real gain value into the Derivative (D) field. Use either scalar or vector
gain values.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using. See “Choose a Control Design Approach” (Simulink Control
Design).

1 Blocks — Alphabetical List

1-1236

Filter coefficient (N)
Specifies the filter coefficient of the controller.

(Available for PID and PD controllers, when Use filtered derivative is checked.) Specify
the filter coefficient N, which determines the pole location of the filter in the derivative
action:

The filter pole falls at s = -N in the Continuous-time Time-domain. For Discrete-
time, the location of the pole depends on which Filter method you select (for sampling
time Ts):

• Forward Euler:

z NTpole s= -1

• Backward Euler:

z
NT

pole
s

=

+

1

1

• Trapezoidal:

z
NT

NT
pole

s

s

=

-

+

1 2

1 2

/

/

Default: 100.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1237

Enter a finite, real gain value into the Filter Coefficient (N) field. Use either scalar or
vector gain values. Note that the PID controller (2DOF) block does not support N = inf
(ideal unfiltered derivative).

When you have Simulink Control Design software installed, you can automatically tune
the controller gains. See “Choose a Control Design Approach” (Simulink Control Design).
Automatic tuning requires N > 0.

Use Filtered Derivative
Specify whether derivative term is filtered (finite N) or unfiltered. Unfiltered derivative is
available only for discrete-time controllers.

Unchecking this option replaces the filtered derivative with a discrete differentiator. For
example, if Filter Method is Forward Euler, then the filtered derivative term is
represented by:

When you uncheck Use filtered derivative, the derivative term becomes:

 On (Default)
Use derivative filter (finite N).

1 Blocks — Alphabetical List

1-1238

 Off
Derivative is unfiltered.

Setpoint weight (b)
Specify the proportional setpoint weight b.

Default: 1

Enter the proportional setpoint weight value into the Setpoint weight (b) field. Setting b
= 0 eliminates the proportional action on the reference signal, which can reduce
overshoot in the system response to step changes in the setpoint.

The following diagrams show the role of Setpoint weight (b) in PID controllers of
Parallel and Ideal form. See “Controller form” on page 1-1226 for a discussion of the
corresponding transfer functions.

Parallel Two-Degree-of-Freedom PID Controller

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1239

Ideal Two-Degree-of-Freedom PID Controller

Setpoint weight (c)
(Available for PID and PD controllers.) Specify the derivative setpoint weight c.

Enter the derivative setpoint weight value into the Setpoint weight (c) field. To
implement a controller that achieves both effective disturbance rejection and smooth
setpoint tracking without excessive transient response, set c = 0. Setting c = 0 yields a
controller with derivative action on the measured system response but not on the
reference input.

The following diagrams show the role of Setpoint weight (c) in Parallel and Ideal
PID controllers. See “Controller form” on page 1-1226 for a discussion of the
corresponding transfer functions.

1 Blocks — Alphabetical List

1-1240

Parallel Two-Degree-of-Freedom PID Controller

Ideal Two-Degree-of-Freedom PID Controller

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1241

Select Tuning Method
(Requires Simulink Control Design) Select a PID tuning tool. The specified tool opens
when you click Tune.

Transfer Function Based (PID Tuner App) (Default)
Clicking Tune opens the PID Tuner, which lets you interactively tune PID gains while
examining relevant system responses to validate performance. By default, PID Tuner
works with a linearization of your plant model. For models that cannot be linearized,
you can tune PID gains against a plant model estimated from simulated or measured
response data. For more information, see “Introduction to Model-Based PID Tuning in
Simulink” (Simulink Control Design).

Frequency Response Based
Clicking Tune opens the Frequency Response Based PID Tuner, which tunes PID
controller gains based on a frequency-response estimation experiment. Frequency
Response Based PID Tuner is especially useful for plants that are not linearizable. For
more information, see “Design PID Controller from Plant Frequency-Response Data”
(Simulink Control Design).

Initial conditions Source
Select the source of the integrator and filter initial conditions. Simulink uses initial
conditions to initialize the integrator and filter output at the start of a simulation or at a
specified trigger event (see “External reset” on page 1-1244). The integrator and filter
initial conditions in turn determine the initial block output.

internal (Default)
Specifies the integrator and filter initial conditions explicitly using the Integrator
Initial condition and Filter Initial condition parameters.

external
Specifies the integrator and filter initial conditions externally. An additional input port
appears under the block inputs for each initial condition: I0 for the integrator and D0
for the filter:

1 Blocks — Alphabetical List

1-1242

Integrator Initial condition
(Available only when Initial conditions Source is internal and the controller includes
integral action.) Specify the integrator initial value. Simulink uses the initial condition to
initialize the integrator output at the start of a simulation or at a specified trigger event
(see “External reset” on page 1-1244). The integrator initial condition, together with the
filter initial condition, determines the initial output of the PID Controller (2DOF) block.

Default: 0

Simulink does not permit the integrator initial condition to be inf or NaN.

Filter Initial condition
(Available only when Initial conditions Source is internal, the controller includes
derivative action, and Use filtered derivative is checked.) Specify the filter initial value.
Simulink uses the initial condition to initialize the filter output at the start of a simulation
or at a specified trigger event (see “External reset” on page 1-1244). The filter initial
condition, together with the integrator initial condition, determines the initial output of
the PID Controller (2DOF) block.

Default: 0

Simulink does not permit the filter initial condition to be inf or NaN.

Initial condition setting
Specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. This parameter can be
changed only at the command line using set_param to set the
InitialConditionSetting parameter of the block.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1243

Auto (Default)
Block uses the initial condition setting Output when the block is in a triggered
subsystem or a function-call subsystem and simplified initialization mode is enabled,
and State (most efficient) otherwise.

State (most efficient)
Use this option in all situations except when the block is in a triggered subsystem or a
function-call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call
subsystem and simplified initialization mode is enabled.

For more information about these Initial condition setting parameters, see the
Discrete-Time Integrator block.

External reset
Select the trigger event that resets the integrator and filter outputs to the initial
conditions you specify in the Integrator Initial condition and Filter Initial condition
fields. Selecting any option other than none enables a reset input on the block for the
external reset signal, as shown:

Or, if the Initial conditions Source is External:

1 Blocks — Alphabetical List

1-1244

The reset signal must be a scalar of type single, double, boolean, or integer. Fixed
point data types, except for ufix1, are not supported.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA)
software standard, your model must use Boolean signals to drive the external reset ports
of the PID controller (2DOF) block.

none (Default)
Does not reset the integrator and filter outputs to initial conditions.

rising
Resets the outputs when the reset signal has a rising edge.

falling
Resets the outputs when the reset signal has a falling edge.

either
Resets the outputs when the reset signal either rises or falls.

level
Resets and holds the outputs to the initial conditions while the reset signal is nonzero.

Ignore reset when linearizing
Force Simulink linearization commands to ignore any reset mechanism that you have
chosen with the External reset menu. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the PID Controller
(2DOF) block to reset.

 Off (Default)
Simulink linearization commands do not ignore states corresponding to the reset
mechanism.

 On
Simulink linearization commands ignore states corresponding to the reset
mechanism.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1245

Enable zero-crossing detection
Enable zero-crossing detection in continuous-time models upon reset and upon entering
or leaving a saturation state.

Zero-crossing detection can accurately locate signal discontinuities without resorting to
excessively small time steps that can lead to lengthy simulation times. If you select Limit
output or activate an External reset in your PID Controller (2DOF) block, activating
zero-crossing detection can reduce computation time in your simulation. For more
information, see “Zero-Crossing Detection” in the Simulink documentation.

 On (Default)
Uses zero-crossing detection at any of the following events: reset; entering or leaving
an upper saturation state; and entering or leaving a lower saturation state.

 Off
Does not use zero-crossing detection.

Enabling zero-crossing detection for the PID Controller (2DOF) block also enables zero-
crossing detection for all under-mask blocks that include the zero-crossing detection
feature.

Limit output
Limit the block output to values you specify as the Lower saturation limit and Upper
saturation limit parameters.

Activating this option limits the block output internally to the block, obviating the need
for a separate Saturation on page 1-1456 block after the controller in your Simulink
model. It also allows you to activate the built-in anti-windup mechanism (see “Anti-windup
method” on page 1-1247).

 Off (Default)
Does not limit the block output, which is the weighted sum of the proportional,
integral, and derivative actions.

1 Blocks — Alphabetical List

1-1246

 On
Limits the block output to the Lower saturation limit or the Upper saturation
limit whenever the weighted sum exceeds those limits. Allows you to select an Anti-
windup method.

Lower saturation limit
(Available only when you select the Limit Output box.) Specify the lower limit for the
block output. The block output is held at the Lower saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions goes below that value.

Default: -inf

Upper saturation limit
(Available only when you select the Limit Output box.) Specify the upper limit for the
block output. The block output is held at the Upper saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions exceeds that value.

Default: inf

Anti-windup method
(Available only when you select the Limit Output option and the controller includes
integral action.) Select an anti-windup mechanism to discharge the integrator when the
block is saturated, which occurs when the sum of the block components exceeds the
output limits.

When you select the Limit output check box and the weighted sum of the controller
components exceeds the specified output limits, the block output holds at the specified
limit. However, the integrator output can continue to grow (integrator wind-up),
increasing the difference between the block output and the sum of the block components.
Without a mechanism to prevent integrator wind-up, two results are possible:

• If the sign of the input signal never changes, the integrator continues to integrate until
it overflows. The overflow value is the maximum or minimum value for the data type of
the integrator output.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1247

• If the sign of the input signal changes once the weighted sum has grown beyond the
output limits, it can take a long time to discharge the integrator and return the
weighted sum within the block saturation limit.

In both cases, controller performance can suffer. To combat the effects of wind-up without
an anti-windup mechanism, it may be necessary to detune the controller (for example, by
reducing the controller gains), resulting in a sluggish controller. Activating an anti-
windup mechanism can improve controller performance.

none (Default)
Does not use an anti-windup mechanism. This setting can cause the block's internal
signals to be unbounded even if the output appears to be bounded by the saturation
limits. This can result in slow recovery from saturation or unexpected overflows.

back-calculation
Discharges the integrator when the block output saturates using the integral-gain
feedback loop:

You can also specify a value for the Back-calculation coefficient (Kb).
clamping

Stops integration when the sum of the block components exceeds the output limits
and the integrator output and block input have the same sign. Resumes integration
when the sum of the block components exceeds the output limits and the integrator
output and block input have opposite sign. The integrator portion of the block is:

1 Blocks — Alphabetical List

1-1248

The clamping circuit implements the logic necessary to determine whether
integration continues.

Back-calculation gain (Kb)
(Available only when the back-calculation Anti-windup method is active.) Specify
the gain coefficient of the anti-windup feedback loop.

The back-calculation anti-windup method discharges the integrator on block
saturation using a feedback loop having gain coefficient Kb.

Default: 1

Ignore saturation when linearizing
Force Simulink linearization commands to ignore PID Controller (2DOF) block output
limits. Ignoring output limits allows you to linearize a model around an operating point
even if that operating point causes the PID Controller (2DOF) block to exceed the output
limits.

 On (Default)
Simulink linearization commands ignore states corresponding to saturation.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1249

 Off
Simulink linearization commands do not ignore states corresponding to saturation.

Enable tracking mode
(Available for any controller with integral action.) Activate signal tracking, which lets the
output of the PID Controller (2DOF) block follow a tracking signal. Provide the tracking
signal to the block at the TR port, which becomes active when you select Enable
tracking mode.

When signal tracking is active, the difference between the tracked signal and the block
output is fed back to the integrator input with a gain Kt. You can also specify the value of
the Tracking coefficient (Kt).

For information about using tracking mode to implement bumpless control transfer
scenarios and multiloop controllers, see “Enable tracking mode” on page 1-1193 in the
PID Controller reference page.

 Off (Default)
Disables signal tracking and removes TR block input.

 On
Enables signal tracking and activates TR input.

Tracking gain (Kt)
(Available only when you select Enable tracking mode.) Specify Kt, which is the gain of
the signal tracking feedback loop.

Default: 1

Parameter data type
Select the data type of the gain parameters P, I, D, N, Kb, and Kt and the setpoint
weighting parameters b and c.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

1 Blocks — Alphabetical List

1-1250

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

Inherit: Inherit via back propagation
Use data type of the driving block.

Inherit: Same as input
Use data type of input signal.

double

single

int8

uint8

int16

uint16

int32

uint32

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1251

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Product output data type
Select the product output data type of the gain parameters P, I, D, N, Kb, and Kt, the
setpoint weighting parameters b and c, or the product output data type of the derivative
filter numerator and denominator.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

Inherit: Inherit via back propagation
Use data type of the driving block.

1 Blocks — Alphabetical List

1-1252

Inherit: Same as input
Use data type of input signal.

double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Summation output data type
Select the summation output data type of the sums Sum, Sum D, Sum I1 , SumI2 ,
SumI3, and the summations in the trapezoidal discrete filter numerator and denominator,
SumNum and SumDen. These sums are computed internally within the block, and might
not all be present, depending upon the controller configuration. To see where Simulink
computes each of these sums , right-click the PID Controller (2 DOF) block in your model
and select Look Under Mask:

• Sum is the weighted sum of the proportional, derivative, and integral signals.
• Sum1 is the difference between the reference input weighted by b and the measured

system response.
• Sum2 is the difference between the reference input weighted by c and the measured

system response.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1253

• Sum3 is the difference between the unweighted reference input and the measured
system response.

• SumD is the sum in the derivative filter feedback loop.
• SumI1 is the sum of the block input signal (weighted by the integral gain I) and

SumI2. SumI1 is computed only when Limit output and Anti-windup method
back-calculation are active.

• SumI2 is the difference between the weighted sum Sum and the limited block output.
SumI2 is computed only when Limit output and Anti-windup method back-
calculation are active.

• SumI3 is the difference between the block output and the signal at the block's
tracking input. SumI3 is computed only when you select the Enable tracking mode
box.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Note The accumulator internal rule favors greater numerical accuracy, possibly at
the cost of less efficient generated code. To get the same accuracy for the output, set
the output data type to Inherit: Same as accumulator.

1 Blocks — Alphabetical List

1-1254

Inherit: Inherit via back propagation
Use data type of the driving block.

Inherit: Same as first input
Use data type of first input signal.

Inherit: Same as accumulator
Use the same data type as the corresponding accumulator on page 1-1255.

double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Accumulator data type
Specify the accumulator data type.

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule
Use internal rule to determine accumulator data type.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1255

Inherit: Same as first input
Use data type of first input signal.

double
Accumulator data type is double.

single
Accumulator data type is single.

int8
Accumulator data type is int8.

uint8
Accumulator data type is uint8.

int16
Accumulator data type is int16.

uint16
Accumulator data type is uint16.

int32
Accumulator data type is int32.

uint32
Accumulator data type is uint32.

fixdt(1,16,0)
Accumulator data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Accumulator data type is fixed point fixdt(1,16,2^0,0).

<data type expression>
The name of a data type object, for example Simulink.NumericType

See “Block-Specific Parameters” on page 6-130 for the command-line information.

For more information, see “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1256

Integrator output data type
Select the data type of the integrator output.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation
Use data type of the driving block.

double

single

int8

uint8

int16

uint16

int32

uint32

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1257

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Filter output data type
Select the data type of the filter output.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation
Use data type of the driving block.

double

single

int8

1 Blocks — Alphabetical List

1-1258

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Saturation output data type
Select the saturation output data type.

See “Data Types Supported by Simulink” in the Simulink documentation for more
information.

Inherit: Same as input (Default)
Use data type of input signal.

Inherit: Inherit via back propagation
Use data type of the driving block.

double

single

int8

uint8

int16

uint16

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1259

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>
Name of a data type object. For example, Simulink.NumericType.

Mode
Select the category of data to specify.

Default: Inherit

Inherit
Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation
• Same as first input
• Same as accumulator

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single
• int8
• uint8
• int16
• uint16

1 Blocks — Alphabetical List

1-1260

• int32
• uint32

Fixed point
Fixed-point data types.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Mode
Select the category of data to specify.

Default: Inherit

Inherit
Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via back propagation
• Same as input (default)

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single
• int8

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1261

• uint8
• int16
• uint16
• int32
• uint32

Fixed point
Fixed-point data types.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Mode
Select the category of accumulator data to specify

Default: Inherit

Inherit
Specifies inheritance rules for data types. Selecting Inherit enables a list of
possible values:

• Inherit via internal rule (default)
• Same as first input

Built in
Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)

1 Blocks — Alphabetical List

1-1262

• single
• int8
• uint8
• int16
• uint16
• int32
• uint32

Fixed point
Specifies fixed-point data types.

Expression
Specifies expressions that evaluate to data types. Selecting Expression enables you
to enter an expression.

Clicking the Show data type assistant button for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1263

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Signedness
Specify whether you want the fixed-point data to be signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data to be signed.

Unsigned
Specify the fixed-point data to be unsigned.

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

1 Blocks — Alphabetical List

1-1264

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision, Binary point, Integer

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values. This option appears for some blocks.

Integer
Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0. This option appears for some blocks.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1265

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Binary point

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Selecting Binary point enables:

• Fraction length

Selecting Slope and bias enables:

• Slope
• Bias

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Word length
Specify the bit size of the word that holds the quantized integer.

Default: 16

Minimum: 0

1 Blocks — Alphabetical List

1-1266

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that will hold the quantized integer.

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1267

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

1 Blocks — Alphabetical List

1-1268

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

Selecting Scaling > Slope and bias enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

Default: 0

Specify any real number.

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type” for more information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1269

Lock output data type setting against changes by the fixed-
point tools
Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor.

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Saturate on integer overflow
Specify whether overflows saturate.

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

1 Blocks — Alphabetical List

1-1270

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Integer rounding mode
Specify the rounding mode for fixed-point operations.

Default: Floor

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1271

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Parameter: RndMeth
Type: character vector
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

For more information, see “Rounding” (Fixed-Point Designer).

State name
Assign unique name to each state. The state names apply only to the selected block.

To assign a name to a single state, enter the name between quotes; for example,
'velocity'.

To assign names to multiple states, enter a comma-delimited list surrounded by braces;
for example, {'a', 'b', 'c'}. Each name must be unique. To assign state names with
a variable that has been defined in the MATLAB workspace, enter the variable without
quotes. The variable can be a character vector, cell, or structure.

Default: ' ' (no name)

1 Blocks — Alphabetical List

1-1272

State name must resolve to Simulink signal object
Require that state name resolve to Simulink signal object.

Default: Off

 On
Require that state name resolve to Simulink signal object.

 Off
Do not require that state name resolve to Simulink signal object.

State name enables this parameter. This parameter appears only if you set the model
configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.

Parameter: StateMustResolveToSignalObject
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Code generation storage class
Select state storage class for code generation.

Default: Auto

Auto
Auto is the appropriate storage class for states that you do not need to interface to
external code.

StorageClass
Applies the storage class or custom storage class that you select from the list. For
information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1273

Use Signal object class to select custom storage classes from a package other than
Simulink.

State name enables this parameter.

Command-Line Information
Parameter: StateStorageClass
Type: character vector
Value: 'Auto' | 'ExportedGlobal' | 'ImportedExtern' |
'ImportedExternPointer' | 'Model default' | 'Custom'
Default: 'Auto'

TypeQualifier

Note TypeQualifier will be removed in a future release. To apply storage type qualifiers
to data, use custom storage classes and memory sections. Unless you use an ERT-based
code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

Specify a storage type qualifier such as const or volatile.

• Default: ' ' (empty character vector)
• const
• volatile

Setting Code generation storage class to ExportedGlobal, ImportedExtern,
ImportedExternPointer, or Model default enables this parameter. This parameter
is hidden unless you previously set its value.

Parameter Name: RTWStateStorageTypeQualifier
Value Type: character vector
Default: ' ' (empty character vector)

1 Blocks — Alphabetical List

1-1274

Characteristics
Direct Feedthrough The following ports support direct feedthrough:

• Reset port
• Integrator and filter initial condition port
• Input port, for every integration method except

Forward Euler
Sample Time Specified in the Sample time parameter
Scalar Expansion Supported for gain parameters P, I, and D and for

filter coefficient N, and for setpoint weights b and c
States Inherited from driving block and parameters
Dimensionalized Yes
Zero-Crossing Detection Yes (in continuous-time domain)

See Also
Derivative | Discrete Derivative | Discrete-Time Integrator | Gain | Integrator | PID
Controller

Introduced in R2009b

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1275

Polynomial
Perform evaluation of polynomial coefficients on input values
Library: Simulink / Math Operations

Description
The Polynomial block evaluates P(u) at each time step for the input u. You define a set of
polynomial coefficients in the form that the MATLAB polyval command accepts.

Ports

Input
Port_1 — Input signal
real scalar or vector

Value at which to evaluate the polynomial P(u).
Data Types: single | double

Output
Port_1 — Evaluated polynomial value
real scalar or vector

Value of the polynomial P(u) evaluated at the input signal.
Data Types: single | double

1 Blocks — Alphabetical List

1-1276

Parameters
Polynomial coefficients — Coefficients of polynomial to be evaluated
[+2.081618890e-019, -1.441693666e-014, +4.719686976e-010,
-8.536869453e-006, +1.621573104e-001, -8.087801117e+001] (default) | real
array

Specify polynomial coefficients in MATLAB polyval form. The first coefficient
corresponds to xN and the remaining coefficients correspond to decreasing orders of x.
The last coefficient represents the constant for the polynomial.

Programmatic Use
Block Parameter: coefs
Type: real array
Default: [+2.081618890e-019, -1.441693666e-014, +4.719686976e-010,
-8.536869453e-006, +1.621573104e-001, -8.087801117e+001]

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Polynomial

1-1277

See Also

Topics
polyval

Introduced before R2006a

1 Blocks — Alphabetical List

1-1278

Prelookup
Compute index and fraction for Interpolation Using Prelookup block
Library: Simulink / Lookup Tables

Description
The Prelookup block calculates the index and interval fraction that specify how its input
value u relates to the breakpoint dataset. The Prelookup block works best with the
Interpolation Using Prelookup block. Feed the resulting index and fraction values into an
Interpolation Using Prelookup block to interpolate an n-dimensional table. These two
blocks have distributed algorithms. When combined together, they perform the same
operation as the integrated algorithm in the n-D Lookup Table block. However, the
Prelookup and Interpolation Using Prelookup blocks offer greater flexibility and more
efficient simulation and code generation than the n-D Lookup Table block. For more
information, see “Efficiency of Performance”.

Supported Block Operations
To use the Prelookup block, you must specify a set of breakpoint values. You choose
whether to specify the breakpoint values directly on the dialog box or by feeding the
values to a bp input port by setting the Source parameter to Dialog or Input port.
Typically, this breakpoint data set corresponds to one dimension of the table data in an
Interpolation Using Prelookup block. The Prelookup block generates a pair of outputs for
each input value u by calculating:

• The index of the breakpoint set element that is less than or equal to u and forms an
interval containing u

• The interval fraction in the range 0 ≤ f < 1, representing the normalized position of u
on the breakpoint interval between the index and the next index value for in-range
input

 Prelookup

1-1279

For example, if the breakpoint data set is [0 5 10 20 50 100] and the input value u is
55, the index is 4 and the fractional value is 0.1. Labels for the index and interval fraction
appear as k and f on the Prelookup block icon. The index value is zero based.

The interval fraction can be negative or greater than 1 for out-of-range input. See the
Extrapolation method block parameter for more information.

Ports

Input
Port_1 — Input signal, u
scalar | vector | matrix

The Prelookup block accepts real-valued signals of any numeric data type that Simulink
supports, except Boolean. The Prelookup block supports fixed-point data types for signals
and breakpoint data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | bus

Output
k — Index of the interval containing the input, u
scalar | vector | matrix

The zero-based index, k, is a real-valued integer that specifies the interval containing the
input, u.

Dependencies

To enable this port, set the Output selection to Index and fraction or Index only.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

f — Fraction representing the normalized position of the input, u, within the
interval, k
scalar | vector | matrix

Fraction, f, represents the normalized position of the input, u, within the interval k.

1 Blocks — Alphabetical List

1-1280

Dependencies

To enable this port, set the Output selection to Index and fraction.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Port_2 — Bus containing index, k, and fraction, f
bus

Outputting the index, k, and fraction f, as a bus object can help simplify the model.
Dependencies

To enable this port, set the Output selection to Index and fraction as bus.
Data Types: bus

Parameters
Main
Breakpoints data

Specification — Choose how to enter breakpoint data
Explicit values (default) | Even spacing | Breakpoint object

If you set this parameter to:

• Explicit values, the Source and Value parameters are visible on the dialog box.
• Even spacing, the First point, Spacing, and Number of points parameters are

visible on the dialog box.
• Breakpoint object, the Name parameter is visible on the dialog box.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector
Values: 'Explicit values' | 'Even spacing' | 'Breakpoint object'
Default: 'Explicit values'

Source — Specify source of breakpoint data
Dialog (default) | Input port

 Prelookup

1-1281

If you set Source to:

• Dialog, specify breakpoint data under Value.
• Input port, verify that an upstream signal supplies breakpoint data to the bp input

port. Each breakpoint data set must be a strictly monotonically increasing vector that
contains two or more elements. For this option, your block inherits breakpoint
attributes from the bp input port.

Dependencies

To enable this parameter, set Specification to Explicit values.

Programmatic Use
Block Parameter: BreakpointsDataSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Value — Breakpoint data values
[10:10:110] (default)

Explicitly specify the breakpoint data. Each breakpoint data set must be a strictly
monotonically increasing vector that contains two or more elements. For this option, you
specify additional breakpoint attributes on the Data Types pane.

To open the Lookup Table Editor, click Edit (see “Edit Lookup Tables”).

Note When you set Specification to Explicit values and Source to Input port,
verify that an upstream signal supplies breakpoint data to the bp input port. Each
breakpoint data set must be a strictly monotonically increasing vector that contains two
or more elements. For this option, your block inherits breakpoint attributes (including
data type) from the bp input port.

Dependencies

To enable this parameter, set Specification to Explicit values and Source to
Dialog.

Programmatic Use
Block Parameter: BreakpointsData

1 Blocks — Alphabetical List

1-1282

Type: character vector
Values: '[10:10:110]'
Default: '[10:10:110]'

First point — First point in evenly spaced breakpoint data
10 (default) | real-valued scalar
Dependencies

To enable this parameter, set Specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsFirstPoint
Type: character vector
Values: '10'
Default: '10'

Spacing — Spacing between evenly spaced breakpoints
10 (default) | real-valued, positive scalar
Dependencies

To enable this parameter, set Specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsSpacing
Type: character vector
Values: '10'
Default: '10'

Number of points — Number of evenly spaced points
11 (default) | real-valued, positive scalar
Dependencies

To enable this parameter, set Specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsNumPoints
Type: character vector
Values: '11'
Default: '11'

Name — Name of an existing Simulink.Breakpoint object
no default | Simulink.Breakpoint

 Prelookup

1-1283

Dependencies

To enable this parameter, set Specification to Breakpoint object.
Programmatic Use
Block Parameter: BreakpointObject
Type: character vector
Values: Simulink.Breakpoint object
Default: ''

Algorithm

Output selection — Specify the signals the block outputs
Index and fraction (default) | Index and fraction as bus | Index only

If you want the block to output the index and interval fraction, you can specify whether
the block outputs individual signals or a bus signal that includes both the index and
fraction signals.

• Index only outputs just the index, without the fraction. Typical applications for this
option include:

• Feeding a Direct Lookup Table (n-D) block, with no interpolation on the interval
• Feeding selection ports of a subtable selection for an Interpolation Using Prelookup

block
• Performing nonlinear quantizations

• Index and fraction outputs the index and fraction as individual signals.
• Index and fraction as bus outputs a bus signal that includes the index and

fraction signals. Using a bus for these signals:

• Simplifies the model by tying these two related signals together
• Creates a testpoint DpResult structure for the AUTOSAR 4.0 library
• For the AUTOSAR 4.0 library, avoids the creation of extra copies during code

generation when the Prelookup and Interpolation Using Prelookup blocks are in
separate models

Note Selecting Index and fraction as bus displays the Output parameter in
the Data Types pane and sets the Output parameter to Inherit: auto. Change this
default value to specify a user-defined bus object. For details about defining the bus
object, see the Output parameter description.

1 Blocks — Alphabetical List

1-1284

Programmatic Use
Block Parameter: OutputSelection
Values: 'Index and fraction' | 'Index and fraction as bus' | 'Index
only'
Type: character vector
Default: 'Index and fraction'

Index search method — Method for searching breakpoint data
Evenly spaced points (default) | Linear search | Binary search

Each search method has speed advantages in different situations:

• For evenly spaced breakpoint sets (for example, 10, 20, 30, and so on), you achieve
optimal speed by selecting Evenly spaced points to calculate table indices. This
algorithm uses only the first two breakpoints of a set to determine the offset and
spacing of the remaining points.

• For unevenly spaced breakpoint sets, follow these guidelines:

• If input values for u do not vary significantly between time steps, selecting Linear
search with Begin index search using previous index result produces the best
performance.

• If input values for u jump more than one or two table intervals per time step,
selecting Binary search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that
rely heavily on lookup tables.

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Begin index search using previous index result — Start search using the
index found at the previous time step
off (default) | on

 Prelookup

1-1285

For input values of u that change slowly with respect to the interval size, enabling this
option can improve performance. Otherwise, the linear search and binary search methods
can take longer, especially for large breakpoint sets.

Programmatic Use
Block Parameter: IndexSearchMethod
Values: 'Binary search' | 'Evenly spaced points' | 'Linear search'
Type: character vector
Default: 'Binary search'

Extrapolation method — Method for handling out-of-range input values
Clip (default) | Linear

Options include:

• Clip

Block Input Block Outputs
Less than the first breakpoint • Index of the first breakpoint (for

example, 0)
• Interval fraction of 0

Greater than the last breakpoint • Index of the next-to-last breakpoint
• Interval fraction of 1

Suppose the range is [1 2 3] and you select this option. If u is 0.5, the index is 0
and the interval fraction is 0. If u is 3.5, the index is 1 and the interval fraction is 1.

• Linear

Block Input Block Outputs
Less than the first breakpoint • Index of the first breakpoint (for

example, 0)
• Interval fraction that represents the

linear distance from u to the first
breakpoint

Greater than the last breakpoint • Index of the next-to-last breakpoint
• Interval fraction that represents the

linear distance from the next-to-last
breakpoint to u

1 Blocks — Alphabetical List

1-1286

Suppose the range is [1 2 3] and you select this option. If u is 0.5, the index is 0
and the interval fraction is -0.5. If u is 3.5, the index is 1 and the interval fraction is
1.5.

Note The Prelookup block supports linear extrapolation only when all of the following
conditions are true:

• The input u, breakpoint data, and fraction output use floating-point data types.
• The index uses a built-in integer data type.

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Clip' | 'Linear'
Default: 'Clip'

Use last breakpoint for input at or above upper limit — Method of
handling inputs at or above upper limit
off (default) | on

Specify how to index input values of u that are greater than or equal to the last
breakpoint. The index value is zero based. When input equals the last breakpoint, block
outputs differ as follows.

Check Box Block Outputs
Selected (on) • Index of the last element in the breakpoint data set

• Interval fraction of 0
Cleared (off) • Index of the next-to-last breakpoint

• Interval fraction of 1

Tip When you select Use last breakpoint for input at or above upper limit for a
Prelookup block, you must also select Valid index input may reach last index for the
Interpolation Using Prelookup block to which it connects. This action allows the blocks to
use the same indexing convention when accessing the last elements of their breakpoint
and table data sets.

 Prelookup

1-1287

Dependencies

This check box is visible only when:

• Output only the index is cleared
• Extrapolation method is Clip

However, when Output only the index is selected and Extrapolation method is Clip,
the block behaves as if this check box is selected, even though it is invisible.

Programmatic Use
Block Parameter: UseLasBreakpoint
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range
None (default) | Warning | Error

Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Code generation

Remove protection against out-of-range input in generated code —
Remove code that checks for out-of-range breakpoint inputs
Off (default) | On

1 Blocks — Alphabetical List

1-1288

Check Box Result When to Use
On Generated code does not

include conditional
statements to check for out-
of-range breakpoint inputs.

When the input k or f is out-
of-range, it may cause
undefined behavior for
generated code and
simulations using
accelerator mode.

For code efficiency

Off Generated code includes
conditional statements to
check for out-of-range
breakpoint inputs.

For safety-critical
applications

If your input is not out-of-range, you can select the Remove protection against out-of-
range index in generated code check box for code efficiency. By default, this check box
is cleared. For safety-critical applications, do not select this check box. If you want to
select the Remove protection against out-of-range index in generated code check
box, first check that your model inputs are in range. For example:

1 Clear the Remove protection against out-of-range index in generated code
check box.

2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the

Remove protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in
generated code check box and the input k or f is out-of-range, the behavior is
undefined for generated code and simulations using accelerator mode.

Depending on your application, you can run the following Model Advisor checks to verify
the usage of this check box:

 Prelookup

1-1289

• By Product > Embedded Coder > Identify lookup table blocks that generate
expensive out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331
Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks”.

Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Data Types
Breakpoint — Breakpoint data type
Inherit: Same as input (default) | Inherit: Inherit from 'Breakpoint
data' | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> |
<data type expression>

Specify the breakpoint data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input

1 Blocks — Alphabetical List

1-1290

• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Tip

• Specify a breakpoint data type different from the data type of input u for these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type
than the input signal u

• Sharing of prescaled breakpoint data between two Prelookup blocks with different
data types for input u

• Sharing of custom storage breakpoint data in the generated code for blocks with
different data types for input u

• Enumerated data:

• Breakpoints support unordered enumerated data. As a result, linear searches are
also unordered, which offers flexibility but can impact performance. The search
begins from the first element in the breakpoint.

• If the Begin index search using previous index result check box is selected,
you must use ordered monotonically increasing data. This ordering improves
performance.

• For enumerated data, Extrapolation method must be Clip.
• Because the fraction is 1 or 0, select Output selection > Index only.

If you are using the index only output selection setting with the Interpolation Using
Prelookup block, consider using the Number of sub-table selection dimensions
parameter.

These are limitations for using enumerated data with this block:

 Prelookup

1-1291

• The block does not support out-of-range input for enumerated data. When specifying
enumerated data, include the entire enumeration set in the breakpoint data set. For
example, use the enumeration function.

• When breakpoints data source is set to Inport port, the enumeration data type
must have 0 as the default value. For example, for this enumeration class, the default
value of GEAR1 must be 0.

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(32),
 NEUTRAL(0)
 end
end

Dependencies

To enable this parameter, set the breakpoints data Source to Dialog.

Note When you set Source to Input port, the block inherits all breakpoint attributes
(data type, minimum, and maximum) from the bp input port.

Programmatic Use
Block Parameter: BreakpointDataTypeStr
Type: character vector
Values: 'Inherit: Same as input' | 'Inherit: Inherit from 'Breakpoint
data'' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16'
| 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as input'

Index — Index data type
uint32 (default) | int8 | uint8 | int16 | uint16 | int32 | uint32 | fixdt(1,16) |
<data type expression>

Specify a data type that can index all elements in the breakpoint data set. You can:

1 Blocks — Alphabetical List

1-1292

• Select a built-in integer data type from the list.
• Specify an integer data type using a fixed-point representation.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Dependencies

This parameter displays only when you set Output selection on the Main tab to Index
and fraction or Index only.

Programmatic Use
Block Parameter: IndexDataTypeStr
Type: character vector
Values:
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'fixdt(1,16)' | '<data type expression>'
Default: 'uint32'

Fraction — Fraction data type
Inherit: Inherit via internal rule (default) | double | single |
fixdt(1,16,0) | <data type expression>

Specify the data type of the interval fraction. You can:

• Select a built-in data type from the list.
• Specify data type inheritance through an internal rule.
• Specify a fixed-point data type using the [Slope Bias] or binary-point-only scaling

representation.

• If you use the [Slope Bias] representation, the scaling must be trivial — that is, the
slope is 1 and the bias is 0.

• If you use the binary-point-only representation, the fixed power-of-two exponent
must be less than or equal to zero.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

 Prelookup

1-1293

Dependencies

This parameter displays only when you set Output selection on the Main tab to Index
and fraction.

Programmatic Use
Block Parameter: FractionDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output — Output data type
Inherit: auto (default) | bus: <object name>

Output a nonvirtual bus. Use the Bus: <object name> template to specify a bus object.
Replace <object name> with the name of a bus object that contains the index and
fraction signals.

• The bus object must contain two elements. The first element corresponds to the index
signal and the second to the fraction signal.

• The index and fraction bus element signals cannot be bus signals.
• The data type and the complexity of the bus elements must meet the same constraints

that apply to the index and fraction signals if you set Output selection to Index and
fraction.

To create the bus object with the index and fraction bus elements, use MATLAB code
similar to this, customizing the bus object name and the names and data types of the bus
elements.

% Bus object: kfBus
elems(1) = Simulink.BusElement;
elems(1).Name = 'Index';
elems(1).DataType = 'int8';

elems(2) = Simulink.BusElement;
elems(2).Name = 'Fraction';
elems(2).DataType = 'double';

kfBus = Simulink.Bus;
kfBus.Elements = elems;
clear elems;

1 Blocks — Alphabetical List

1-1294

Alternatively, you can use the Bus Editor to create or modify the bus object to use with
the Prelookup block.

If you feed the bus output signal from this block to an Interpolation Using Prelookup
block, select the Require index and fraction as bus check box in that block.

Note Use the Fixed-Point Tool data type override option to override bus objects with new
bus objects that replace fixed-point data types with floating-point data types.

Overridden bus objects used with the Prelookup block can cause an error because the
block does not accept floating-point data types for the first element in the bus.

If you encounter this issue, use the Fix button to redefine the original bus object and
protect it from being overridden. For example, suppose you define the first element of the
bus object to be an int32.

myBus.Elements(1).DataType

int32

Clicking the Fix button redefines the first bus element:
myBus.Elements(1).DataType = 'fixdt(''int32'',''DataTypeOverride'',''Off'')'

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Dependencies

This parameter displays only when you set Output selection on the Main tab to Index
and fraction as bus.

Programmatic Use
Block Parameter: OutputBusDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'Bus: <object name>' | '<data type
expression>'
Default: 'Inherit: auto'

 Prelookup

1-1295

Breakpoint Minimum — Minimum value breakpoint data can have
[] (default) | scalar

Specify the minimum value that the breakpoint data can have. The default value is []
(unspecified).

Dependencies

To enable this parameter, set the breakpoints data Source to Dialog on the Main tab.

Programmatic Use
Block Parameter: BreakpointMin
Type: character vector
Value: scalar
Default: '[]'

Breakpoint Maximum — Maximum value breakpoint data can have
[] (default) | scalar

Specify the maximum value that the breakpoint data can have. The default value is []
(unspecified).

Dependencies

To enable this parameter, set the breakpoints data Source to Dialog on the Main tab.

Programmatic Use
Block Parameter: BreakpointMax
Type: character vector
Value: scalar
Default: '[]'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector

1 Blocks — Alphabetical List

1-1296

Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Block Characteristics
Data Types double | single | base integer | fixed point | enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Definitions

Enumerated Values in Prelookup
Simulate a Prelookup block with enumerated values.

Suppose that you have a Prelookup block with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration

 Prelookup

1-1297

 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

Prelookup block has these settings:

• Breakpoints data value is enumeration('Gears').
• Output selection is Index only.
• For an unordered search, set Index search method to Linear search and clear the

Begin index search using previous index result check box.
• Extrapolation method is Clip.

Interpolation using Prelookup block has these settings:

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Interpolation method is Flat.
• Number of sub-table selection dimensions is 1.

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and
SPORTS.

1 Blocks — Alphabetical List

1-1298

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL Code Generation, see Prelookup.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Simulink PLC Coder has limited support for lookup table blocks. The coder does not
support:

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode
• Cubic spline extrapolation method

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Interpolation Using Prelookup | Simulink.Breakpoint | n-D Lookup Table

Topics
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”

 Prelookup

1-1299

“Guidelines for Choosing a Lookup Table”

Introduced in R2006b

1 Blocks — Alphabetical List

1-1300

Probe
Output signal attributes, including width, dimensionality, sample time, and complex signal
flag

Library
Signal Attributes

Description
The Probe block outputs selected information about the signal on its input. The block can
output the input signal's width, dimensionality, sample time, and a flag indicating whether
the input is a complex-valued signal. The block has one input port. The number of output
ports depends on the information that you select for probing, that is, signal
dimensionality, sample time, and/or complex signal flag. Each probed value is output as a
separate signal on a separate output port. The block accepts real or complex-valued
signals of any built-in data type. It outputs signals of type double. During simulation, the
block icon displays the probed data.

Data Type Support
The Probe block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

 Probe

1-1301

• Boolean
• Enumerated (input only)
• Bus object

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

You can use an array of buses as an input signal to a Probe block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters
Probe width

Select to output the width, or number of elements, of the probed signal.
Probe sample time

Select to output the sample time of the probed signal. The output is a two-element
vector that specifies the period and offset of the sample time, respectively. See
“Specify Sample Time” for more information.

Detect complex signal
Select to output 1 if the probed signal is complex; otherwise, 0.

Probe signal dimensions
Select to output the dimensions of the probed signal.

Note The Probe block ignores the Data type override setting of the Fixed-Point Tool.

Data type for width
Select the output data type for the width information.

Data type for sample time
Select the output data type for the sample time information.

Data type for signal complexity
Select the output data type for the complexity information.

Data type for signal dimensions
Select the output data type for the dimensions information.

1 Blocks — Alphabetical List

1-1302

Note For Data type for width, Data type for sample time, and Data type for signal
dimensions, the Boolean data type is not supported. Furthermore, if you select Same
as input in any of these drop-down lists, and the block’s input signal data type is
Boolean, when you simulate your model, you see an error.

Examples
The sldemo_fuelsys model shows how you can use the Probe block.

In the fuel_rate_control/validate_sample_time subsystem, the Probe block
determines the sample time of the input signal to verify that it matches the assumed value
of the design:

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Probe

1-1303

matlab:sldemo_fuelsys

Product
Multiply and divide scalars and nonscalars or multiply and invert matrices
Library: Simulink / Commonly Used Blocks

Simulink / Math Operations

Description
The Product block outputs the result of multiplying two inputs: two scalars, a scalar and a
nonscalar, or two nonscalars that have the same dimensions. The default parameter
values that specify this behavior are:

• Multiplication: Element-wise(.*)
• Number of inputs: 2

This table shows the output of the Product block for example inputs using default block
parameter values.

Inputs and Behavior Example
Scalar X Scalar

Output the product of the two
inputs.

1 Blocks — Alphabetical List

1-1304

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_product_block_input_dims')))

Inputs and Behavior Example
Scalar X Nonscalar

Output a nonscalar having the
same dimensions as the input
nonscalar. Each element of the
output nonscalar is the
product of the input scalar and
the corresponding element of
the input nonscalar.
Nonscalar X Nonscalar

Output a nonscalar having the
same dimensions as the inputs.
Each element of the output is
the product of corresponding
elements of the inputs.

The Divide and Product of Elements blocks are variants of the Product block.

• For information on the Divide block, see Divide.
• For information on the Product of Elements block, see Product of Elements.

The Product block (or the Divide block or Product of Elements block, if appropriately
configured) can:

• Numerically multiply and divide any number of scalar, vector, or matrix inputs
• Perform matrix multiplication and division on any number of matrix inputs

The Product block performs scalar or matrix multiplication, depending on the value of the
Multiplication parameter. The block accepts one or more inputs, depending on the
Number of inputs parameter. The Number of inputs parameter also specifies the
operation to perform on each input.

The Product block can input any combination of scalars, vectors, and matrices for which
the operation to perform has a mathematically defined result. The block performs the
specified operations on the inputs, then outputs the result.

The Product block has two modes: Element-wise mode, which processes nonscalar inputs
element by element, and Matrix mode, which processes nonscalar inputs as matrices.

 Product

1-1305

Element-Wise Mode
When you set Multiplication to Element-wise(.*), the Product block is in Element-
wise mode, in which it operates on the individual numeric elements of any nonscalar
inputs. The MATLAB equivalent is the .* operator. In element-wise mode, the Product
block can perform a variety of multiplication, division, and arithmetic inversion
operations.

The value of the Number of inputs parameter controls both how many inputs exist and
whether each is multiplied or divided to form the output. When the Product block is in
element-wise mode and has only one input, it is functionally equivalent to a Product of
Elements block. When the block has multiple inputs, any nonscalar inputs must have
identical dimensions, and the block outputs a nonscalar with those dimensions. To
calculate the output, the block first expands any scalar input to a nonscalar that has the
same dimensions as the nonscalar inputs.

This table shows the output of the Product block for example inputs, using the indicated
values for the Number of inputs parameter.

Parameter Values Examples
Number of inputs: 2

Number of inputs: */

Number of inputs: /**/

1 Blocks — Alphabetical List

1-1306

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_product_block_number_of_inputs')))

Parameter Values Examples
Number of inputs:**

Number of inputs: */*

Matrix Mode
When the value of the Multiplication parameter is Matrix(*), the Product block is in
Matrix mode, in which it processes nonscalar inputs as matrices. The MATLAB equivalent
is the * operator. In Matrix mode, the Product block can invert a single square matrix, or
multiply and divide any number of matrices that have dimensions for which the result is
mathematically defined.

The value of the Number of inputs parameter controls both how many inputs exist and
whether each input matrix is multiplied or divided to form the output. The syntax of
Number of inputs is the same as in element-wise mode. The difference between the
modes is in the type of multiplication and division that occur.

Expected Differences Between Simulation and Code
Generation
For element-wise operations on complex floating-point inputs, simulation and code
generation results might differ in near-overflow cases. Although complex numbers is
selected and non-finite numbers is not selected on the Code Generation > Interface
pane of the Configuration Parameters dialog box, the code generator does not emit
special case code for intermediate overflows. This method improves the efficiency of
embedded operations for the general case that does not include extreme values. If the
inputs could include extreme values, you must manage these cases explicitly.

The generated code might not produce the exact same pattern of NaN and inf values as
simulation when these values are mathematically meaningless. For example, if the

 Product

1-1307

simulation output contains a NaN, output from the generated code also contains a NaN,
but not necessarily in the same place.

Ports

Input
Port_1 — First input to multiply or divide
scalar | vector | matrix | N-D array

First input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Port_N — Nth input to multiply or divide
scalar | vector | matrix | N-D array

Nth input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

X — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more X ports, specify one or more * characters for the Number of
inputs parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

÷ — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

1 Blocks — Alphabetical List

1-1308

Dependencies

To enable one or more ÷ ports, specify one or more / characters for the Number of
inputs parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output computed by multiplying, dividing, or inverting inputs
scalar | vector | matrix | N-D array

Output computed by multiplying, dividing, or inverting inputs.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters

Main
Number of inputs — Control number of inputs and type of operation
2 (default) | scalar | * or / for each input port

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

When you specify:

• 1 or * or /

The block has one input port. In element-wise mode, the block processes the input as
described for the Product of Elements block. In matrix mode, if the parameter value is
1 or *, the block outputs the input value. If the value is /, the input must be a square
matrix (including a scalar as a degenerate case) and the block outputs the matrix
inverse. See “Element-Wise Mode” on page 1-1306 and “Matrix Mode” on page 1-1307
for more information.

 Product

1-1309

• Integer value > 1

The block has the number of inputs given by the integer value. The inputs are
multiplied together in element-wise mode or matrix mode, as specified by the
Multiplication parameter. See “Element-Wise Mode” on page 1-1306 and “Matrix
Mode” on page 1-1307 for more information.

• Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each
input that corresponds to a * character is multiplied into the output. Each input that
corresponds to a / character is divided into the output. The operations occur in
element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1306 and “Matrix Mode” on page 1-1307 for more
information.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '2' | '**' | '*/' | '*/*' | ...
Default: '2'

Multiplication — Element-wise (.*) or Matrix (*) multiplication
Element-wise(.*) (default) | Matrix(*)

Specify whether the block performs Element-wise(.*) or Matrix(*) multiplication.

Programmatic Use
Block Parameter: Multiplication
Type: character vector
Values: 'Element-wise(.*)' | 'Matrix(*)'
Default: 'Element-wise(.*)'

Multiply over — All dimensions or specified dimension
All dimensions (default) | Specified dimension

Specify the dimension to multiply over as All dimensions, or Specified dimension.
When you select Specified dimension, you can specify the Dimension as 1 or 2.

Dependencies

To enable this parameter, set Number of inputs to * and Multiplication to Element-
wise (.*).

1 Blocks — Alphabetical List

1-1310

Programmatic Use
Block Parameter: CollapseMode
Type: character vector
Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension to multiply over
1 (default) | 2 | ... | N

Specify the dimension to multiply over as an integer less than or equal to the number of
dimensions of the input signal.

Dependencies

To enable this parameter, set:

• Number of inputs to *
• Multiplication to Element-wise (.*)
• Multiply over to Specified dimension

Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Values: '1' | '2' | ...
Default: '1'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

 Product

1-1311

Signal Attributes
Require all inputs to have the same data type — Require that all inputs
have the same data type
off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter,
then an error occurs during simulation if the input signal types are different.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar

1 Blocks — Alphabetical List

1-1312

Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | int8 | uint8 |
int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType. For more information,
see “Control Signal Data Types”.

When you select an inherited option, the block behaves as follows:

 Product

1-1313

• Inherit: Inherit via internal rule — Simulink chooses a data type to
balance numerical accuracy, performance, and generated code size, while taking into
account the properties of the embedded target hardware. If you change the embedded
target settings, the data type selected by the internal rule might change. For example,
if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is
specified as the targeted hardware type, the output data type is sfix24. If
Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If
none of the word lengths provided by the target microprocessor can accommodate the
output range, Simulink software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first
input' | 'Inherit: Inherit via back propagation' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' | 'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

1 Blocks — Alphabetical List

1-1314

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

 Product

1-1315

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks — Alphabetical List

1-1316

Action Rationale Impact on Overflows Example
Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 Product

1-1317

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Product.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Divide | Dot Product | Product of Elements

Introduced before R2006a

1 Blocks — Alphabetical List

1-1318

Product of Elements
Copy or invert one scalar input, or collapse one nonscalar input
Library: Simulink / Math Operations

Description
The Product of Elements block inputs one scalar, vector, or matrix. You can use the block
to:

• Copy a scalar input unchanged
• Invert a scalar input (divide 1 by it)
• Collapse a vector or matrix to a scalar by multiplying together all elements or taking

successive inverses of the elements
• Collapse a matrix to a vector using one of these options:

• Multiply together the elements of each row or column
• Take successive inverses of the elements of each row or column

The Product of Elements block is functionally a Product block that has two preset
parameter values:

• Multiplication: Element-wise(.*)
• Number of inputs: *

Setting nondefault values for either of those parameters can change a Product of
Elements block to be functionally equivalent to a Product block or a Divide block.

 Product of Elements

1-1319

Ports

Input
Port_1 — First input to multiply or divide
scalar | vector | matrix | N-D array

First input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Port_N — Nth input to multiply or divide
scalar | vector | matrix | N-D array

Nth input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

X — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more X ports, specify one or more * characters for the Number of
inputs parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

÷ — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more ÷ ports, specify one or more / characters for the Number of
inputs parameter.

1 Blocks — Alphabetical List

1-1320

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output computed by multiplying, dividing, or inverting inputs
scalar | vector | matrix | N-D array

Output computed by multiplying, dividing, or inverting inputs.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters

Main
Number of inputs — Control number of inputs and type of operation
* (default) | positive integer scalar | * or / for each input port

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

When you specify:

• 1 or * or /

The block has one input port. In element-wise mode, the block processes the input as
described for the Product of Elements block. In matrix mode, if the parameter value is
1 or *, the block outputs the input value. If the value is /, the input must be a square
matrix (including a scalar as a degenerate case) and the block outputs the matrix
inverse. See “Element-Wise Mode” on page 1-1306 and “Matrix Mode” on page 1-1307
for more information.

• Integer value > 1

The block has the number of inputs given by the integer value. The inputs are
multiplied together in element-wise mode or matrix mode, as specified by the

 Product of Elements

1-1321

Multiplication parameter. See “Element-Wise Mode” on page 1-1306 and “Matrix
Mode” on page 1-1307 for more information.

• Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each
input that corresponds to a * character is multiplied into the output. Each input that
corresponds to a / character is divided into the output. The operations occur in
element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1306 and “Matrix Mode” on page 1-1307 for more
information.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '2' | '*' | '**' | '*/' | '*/*' | ...
Default: '*'

Multiplication — Element-wise (.*) or Matrix (*) multiplication
Element-wise(.*) (default) | Matrix(*)

Specify whether the block performs Element-wise(.*) or Matrix(*) multiplication.

Programmatic Use
Block Parameter: Multiplication
Type: character vector
Values: 'Element-wise(.*)' | 'Matrix(*)'
Default: 'Element-wise(.*)'

Multiply over — All dimensions or specified dimension
All dimensions (default) | Specified dimension

Specify the dimension to multiply over as All dimensions, or Specified dimension.
When you select Specified dimension, you can specify the Dimension as 1 or 2.

Dependencies

To enable this parameter, set Number of inputs to * and Multiplication to Element-
wise (.*).

Programmatic Use
Block Parameter: CollapseMode
Type: character vector

1 Blocks — Alphabetical List

1-1322

Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension to multiply over
1 (default) | 2 | ... | N

Specify the dimension to multiply over as an integer less than or equal to the number of
dimensions of the input signal.

Dependencies

To enable this parameter, set:

• Number of inputs to *
• Multiplication to Element-wise (.*)
• Multiply over to Specified dimension

Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Values: '1' | '2' | ...
Default: '1'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

 Product of Elements

1-1323

Signal Attributes
Require all inputs to have the same data type — Require that all inputs
have the same data type
off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter,
then an error occurs during simulation if the input signal types are different.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar

1 Blocks — Alphabetical List

1-1324

Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | int8 | uint8 |
int16 | uint16 | int32 | uint32 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType. For more information,
see “Control Signal Data Types”.

When you select an inherited option, the block behaves as follows:

 Product of Elements

1-1325

• Inherit: Inherit via internal rule — Simulink chooses a data type to
balance numerical accuracy, performance, and generated code size, while taking into
account the properties of the embedded target hardware. If you change the embedded
target settings, the data type selected by the internal rule might change. For example,
if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is
specified as the targeted hardware type, the output data type is sfix24. If
Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If
none of the word lengths provided by the target microprocessor can accommodate the
output range, Simulink software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first
input' | 'Inherit: Inherit via back propagation' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' | 'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

1 Blocks — Alphabetical List

1-1326

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

 Product of Elements

1-1327

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks — Alphabetical List

1-1328

Action Rationale Impact on Overflows Example
Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 Product of Elements

1-1329

Algorithms
The Product of Elements block uses these algorithms to perform element-wise operations
on inputs of floating-point, built-in integer, and fixed-point types.

Input Element-Wise Operation Algorithm
Real scalar, u Multiplication y = u

Division y = 1/u
Real vector or matrix
with elements u1, u2,
u3, ..., uN

Multiplication y = u1*u2*u3*...*uN
Division y = ((((1/u1)/u2)/u3).../uN)

Complex scalar, u Multiplication y = u
Division y = 1/u

Complex vector or
matrix with elements
u1, u2, u3, ..., uN

Multiplication y = u1*u2*u3*...*uN
Division y = ((((1/u1)/u2)/u3).../uN)

If the specified dimension for element-wise multiplication or division is a row or column of
a matrix, the algorithm applies to that row or column. Consider this model.

The top Product of Elements block collapses the matrix input to a scalar by taking
successive inverses of the four elements:

• y = ((((1/2+i)/3)/4-i)/5)

The bottom Product of Elements block collapses the matrix input to a vector by taking
successive inverses along the second dimension:

1 Blocks — Alphabetical List

1-1330

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_product_of_elements_block_complex_division.slx')))

• y(1) = ((1/2+i)/3)
• y(2) = ((1/4-i)/5)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Product of Elements.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Divide | Dot Product | Product

Introduced before R2006a

 Product of Elements

1-1331

Pulse Generator
Generate square wave pulses at regular intervals
Library: Simulink / Sources

Description
The Pulse Generator block generates square wave pulses at regular intervals. The block
waveform parameters, Amplitude, Pulse Width, Period, and Phase delay, determine
the shape of the output waveform. The following diagram shows how each parameter
affects the waveform.

Width

Phase

A
m
p
li
tu
d
e

Period

The Pulse Generator block can emit scalar, vector, or matrix signals of any real data type.
To cause the block to emit a scalar signal, use scalars to specify the waveform
parameters. To cause the block to emit a vector or matrix signal, use vectors or matrices,
respectively, to specify the waveform parameters. Each element of the waveform
parameters affects the corresponding element of the output signal. For example, the first
element of a vector amplitude parameter determines the amplitude of the first element of
a vector output pulse. All the waveform parameters must have the same dimensions after

1 Blocks — Alphabetical List

1-1332

scalar expansion. The data type of the output is the same as the data type of the
Amplitude parameter.

This block output can be generated in time-based or sample-based modes, determined by
the Pulse type parameter.

Time-Based Mode
In time-based mode, Simulink computes the block output only at times when the output
actually changes. This approach results in fewer computations for the block output over
the simulation time period. Activate this mode by setting the Pulse type parameter to
Time based.

The block does not support a time-based configuration that results in a constant output
signal. Simulink returns an error if the parameters Pulse Width and Period satisfy
either of these conditions:

Period
PulseWidth

Period
PulseWidth

Period

*

*

100
0

100

=

=

Depending on the pulse waveform characteristics, the intervals between changes in the
block output can vary. For this reason, a time-based Pulse Generator block has a variable
sample time. The sample time color of such blocks is brown (see “View Sample Time
Information” for more information).

Simulink cannot use a fixed-step solver to compute the output of a time-based pulse
generator. If you specify a fixed-step solver for models that contain time-based pulse
generators, Simulink computes a fixed sample time for the time-based pulse generators.
Then the time-based pulse generators simulate as sample based.

If you use a fixed-step solver and the Pulse type is Time based, choose the step size
such that the period, phase delay, and pulse width (in seconds) are integer multiples of
the solver step size. For example, suppose that the period is 4 seconds, the pulse width is
75% (that is, 3 s), and the phase delay is 1 s. In this case, the computed sample time is 1
s. Therefore, choose a fixed-step size of 1 or a number that divides 1 exactly (for example,
0.25). To ensure this setting, select auto on the Solver pane of the Configuration
Parameters dialog box.

 Pulse Generator

1-1333

Sample-Based Mode
In sample-based mode, the block computes its outputs at fixed intervals that you specify.
Activate this mode by setting the Pulse type parameter to Sample based.

An important difference between the time-based and sample-based modes is that in time-
based mode, the block output is based on simulation time, and in sample-based mode, the
block output depends only on the simulation start, regardless of elapsed simulation time.

This block supports reset semantics in sample-based mode. For example, if a Pulse
Generator block is in a resettable subsystem that hits a reset trigger, the block output
resets to its initial condition.

Ports

Output
Port_1 — Output signal
scalar | vector | matrix

Generated square wave pulse signal specified by the parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Pulse type — Type of pulse
Time based (default) | Sample based

Specify the type of square wave that this block generates, either time- or sample-based.
Some parameters in the dialog box appear depending on whether you select time-based
or sample-based.

Programmatic Use
Block Parameter: PulseType
Type: character vector
Values: 'Time based' | 'Sample based'

1 Blocks — Alphabetical List

1-1334

Default: 'Time based'

Time (t) — Source of time variable
Use simulation time (default) | Use external signal

Specifies whether to use simulation time or an external signal as the source of values for
the output pulse's time variable. If you specify an external source, the block displays an
input port for connecting the source. The output pulse differs as follows:

• Use simulation time: The block generates an output pulse where the time
variable equals the simulation time.

• Use external signal: The block generates an output pulse where the time
variable equals the value from the input port, which can differ from the simulation
time.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use simulation time'

Amplitude — Signal amplitude
1 (default) | scalar

Specify the amplitude of the signal.

Programmatic Use
Block Parameter: Amplitude
Type: character vector
Value: scalar
Default: '1'

Period (secs) — Pulse period
10 (default) | scalar

Pulse period specified in seconds if the pulse type is time-based. If the pulse type is
sample-based, then the period is specified as the number of sample times.

Programmatic Use
Block Parameter: Period
Type: character vector
Value: scalar

 Pulse Generator

1-1335

Default: '10'

Pulse width — Duty cycle
5 (default) | scalar in the range [0,100]

Duty cycle specified as the percentage of the pulse period that the signal is on if time-
based or as number of sample times if sample-based.

Programmatic Use
Block Parameter: PulseWidth
Type: character vector
Value: scalar
Default: '5'

Phase delay (secs) — Delay before pulse
0 (default) | scalar

Delay before the pulse is generated, specified in seconds, if the pulse type is time-based
or as number of sample times if the pulse type is sample-based.

Programmatic Use
Block Parameter: PhaseDelay
Type: character vector
Value: scalar
Default: '0'

Sample time — Length of sample time
0 (default) | scalar

Length of the sample time for this block in seconds. This parameter appears only if the
block's pulse type is sample-based. See “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: scalar
Default: '0'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

1 Blocks — Alphabetical List

1-1336

• When you select this check box, the block outputs a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the
Constant value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot be used inside a triggered subsystem hierarchy.

These blocks do not reference absolute time when configured for sample-based operation.
In time-based operation, they depend on absolute time.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Pulse Generator

1-1337

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Signal Generator | Waveform Generator

Introduced before R2006a

1 Blocks — Alphabetical List

1-1338

Push Button
Set value of parameter when button is pressed
Library: Simulink / Dashboard

Description
When you press the Push Button block during a simulation, the value of the connected
block parameter changes to a specified value. Use the Push Button block with other
Dashboard blocks to create an interactive dashboard to control your model.

Double-clicking the Push Button block does not open its dialog box during simulation and
when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

 Push Button

1-1339

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

1 Blocks — Alphabetical List

1-1340

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

Button Text — Text displayed on button
'Button' (default) | character vector

The text displayed on the Push Button block in your model.

On Value — Value assigned to parameter when button is pressed
1 (default) | scalar

The value assigned to the connected block parameter when the button is pressed.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Rocker Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

 Push Button

1-1341

Quantizer
Discrete input at given interval
Library: Simulink / Discontinuities

Description
The Quantizer block passes the input signal through a stair-step function. Many
neighboring points on the input axis are mapped to one point on the output axis. The
effect quantizes a smooth signal into a stair-step output. The block uses a round-to-
nearest method to produce an output that is symmetric about zero.

y = q * round(u/q)

where y is the output, u the input, and q the Quantization interval parameter.

Ports

Input
Input 1 — Input signal to quantize
scalar | vector

The input signal to the quantization algorithm.
Data Types: single | double

Output
Output 1 — Quantized output signal
real or complex scalar | real or complex vector

Output signal as quantized discrete values.

y = q * round(u/q)

1 Blocks — Alphabetical List

1-1342

where y is the output, u the input, and q the Quantization interval parameter.
Data Types: single | double

Parameters
Quantization interval — Interval around which the block quantizes the output
0.5 (default) | scalar | vector

Specify the quantization interval used in the algorithm. Permissible output values for the
Quantizer block are n*q, where n is an integer and q the Quantization interval.

Programmatic Use
Block Parameter: QuantizationInterval
Type: character vector
Value: Any real or complex value
Default: '0.5'

Treat as gain when linearizing — Specify the gain value
On (default) | boolean

The linearization commands in Simulink software treat this block as a gain in state space.
Select this check box to cause the commands to treat the gain as 1. Clear the box to have
the commands treat the gain as 0.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

 Quantizer

1-1343

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Rate Limiter | Relay

Introduced before R2006a

1 Blocks — Alphabetical List

1-1344

Quarter Gauge
Display input value on quadrant scale
Library: Simulink / Dashboard

Description
The Quarter Gauge block displays the connected signal on a quadrant scale during
simulation. You can use the Quarter Gauge block with other Dashboard blocks to build an
interactive dashboard of controls and indicators for your model. The Quarter Gauge block
provides an indication of the instantaneous value of the connected signal throughout
simulation. You can modify the range of the Quarter Gauge block to fit your data. You can
also customize the appearance of the Quarter Gauge block to provide more information
about your signal. For example, you can color-code in-specification and out-of-
specification ranges.

Connection
Dashboard blocks do not use ports to connect to signals. To connect a signal to a
Dashboard block, use the Connection table in the block's parameters.

1 Double-click the block.
2 Populate the connection table by selecting signals of interest in your model.
3 Select the check box next to the signal you want to display.
4 Click Apply.

 Quarter Gauge

1-1345

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• If you turn off logging for a signal connected to a Dashboard block, the model stops
sending data from that signal to the block. To view the signal again, reconnect the
signal.

Parameters
Connection — Select a signal to connect and display
signal connection options

Signal connection options. Populate the Connection table by selecting signals of interest
in your model. Mark the check box next to the signal you want to display. Click Apply to
connect the signal.

Minimum — Minimum tick mark value
0 (default) | scalar

A finite, real, double, scalar value specifying the minimum tick mark value for the scale.
The minimum must be less than the value entered for the maximum.

Maximum — Maximum tick mark value
100 (default) | scalar

A finite, real, double, scalar value specifying the maximum tick mark value for the scale.
The maximum must be greater than the value entered for the minimum.

Tick Interval — Interval between major tick marks
auto (default) | scalar

1 Blocks — Alphabetical List

1-1346

A finite, real, positive, integer, scalar value specifying the interval of major tick marks on
the scale. When set to auto, the block automatically adjusts the tick interval based on the
minimum and maximum values.

Scale Colors — Color indications on Gauge scale
colors for scale ranges

Color specifications for ranges on the scale. Press the + button to add a color. For each
color added, specify the minimum and maximum values of the range where you want to
display that color.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Gauge | Half Gauge | Linear Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

 Quarter Gauge

1-1347

Radio Button
Select parameter value
Library: Simulink / Dashboard

Description
The Radio Button block lets you change the value of the connected parameter during
simulation. You can specify a list of values and labels and then select the value for the
parameter from that list. Use the Radio Button block with other Dashboard blocks to build
an interactive dashboard of controls and indicators for your model.

Double-clicking the Radio Button block does not open its dialog box during simulation and
when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.

1 Blocks — Alphabetical List

1-1348

4 Click Apply.

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

 Radio Button

1-1349

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

States

Value — Values for selected option
0/1/2 (default) | scalar

Values assigned to the connected parameter when you select the option with the
corresponding Label. Click the + button to add options.

Label — Option labels
'Label1'/'Label2'/'Label3' (default) | character vector

Label for each option. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the bottom, or you can enter a text
label.
Example: Gain = 1

Group Name — Radio Button group name
RadioButtonGroup (default) | character array

Name for the group of values displayed on the Radio Button block. Unlike the Block
Name and Label, the Group Name always shows on the Radio Button block.
Example: Input Amplitude

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

1 Blocks — Alphabetical List

1-1350

See Also
Check Box | Combo Box | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2017b

 Radio Button

1-1351

Ramp
Generate constantly increasing or decreasing signal
Library: Simulink / Sources

Description
The Ramp block generates a signal that starts at a specified time and value and changes
by a specified rate. The block's Slope, Start time, and Initial output parameters
determine the characteristics of the output signal. All must have the same dimensions
after scalar expansion.

Ports

Output
Port_1 — Output signal
scalar | vector | matrix

Generated output ramp signal characterized by the Slope, Start time, and Initial
output parameters.
Data Types: double

Parameters
Slope — Slope of signal
1 (default) | scalar | vector | matrix

Specify the rate of change of the generated signal.

1 Blocks — Alphabetical List

1-1352

Programmatic Use
Block Parameter: slope
Type: character vector
Values: scalar
Default: '1'

Start time — Time output begins
0 (default) | scalar

Specify the time at which the block begins generating the signal.

Programmatic Use
Block Parameter: start
Type: character vector
Values: scalar
Default: '0'

Initial output — Initial value of output signal
0 (default) | scalar | vector | matrix

Specify the initial value of the output signal.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector
Values: scalar
Default: '0'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the
Constant value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D

 Ramp

1-1353

Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Pulse Generator | Repeating Sequence

Introduced before R2006a

1 Blocks — Alphabetical List

1-1354

Random Number
Generate normally distributed random numbers
Library: Simulink / Sources

Description
The Random Number block generates normally distributed random numbers. To generate
uniformly distributed random numbers, use the Uniform Random Number block.

You can generate a repeatable sequence using any Random Number block with the same
nonnegative seed and parameters. The seed resets to the specified value each time a
simulation starts. By default, the block produces a sequence that has a mean of 0 and a
variance of 1. To generate a vector of random numbers with the same mean and variance,
specify the Seed parameter as a vector.

Avoid integrating a random signal, because solvers must integrate relatively smooth
signals. Instead, use the Band-Limited White Noise block.

The numeric parameters of this block must have the same dimensions after scalar
expansion. If you select the Interpret vector parameters as 1-D check box, and the
numeric parameters are row or column vectors after scalar expansion, the block outputs a
1-D signal. If you clear the Interpret vector parameters as 1-D check box, the block
outputs a signal of the same dimensionality as the parameters.

Ports

Output
Port_1 — Output signal
scalar | vector | matrix

 Random Number

1-1355

Output signal that is the generated random numbers falling within a normal Gaussian
distribution. The output is repeatable for a given seed.
Data Types: double

Parameters
Mean — Mean of random numbers
0 (default) | scalar

Specify the mean of the random numbers generated.

Programmatic Use
Block Parameter: Mean
Type: character vector
Values: scalar
Default: '0'

Variance — Variance of random numbers
1 (default) | scalar

Specify the variance of the random numbers.

Programmatic Use
Block Parameter: Variance
Type: character vector
Values: scalar
Default: '1'

Seed — Starting seed
0 (default) | positive integer

Specify the starting seed for the random number generator.

The output of number generated is repeatable for a given seed.

Programmatic Use
Block Parameter: Seed
Type: character vector
Values: scalar
Default: '0'

1 Blocks — Alphabetical List

1-1356

Sample time — Time between intervals
0.1 (default) | integer

Specify the time interval between samples. The default is 0.1, which matches the default
sample time of the Band-Limited White Noise block. See “Specify Sample Time” in the
Simulink documentation for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '0.1'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the
Constant value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Multidimensional
Signals

Yes

Variable-Size
Signals

No

 Random Number

1-1357

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Band-Limited White Noise | Uniform Random Number

Introduced before R2006a

1 Blocks — Alphabetical List

1-1358

Rate Limiter
Limit rate of change of signal
Library: Simulink / Discontinuities

Description
The Rate Limiter block limits the first derivative of the signal passing through it. The
output changes no faster than the specified limit. The derivative is calculated using this
equation:

rate
u i y i

t i t i
=

- -

- -

() ()

() ()

1

1

where u(i) andt(i) are the current block input and time, and y(i-1) and t(i-1)) are the
output and time at the previous step. The output is determined by comparing rate to the
Rising slew rate and Falling slew rate parameters:

• If rate is greater than the Rising slew rate parameter (R), the output is calculated as

y i t R y i() ().= D ◊ + -1

• If rate is less than the Falling slew rate parameter (F), the output is calculated as

y i t F y i() ().= D ◊ + - 1

• If rate is between the bounds of R and F, the change in output is equal to the change
in input:

y i u i() ()=

When the block is running in continuous mode (for example, Sample time mode is
inherited and Sample time of the driving block is zero), the Initial condition is
ignored. The block output at t = 0 is equal to the initial input:

y u() ()0 0=

 Rate Limiter

1-1359

When the block is running in discrete mode (for example, Sample time mode is
inherited and Sample time of the driving block is nonzero), the Initial condition is
preserved:

y Ic()- =1

where Ic is the initial condition. The block output at t = 0 is calculated as if rate is
outside the bounds of R and F. For t = 0, rate is calculated as follows:

rate
u y

sampletime
=

- -() ()0 1

Limitations
• You cannot use a Rate Limiter block inside a Triggered Subsystem. Use the Rate

Limiter Dynamic block instead.

Ports
Input
Port_1 — Input signal
scalar

The input signal to the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | enumerated

Output
Port_1 — Output signal
scalar

Output signal from the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | enumerated

1 Blocks — Alphabetical List

1-1360

Parameters
Rising slew rate — Limit of derivative for increasing input
1 (default) | real number

Specify the limit of the rising rate of the input signal. This parameter is tunable for fixed-
point inputs.

Programmatic Use
Block Parameter: RisingSlewLimit
Type: character vector
Values: real number
Default: '1'

Falling slew rate — Limit of derivative for decreasing input
-1 (default) | real number

Specify the lower limit on the falling rate of the input signal. This parameter is tunable for
fixed-point inputs.

Programmatic Use
Block Parameter: FallingSlewLimit
Type: character vector
Values: real number
Default: '-1'

Sample time mode — Sample time mode
inherited (default) | continuous

Specify the sample time mode, continuous or inherited from the driving block.

Programmatic Use
Block Parameter: SampleTimeMode
Type: character vector
Values: 'inherited' | 'continuous' |
Default: 'inherited'

Initial condition — Initial output
0 (default) | scalar

Set the initial output of the simulation. Simulink does not allow you to set the initial
condition of this block to inf or NaN.

 Rate Limiter

1-1361

Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Values: scalar
Default: '0'

Treat as gain when linearizing — Specify the gain value
On (default) | Boolean

Select this check box to cause the commands to treat the gain as 1. The linearization
commands in Simulink software treat this block as a gain in state space. Clear the box to
have the commands treat the gain as 0.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot be used inside a triggered subsystem hierarchy.

1 Blocks — Alphabetical List

1-1362

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Rate Limiter Dynamic | Saturation

Introduced before R2006a

 Rate Limiter

1-1363

Rate Limiter Dynamic
Limit rate of change of signal
Library: Simulink / Discontinuities

Description
The Rate Limiter Dynamic block limits the rising and falling rates of the signal.

• The external signal up sets the upper limit on the rising rate of the signal.
• The external signal lo sets the lower limit on the falling rate of the signal.

Follow these guidelines when using the Rate Limiter Dynamic block:

• Ensure that the data types of up and lo are the same as the data type of the input
signal u.

When the lower limit uses a signed type and the input signal uses an unsigned type,
the output signal keeps increasing regardless of the input and the limits.

• Use a fixed-step solver to simulate models that contain this block.

Because the Rate Limiter Dynamic block does not support continuous sample time,
simulation with a variable-step solver causes an error.

Ports
Input
u — Input signal
scalar

Input signal to the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

1 Blocks — Alphabetical List

1-1364

lo — Limit of derivative for decreasing input
scalar

Dynamic value providing the limit of the falling rate of the input signal. Make the signal
data type of lothe same data type of the input signal u.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

up — Limit of derivative for increasing input
scalar

Dynamic value providing the limit of the rising rate of the input signal. Make the signal
data type of upthe same data type of the input signal u.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Y — Output signal
scalar

Output signal from the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | enumerated | bus

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

 Rate Limiter Dynamic

1-1365

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic
masked subsystem block in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat as atomic unit
option.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Rate Limiter

Introduced before R2006a

1 Blocks — Alphabetical List

1-1366

Rate Transition
Handle transfer of data between blocks operating at different rates

Library
Signal Attributes

Description

Transition Handling Options
The Rate Transition block transfers data from the output of a block operating at one rate
to the input of a block operating at a different rate. Use the block parameters to trade
data integrity and deterministic transfer for faster response or lower memory
requirements. To learn about data integrity and deterministic data transfer, see “Data
Transfer Problems” (Simulink Coder).

Transition Handling Options Block Parameter Settings
• Data integrity
• Deterministic data transfer
• Maximum latency

Select:

• Ensure data integrity during
data transfer

• Ensure deterministic data
transfer

 Rate Transition

1-1367

Transition Handling Options Block Parameter Settings
• Data integrity
• Nondeterministic data transfer
• Minimum latency
• Higher memory requirements

Select:

• Ensure data integrity during
data transfer

Clear:

• Ensure deterministic data
transfer

• Potential loss of data integrity
• Nondeterministic data transfer
• Minimum latency
• Lower memory requirements

Clear:

• Ensure data integrity during
data transfer

• Ensure deterministic data
transfer

Dependencies
The behavior of the Rate Transition block depends on:

• Sample times of the ports to which the block connects (see “Effects of Synchronous
Sample Times” on page 1-1369 and “Effects of Asynchronous Sample Times” on page
1-1371)

• Priorities of the tasks for the source and destination sample times (see “Sample time
properties” in the Simulink documentation)

• Whether the model specifies a fixed- or variable-step solver (see “Solvers” in the
Simulink documentation)

Block Labels
When you update your diagram, a label appears on the Rate Transition block to indicate
simulation behavior.

Label Block Behavior
ZOH Acts as a zero-order hold
1/z Acts as a unit delay

1 Blocks — Alphabetical List

1-1368

Label Block Behavior
Buf Copies input to output under semaphore control
Db_buf Copies input to output using double buffers
Copy Unprotected copy of input to output
NoOp Does nothing
Mixed Expands to multiple blocks with different behaviors

The block behavior label shows the method that ensures safe transfer of data between
tasks operating at different rates. You can use the sample-time colors feature (see “View
Sample Time Information” in the Simulink documentation) to display the relative rates
that the block bridges. Consider, for example, the following model:

Sample-time colors and the block behavior label show that the Rate Transition block at
the top of the diagram acts as a zero-order hold in a fast-to-slow transition and the bottom
Rate Transition block acts as a unit delay in a slow-to-fast transition.

For more information, see “Handle Rate Transitions” (Simulink Coder).

Effects of Synchronous Sample Times
The following table summarizes how each label appears if the sample times of the input
and output ports (inTs and outTs) are periodic, or synchronous.

 Rate Transition

1-1369

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_rate_transition_block_slow_and_fast_rates')))

Block Settings Block Label
Rate
Transition

Conditions for Rate Transition
Block

With Data
Integrity and
Determinism

With Only
Data
Integrity

Without Data
Integrity or
Determinism

inTs =
outTs

(Equal)

inTsOffset < outTsOffset None (error) Buf Copy or NoOp
(see note that
follows the
table)

inTsOffset = outTsOffset Copy or NoOp (see
note that follows
the table)

Copy or
NoOp (see
note that
follows the
table)

inTsOffset > outTsOffset None (error) Db_buf
inTs <
outTs

(Fast to
slow)

inTs = outTs / N

inTsOffset, outTsOffset = 0

ZOH Buf

inTs = outTs / N

inTsOffset ≤ outTsOffset

None (error)

inTs = outTs / N

inTsOffset > outTsOffset

None (error) Db_buf

inTs ≠ outTs / N None (error)
inTs >
outTs

(Slow to
fast)

inTs = outTs * N

inTsOffset, outTsOffset = 0

1/z Db_buf

inTs = outTs * N

inTsOffset ≤ outTsOffset

None (error)

inTs = outTs * N

inTsOffset > outTsOffset

None (error)

inTs ≠ outTs * N None (error)

1 Blocks — Alphabetical List

1-1370

Block Settings Block Label
Rate
Transition

Conditions for Rate Transition
Block

With Data
Integrity and
Determinism

With Only
Data
Integrity

Without Data
Integrity or
Determinism

KEY

• inTs, outTs: Sample times of input and output ports, respectively
• inTsOffset, outTsOffset: Sample time offsets of input and output ports, respectively
• N: Integer value > 1

When you select the Block reduction parameter on the Configuration Parameters dialog
box, Copy reduces to NoOp. No code generation occurs for a Rate Transition block with a
NoOp label. To prevent a block from being reduced when block reduction is on, add a test
point to the block output (see “Test Points” in the Simulink documentation).

Effects of Asynchronous Sample Times
The following table summarizes how each label appears if the sample time of the input or
output port (inTs or outTs) is not periodic, or asynchronous.

Block Settings Block Label
With Data
Integrity and
Determinism

With Only Data
Integrity

Without Data
Integrity or
Determinism

inTs = outTs Copy Copy Copy
inTs ≠ outTs None (error) Db_buf
KEY

• inTs, outTs: Sample times of input and output ports, respectively

Data Type Support
The Rate Transition block accepts most signals that Simulink supports, including fixed-
point and enumerated data types. For more information, see “Data Types Supported by
Simulink” in the Simulink documentation.

 Rate Transition

1-1371

However, do not use the Rate Transition block with frame-based signals. For rate
transitions with such signals, use one of these blocks from the DSP System Toolbox
instead:

• Buffer
• Unbuffer
• CIC Decimation
• CIC Interpolation
• FIR Decimation
• FIR Interpolation
• Downsample
• Upsample

Parameters
Ensure data integrity during data transfer

Selecting this check box results in generated code that ensures data integrity when
the block transfers data. If you select this check box and the transfer is
nondeterministic (see Ensure deterministic data transfer below), depending on
the priority of input rate and output rate, the generated code uses a proper algorithm
using single or multiple buffers to protect data integrity during data transfer.

Otherwise, the Rate Transition block is either reduced or generates code using a copy
operation to effect the data transfer. This unprotected mode consumes less memory.
But the copy operation is also interruptible, which can lead to loss of data integrity
during data transfers. Select this check box if you want the generated code to operate
with maximum responsiveness (i.e., nondeterministically) and data integrity. For more
information, see “Rate Transition Block Options” (Simulink Coder).

Ensure deterministic data transfer (maximum delay)
Selecting this check box results in generated code that transfers data at the sample
rate of the slower block, that is, deterministically. If you do not select this check box,
data transfers occur as soon as new data is available from the source block and the
receiving block is ready to receive the data. You avoid transfer delays, thus ensuring
that the system operates with maximum responsiveness. However, transfers can occur
unpredictably, which is undesirable in some applications. For more information, see
“Rate Transition Block Options” (Simulink Coder).

1 Blocks — Alphabetical List

1-1372

Initial conditions
This parameter applies only to slow-to-fast transitions. It specifies the initial output of
the Rate Transition block at the beginning of a transition when there is no output
from the slow block connected to the input of the Rate Transition block. Simulink
does not allow the initial output of this block to be Inf or NaN.

Output port sample time options
Specifies a mode for setting the output port sample time. The options are:

• Specify — Allows you to use the Output port sample time parameter to specify
the output rate to which the Rate Transition block converts its input rate.

• Inherit — Specifies that the Rate Transition block inherits an output rate from
the block to which the output port is connected.

• Multiple of input port sample time — Allows you to use the Sample
time multiple (>0) parameter to specify the Rate Transition block output rate as
a multiple of its input rate.

If you specify Inherit and all blocks connected to the output port also inherit sample
time, the fastest sample time in the model applies.

Output port sample time
This parameter is visible when you set Output port sample time options to
Specify. Enter a value that specifies the output rate to which the block converts its
input rate. The default value (-1) specifies that the Rate Transition block inherits the
output rate from the block to which the output port is connected. See “Specify Sample
Time” in the Simulink documentation for information on how to specify the output
rate.

Sample time multiple (>0)
This parameter is visible when you set Output port sample time options to
Multiple of input port sample time. Enter a positive value that specifies the
output rate as a multiple of the input port sample time. The default value (1) specifies
that the output rate is the same as the input rate. A value of 0.5 specifies that the
output rate is half of the input rate, while a value of 2 specifies that the output rate is
twice the input rate.

Bus Support
The Rate Transition block is a bus-capable block. The input can be a virtual or nonvirtual
bus signal, with the restriction that Initial conditions must be zero, a nonzero scalar, or

 Rate Transition

1-1373

a finite numeric structure. For information about specifying an initial condition structure,
see “Specify Initial Conditions for Bus Signals”.

All signals in a nonvirtual bus input to a Rate Transition block must have the same sample
time, even if the elements of the associated bus object specify inherited sample times. You
can use a Rate Transition block to change the sample time of an individual signal, or of all
signals in a bus. See “Specify Bus Signal Sample Times” and “Bus-Capable Blocks” in the
Simulink documentation for more information.

You can use an array of buses as an input signal to a Rate Transition block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time This block supports discrete-to-discrete transitions
Direct Feedthrough No, for slow-to-fast transitions for which you select

the Ensure data integrity during data transfer
check box. Yes, otherwise.

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1374

Real-Imag to Complex
Convert real and/or imaginary inputs to complex signal
Library: Simulink / Math Operations

Description
The Real-Imag to Complex block converts real and/or imaginary inputs to a complex-
valued output signal.

The inputs can both be arrays (vectors or matrices) of equal dimensions, or one input can
be an array and the other a scalar. If the block has an array input, the output is a complex
array of the same dimensions. The elements of the real input map to the real parts of the
corresponding complex output elements. The imaginary input similarly maps to the
imaginary parts of the complex output signals. If one input is a scalar, it maps to the
corresponding component (real or imaginary) of all the complex output signals.

Ports

Input
Re — Real part of complex output
scalar | vector | matrix

Real value to be converted to complex-valued output signal, specified as a scalar, vector,
or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | bus

Im — Imaginary part of complex output
scalar | vector | matrix

 Real-Imag to Complex

1-1375

Imaginary value to be converted to complex-valued output signal, specified as a scalar,
vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | bus

Port_1 — Real or imaginary part of complex output
scalar | vector | matrix

Real or imaginary value to convert to complex output signal, specified as a finite scalar,
vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | bus

Output
Port_1 — Complex signal
scalar | vector | matrix

Complex signal, formed from real and imaginary values.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Input — Real, imaginary, or both
Real (default) | Imag | Real and imag

Specify the type of input: a real input, an imaginary input, or both.

Programmatic Use
Block Parameter: Input
Type: character vector
Values: 'Real and imag' | 'Real' | 'Imag'
Default: 'Real and imag'

Imag part — Imaginary part of complex output
0 (default) | finite scalar, vector, or matrix

1 Blocks — Alphabetical List

1-1376

Specify the imaginary value to use when converting the input to a complex-valued output
signal.

Dependencies

To enable this parameter, set Input to Real.

Programmatic Use
Block Parameter: ConstantPart
Type: character vector
Values: imaginary value
Default: '0'

Real part — Real part of complex output
0 (default) | finite scalar, vector, or matrix

Specify the constant real value to use when converting the input to a complex-valued
output signal.

Dependencies

To enable this parameter, set Input to Imag.

Programmatic Use
Block Parameter: ConstantPart
Type: character vector
Values: finite, real-valued scalar, vector, or matrix
Default: '0'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar

 Real-Imag to Complex

1-1377

Default: '-1'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Real-Imag to Complex.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Complex to Magnitude-Angle | Complex to Real-Imag | Magnitude-Angle to Complex

Topics
“Complex Signals”

1 Blocks — Alphabetical List

1-1378

Introduced before R2006a

 Real-Imag to Complex

1-1379

Relational Operator
Perform specified relational operation on inputs

Library
Logic and Bit Operations

Description

Two-Input Mode
By default, the Relational Operator block compares two inputs using the Relational
operator parameter that you specify. The first input corresponds to the top input port and
the second input to the bottom input port. (See “Port Location After Rotating or Flipping”
in the Simulink documentation for a description of the port order for various block
orientations.)

You can specify one of the following operations in two-input mode:

Operation Description
== TRUE if the first input is equal to the second input
~= TRUE if the first input is not equal to the second input
< TRUE if the first input is less than the second input
<= TRUE if the first input is less than or equal to the second input
>= TRUE if the first input is greater than or equal to the second input
> TRUE if the first input is greater than the second input

You can specify inputs as scalars, arrays, or a combination of a scalar and an array.

1 Blocks — Alphabetical List

1-1380

For... The output is...
Scalar inputs A scalar
Array inputs An array of the same dimensions, where each element is the

result of an element-by-element comparison of the input
arrays

Mixed scalar and array
inputs

An array, where each element is the result of a comparison
between the scalar and the corresponding array element

The input with the smaller positive range is converted to the data type of the other input
offline using round-to-nearest and saturation. This conversion occurs before the
comparison.

You can specify the output data type using the Output data type parameter. The output
equals 1 for TRUE and 0 for FALSE.

Tip Select an output data type that represents zero exactly. Data types that satisfy this
condition include signed and unsigned integers and any floating-point data type.

One-Input Mode
When you select one of the following operations for Relational operator, the block
switches to one-input mode.

Operation Description
isInf TRUE if the input is Inf
isNaN TRUE if the input is NaN
isFinite TRUE if the input is finite

For an input that is not floating point, the block produces the following output.

Data Type Operation Block Output
• Fixed point
• Boolean
• Built-in

integer

isInf FALSE
isNaN FALSE
isFinite TRUE

 Relational Operator

1-1381

Rules for Data Type Propagation
The following rules apply for data type propagation when your block has one or more
input ports with unspecified data types.

When the block is in... And... The block uses...
Two-input mode Both input ports have

unspecified data types
double as the default data
type for both inputs

One input port has an
unspecified data type

The data type from the
specified input port as the
default data type of the
other port

One-input mode The input port has an
unspecified data type

double as the default data
type for the input

Data Type Support
The Relational Operator block accepts real or complex signals of any data type that
Simulink supports, including fixed-point and enumerated data types. For two-input mode,
one input can be real and the other complex when the operator is == or ~=. Complex
inputs work only for ==, ~=, isInf, isNaN, and isFinite.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation. For more information on enumerated data types, see “Enumerated Values
in Computation”.

Parameters

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-1382

Relational operator
Specify the operation for comparing two inputs or determining the signal type of one
input.

Default: <=

==
TRUE if the first input is equal to the second input

~=
TRUE if the first input is not equal to the second input

<
TRUE if the first input is less than the second input

<=
TRUE if the first input is less than or equal to the second input

>=
TRUE if the first input is greater than or equal to the second input

>
TRUE if the first input is greater than the second input

isInf
TRUE if the input is Inf

isNaN
TRUE if the input is NaN

isFinite
TRUE if the input is finite

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

 Relational Operator

1-1383

Default: On

 On
Enable zero-crossing detection.

 Off
Do not enable zero-crossing detection.

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Sample time

Note This parameter is not visible in the block dialog box unless it is explicitly set to a
value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Require all inputs to have the same data type
Require that all inputs have the same data type.

Default: Off

 On
Require that all inputs have the same data type.

 Off
Do not require that all inputs have the same data type.

This check box is not available when you select isInf, isNaN, or isFinite for
Relational operator, because the block is in one-input mode.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

1 Blocks — Alphabetical List

1-1384

Output data type
Specify the output data type.

Default: boolean

Inherit: Logical (see Configuration Parameters: Optimization)
Uses the Implement logic signals as Boolean data configuration parameter (see
“Implement logic signals as Boolean data (vs. double)”) to specify the output data
type.

Note This option supports models created before the boolean option was available.
Use one of the other options, preferably boolean, for new models.

boolean
Specifies output data type is boolean.

fixdt(1,16)
Specifies output data type is fixdt(1,16).

<data type expression>
Uses the name of a data type object, for example, Simulink.NumericType.

Tip To enter a built-in data type (double, single, int8, uint8, int16, uint16,
int32, or uint32), enclose the expression in single quotes. For example, enter
'double' instead of double.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Mode
Select the category of data to specify.

Default: Built in

 Relational Operator

1-1385

Inherit
Specifies inheritance rules for data types. Selecting Inherit enables Logical (see
Configuration Parameters: Optimization).

Built in
Specifies built-in data types. Selecting Built in enables boolean.

Fixed point
Specifies fixed-point data types.

Expression
Specifies expressions that evaluate to data types.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

Default: Inherit

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

1 Blocks — Alphabetical List

1-1386

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data as signed or unsigned.

Default: Signed

Signed
Specify the fixed-point data as signed.

Unsigned
Specify the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that holds the quantized integer.

Default: 16

Minimum: 0

Maximum: 32

Selecting Mode > Fixed point enables this parameter.

For more information, see “Specifying a Fixed-Point Data Type”.

 Relational Operator

1-1387

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Integer

Integer
Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Specifying a Fixed-Point Data Type”.

Integer rounding mode
Specify the rounding mode for fixed-point operations.

Default: Simplest

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

1 Blocks — Alphabetical List

1-1388

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

For more information, see “Rounding” (Fixed-Point Designer).

Examples
In the sldemo_fuelsys model, the fuel_rate_control/airflow_calc subsystem
uses two Relational Operator blocks:

 Relational Operator

1-1389

matlab:showdemo('sldemo_fuelsys')

Both Relational Operator blocks operate in two-input mode.

The block that uses this operator... Compares...
<= The value of the oxygen sensor to the

threshold value, 0.5
== The value of the fuel mode to the ideal

value, sld_FuelModes.LOW

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated
Sample Time Inherited from driving block
Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-1390

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

 Relational Operator

1-1391

Relay
Switch output between two constants
Library: Simulink / Discontinuities

Description
The output for the Relay block switches between two specified values. When the relay is
on, it remains on until the input drops below the value of the Switch off point parameter.
When the relay is off, it remains off until the input exceeds the value of the Switch on
point parameter. The block accepts one input and generates one output.

Note When the initial input falls between the Switch off point and Switch on point
values, the initial output is the value when the relay is off.

Ports

Input
Port_1 — Input signal
scalar

The input signal that switches the relay on or off.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output signal
scalar

1 Blocks — Alphabetical List

1-1392

The output signal switches between two values determined by the parameters Output
when on and Output when off.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Parameters
Switch on point — Input value which switches the relay on
'eps' (default) | scalar

When the input crosses this threshold, the relay switches on. The Switch on point value
must be greater than or equal to the Switch off point. Specifying a Switch on point
value greater than the Switch off point models hysteresis, whereas specifying equal
values models a switch with a threshold at that value.

The Switch on point parameter is converted to the input data type offline using round-
to-nearest and saturation methods.
Programmatic Use
Block Parameter: OnSwitchValue
Type: character vector
Values: scalar
Default: 'eps'

Switch off point — Input value which switches the relay off
'eps' (default) | scalar

When the input crosses this threshold the relay switches off. The value of Switch off
point must be less than or equal to Switch on point. The Switch off point parameter is
converted to the input data type offline using round-to-nearest and saturation.
Programmatic Use
Block Parameter: OffSwitchValue
Type: character vector
Values: scalar
Default: 'eps'

Output when on — Output value when the relay is on
1 (default) | scalar

The output value when the relay is on.

 Relay

1-1393

Programmatic Use
Block Parameter: OnOutputValue
Type: character vector
Values: scalar
Default: '1'

Output when off — Output value when the relay is off
0 (default) | scalar

The output value when the relay is off.
Programmatic Use
Block Parameter: OffOutputValue
Type: character vector
Values: scalar
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

1 Blocks — Alphabetical List

1-1394

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

 Relay

1-1395

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

1 Blocks — Alphabetical List

1-1396

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Data type of output signal
Inherit: All ports same datatype (default) | Inherit: Inherit via back
propagation | double | single | int8 | int32 | uint32 | fixdt(1,16,2^0,0) |
<data type expression> | ...

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)
• An enumerated data type, for example, Enum:BasicColors

 Relay

1-1397

In this case, Output when on and Output when off must be of the same enumerated
type.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input', 'Inherit: Inherit via back
propagation', 'single', 'int8', 'uint8', int16, 'uint16', 'int32', 'uint32',
fixdt(1,16,0), fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type
expression>'
Default: 'Inherit: Same as input'

Lock data type settings against changes by the fixed-point tools —
Prevent fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on this block. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

1 Blocks — Alphabetical List

1-1398

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Relay.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Backlash | Saturation

Introduced before R2006a

 Relay

1-1399

Repeating Sequence
Generate arbitrarily shaped periodic signal
Library: Simulink / Sources

Description
The Repeating Sequence block outputs a periodic scalar signal having a waveform that
you specify using the Time values and Output values parameters. The Time values
parameter specifies a vector of output times. The Output values parameter specifies a
vector of signal amplitudes at the corresponding output times. Together, the two
parameters specify a sampling of the output waveform at points measured from the
beginning of the interval over which the waveform repeats (the period of the signal).

By default, both parameters are [0 2]. These default settings specify a sawtooth
waveform that repeats every 2 seconds from the start of the simulation and has a
maximum amplitude of 2.

Ports

Output
Port_1 — Periodic output signal
scalar

Output signal specified by the Time values and Output values parameters to create a
periodic scalar signal.
Data Types: double

1 Blocks — Alphabetical List

1-1400

Parameters
Time values — Vector of output times
[0 2] (default) | vector

Vector of strictly monotonically increasing time values. The period of the generated
waveform is the difference of the last and first values of this parameter.
Programmatic Use
Block Parameter: rep_seq_t
Type: character vector
Values: vector
Default: [0 2]

Output values — Vector of output values
[0 2] (default) | vector

Vector of output values that specify the output waveform. Each element corresponds to
the time value in the Time valuesparameter.
Programmatic Use
Block Parameter: rep_seq_y
Type: character vector
Values: vector
Default: [0 2]

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Algorithms
The block sets the input period as the difference between the first and last value of the
Time values parameter. The output at any time t is the output at time t = t-

 Repeating Sequence

1-1401

n*period, where n is an integer. The sequence repeats at t = n*period. The block
uses linear interpolation to compute the value of the waveform between the output times
that you specify.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Consider using Repeating Sequence Stair or Repeating Sequence Interpolated blocks for
code generation.

See Also
Repeating Sequence Interpolated | Repeating Sequence Stair

Introduced before R2006a

1 Blocks — Alphabetical List

1-1402

Repeating Sequence Interpolated
Output discrete-time sequence and repeat, interpolating between data points
Library: Simulink / Sources

Description
The Repeating Sequence Interpolated block outputs a periodic discrete-time sequence
based on the values in Vector of time values and Vector of output values parameters.
Between data points, the block uses the method you specify for the Lookup Method
parameter to determine the output.

Ports

Output
Port_1 — Periodic output signal
scalar

Output signal generated based on the values in the Vector of time values and Vector of
output values parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

 Repeating Sequence Interpolated

1-1403

Parameters

Main
Vector of output values — Vector of output values
[3 1 4 2 1].' (default) | vector

Vector of output values that specify the output waveform. Each element corresponds to
the time value in the Time valuesparameter.

Programmatic Use
Block Parameter: OutValues
Type: character vector
Values: vector
Default: [3 1 4 2 1].'

Vector of time values — Vector of time values
[0 0.1 0.5 0.6 1].' (default) | vector

Specify the column vector containing time values. The time values must be strictly
increasing, and the vector must have the same size as the vector of output values.

Programmatic Use
Block Parameter: TimeValues
Type: character vector
Values: vector
Default: [0 0.1 0.5 0.6 1].'

Lookup Method — Lookup method for output
Interpolation-Use End Values (default) | Use Input Nearest | Use Input
Below | Use Input Above

Specify the lookup method to determine the output between data points.

Programmatic Use
Block Parameter: LookUpMeth
Type: character vector
Values: 'Interpolation-Use End Values' | 'Use Input Nearest' | Use Input
Below | Use Input Above
Default: 'Interpolation-Use End Values'

1 Blocks — Alphabetical List

1-1404

Sample time — Time interval between samples
0.01 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar
Default: '0.01'

Signal Attributes
Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar

 Repeating Sequence Interpolated

1-1405

Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
double (default) | Inherit: Inherit via back propagation | single | int8 |
int32 | uint32 | fixdt(1,16,2^0,0) | <data type expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector

1 Blocks — Alphabetical List

1-1406

Values: , 'Inherit: Inherit via back propagation', 'single', 'int8',
'uint8', int16, 'uint16', 'int32', 'uint32', fixdt(1,16,0),
fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Double'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot be used inside a triggered subsystem hierarchy.

 Repeating Sequence Interpolated

1-1407

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Repeating Sequence | Repeating Sequence Stair

Introduced before R2006a

1 Blocks — Alphabetical List

1-1408

Repeating Sequence Stair
Output and repeat discrete time sequence
Library: Simulink / Sources

Description
The Repeating Sequence Stair block outputs and repeats a stair sequence that you specify
with the Vector of output values parameter. For example, you can specify the vector as
[3 1 2 4 1]'. A value in Vector of output values is output at each time interval, and
then the sequence repeats.

 Repeating Sequence Stair

1-1409

Ports

Output
Port_1 — Repeating discrete output signal
scalar

Output signal generated based on the values in the Vector of time values and Sample
time parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

1 Blocks — Alphabetical List

1-1410

Parameters

Main
Vector of output values — Vector of output values
[3 1 4 2 1].' (default) | vector

Specify the vector containing values of the repeating stair sequence.

Programmatic Use
Block Parameter: OutValues
Type: character vector
Values: vector
Default: [3 1 4 2 1].'

Sample time — Time interval between samples
-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

 Repeating Sequence Stair

1-1411

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

1 Blocks — Alphabetical List

1-1412

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
double (default) | Inherit: Inherit via back propagation | single | int8 |
int32 | uint32 | fixdt(1,16,2^0,0) | <data type expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: , 'Inherit: Inherit via back propagation', 'single', 'int8',
'uint8', int16, 'uint16', 'int32', 'uint32', fixdt(1,16,0),
fixdt(1,16,2^0,0), fixdt(1,16,2^0,0), '<data type expression>'
Default: 'Double'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 Repeating Sequence Stair

1-1413

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Repeating Sequence | Repeating Sequence Interpolated

Introduced before R2006a

1 Blocks — Alphabetical List

1-1414

Reset
Add reset port to subsystem
Library: Ports & Subsystems

Description
A Reset block at the root level of a Subsystem block adds a control port to the block.
When a reset trigger event occurs on the signal connected to the port, the block states of
the subsystem are reset to their initial condition.

Parameters
Reset trigger type — Select the type of trigger event
level (default) | rising | falling | either | level hold

Select the type of trigger event that resets the subsystem block states.

level
Reset the block states when the reset signal is nonzero at the current time step or
changes from nonzero at the previous time step to zero at the current time step.

rising
Reset the block states when the reset signal rises from a zero to a positive value or
from a negative to a positive value.

falling
Reset the block states when the reset signal falls from a positive value to zero or from
a positive to a negative value.

either
Reset the block states when the reset signal changes from a zero to a nonzero value
or changes sign.

level hold
Reset the block states when the reset signal is nonzero at the current time step.

 Reset

1-1415

Programmatic Use
Parameter: ResetTriggerType
Type: character vector
Value: 'level' | 'rising' | 'falling' | 'either' | 'level hold'
Default: 'level'

Propagate sizes of variable-size signals — Select when to propagate a
variable-size signal
During execution (default) | Only when enabling

Select when to propagate a variable-size signal.

During execution
Propagate variable-size signals at each time step.

Only when resetting
Propagate variable-size signals when resetting a Subsystem block containing a Reset
port block. When you select this option, sample time must be periodic.

Programmatic Use
Block parameter: PropagateVarSize
Type: character vector
Value: 'During execution' | 'Only when resetting'
Default: 'During execution'

Enable zero-crossing detection — Control zero-crossing detection
on (default) | off

Control zero-crossing detection.

 on
Detect zero crossings.

 off
Do not detect zero crossings.

Programmatic Use
Block parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-1416

See Also
Blocks
Reset | Resettable Subsystem | Subsystem

Topics
“Use Resettable Subsystems”
“Simulink Block Support for Variable-Size Signals”

Introduced in R2015a

 Reset

1-1417

Reset Function
Executes contents on a model reset event
Library: User-Defined Functions

Description
The Reset Function block is a preconfigured subsystem block created from an Initialize
block that executes on a model reset event.

Note The Reset Function block is not in the Simulink Library Browser.

To create a Reset Function block:

1 Add an Initialize block.
2 Open the Event Listener block within the Initialize block. From the Event drop-down

list, select Reset.

One parameters appear.

• By default, the Event name is set to Reset. You can change the name of a reset
event by editing this text box.

3 Rename the block from Initialize Function to Reset Function.

The Reset Function block includes an Event Listener block with Event set to Reset, a
Constant block with Constant value set to 0, and a State Writer block.

1 Blocks — Alphabetical List

1-1418

Replace the Constant block with source blocks that generate the state value for the State
Writer block.

For a list of unsupported blocks and features, see “Initialize, Reset, and Terminate
Function Limitations”.

A model can potentially have multiple Reset Function blocks with each block having a
different Event name. Each of these reset events appear in the generated code as a
different function.

See Also
Event Listener | Initialize Function | State Reader | State Writer | Terminate Function

Topics
“Customize Initialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”
“Generate Code That Responds to Initialize, Reset, and Terminate Events” (Simulink
Coder)

 Reset Function

1-1419

Resettable Delay
Delay input signal by variable sample period and reset with external signal
Library: Simulink / Discrete

Description
The Resettable Delay block is a variant of the Delay block that has the source of the initial
condition set to Input port and the external reset algorithm set to Rising, by default.

Ports

Input
u — Data input signal
scalar | vector

Input data signal delayed according to parameters settings.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

d — Delay length
scalar

Delay length specified as inherited from an input port. Enabled when you select the Delay
length: Source parameter as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Enable — External enable signal
scalar

1 Blocks — Alphabetical List

1-1420

Enable signal that enables or disables execution of the block. To create this port, select
the Show enable port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

External reset — External reset signal
scalar

External signal that resets execution of the block to the initial condition. To create this
port, select the External reset parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

x0 — Initial condition
scalar | vector

Initial condition specified as inherited from an input port. Enabled when you select the
Initial Condition: Source parameter as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector

Output signal that is the input signal delayed by the length of time specified by the
parameter Delay length. The initial value of the output signal depends on several
conditions. See “Initial Block Output” on page 1-296.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Resettable Delay

1-1421

Parameters

Main
Delay length — Delay length
Dialog (default) | Input port

Specify whether to enter the delay length directly on the dialog box (fixed delay) or to
inherit the delay from an input port (variable delay).

• If you set Source to Dialog, enter the delay length in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies a delay

length for the d input port. You can also specify its maximum value by specifying the
parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or non-
integer value in the dialog box (fixed delay) returns an error. An out-of-range value from
an input port (variable delay) casts it into the range. A non-integer value from an input
port (variable delay) truncates it to the integer.

Programmatic Use
Block Parameter: DelayLengthSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: DelayLength
Type: character vector
Values: scalar
Default: '2'
Block Parameter: DelayLengthUpperLimit
Type: character vector
Values: scalar
Default: '100'

Initial condition — Initial condition
Input port (default) | Dialog

Specify whether to enter the initial condition directly on the dialog box or to inherit the
initial condition from an input port.

1 Blocks — Alphabetical List

1-1422

• If you set Source to Dialog, enter the initial condition in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies an initial

condition for the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the input
signal u using a round-to-nearest operation and saturation.

Note When State name must resolve to Simulink signal object is selected on the
State Attributes pane, the block copies the initial value of the signal object to the Initial
condition parameter. However, when the source for Initial condition is Input port,
the block ignores the initial value of the signal object.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Input Port'
Block Parameter: InitialCondition
Type: character vector
Values: scalar
Default: ''

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by

 Resettable Delay

1-1423

looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Use circular buffer for state — Circular buffer for storing state
off (default) | on

Select to use a circular buffer for storing the state in simulation and code generation.
Otherwise, an array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large. For
an array buffer, the number of copy operations increases as the delay length goes up. For
a circular buffer, the number of copy operations is constant for increasing delay length.

1 Blocks — Alphabetical List

1-1424

If one of the following conditions is true, an array buffer always stores the state because a
circular buffer does not improve execution speed:

• For sample-based signals, the delay length is 1.
• For frame-based signals, the delay length is no larger than the frame size.

Programmatic Use
Block Parameter: UseCircularBuffer
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Prevent direct feedthrough — Prevent direct feedthrough
off (default) | on

Select to increase the delay length from zero to the lower limit for the Input processing
mode:

• For sample-based signals, increase the minimum delay length to 1.
• For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the output
port. However, this check box cannot prevent direct feedthrough from the initial condition
port, x0, to the output port.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: PreventDirectFeedthrough
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Remove delay length check in generated code — Remove delay length out-
of-range check
off (default) | on

Select to remove code that checks for out-of-range delay length.

 Resettable Delay

1-1425

Check Box Result When to Use
Selected Generated code does not

include conditional
statements to check for out-
of-range delay length.

For code efficiency

Cleared Generated code includes
conditional statements to
check for out-of-range delay
length.

For safety-critical
applications

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: RemoveDelayLengthCheckInGeneratedCode
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for delay length — Diagnostic checks for delay length
None (default) | Warning | Error

Specify whether to produce a warning or error when the input d is less than the lower
limit or greater than the Delay length: Upper limit. The lower limit depends on the
setting for Prevent direct feedthrough.

• If the check box is cleared, the lower limit is zero.
• If the check box is selected, the lower limit is 1 for sample-based signals and frame

length for frame-based signals.

Options for the diagnostic include:

• None — Simulink software takes no action.
• Warning — Simulink software displays a warning and continues the simulation.
• Error — Simulink software terminates the simulation and displays an error.

Dependency

To enable this parameter, set Delay length: Source to Input port.

1 Blocks — Alphabetical List

1-1426

Programmatic Use
Block Parameter: DiagnosticForDelayLength
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Show enable port — Create enable port
off (default) | on

Select to control execution of this block with an enable port. The block is considered
enabled when the input to this port is nonzero, and is disabled when the input is 0. The
value of the input is checked at the same time step as the block execution.

External reset — External state reset
Rising (default) | None | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when the reset signal is nonzero at the
current time step

• when the reset signal value changes
from nonzero at the previous time step
to zero at the current time step

Level hold Reset when the reset signal is nonzero at
the current time step

The reset signal must be a scalar of type single, double, boolean, or integer. Fixed
point data types, except for ufix1, are not supported.

Programmatic Use
Block Parameter: ExternalReset
Type: character vector

 Resettable Delay

1-1427

Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'Rising'

Sample time (-1 for inherited) — Discrete interval between sample time
hits
-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. This block supports discrete sample time, but not continuous sample time.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you
click Apply.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

1 Blocks — Alphabetical List

1-1428

State name must resolve to Simulink signal object — Require state name
resolve to a signal object
off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if
you set the model configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default) | <StorageClass.PackageName>

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'
Default: 'Simulink.Signal'

 Resettable Delay

1-1429

Code generation storage class — State storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | BitField (Custom) | Model default | ExportToFile
(Custom) | ImportFromFile (Custom) | FileScope (Custom) | AutoScope
(Custom) | Struct (Custom) | GetSet (Custom) | Reusable (Custom)

Select state storage class for code generation.

• Auto is the appropriate storage class for states that you do not need to interface to
external code.

• StorageClass applies the storage class or custom storage class that you select from
the list. For information about storage classes, see “Apply Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Simulink Coder). For
information about custom storage classes, see “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.

Dependencies

To enable this parameter, specify a value for State name.

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'SimulinkGlobal' | 'ExportedGlobal' |
'ImportedExtern' | 'ImportedExternPointer' | 'Custom' | ...
Default: 'Auto'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

1 Blocks — Alphabetical List

1-1430

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Consider using the Model Discretizer to map these continuous blocks into discrete
equivalents that support code generation. From a model, select Analysis > Control
Design > Model Discretizer.

Not reommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see Delay.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Delay | Unit Delay | Variable Integer Delay

Topics
“Using Enabled Subsystems”

Introduced in R2012b

 Resettable Delay

1-1431

Resettable Subsystem
Subsystem whose block states reset with external trigger
Library: Ports & Subsystems

Description
The Resettable Subsystem block is a Subsystem block preconfigured as a starting point
for creating a subsystem that resets the block states each time the control signal has a
trigger event.

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a Subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

1 Blocks — Alphabetical List

1-1432

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Reset — Control signal input to a subsystem block
scalar | vector | matrix

Placing a Reset block in a Subsystem block adds an external input port to the block and
changes the block to a Resettable Subsystem block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a Subsystem block adds an output port from the block. The
port label on the Subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

See Also
Blocks
Reset | Subsystem

Topics
“Use Resettable Subsystems”

Introduced in R2015a

 Resettable Subsystem

1-1433

Resettable Synchronous Subsystem
Represent resettable subsystem that has synchronous reset and enable behavior

Library
HDL Coder / HDL Subsystems

Description
The Resettable Synchronous Subsystem block uses the Synchronous mode of the State
Control block with the Resettable Subsystem block. If an S symbol appears in the
subsystem, then it is synchronous. For more information about the block in HDL Coder,
see Resettable Synchronous Subsystem.

For more information about the State Control block, see State Control.

Data Type Support
See Inport for information on the data types accepted by a subsystem's input ports. See
Outport for information on the data types output by a subsystem's output ports.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1434

Parameters

Show port labels
Display subsystem port labels on the subsystem block.

Default: FromPortIcon

none
Does not display port labels on the subsystem block.

FromPortIcon
If the corresponding port icon displays a signal name, the parameter displays the
signal name on the subsystem block. Otherwise, it displays the port block name.

FromPortBlockName
Display the name of the corresponding port block on the subsystem block.

SignalName
If the signal connected to the subsystem block port is named, this parameter displays
the name. Otherwise, it displays the name of the corresponding port block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Read/Write permissions
Control user access to the contents of the subsystem.

Default: ReadWrite

ReadWrite
Enables opening and modification of subsystem contents.

ReadOnly
Enables the opening but not modification of the subsystem. If the subsystem resides
in a block library, you can create and open links to the subsystem, and create and
modify local copies of the subsystem. You cannot change the permissions or modify
the contents of the original library instance.

 Resettable Synchronous Subsystem

1-1435

NoReadOrWrite
Disables the opening or modification of subsystem. If the subsystem resides in a block
library, you can create links to the subsystem in a model. You cannot open, modify,
change permissions, or create local copies of the subsystem.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Name of error callback function
Enter the name of the function to be called if an error occurs while Simulink software is
executing the subsystem.

Default: ' '

Simulink passes two arguments to the function: the subsystem handle and a character
vector that specifies the error type. If no function is specified, you get a generic error
message.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Permit hierarchical resolution
Specify whether to resolve names of workspace variables referenced by this subsystem.

Default: All

All
Resolve all names of workspace variables used by this subsystem, including those
used to specify block parameter values and Simulink data objects (for example,
Simulink.Signal objects).

ExplicitOnly
Resolve the names of workspace variables used to specify block parameter values,
data store memory (where no block exists), signals, and states marked by using the
signal resolution icon.

None
Do not resolve any workspace variable names.

1 Blocks — Alphabetical List

1-1436

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Treat as atomic unit
Causes Simulink to treat the subsystem as a unit when determining the execution order of
block methods.

Default: Off

 On
Cause Simulink to treat the subsystem as a unit when determining the execution
order of block methods. For example, when it needs to compute the output of the
subsystem, Simulink software invokes the output methods of all the blocks in the
subsystem before invoking the output methods of other blocks at the same level as
the subsystem block.

 Off
Cause Simulink to treat all blocks in the subsystem as being at the same level in the
model hierarchy as the subsystem when determining block method execution order.
This can cause the execution of block methods in the subsystem to be interleaved with
the execution of block methods outside the subsystem.

This parameter enables:

• “Minimize algebraic loop occurrences” on page 1-0 .
• “Sample time” on page 1-0
• “Function packaging” on page 1-0 (requires a Simulink Coder license)

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Treat as grouped when propagating variant conditions
Causes Simulink software to treat the subsystem as a unit when propagating variant
conditions from Variant Source blocks or to Variant Sink blocks.

 Resettable Synchronous Subsystem

1-1437

Default: On

 On
Simulink treats the subsystem as a unit when propagating variant conditions from
Variant Source blocks or to Variant Sink blocks. For example, when Simulink
computes the variant condition of the subsystem, it propagates that condition to all
blocks in the subsystem.

 Off
Simulink treats all blocks in the subsystem as being at the same level in the model
hierarchy as the subsystem itself when determining their variant condition.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Function packaging
Specify the code format to be generated for an atomic (nonvirtual) subsystem.

Default: Auto

Auto
Simulink Coder chooses the optimal format based on the type and number of
subsystem instances in the model.

Inline
Simulink Coder inlines the subsystem unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. In some
cases, when you apply this setting, the subsystems generate functions with arguments
that depend on the “Function interface” on page 1-0 parameter setting. You can
name the generated function and file using parameters “Function name” on page 1-
0 and “File name (no extension)” on page 1-0 . These functions are not
reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of subsystem
code when a model includes multiple instances of the subsystem.

1 Blocks — Alphabetical List

1-1438

This option generates a function with arguments that allows subsystem code to be
reused in the generated code of a model reference hierarchy. In this case, the
subsystem must be in a library.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated | Bus
Multidimensional Signals Yes
Variable-Size Signals Yes
HDL Code Generation Yes

See Also
Enable | Enabled Synchronous Subsystem | State Control | Synchronous Subsystem

Introduced in R2016b

 Resettable Synchronous Subsystem

1-1439

Reshape
Change dimensionality of signal
Library: Simulink / Math Operations

Description
The Reshape block changes the dimensionality of the input signal to a dimensionality that
you specify, using the Output dimensionality parameter. For example, you can use the
block to change an N-element vector to a 1-by-N or N-by-1 matrix signal.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal whose dimensions are changed based on the Output dimensionality
parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal created with the dimensions specified in the Output dimensionality
parameter.

1 Blocks — Alphabetical List

1-1440

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Output dimensionality — Dimensions of output signal
1-D array (default) | Column vector (2-D) | Row vector (2-D) | Customize |
Derive from reference input port

Specify the dimensionality of the output signal.

Output Dimensionality Description
1-D array Converts a multidimensional array to a vector (1-D array)

array signal. The output vector consists of the first column
of the input matrix followed by the second column, and so
on. (This option leaves a vector input unchanged.)

Column vector Converts a vector, matrix, or multidimensional input signal
to a column matrix, a M-by-1 matrix, where M is the
number of elements in the input signal. For matrices, the
conversion is done in column-major order. For
multidimensional arrays, the conversion is done along the
first dimension.

Row vector Converts a vector, matrix, or multidimensional input signal
to a row matrix, a 1-by-N matrix where N is the number of
elements in the input signal. For matrices, the conversion
is done in column-major order. For multidimensional
arrays, the conversion is done along the first dimension.

Customize Converts the input signal to an output signal whose
dimensions you specify, using the Output dimensions
parameter.

Derive from reference input
port

Creates a second input port, Ref, on the block. Derives the
dimensions of the output signal from the dimensions of the
signal input to the Ref input port. Selecting this option
disables the Output dimensions parameter. When you
select this parameter, the input signals for both inport
ports, U and Ref, must have the same sampling mode
(sample-based or frame-based).

 Reshape

1-1441

Programmatic Use
Block Parameter: OutputDimensionality
Type: character vector
Value: '1-D array' | 'Column vector (2-D)' | 'Row vector (2-D)' |
'Customize' | 'Derive from reference input port'
Default: '1-D array'

Output dimensions — Custom dimensions of output signal
[1,1] (default) | [integer] | [integer,integer]

Specify the dimensions for the output signal. The value can be a one- or multi-element
vector. A value of [N] outputs a vector of size N. A value of [M N] outputs an M-by-N
matrix. The number of elements of the input signal must match the number of elements
specified by the Output dimensions parameter. For multidimensional arrays, the
conversion is done along the first dimension.

Dependency

To enable this parameter, set Output dimensionality to Customize.

Programmatic Use
Block Parameter: OutputDimensionality
Type: character vector
Value: '[integer,intger]' |
Default: '[1,1]'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

1 Blocks — Alphabetical List

1-1442

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Reshape.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Squeeze

Topics
“Combine Buses into an Array of Buses”

Introduced before R2006a

 Reshape

1-1443

Rocker Switch
Toggle parameter between two values
Library: Simulink / Dashboard

Description
The Rocker Switch block toggles the value of the connected block parameter between two
values during simulation. For example, you can connect the Rocker Switch block to a
Switch block in your model and change its state during simulation. Use the Rocker Switch
block with other Dashboard blocks to create an interactive dashboard for your model.

Double-clicking the Rocker Switch block does not open its dialog box during simulation
and when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.

1 Blocks — Alphabetical List

1-1444

2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

 Rocker Switch

1-1445

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

States

Label (Top) — Label for top switch position
'On' (default) | character vector

Labels the top switch position. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the top, or you can enter a text label.
Example: Gain = 2

Value (Top) — Value for top switch position
1 (default) | scalar

The value assigned to the connected parameter when the switch is positioned at the top.

Label (Bottom) — Label for bottom switch position
'Off' (default) | character vector

Labels the bottom switch position. You can use the Label to display the value the
connected parameter takes when the switch is positioned at the bottom, or you can enter
a text label.
Example: Gain = 1

Value (Bottom) — Value for bottom switch position
0 (default) | scalar

The value assigned to the connected parameter when the switch is positioned at the
bottom.

1 Blocks — Alphabetical List

1-1446

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Rotary Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

 Rocker Switch

1-1447

Rotary Switch
Switch parameter to set values on dial
Library: Simulink / Dashboard

Description
The Rotary Switch changes the value of the connected block parameter to several
specified values during simulation. For example, you can connect the Rotary Switch block
to the amplitude or frequency of an input signal in your model and change its
characteristics during simulation. Use the Rotary Switch block with other Dashboard
blocks to create an interactive dashboard to control your model.

Double-clicking the Rotary Switch block does not open its dialog box during simulation
and when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.

1 Blocks — Alphabetical List

1-1448

3 Mark the button next to the parameter or variable you want to adjust during
simulation.

4 Click Apply.

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

 Rotary Switch

1-1449

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

States

Value — Values for switch positions
0/1/2/3 (default) | scalar

The values assigned to the connected parameter when the switch is positioned at the
corresponding Label. Click the + button to add positions.

Label — Labels for switch positions
'Off'/'Low'/'Medium'/'High' (default) | character vector

Labels the switch positions. You can use the Label to display the value the connected
parameter takes when the switch points to the Label, or you can enter a descriptive text
label. Click the + button to add positions.
Example: Gain = 2

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Knob | Rocker Switch | Slider | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks — Alphabetical List

1-1450

Introduced in R2015a

 Rotary Switch

1-1451

Rounding Function
Apply rounding function to signal
Library: Simulink / Math Operations

Description
The Rounding Function block rounds each element of the input signal to produce the
output signal.

You select the type of rounding from the Function parameter list. The name of the
selected function appears on the block.

Tip Use the Rounding Function block instead of the Fcn block when you want vector or
matrix output, because the Fcn block produces only scalar output.

Also, the Rounding Function block provides two more rounding modes. The Fcn block
supports floor and ceil, but does not support round and fix.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal to which the rounding function is applied.
Data Types: single | double

1 Blocks — Alphabetical List

1-1452

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal after the rounding function is applied to the input signal. The output signal
has the same dimensions and data type as the input. Each element of the output signal is
the result of applying the selected rounding function to the corresponding element of the
input signal.
Data Types: single | double

Parameters
Function — Rounding function
floor (default) | ceil | round | fix

Choose the rounding function applied to the input signal.

Rounding function Rounds each element of the input
signal

floor To the nearest integer value towards minus
infinity

ceil To the nearest integer towards positive
infinity

round To the nearest integer
fix To the nearest integer towards zero

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'floor' | 'ceil' | 'round' | 'fix'
Default: 'floor'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

 Rounding Function

1-1453

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Rounding Function.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks — Alphabetical List

1-1454

See Also
Fcn

Introduced before R2006a

 Rounding Function

1-1455

Saturation
Limit input signal to the upper and lower saturation values
Library: Simulink / Commonly Used Blocks

Simulink / Discontinuities

Description
The Saturation block produces an output signal that is the value of the input signal
bounded to the upper and lower saturation values. The upper and lower limits are
specified by the parameters Upper limit and Lower limit.

Input Output
Lower limit ≤ Input value ≤ Upper limit Input value
Input value < Lower limit Lower limit
Input value > Upper limit Upper limit

Ports

Input
Port_1 — Input signal
scalar | vector

The input signal to the saturation algorithm.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

1 Blocks — Alphabetical List

1-1456

Output
Port_1 — Output signal
scalar | vector

Output signal that is the value of the input signal, upper saturation limit, or lower
saturation limit.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters

Main
Upper limit — Upper saturation boundary for the input signal
0.5 (default) | scalar | vector

Specify the upper bound on the input signal. If the input signal is greater than this
boundary, then the output signal is set to this saturation value. The Upper limit
parameter is converted to the output data type using round-to-nearest and saturation.
Upper limit must be greater than the Output minimum parameter and less than the
Output maximum parameter.

Programmatic Use
Block Parameter: UpperLimit
Type: character vector
Value: real scalar or vector
Default: '0.5'

Lower limit — Lower saturation boundary for the input signal
-0.5 (default) | scalar | vector

Specify the lower bound on the input signal. If the input signal is less than this boundary,
then the output signal is set to this saturation value. The Lower limit parameter is
converted to the output data type using round-to-nearest and saturation. Lower limit
must be greater than the Output minimum parameter and less than the Output
maximum parameter.

 Saturation

1-1457

Programmatic Use
Block Parameter: LowerLimit
Type: character vector
Value: real scalar or vector
Default: '-0.5'

Treat as gain when linearizing — Specify the gain value
On (default) | Boolean

Select this check box to cause the commands to treat the gain as 1. The linearization
commands in Simulink software treat this block as a gain in state space. Clear the box to
have the commands treat the gain as 0.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

1 Blocks — Alphabetical List

1-1458

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

 Saturation

1-1459

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Same as input (default) | Inherit: Inherit via back propagation |
double | single | int8 | int32 | uint32 | fixdt(1,16,2^0,0) | <data type
expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input', 'Inherit: Inherit via back
propagation', 'single', 'int8', 'uint8', int16, 'uint16', 'int32', 'uint32',

1 Blocks — Alphabetical List

1-1460

fixdt(1,16,0), fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type
expression>'
Default: 'Inherit: Same as input'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

 Saturation

1-1461

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks — Alphabetical List

1-1462

For more information on HDL code generation, see Saturation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Backlash | Saturation Dynamic

Introduced before R2006a

 Saturation

1-1463

Saturation Dynamic
Limit input signal to dynamic upper and lower saturation values
Library: Simulink / Discontinuities

Description
The Saturation Dynamic block produces an output signal that is the value of the input
signal bounded to the saturation values from the input ports up and lo.

Input Output
lo ≤ Input value ≤ hi Input value
Input value < lo Lower limit
Input value > hi Upper limit

Ports

Input
u — Input signal
scalar | vector

The input signal to the saturation algorithm.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

up — Signal that provides the upper saturation limit
scalar | vector

Dynamic value providing the upper saturation limit. When the input is greater than up
then the output value is bound to up.

1 Blocks — Alphabetical List

1-1464

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point
Complex Number Support: Yes

lo — Signal that provides the lower saturation limit
scalar | vector

Dynamic value providing the lower saturation limit. When the input is less than lo then
the output value is bound to lo.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point
Complex Number Support: Yes

Output
Output 1 — Output signal
scalar | vector

Output signal that is the value of the input signal, upper saturation limit, or lower
saturation limit.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
To edit the parameters for the Saturation Dynamic block, double-click the block icon.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

 Saturation Dynamic

1-1465

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

1 Blocks — Alphabetical List

1-1466

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Same as input (default) | Inherit: Inherit via back propagation |
double | single | int8 | int32 | uint32 | fixdt(1,16,2^0,0) | <data type
expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input', 'Inherit: Inherit via back
propagation', 'single', 'int8', 'uint8', int16, 'uint16', 'int32', 'uint32',
fixdt(1,16,0), fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type
expression>'
Default: 'Inherit: Same as input'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data
type you specify on the block. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

 Saturation Dynamic

1-1467

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Choose the behavior when integer overflow
occurs
on (default) | boolean

1 Blocks — Alphabetical List

1-1468

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

 Saturation Dynamic

1-1469

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | single | Booleana | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

a. This block is not recommended for use with Boolean signals.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Saturation Dynamic.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

1 Blocks — Alphabetical List

1-1470

See Also
Saturation

Introduced before R2006a

 Saturation Dynamic

1-1471

Scan String
Scan input string and convert to signals per specified format
Library: Simulink / String

Description
The Scan String block scans an input string and converts it to signals per the format
specified by the Format parameter. The block converts values to their decimal (base 10)
representation and outputs the results as numeric or string signals. Use this block when
you want to deconstruct a string, for example a sentence, into its individual components.
For example, if the Format parameter is set to "%s is %f.", the block outputs two
parts, a string signal and a single signal. If the input is the string "Pi is 3.14", the two
outputs are "Pi" and "3.14".

The Scan String, String to Double, and String to Single blocks are identical blocks. When
configured for String to Double, the block converts the input string signal to a double
numerical output. When configured for String to Single, the block converts the input
string signal to a single numerical output.

For code generation, configure models that contain this block for non-finite number
support by selecting the Configuration Parameters > Code Generation > Interface >
Support non-finite numbers check box.

Ports

Input
Port_1 — Input string
scalar

Input string, specified as a scalar.

1 Blocks — Alphabetical List

1-1472

Data Types: string

Output
d — Output data whose format matches %d format
scalar

Output data whose format matches the specified format, defined as a scalar. Total
maximum number of outputs is 128.

If the block cannot match an input string to a format operator specified in Format, it
returns a warning and outputs an appropriate value (0 or "") for each unmatched format
operator.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

f — Output data whose format matches %f format
scalar

Output data whose format matches the %f format, specified as a scalar. Total maximum
number of outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_N — Output data whose format matches N format
scalar

Output data whose format matches N format, specified as a scalar. Total maximum
number of outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Format — Format operator for input
"%d %f" (default) | scalar

Format operator for input, specified as a scalar. If the block cannot match the input string
with the specified format, it returns 0. The return of 0 differs from the sscanf function

 Scan String

1-1473

return, which is an empty matrix if the function cannot match the input with the specified
format.

• For the String to Double block, this parameter has a default value of %lf.
• For the String to Single block, this parameter has a default value of %f.

For more information about acceptable format operators, see the Algorithms section.

Block Characteristics
Data Types double | single | base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

Algorithms
The Scan String block uses this format specifier prototype:

%[width][length]specifier

Numeric Fields
This table lists available conversion specifiers to convert text to numeric outputs. The
block converts values to their decimal (base 10) representation.

Output Port Data Type Conversion Specifier Description
Integer, signed %d Base 10
Integer, unsigned %u Base 10

1 Blocks — Alphabetical List

1-1474

Output Port Data Type Conversion Specifier Description
Floating-point number %f, %e, or %g Floating-point values. Input

fields can contain any of the
following (not case
sensitive): Inf, -Inf, NaN,
or -NaN. Input fields that
represents floating-point
numbers can include leading
+ or - symbols and
exponential notation using e
or E. The conversion
specifiers %f, %e, and %g all
treat input fields the same
way.

Character Fields
This table lists available conversion specifiers to convert text so that the output is a
string.

Character Field Type Conversion
Specifier

Description

String scalar %s Read the text until the block encounters
whitespace.

%c Read any single character, including
whitespace. To read multiple characters at a
time, specify field width. For example, %10c
reads 10 characters at a time.

Pattern-matching %[...] Read only the characters in the brackets up to
the first nonmatching character or
whitespace.

Example: %[mus] reads 'summer' as
'summ'.

 Scan String

1-1475

Character Field Type Conversion
Specifier

Description

%[^...] Do not read characters in the brackets up to
the first nonmatching character or
whitespace.

Example: %[m] reads 'summer' as 'su'.

Optional Operators
• Field Width — To specify the maximum number of digits or text characters to read at a

time, insert a number after the percent character. For example, %10s reads up to 10
characters at a time, including whitespace. %4f reads up to four digits at a time,
including the decimal point.

• Literal Text to Ignore — This block must match the specified text immediately before
or after the conversion specifier.

Example: Hell%s reads "Hello!" as "o!".

Length Specifiers
The Scan String block supports the h and l length subspecifiers. These specifiers can
change according to the Configuration Parameters > Hardware Implementation >
Number of bits settings.

Length i u f e g s c […] [^...]
No length
specifier

int unsigned int single string

h short unsigned
short

— —

l long unsigned long double —

Notes for Specifiers that Specify Integer Data Types (d, u)
• Target int, long, and short type sizes are controlled by settings in the
Configuration Parameters > Hardware Implementation pane. For example, if the
target int is 32 bits and the specifier is %u, then the expected input type will be

1 Blocks — Alphabetical List

1-1476

uint32. For this example, the Scan String block requires that the output type be
exactly int32. It cannot be any other data type.

See Also
ASCII to String | Compose String | String Compare | String Concatenate | String Constant
| String Find | String Length | String To ASCII | String to Double | String to Enum | String
to Single | Substring | To String | sscanf

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

Introduced in R2018a

 Scan String

1-1477

ScopeTime Scope
Display signals generated during simulation
Library: Simulink / Commonly Used Blocks

Simulink / Sinks

Description
The Simulink Scope block and DSP System Toolbox Time Scope block display time domain
signals.

1 Blocks — Alphabetical List

1-1478

 ScopeTime Scope

1-1479

The two blocks have identical functionality, but different default settings. The Time Scope
is optimized for discrete time processing. The Scope is optimized for general time-domain
simulation. For a side-by-side comparison, see “Simulink Scope Versus DSP System
Toolbox Time Scope”.

Oscilloscope features:

• Triggers — Set triggers to sync repeating signals and pause the display when events
occur.

• Cursor Measurements — Measure signal values using vertical and horizontal cursors.
• Signal Statistics — Display the maximum, minimum, peak-to-peak difference, mean,

median, and RMS values of a selected signal.
• Peak Finder — Find maxima, showing the x-axis values at which they occur.
• Bilevel Measurements — Measure transitions, overshoots, undershoots, and cycles.

You must have a Simscape or DSP System Toolbox license to use the Peak Finder, Bilevel
Measurements, and Signal Statistics.

Scope display features:

• Simulation control — Debug models from a Scope window using Run, Step Forward,
and Step Backward toolbar buttons.

• Multiple signals — Plot multiple signals on the same y-axis (display) using multiple
input ports.

• Multiple y-axes (displays) — Display multiple y-axes. All the y-axes have a common
time range on the x-axis.

• Modify parameters — Modify scope parameter values before and during a simulation.
• Axis autoscaling — Autoscale axes during or at the end of a simulation. Margins are

drawn at the top and bottom of the axes.
• Display data after simulation — If a Scope is closed at the start of a simulation, scope

data is still written to the scope during a simulation. As a result, if you open the Scope
after a simulation, the Scope displays simulation results for attached input signals.

For information on controlling a scope programmatically, see “Control Scopes
Programmatically”.

1 Blocks — Alphabetical List

1-1480

Limitations
• Do not use scope blocks in a Library. If you place a scope block inside a library block

with a locked link or in a locked library, Simulink displays an error when trying to
open the scope window. To display internal data from a library block, add an output
port to the library block, and then connect the port to a Scope block in your model.

• A Scope block may plot a single point when connected to a constant signal.

Ports

Input
Port_1 — Signal or signals to visualize
scalar | vector | matrix | array | bus | nonvirtual bus

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals
can have these characteristics:

• Type — Continuous (sample-based) or discrete (sample-based and frame-based).
• Data type — Any data type that Simulink supports. See “Data Types Supported by

Simulink”.
• Dimension — Scalar, one dimensional (vector), two dimensional (matrix), or

multidimensional (array). Display multiple channels within one signal depending on
the dimension. See “Signal Dimensions” and “Determine Output Signal Dimensions”.

Bus Support

You can connect nonvirtual bus and arrays of bus signals to a scope block. To display the
bus signals, use normal or accelerator simulation mode. The scope block displays each
bus element signal in the order the elements appear in the bus, from the top to the
bottom. Nested bus elements are flattened.

To log nonvirtual bus signals with a scope block, set the Save format block parameter to
Dataset. You can use any Save format to log virtual bus signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 ScopeTime Scope

1-1481

Properties

Configuration Properties
The Configuration Properties dialog box controls various properties about the scope
displays. From the scope menu, select View > Configuration Properties.

Main

Open at simulation start — Specify when scope window opens
off (default for Scope) | on (default for Time Scope)

Select this check box to open the scope window when simulation starts.

Programmatic Use

See OpenAtSimulationStart.

Display the full path — Display block path on scope title bar
off (default) | on

Select this check box to display the block path in addition to the block name.

Number of input ports — Number of input ports on scope block
1 (default) | integer

Specify number of input ports on a Scope block, specified as an integer. The maximum
number of input ports is 96.

Programmatic Use

See NumInputPorts.

Layout — Number and arrangement of displays
1-by-1 display (default) | an arrangement of m-by-n axes

Specify number and arrangement of displays. The maximum layout is 16 rows by 16
columns.

To expand the layout grid beyond 4 by 4, click within the dialog box and drag. Maximum
of 16 rows by 16 columns.

1 Blocks — Alphabetical List

1-1482

If the number of displays is equal to the number of ports, signals from each port appear
on separate displays. If the number of displays is less than the number of ports, signals
from additional ports appear on the last display. For layouts with multiple columns and
rows, ports are mapped down then across.
Programmatic Use

See LayoutDimensions.

Sample time — Simulation interval between scope updates
-1 (for inherited) (default) | positive real number

Specify the time internal between updates of the scope display. This property does not
apply to floating scopes and scope viewers.
Programmatic Use

See SampleTime.

Input processing — Channel or element signal processing
Elements as channels (sample based) (default for Scope) | Columns as
channels (frame based) (default for Time Scope)

• Elements as channels (sample based) - Process each element as a unique
sample.

• Columns as channels (frame based) - Process signal values in a channel as a
group of values from multiple time intervals. Frame-based processing is available only
with discrete input signals.

 ScopeTime Scope

1-1483

Programmatic Use

See FrameBasedProcessing.

Maximize axes — Maximize size of plots
Off (default for Scope) | Auto (default for Time Scope) | On

• Auto - If “Title” on page 1-0 and “Y-label” on page 1-0 properties are not
specified, maximize all plots.

• On - Maximize all plots. Values in Title and Y-label are hidden.
• Off - Do not maximize plots.

Programmatic Use

See MaximizeAxes.

Time

Time span — Length of x-axis to display
Auto (default) | User defined

• Auto — Difference between the simulation start and stop times.

The block calculates the beginning and end times of the time range using the “Time
display offset” on page 1-0 and “Time span” on page 1-0 properties. For
example, if you set the Time display offset to 10 and the Time span to 20, the scope
sets the time range from 10 to 30.

• User defined — Enter any value less than the total simulation time.

Programmatic Use

See TimeSpan.

Time span overrun action — Display data beyond visible x-axis
Wrap (default) | Scroll

Specify how to display data beyond the visible x-axis range.

You can see the effects of this option only when plotting is slow with large models or small
step sizes.

• Wrap — Draw a full screen of data from left to right, clear the screen, and then restart
drawing the data from the left.

1 Blocks — Alphabetical List

1-1484

• Scroll — Move data to the left as new data is drawn on the right. This mode is
graphically intensive and can affect run-time performance.

Programmatic Use

See TimeSpanOverrunAction.

Time units — x-axis units
None (default for Scope) | Metric (default for Time Scope) | Seconds

• Metric — Display time units based on the length of “Time span” on page 1-0 .
• Seconds — Display time in seconds.
• None — Do not display time units.

Programmatic Use

See TimeUnits.

Time display offset — x-axis offset
0 (default) | scalar | vector

Offset the x-axis by a specified time value, specified as a real number or vector of real
numbers.

For input signals with multiple channels, you can enter a scalar or vector:

• Scalar — Offset all channels of an input signal by the same time value.
• Vector — Independently offset the channels.

Programmatic Use

See TimeDisplayOffset.

Time-axis labels — Display of x-axis labels
Bottom Displays Only (default for Scope) | All (default for Time Scope) | None

Specify how x-axis (time) labels display:

• All — Display x-axis labels on all y-axes.
• None — Do not display labels. Selecting None also clears the Show time-axis label

check box.

 ScopeTime Scope

1-1485

• Bottom displays only — Display x-axis label on the bottom y-axis.

Dependencies

To activate this property, set:

• “Show time-axis label” on page 1-0 to on.
• “Maximize axes” on page 1-0 to off.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See TimeAxisLabels.

Show time-axis label — Display or hide x-axis labels
off (default for Scope) | on (default for Time Scope)

Select this check box to show the x-axis label for the active display

Dependencies

To activate this property, set “Time-axis labels” on page 1-0 to All or Bottom
Displays Only.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See ShowTimeAxisLabel.

Display

Active display — Selected display
1 (default) | positive integer

Selected display. Use this property to control which display is changed when changing
style properties and axes-specific properties.

Specify the desired display using a positive integer that corresponds to the column-wise
placement index. For layouts with multiple columns and rows, display numbers are
mapped down and then across.

1 Blocks — Alphabetical List

1-1486

Programmatic Use

See “Active display” on page 1-0 .

Title — Display name
%<SignalLabel> (default) | character vector | string

Title for a display, specified as a character vector or string. The default value
%<SignalLabel> uses the input signal name for the title.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See Title.

Show legend — Display signal legend
off (default) | on

Toggle signal legend. The names listed in the legend are the signal names from the model.
For signals with multiple channels, a channel index is appended after the signal name.
Continuous signals have straight lines before their names, and discrete signals have step-
shaped lines.

From the legend, you can control which signals are visible. This control is equivalent to
changing the visibility in the Style properties. In the scope legend, click a signal name to
hide the signal in the scope. To show the signal, click the signal name again. To show only
one signal, right-click the signal name, which hides all other signals. To show all signals,
press Esc.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See ShowLegend.

Show grid — Show internal grid lines
on (default) | off

Select this check box to show grid lines.

 ScopeTime Scope

1-1487

Dependency

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See ShowGrid.

Plot signals as magnitude and phase — Split display into magnitude and
phase plots
off (default) | on

• On — Display magnitude and phase plots. If the signal is real, plots the absolute value
of the signal for the magnitude. The phase is 0 degrees for positive values and 180
degrees for negative values. This feature is useful for complex-valued input signals. If
the input is a real-valued signal, selecting this check box returns the absolute value of
the signal for the magnitude.

• Off — Display signal plot. If the signal is complex, plots the real and imaginary parts
on the same y-axis.

Dependency

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See PlotAsMagnitudePhase.

Y-limits (Minimum) — Minimum y-axis value
-10 (default) | real scalar

Specify the minimum value of the y-axis as a real number.

Tunable: Yes
Dependency

If you select Plot signals as magnitude and phase, this property only applies to the
magnitude plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See YLimits.

1 Blocks — Alphabetical List

1-1488

Y-limits (Maximum) — Maximum y-axis value
10 (default) | real scalar

Specify the maximum value of the y-axis as a real number.

Tunable: Yes

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the
magnitude plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLimits.

Y-label — Y-axis label
none (default for Scope) | 'Amplitude' (default for Time Scope) | character vector |
string

Specify the text to display on the y-axis. To display signal units, add (%<SignalUnits>)
to the label. At the beginning of a simulation, Simulink replaces (%SignalUnits) with
the units associated with the signals.
Example: For a velocity signal with units of m/s, enter Velocity (%<SignalUnits>).

Dependency

If you select Plot signals as magnitude and phase, this property does not apply. The y-
axes are labeled Magnitude and Phase.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLabel.

Logging

Limit data points to last — Limit buffered data values
off and 5000 (default) | on | positive integer

 ScopeTime Scope

1-1489

Specify to limit buffered data values before plotting and saving signals. Data values are
from the end of a simulation. To use this property, you must also specify the number of
data values by entering a positive integer in the text box.

• On — Save specified number of data values for each signal. If the signal is frame-
based, the number of buffered data values is the specified number of data values
multiplied by the frame size.

For simulations with Stop time set to inf, consider selecting Limit data points to
last.

In some cases, for example where the sample time is small, selecting this parameter
can have the effect of plotting signals for less than the entire time range of a
simulation. If a scope plots a portion of your signals, consider increasing the number
of data values to save.

• Off — Save and plot all data values. Clearing Limit data points to last can cause an
out-of-memory error for simulations that generate a large amount of data or for
systems without enough available memory.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

This property limits the data values plotted in the scope and the data values saved to a
MATLAB variable specified in “Variable name” on page 1-0 .
Programmatic Use

See DataLoggingLimitDataPoints and DataLoggingMaxPoints.

Decimation — Reduce amount of scope data to display and save
off, 2 (default) | on | positive integer

• On — Plot and log (save) scope data every Nth data point, where N is the decimation
factor entered in the text box. A value of 1 buffers all data values.

• Off — Save all scope data values.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

This property limits the data values plotted in the scope and the data values saved to a
MATLAB variable specified in “Variable name” on page 1-0 .

1 Blocks — Alphabetical List

1-1490

Programmatic Use

See DataLoggingDecimateData and DataLoggingDecimation.

Log data to workspace — Save data to MATLAB workspace
off (default) | on

Select this check box to activate logging and activate the Variable name, Save format,
and Decimation properties. This property does not apply to floating scopes and scope
viewers.

For an example of saving signals to the MATLAB Workspace using a Scope block, see
“Save Simulation Data Using Floating Scope Block”.

Programmatic Use

See DataLogging.

Variable name — Name of saved data variable
ScopeData (default) | character vector | string

Specify a variable name for saving scope data in the MATLAB workspace, specified as a
character vector or string. This property does not apply to floating scopes and scope
viewers.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

Programmatic Use

See DataLoggingVariableName.

Save format — MATLAB variable format
Dataset (default) | Structure With Time | Structure | Array

Select variable format for saving data to the MATLAB workspace. This property does not
apply to floating scopes and scope viewers.

• Dataset — Save data as a dataset object. Use the Dataset signal format
configuration parameter to select the dataset object. This format does not support
variable-size data, MAT-file logging, or external mode archiving. See
Simulink.SimulationData.Dataset.

 ScopeTime Scope

1-1491

• Structure With Time — Save data as a structure with associated time information.
• Structure — Save data as a structure.
• Array — Save data as an array with associated time information. This format does not

support variable-size data.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

Programmatic Use

See DataLoggingSaveFormat.

Axes Scaling Properties
The Axes Scaling dialog controls the axes limits of the scope. To open the Axes Scaling
properties, in the scope menu, select Tools > Axes Scaling > Axes Scaling Properties.

Axes scaling — Y-axis scaling mode
Manual (default) | Auto | After N Updates

• Manual — Manually scale the y-axis range with the Scale Y-axis Limits toolbar
button.

• Auto — Scale the y-axis range during and after simulation. Selecting this option
displays the “Do not allow Y-axis limits to shrink” on page 1-0 check box. If you
want the y-axis range to increase and decrease with the maximum value of a signal,
set Axes scaling to Auto and clear the Do not allow Y-axis limits to shrink check
box.

• After N Updates — Scale y-axis after the number of time steps specified in the
“Number of updates” on page 1-0 text box (10 by default). Scaling occurs only
once during each run.

Programmatic Use

See AxesScaling.

Do not allow Y-axis limits to shrink — When y-axis limits can change
on (default) | off

Allow y-axis range limits to increase but not decrease during a simulation.

1 Blocks — Alphabetical List

1-1492

Dependency

To use this property, set “Axes scaling” on page 1-0 to Auto.

Number of updates — Number of updates before scaling
10 (default) | integer

Set this property to delay auto scaling the y-axis.

Dependency

To use this property, set “Axes scaling” on page 1-0 to After N Updates.

Programmatic Use

See AxesScalingNumUpdates.

Scale axes limits at stop — When y-axis limits can change
on (default) | off

• On — Scale axes when simulation stops.
• Off — Scale axes continually.

Dependency

To use this property, set “Axes scaling” on page 1-0 to Auto.

Y-axis Data range (%) — Percent of y-axis to use for plotting
80 (default) | integer between [1, 100]

Specify the percentage of the y-axis range used for plotting data. If you set this property
to 100, the plotted data uses the entire y-axis range.

Y-axis Align — Alignment along y-axis
Center (default) | Top | Bottom

Specify where to align plotted data along the y-axis data range when Y-axis Data range
is set to less than 100 percent.

• Top — Align signals with the maximum values of the y-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the y-axis range.

 ScopeTime Scope

1-1493

Autoscale X-axis limits — Scale x-axis range limits
off (default) | on

Scale x-axis range to fit all signal values. If Axes scaling is set to Auto, the data
currently within the axes is scaled, not the entire signal in the data buffer.

X-axis Data range (%) — Percent of x-axis to use for plotting
100 (default) | integer in the range [1, 100]

Specify the percentage of the x-axis range to plot data on. For example, if you set this
property to 100, plotted data uses the entire x-axis range.

X-axis Align — Alignment along x-axis
Center (default) | Top | Bottom

Specify where to align plotted data along the x-axis data range when X-axis Data range
is set to less than 100 percent.

• Top — Align signals with the maximum values of the x-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the x-axis range.

Style Properties
To open the Style dialog box, from the scope menu, select View > Style.

Figure color — Background color for window
black (default) | color

Background color for the scope.

Plot type — How to plot signal
Auto (default for Scope) | Line (default for Time Scope) | Stairs | Stem

When you select Auto, the plot type is a line graph for continuous signals, a stair-step
graph for discrete signals, and a stem graph for Simulink message signals.

Axes colors — Background and axes color for individual displays
black (default) | color

Select the background color for axes (displays) with the first color palette. Select the grid
and label color with the second color palette.

1 Blocks — Alphabetical List

1-1494

Preserve colors for copy to clipboard — Copy scope without changing
colors
off (default) | on

Specify whether to use the displayed color of the scope when copying.

When you select File > Copy to Clipboard, the software changes the color of the scope
to be printer friendly (white background, visible lines). If you want to copy and paste the
scope with the colors displayed, select this check box.

Properties for line — Line to change
Channel 1 (default)

Select active line for setting line style properties.

Visible — Line visibility
on (default) | off

Show or hide a signal on the plot.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0
determine which line is affected.

Line — Line style
solid line (default style) | 0.75 (default width) | yellow (default color)

Select line style, width, and color.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0
determine which line is affected.

Marker — Data point marker style
None (default) | marker shape

Select marker shape.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0
determine which line is affected.

 ScopeTime Scope

1-1495

See Also
Floating Scope | Scope Viewer

Topics
“Scope Blocks and Scope Viewer Overview”
“Simulate a Model Interactively”
“Step Through a Simulation”
“Common Scope Interactions”
“Floating Scope and Scope Viewer Tasks”
“Scope Triggers Panel”
“Cursor Measurements Panel”
“Scope Signal Statistics Panel”
“Scope Bilevel Measurements Panel”
“Peak Finder Measurements Panel”
“Control Scopes Programmatically”
Scope Block with Apple iOS Devices (Simulink Support Package for Apple iOS Devices)
“Scope Block with Android Devices” (Simulink Support Package for Android Devices)

Introduced in R2015b

1 Blocks — Alphabetical List

1-1496

Second-Order Integrator, Second-Order
Integrator Limited
Integrate input signal twice

Library
Continuous

Description
The Second-Order Integrator block and the Second-Order Integrator Limited block solve
the second-order initial value problem:

d x

dt

u

dx

dt
dx

x x

t

o

t o

2

2

0

0

=

=

=

=

=

,

,

,

where u is the input to the system. The block is therefore a dynamic system with two
continuous states: x and dx/dt.

Note These two states have a mathematical relationship, namely, that dx/dt is the
derivative of x. In order to satisfy this relationship throughout the simulation, Simulink
places various constraints on the block parameters and behavior.

 Second-Order Integrator, Second-Order Integrator Limited

1-1497

The Second-Order Integrator Limited block is identical to the Second-Order Integrator
block with the exception that it defaults to limiting the states based on the specified
upper and lower limits. For more information, see “Limiting the States” on page 1-1499.

Simulink software can use a number of different numerical integration methods to
compute the outputs of the block. Each has advantages for specific applications. Use the
Solver pane of the Configuration Parameters dialog box to select the technique best
suited to your application. (For more information, see “Solver Types”.) The selected solver
computes the states of the Second-Order Integrator block at the current time step using
the current input value.

Use the block parameter dialog box to:

• Specify whether the source of each state initial condition is internal or external
• Specify a value for the state initial conditions
• Define upper and lower limits on either or both states
• Specify absolute tolerances for each state
• Specify names for both states
• Choose an external reset condition
• Enable zero-crossing detection
• Reinitialize dx/dt when x reaches saturation
• Specify that Simulink disregard the state limits and external reset for linearization

operations

Defining Initial Conditions
You can define the initial conditions of each state individually as a parameter on the block
dialog box or input one or both of them from an external signal.

• To define the initial conditions of state x as a block parameter, use the Initial
condition source x drop-down menu to select internal and enter the value in the
Initial condition x field.

• To provide the initial conditions from an external source for state x, specify the Initial
condition source x parameter as external. An additional input port appears on the
block.

• To define the initial conditions of state dx/dt as a block parameter, use the Initial
condition source dx/dt drop-down menu to select internal and enter the value in
the Initial condition dx/dt field.

1 Blocks — Alphabetical List

1-1498

• To provide the initial conditions from an external source for state dx/dt, specify Initial
condition source dx/dt as external. An additional input port appears on the block.

If you choose to use an external source for both state initial conditions, your block
appears as follows.

Note

• Simulink does not allow initial condition values of inf or NaN.
• If you limit state x or state dx/dt by specifying saturation limits (see “Limiting the

States” on page 1-1499) and one or more initial conditions are outside the
corresponding limits, then the respective states are initialized to the closest valid
value and a set of consistent initial conditions is calculated.

Limiting the States
When modeling a second-order system, you may need to limit the block states. For
example, the motion of a piston within a cylinder is governed by Newton's Second Law
and has constraints on the piston position (x). With the Second-Order Integrator block,
you can limit the states x and dx/dt independent of each other. You can even change the
limits during simulation; however, you cannot change whether or not the states are
limited. An important rule to follow is that an upper limit must be strictly greater than its
corresponding lower limit.

The block appearance changes when you limit one or both states. Shown below is the
appearance of the block with both states limited.

 Second-Order Integrator, Second-Order Integrator Limited

1-1499

For each state, you can use the block parameter dialog box to set appropriate saturation
limits.

Limiting x only
If you use the Second-Order Integrator Limited block, both states are limited by default.
But you can also manually limit state x on the Second-Order Integrator block by selecting
Limit x and entering the limits in the appropriate parameter fields.

1 Blocks — Alphabetical List

1-1500

The block then determines the values of the states as follows:

• When x is less than or equal to its lower limit, the value of x is held at its lower limit
and dx/dt is set to zero.

• When x is in between its lower and upper limits, both states follow the trajectory given
by the second-order ODE.

 Second-Order Integrator, Second-Order Integrator Limited

1-1501

• When x is greater than or equal to its upper limit, the value of x is held at its upper
limit and dx/dt is set to zero.

You can choose to reinitialize dx/dt to a new value at the time when x reaches saturation.
See “Reinitializing dx/dt when x reaches saturation” on page 1-1506

Limiting dx/dt only
As with state x, state dx/dt is set as limited by default on the dx/dt pane of the Second-
Order Integrator Limited parameter dialog box. You can manually set this parameter,
Limit dx/dt, on the Second-Order Integrator block. In either case, you must enter the
appropriate limits for dx/dt.

1 Blocks — Alphabetical List

1-1502

If you limit only the state dx/dt, then the block determines the values of dx/dt as follows:

• When dx/dt is less than or equal to its lower limit, the value of dx/dt is held at its lower
limit.

• When dx/dt is in between its lower and upper limits, both states follow the trajectory
given by the second-order ODE.

 Second-Order Integrator, Second-Order Integrator Limited

1-1503

• When dx/dt is greater than or equal to its upper limit, the value of dx/dt is held at its
upper limit.

When state dx/dt is held at it upper or lower limit, the value of x is governed by the first-
order initial value problem:

dx

dt
L

x t xL L

=

=

,

() ,

where L is the dx/dt limit (upper or lower), tL is the time when dx/dt reaches this limit,
and xL is the value of state x at that time.

Limiting Both States
When you limit both states, Simulink maintains mathematical consistency of the states by
limiting the allowable values of the upper and lower limits for dx/dt. Such limitations are
necessary to satisfy the following constraints:

• When x is at its saturation limits, the value of dx/dt must be zero.
• In order for x to leave the upper limit, the value of dx/dt must be strictly negative.
• In order for x to leave its lower limit, the value of dx/dt must be strictly positive.

Consequently, for such cases, the upper limit of dx/dt must be strictly positive and the
lower limit of dx/dt must be strictly negative.

When both states are limited, the block determines the states as follows:

• Whenever x reaches its limits, the resulting behavior is the same as that described in
“Limiting x only”.

• Whenever dx/dt reaches one of its limits, the resulting behavior is the same as that
described in “Limiting dx/dt only” — including the computation of x using a first-order
ODE when dx/dt is held at one of its limits. In such cases, when x reaches one of its
limits, it is held at that limit and dx/dt is set to zero.

• Whenever both reach their respective limits simultaneously, the state x behavior
overrides dx/dt behavior to maintain consistency of the states.

When you limit both states, you can choose to reinitialize dx/dt at the time when state x
reaches saturation. If the reinitialized value is outside specified limits on dx/dt, then dx/dt

1 Blocks — Alphabetical List

1-1504

is reinitialized to the closest valid value and a consistent set of initial conditions is
calculated. See “Reinitializing dx/dt when x reaches saturation” on page 1-1506

Resetting the State
The block can reset its states to the specified initial conditions based on an external
signal. To cause the block to reset its states, select one of the External reset choices on
the Attributes pane. A trigger port appears on the block below its input port and
indicates the trigger type.

• Select rising to reset the states when the reset signal rises from zero to a positive
value, from a negative to a positive value, or a negative value to zero.

• Select falling to reset the states when the reset signal falls from a positive value to
zero, from a positive to a negative value, or from zero to negative.

• Select either to reset the states when the reset signal changes from zero to a
nonzero value or changes sign.

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results
(see “Algebraic Loops”).

Enabling Zero-Crossing Detection
This parameter controls whether zero-crossing detection is enabled for this block. By
default, the Enable zero-crossing detection parameter is selected on the Attributes
pane. However, this parameter is only in affect if the Zero-crossing control, on the
Solver pane of the Configuration Parameters dialog, is set to Use local settings. For
more information, see “Zero-Crossing Detection”.

 Second-Order Integrator, Second-Order Integrator Limited

1-1505

Reinitializing dx/dt when x reaches saturation
For certain modeling applications, dx/dt must be reinitialized when state x reaches its
limits in order to pull x out of saturation immediately. You can achieve this by selecting
Reinitialize dx/dt when x reaches saturation on the Attributes pane.

If this option is on, then at the instant when x reaches saturation, Simulink checks
whether the current value of the dx/dt initial condition (parameter or signal) allows the
state x to leave saturation immediately. If so, Simulink reinitializes state dx/dt with the
value of the initial condition (parameter or signal) at that instant. If not, Simulink ignores
this parameter at the current instant and sets dx/dt to zero to make the block states
consistent.

This parameter only applies at the time when x actually reaches saturation limit. It does
not apply at any future time when x is being held at saturation.

Refer to the sections on limiting the states for more information. For an example, see the
sldemo_bounce example.

Disregarding State Limits and External Reset for Linearization
For cases where you simplify your model by linearizing it, you can have Simulink
disregard the limits of the states and the external reset by selecting Ignore state limits
and the reset for linearization.

Specifying the Absolute Tolerance for the Block Outputs
By default Simulink software uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “Error Tolerances for Variable-Step Solvers”) to
compute the output of the integrator blocks. If this value does not provide sufficient error
control, specify a more appropriate value for state x in the Absolute tolerance x field
and for state dx/dt in the Absolute tolerance dx/dt field of the parameter dialog box.
Simulink uses the values that you specify to compute the state values of the block.

Specifying the Display of the Output Ports
You can control whether or not to display the x or the dx/dt output port using the
ShowOutput parameter. You can display one output port or both; however, you must
select at least one.

1 Blocks — Alphabetical List

1-1506

matlab:sldemo_bounce

Specifying the State Names
You can specify the name of x states and dx/dt states using the StateNameX and
StateNameDXDT parameters. However, you must specify names for either both or
neither; you cannot specify names for just x or just dx/dt. Both state names must have
identical type and length. Furthermore, the number of names must evenly divide the
number of states.

Selecting All Options
When you select all options, the block icon looks like this.

Data Type Support
The Integrator block accepts and outputs signals of type double on its data ports. The
external reset port accepts signals of type double or Boolean.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
• “Initial condition source x” on page 1-1508
• “Initial condition x” on page 1-1509

 Second-Order Integrator, Second-Order Integrator Limited

1-1507

• “Limit x” on page 1-1509
• “Upper limit x” on page 1-1510
• “Lower limit x” on page 1-1510
• “Wrap x” on page 1-1511
• “Wrapped upper value x” on page 1-1512
• “Wrapped lower value x” on page 1-1512
• “Absolute tolerance x” on page 1-1512
• “State name x” on page 1-1513
• “Initial condition source dx/dt” on page 1-1514
• “Initial condition dx/dt” on page 1-1514
• “Limit dx/dt” on page 1-1515
• “Upper limit dx/dt” on page 1-1515
• “Lower limit dx/dt” on page 1-1516
• “Absolute tolerance dx/dt” on page 1-1516
• “State name dx/dt” on page 1-1517
• “External reset” on page 1-1517
• “Enable zero-crossing detection” on page 1-1518
• “Reinitialize dx/dt when x reaches saturation” on page 1-1519
• “Ignore state limits and the reset for linearization” on page 1-1519
• “Show output” on page 1-1520
• “Characteristics” on page 1-1520

Initial condition source x
Specify the initial condition source for state x.

Default: internal

internal
Get the initial conditions of state x from the Initial condition x parameter.

external
Get the initial conditions of state x from an external block.

1 Blocks — Alphabetical List

1-1508

Simulink software does not allow the initial condition of this block to be inf or NaN.

Selecting internal enables the Initial condition x parameter.

Selecting external disables the Initial condition x parameter..

Parameter: ICSourceX
Type: character vector
Value: 'internal' | 'external'
Default: 'internal'

Initial condition x
Specify the initial condition of state x.

Default: 0.0

Simulink software does not allow the initial condition of this block to be inf or NaN.

Setting Initial condition source x to internal enables this parameter.

Setting Initial condition source x to external disables this parameter.

Parameter: ICX
Type: scalar or vector
Value: '0'
Default: '0'

Limit x
Limit state x of the block to a value between the Lower limit x and Upper limit x
parameters.

Default: Off for Second-Order Integrator, On for Second-Order Integrator Limited

 Second-Order Integrator, Second-Order Integrator Limited

1-1509

 On
Limit state x to a value between the Lower limit x and Upper limit x parameters.

 Off
Do not limit the state x output to a value between the Lower limit x and Upper limit
x parameters.

This parameter enables Upper limit x parameter.

This parameter enables Lower limit x parameter.

Parameter: LimitX
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Upper limit x
Specify the upper limit of state x.

Default: inf for Second-Order Integrator, 1 for Second-Order Integrator Limited

The upper saturation limit for state x must be strictly greater than the lower saturation
limit.

Limit x enables this parameter.

Parameter: UpperLimitX
Type: scalar or vector
Value: 'inf'
Default: 'inf'

Lower limit x
Specify the lower limit of state x.

1 Blocks — Alphabetical List

1-1510

Default: –inf for Second-Order Integrator, 0 for Second-Order Integrator Limited

The lower saturation limit for state x must be strictly less than the upper saturation limit.

Limit x enables this parameter.

Parameter: LowerLimitX
Type: scalar or vector
Value: '-inf'
Default: '-inf'

Wrap x
Enable wrapping of x between the Wrapped upper value x and Wrapped lower value x
parameters. Enabling wrapping of x eliminates the need for zero-crossing detection,
reduces solver resets, improves solver performance and accuracy, and increases
simulation time span when modeling rotary and cyclic state trajectories.

Default: off

 On
Enable wrapping of x between the Wrapped upper value x and Wrapped lower
value x parameters.

If you specify Wrapped upper value x as inf and Wrapped lower value x as -inf,
wrapping will never occur.

 Off
Do not enable wrapping of x.

This parameter enables Wrapped upper value x.

This parameter enables Wrapped lower value x.

Parameter: WrapX
Type: character vector

 Second-Order Integrator, Second-Order Integrator Limited

1-1511

Value: 'off' | 'on'
Default: 'off'

Wrapped upper value x
Specify the upper value for wrapping x.

Default: 'pi'

Wrap x enables this parameter.

Parameter: WrappedUpperValueX
Type: scalar or vector
Value: '2*pi'
Default: 'pi'

Wrapped lower value x
Specify the lower value for wrapping x.

Default: -pi

Wrap x enables this parameter.

Parameter: WrappedLowerValueX
Type: scalar or vector
Value: '0'
Default: '-pi'

Absolute tolerance x
Specify the absolute tolerance for computing state x.

Default: auto

• You can enter auto, –1, a positive real scalar or vector.

1 Blocks — Alphabetical List

1-1512

• If you enter auto or –1, Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute state x.

• If you enter a real scalar value, that value overrides the absolute tolerance in the
Configuration Parameters dialog box and is used for computing all x states.

• If you enter a real vector, the dimension of that vector must match the dimension of
state x. These values override the absolute tolerance in the Configuration Parameters
dialog box.

Parameter: AbsoluteToleranceX
Type: character vector, scalar, or vector
Value: 'auto' | '-1'| any positive real scalar or vector
Default: 'auto'

State name x
Assign a unique name to state x.

Default: ''

• To assign a name to a single state, enter the name between quotes, for example,
position'.

• To assign names to multiple x states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• If you specify a state name for x, you must also specify a state name for dx/dt.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can

specify fewer names than x states, but you cannot specify more names than x states.
For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states. However,
you must be consistent and apply the same scheme to the state names for dx/dt.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector or a cell array.

Parameter: StateNameX
Type: character vector

 Second-Order Integrator, Second-Order Integrator Limited

1-1513

Value: ' ' | user-defined
Default: ' '

Initial condition source dx/dt
Specify the initial condition source for state dx/dt.

Default: internal

internal
Get the initial conditions of state dx/dt from the Initial condition dx/dt parameter.

external
Get the initial conditions of state dx/dt from an external block.

Simulink software does not allow the initial condition of this block to be inf or NaN.

Selecting internal enables the Initial condition dx/dt parameter.

Selecting external disables the Initial condition dx/dt parameter.

Parameter: ICSourceDXDT
Type: character vector
Value: 'internal' | 'external'
Default: 'internal'

Initial condition dx/dt
Specify the initial condition of state dx/dt.

Default: 0.0

Simulink software does not allow the initial condition of this block to be inf or NaN.

Setting Initial condition source dx/dt to internal enables this parameter.

Setting Initial condition source dx/dt to external disables this parameter.

1 Blocks — Alphabetical List

1-1514

Parameter: ICDXDT
Type: scalar or vector
Value: '0'
Default: '0'

Limit dx/dt
Limit the dx/dt state of the block to a value between the Lower limit dx/dt and Upper
limit dx/dt parameters.

Default: Off for Second-Order Integrator, On for Second-Order Integrator Limited

 On
Limit state dx/dt of the block to a value between the Lower limit dx/dt and Upper
limit dx/dt parameters.

 Off
Do not limit state dx/dt of the block to a value between the Lower limit dx/dt and
Upper limit dx/dt parameters.

If you set saturation limits for x, then the interval defined by the Upper limit dx/dt and
Lower limit dx/dt must contain zero.

This parameter enables Upper limit dx/dt.

This parameter enables Lower limit dx/dt.

Parameter: LimitDXDT
Type: character vector
Value: 'Off' | 'On'
Default: 'Off'

Upper limit dx/dt
Specify the upper limit for state dx/dt.

Default: 'inf'

 Second-Order Integrator, Second-Order Integrator Limited

1-1515

If you limit x, then this parameter must have a strictly positive value.

Limit dx/dt enables this parameter.

Parameter: UpperLimitDXDT
Type: scalar or vector
Value: 'inf'
Default: 'inf'

Lower limit dx/dt
Specify the lower limit for state dx/dt.

Default: '-inf'

If you limit x, then this parameter must have a strictly negative value.

Limit dx/dt enables this parameter.

Parameter: LowerLimitDXDT
Type: scalar or vector
Value: '-inf'
Default: '-inf'

Absolute tolerance dx/dt
Specify the absolute tolerance for computing state dx/dt.

Default: auto

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute the dx/dt output
of the block.

• If you enter a numeric value, that value overrides the absolute tolerance in the
Configuration Parameters dialog box.

1 Blocks — Alphabetical List

1-1516

Parameter: AbsoluteToleranceDXDT
Type: character vector, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State name dx/dt
Assign a unique name to state dx/dt.

Default: ''

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple dx/dt states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• If you specify a state name for dx/dt, you must also specify a state name for x.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can

specify fewer names than dx/dt states, but you cannot specify more names than dx/dt
states. For example, you can specify two names in a system with four states. The first
name applies to the first two states and the second name to the last two states.
However, you must be consistent and apply the same scheme to the state names for x.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector or a cell array.

Parameter: StateNameDXDT
Type: character vector
Value: ' ' | user-defined
Default: ' '

External reset
Reset the states to their initial conditions when a trigger event occurs in the reset signal.

Default: none

 Second-Order Integrator, Second-Order Integrator Limited

1-1517

none
Do not reset the state to initial conditions.

rising
Reset the state when the reset signal rises from a zero to a positive value or from a
negative to a positive value.

falling
Reset the state when the reset signal falls from a positive value to zero or from a
positive to a negative value.

either
Reset the state when the reset signal changes from zero to a nonzero value or
changes sign.

Parameter: ExternalReset
Type: character vector
Value: 'none' | 'rising' | 'falling' | 'either'
Default: 'none'

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Default: On

 On
Enable zero-crossing detection.

 Off
Do not enable zero-crossing detection.

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-1518

Reinitialize dx/dt when x reaches saturation
At the instant when state x reaches saturation, reset dx/dt to its current initial conditions.

Default: Off

 On
Reset dx/dt to its initial conditions when x becomes saturated.

 Off
Do not reset dx/dt to its initial conditions when x becomes saturated.

The dx/dt initial condition must have a value that enables x to leave saturation
immediately. Otherwise, Simulink ignores the initial conditions for dx/dt to preserve
mathematical consistency of block states.

Parameter: ReinitDXDTwhenXreachesSaturation
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Ignore state limits and the reset for linearization
For linearization purposes, have Simulink ignore the specified state limits and the
external reset.

Default: Off

 On
Ignore the specified state limits and the external reset.

 Off
Apply the specified state limits and the external reset setting.

Parameter: IgnoreStateLimitsAndResetForLinearization
Type: character vector

 Second-Order Integrator, Second-Order Integrator Limited

1-1519

Value: 'off' | 'on'
Default: 'off'

Show output
Specify the output ports on the block.

Default: both

both
Show both x and dx/dt output ports.

x
Show only the x output port.

dx/dt
Show only the dx/dt output port.

Parameter: ShowOutput
Type: character vector
Value: 'both' | 'x' | 'dxdt'
Default: 'both'

Characteristics
Data Types Double
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced in R2010a

1 Blocks — Alphabetical List

1-1520

Selector
Select input elements from vector, matrix, or multidimensional signal
Library: Simulink / Signal Routing

Description
The Selector block generates as output selected or reordered elements of an input vector,
matrix, or multidimensional signal.

Based on the value you enter for the Number of input dimensions parameter, a table of
indexing settings is displayed. Each row of the table corresponds to one of the input
dimensions in Number of input dimensions. For each dimension, you define the
elements of the signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. When you configure the Selector block for multidimensional signal
operations, the block icon changes.

For example, assume a 6-D signal with a one-based index mode. The table of the Selector
block dialog changes to include one row for each dimension. If you define dimensions
with these entries:

Row Index Option Index Output Size
1 Select all
2 Starting index

(dialog)
2 5

3 Index vector
(dialog)

[1 3 5]

4 Starting index
(port)

 8

 Selector

1-1521

Row Index Option Index Output Size
5 Index vector

(port)

6 Starting and
ending indices
(port)

The output will be Y=U(1:end,2:6,[1 3 5],Idx4:Idx4+7,Idx5,
Idx6(1):Idx6(2)), where Idx4, Idx5, and Idx6 are the index ports for dimensions 4,
5, and 6.

You can use an array of buses as an input signal to a Selector block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | multidimensional

Input signal and source of elements to output signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

IndxN — Nth index signal
scalar | vector | matrix

External port specifying an index for the selection of the corresponding output element.

Dependencies

To enable an external index port, in the corresponding row of the Index Option table, set
Index Option to Index vector (port), Starting index (port), or Starting
and ending indices (port).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point | enumerated

1 Blocks — Alphabetical List

1-1522

Output
Port_1 — Output signal
scalar | vector | matrix | multidimensional

Output signal generated from selected or reordered elements of input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Number of input dimensions — Number of dimensions of the input signal
1 (default) | integer

Specifies the number of dimensions of the output signal.

Command-Line Information
Parameter: NumberOfDimensions
Type: character vector
Values: integer
Default: '1'

Index mode — Index mode
One-based (default) | Zero-based

Specifies the indexing mode. If One-based is selected, an index of 1 specifies the first
element of the input vector. If Zero-based is selected, an index of 0 specifies the first
element of the input vector.

Index Option — Index method for elements
Index vector (dialog) (default) | Select all | Index vector (port) |
Starting index (dialog) | Starting index (port) | Starting and ending
indices (port)

Defines, by dimension, how the elements of the signal are to be indexed. From the list,
select:

• Select all

No further configuration is required. All elements are selected.

 Selector

1-1523

• Index vector (dialog)

Enables the Index column. Enter the vector of indices of the elements.
• Index vector (port)

No further configuration is required.
• Starting index (dialog)

Enables the Index and Output Size columns. Enter the starting index of the range of
elements to select in the Index column and the number of elements to select in the
Output Size column.

• Starting index (port)

Enables the Output Size column. Enter the number of elements to be selected in the
Output Size column.

• Starting and ending indices (port)

No further configuration is required.

Using this option results in a variable-size output signal. When you update, the output
dimension is set to be the same as the input signal dimension. During execution, the
output dimension is updated based on the signal feeding the index.

When logging output signal data, signals not selected are padded with NaN values.

The Index and Output Size columns appear as needed.

Command-Line Information
Parameter: IndexOptionArray
Type: character vector
Values: 'Select all' | 'Index vector (dialog)' | 'Index option (port)' |
'Starting index (dialog)' | 'Starting index (port)' | Starting and
ending indices (port)
Default: 'Index vector (dialog)'

Index — Index of elements
1 (default) | integer

If the Index Option is Index vector (dialog), enter the index of each element you
are interested in.

1 Blocks — Alphabetical List

1-1524

If the Index Option is Starting index (dialog), enter the starting index of the
range of elements to be selected.

Command-Line Information
Parameter: IndexParamArray
Type: character vector
Values: cell array
Default: '{ }'

Output Size — Width of the block output signal
1 (default) | integer

Specifies the width of the block output signal.

Command-Line Information
Parameter: OutputSizeArray
Type: character vector
Values: cell array
Default: '{ }'

Input port size — Width of the input signal
3 (default) | integer

Specify the width of the block input signal for 1-D signals. Enter -1 to inherit from the
driving block.

Command-Line Information
Parameter: InputPortWidth
Type: character vector
Values: integer
Default: '1'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

 Selector

1-1525

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Selector.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

1 Blocks — Alphabetical List

1-1526

See Also
Assignment | Bus Selector | Switch

Introduced before R2006a

 Selector

1-1527

Serializer1D
Convert vector signal to scalar or smaller vectors

Library
HDL Coder / HDL Operations

Description
The Serializer1D block converts a slower vector signal into a faster stream of scalar
signals or smaller size vector signals based on the Ratio and Idle Cycle values. To match
the faster serialized output, the sample time changes according to this equation:

Output Sample Time Input Sample Time Ratio Idle Cycles = +/ ()

Consider this example where the input data is a vector of size 4 and the Ratio is set to 4.

1 Blocks — Alphabetical List

1-1528

The output data serializes each of the vector signals into four scalar signals. The sample

time at the output is: Output Sample Time Input Sample Time = / 4 .

To add idle cycles at the end of each output, for Idle Cycles, specify an integer greater
than zero. Consider this example with Ratio set to 4 and Idle Cycles set to 2.

For each slow vector signal, the output has six fast cycles consisting of the four serialized
scalar signals and two idle cycles. The sample time at the output is

Output Sample Time Input Sample Time = / 6 .

The Serializer1D block provides three control signals: ValidIn, ValidOut, and StartOut.
You can use ValidIn to control ValidOut and StartOut. The serialized output does not

 Serializer1D

1-1529

depend on ValidIn. To determine whether the output serialized data is valid, use ValidIn
and ValidOut. If you give a high input to ValidIn, and if there are no idle cycles,
ValidOut gives a high output, which indicates that the output serialized data is valid.

Consider an example that has input data as a vector of size 4, Ratio set to 4, Idle Cycles
set to 2, and uses all three control signals.

For the first input vector, ABCD, ValidIn is false. StartOut and ValidOut become false.
This means that the output data values are not valid. In the waveform, the data values are
represented as X, which correspond to don’t care values.

For the second input vector, ABCE, ValidIn is true. The output data serializes the vector
into four scalar signals. The control signal StartOut becomes true at output A to indicate
the start of deserialization. In the next cycle, the StartOut signal becomes false.
ValidOut is true for all four output signals indicating valid output data for the four cycles.

1 Blocks — Alphabetical List

1-1530

ValidOut becomes false for the idle cycles, and the output data values are don’t care
values.

HDL Code Generation
For simulation results that match the generated HDL code, in the Solver pane of the
Configuration Parameters dialog box, clear the checkbox for Treat each discrete rate as
a separate task. When the checkbox is cleared, single-tasking mode is enabled.

If you simulate this block with Treat each discrete rate as a separate task selected,
multitasking mode is enabled. The output data can update in the same cycle but in the
generated HDL code, the output data is updated one cycle later.

Parameters
Ratio

Serialization factor, specified as a positive scalar. Default is 1.

The ratio is equal to the size of the input vector divided by the size of the output
vector. Input vector size must be divisible by the ratio.

Idle Cycles
Number of idle cycles to add at the end of each output. Default is 0.

ValidIn
Activates the ValidIn port. Default is off.

StartOut
Activates the StartOut port. Default is off.

ValidOut
Activates the ValidOut port. Default is off.

Input data port dimensions (-1 for inherited)
Size of the input data signal. Input vector size must be divisible by the ratio. By
default, the block inherits size based on the context within the model.

Input sample time (-1 for inherited)
Time interval between sample time hits, or another appropriate sample time such as
continuous. By default, the block inherits sample time based on context within the
model. For more information, see “Sample Time”.

 Serializer1D

1-1531

Input signal type
Input signal type of the block, specified as auto, real, or complex. Default is auto.

Ports
P

Input signal to serialize. Bus data types are not supported.
ValidIn

Input control signal. This port is available when you select the ValidIn check box.

Data type: Boolean
S

Serialized output signal. Bus data types are not supported.
StartOut

Output control signal that indicates where to start deserialization. You can use this
signal as the StartIn input to the Deserializer1D block. To use this port, select the
StartOut check box.

Data type: Boolean
ValidOut

Output control signal that indicates valid output signal. You can use this signal as the
ValidIn input to the Deserializer1D block. This port is available when you select the
ValidOut check box.

Data type: Boolean

See Also
Deserializer1D

Introduced in R2014b

1 Blocks — Alphabetical List

1-1532

S-Function
Include S-function in model

Library
User-Defined Functions

Description
The S-Function block provides access to S-functions from a block diagram. The S-function
named as the S-function name parameter can be a Level-1 MATLAB or a Level-1 or
Level-2 C MEX S-function (see “S-Function Basics” for information on how to create S-
functions).

Note Use the Level-2 MATLAB S-Function block to include a Level-2 MATLAB S-function
in a block diagram.

The S-Function block allows additional parameters to be passed directly to the named S-
function. The function parameters can be specified as MATLAB expressions or as
variables separated by commas. For example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in brackets, the list of
parameters must not be enclosed in brackets.

The S-Function block displays the name of the specified S-function and the number of
input and output ports specified by the S-function. Signals connected to the inputs must
have the dimensions specified by the S-function for the inputs.

 S-Function

1-1533

Data Type Support
Depends on the implementation of the S-Function block.

Parameters
S-function name

The S-function name.
S-function parameters

Additional S-function parameters. See the preceding block description for information
on how to specify the parameters.

S-function modules
This parameter applies only if this block represents a C MEX S-function and you
intend to use the Simulink Coder software to generate code from the model
containing the block. If you use it, when you are ready to generate code, you must
force the coder to rebuild the top model as explained in “Control Regeneration of Top
Model Code” (Simulink Coder).

For more information on using this parameter, see “Specify Additional Source Files
for an S-Function” (Simulink Coder).

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point
Sample Time Depends on contents of S-function
Direct Feedthrough Depends on contents of S-function
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

1 Blocks — Alphabetical List

1-1534

Introduced before R2006a

 S-Function

1-1535

S-Function Builder
Integrate C or C++ code to create S-functions

Library
User-Defined Functions

Description
The S-function builder integrates new or existing C or C++ code and creates a C MEX S-
function from specifications you provide. See “Build S-Functions Automatically” for
detailed instructions on using the S-Function Builder block to generate an S-function.

Instances of the S-Function Builder block also serve as wrappers for generated S-
functions in Simulink models. When simulating a model containing instances of an S-
Function Builder block, Simulink software invokes the generated S-function in order to
call your C or C++ code in the instance's mdlStart, mdlOutputs, mdlDerivatives,
mdlUpdate and mdlTerminate methods. To learn how Simulink engine interacts with S-
functions, see “Simulink Engine Interaction with C S-Functions”.

Note The S-Function Builder block does not support masking. However, you can mask a
Subsystem block that contains an S-Function Builder block. For more information, see
“Dynamic Masked Subsystem”.

1 Blocks — Alphabetical List

1-1536

Data Type Support
The S-Function Builder can accept and output complex, 1-D, or 2-D signals and nonvirtual
buses. For each of these cases, the signals must have a data type that Simulink supports.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
See “S-Function Builder Dialog Box” in the online documentation for information on using
the S-Function Builder block's parameter dialog box.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point
Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

 S-Function Builder

1-1537

Shift Arithmetic
Shift bits or binary point of signal

Library
Logic and Bit Operations

Description

Supported Shift Operations
The Shift Arithmetic block can shift the bits or the binary point of an input signal, or both.

For example, shifting the binary point on an input of data type sfix(8), by two places to
the right and left, gives these decimal values.

Shift Operation Binary Value Decimal Value
No shift (original number) 11001.011 –6.625
Binary point shift right by two places 1100101.1 –26.5
Binary point shift left by two places 110.01011 –1.65625

This block performs arithmetic bit shifts on signed numbers. Therefore, the block recycles
the most significant bit for each bit shift. Shifting the bits on an input of data type
sfix(8), by two places to the right and left, gives these decimal values.

Shift Operation Binary Value Decimal Value
No shift (original number) 11001.011 –6.625
Bit shift right by two places 11110.010 –1.75

1 Blocks — Alphabetical List

1-1538

Shift Operation Binary Value Decimal Value
Bit shift left by two places 00101.100 5.5

Data Type Support
The block supports input signals of the following data types:

Input Signal Supported Data Types
u • Floating point

• Built-in integer
• Fixed point

s • Floating point
• Built-in integer
• Fixed-point integer

The following rules determine the output data type:

Data Type of Input
u

Output Data Type

Floating point Same as input u
Built-in integer or
fixed point

• Sign of u
• Word length of u
• Slope of u * 2^(max(binary points to shift))
• Bias of u * 2^(max(binary points to shift – bits to

shift)) , for bit shifts where the direction is bidirectional or
right

• Bias of u * 2^(max(binary points to shift + bits to
shift)), for bit shifts where the direction is left

The block parameters support the following data types:

 Shift Arithmetic

1-1539

Parameter Supported Data Types
Bits to shift: Number • Built-in integer

• Fixed-point integer
Binary points to shift • Built-in integer

• Fixed-point integer

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Bits to shift: Source

Specify whether to enter the bits to shift on the dialog box or to inherit the values
from an input port.

Bits to shift: Direction
Specify the direction in which to shift bits: left, right, or bidirectional.

Bits to shift: Number
Specify a scalar, vector, or array of bit shift values. This parameter is available when
Bits to shift: Source is Dialog.

If the direction is... Then...
Left or Right Use positive integers to specify bit

shifts.
Bidirectional Use positive integers for right shifts

and negative integers for left shifts.

Binary points to shift
Specify an integer number of places to shift the binary point of the input signal. A
positive value indicates a right shift, while a negative value indicates a left shift.

Diagnostic for out-of-range shift value
Specify whether to produce a warning or error during simulation when the block
contains an out-of-range shift value. Options include:

• None — Simulink software takes no action.

1 Blocks — Alphabetical List

1-1540

• Warning — Simulink software displays a warning and continues the simulation.
• Error — Simulink software terminates the simulation and displays an error

For more information, see “Simulation and Accelerator Mode Results for Out-of-Range
Bit Shift Values” on page 1-1542.

Check for out-of-range 'Bits to shift' in generated code
Select this check box to include conditional statements in the generated code that
protect against out-of-range bit shift values. This check box is available when Bits to
shift: Source is Input port.

For more information, see “Code Generation for Out-of-Range Bit Shift Values” on
page 1-1544.

Out-of-Range Bit Shifts

Definition of an Out-of-Range Bit Shift
Suppose that WL is the input word length. The shaded regions in the following diagram
show out-of-range bit shift values for left and right shifts.

Similarly, the shaded regions in the following diagram show out-of-range bit shift values
for bidirectional shifts.

 Shift Arithmetic

1-1541

The diagnostic for out-of-range bit shifts responds as follows, depending on the mode of
operation:

Mode Diagnostic for out-of-range shift value
None Warning Error

Simulation Do not report any
warning or error.

Report a warning but
continue simulation.

Report an error and
stop simulation.

Accelerator modes and
code generation

Has no effect.

Simulation and Accelerator Mode Results for Out-of-Range Bit
Shift Values
Suppose that U is the input, WL is the input word length, and Y is the output. The output
for an out-of-range bit shift value for left shifts is as follows:

1 Blocks — Alphabetical List

1-1542

Similarly, the output for an out-of-range bit shift value for right shifts is as follows:

For bidirectional shifts, the output for an out-of-range bit shift value is as follows:

 Shift Arithmetic

1-1543

Code Generation for Out-of-Range Bit Shift Values
For the generated code, the method for handling out-of-range bit shifts depends on the
setting of Check for out-of-range 'Bits to shift' in generated code.

Check Box
Setting

Generated Code Simulation Results Compared
to Generated Code

Selected Includes conditional statements
to protect against out-of-range bit
shift values.

Simulation and Accelerator mode
results match those of code
generation.

Cleared Does not protect against out-of-
range bit shift values.

• For in-range values, simulation
and Accelerator mode results
match those of code
generation.

• For out-of-range values, the
code generation results are
compiler specific.

For right shifts on signed negative inputs, most C compilers use an arithmetic shift
instead of a logical shift. Generated code for the Shift Arithmetic block depends on this
compiler behavior.

1 Blocks — Alphabetical List

1-1544

Examples

Block Output for Right Bit Shifts
The following model compares the behavior of right bit shifts using the dialog box versus
the block input port.

The key block parameter settings of the Constant blocks are:

Block Parameter Setting
Constant and Constant1 Constant value 124

Output data type int8
Dynamic bit shift Constant value 2

Output data type Inherit: Inherit from
'Constant value'

The key block parameter settings of the Shift Arithmetic blocks are:

Block Parameter Setting
Bit shift from dialog Bits to shift: Source Dialog

Bits to shift: Direction Right
Bits to shift: Number 2

 Shift Arithmetic

1-1545

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_shift_arithmetic_block_right_bit_shifts')))

Block Parameter Setting
Bit shift from input Bits to shift: Source Input port

Bits to shift: Direction Right

The top Shift Arithmetic block takes an input of 124, which corresponds to 01111100 in
binary format. Shifting the number of bits two places to the right produces 00011111 in
binary format. Therefore, the block outputs 31.

The bottom Shift Arithmetic block performs the same operation as the top block.
However, the bottom block receives the bit shift value through an input port instead of
the dialog box. By supplying this value as an input signal, you can change the number of
bits to shift during simulation.

Block Output for Binary Point Shifts
The following model shows the effect of binary point shifts.

The key block parameter settings of the Constant blocks are:

Block Parameter Setting
Constant and Constant1 Constant value 124

Output data type int8

The key block parameter settings of the Shift Arithmetic blocks are:

1 Blocks — Alphabetical List

1-1546

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_shift_arithmetic_block_binary_point_shifts')))

Block Parameter Setting
Shift binary point 3
places to the right

Bits to shift: Source Dialog
Bits to shift: Direction Bidirectional
Bits to shift: Number 0
Binary points to shift:
Number

3

Shift binary point 3
places to the left

Bits to shift: Source Dialog
Bits to shift: Direction Bidirectional
Bits to shift: Number 0
Binary points to shift:
Number

–3

The top Shift Arithmetic block takes an input of 124, which corresponds to 01111100 in
binary format. Shifting the binary point three places to the right produces 01111100000
in binary format. Therefore, the top block outputs 995.

The bottom Shift Arithmetic block also takes an input of 124. Shifting the binary point
three places to the left produces 01111.100 in binary format. Therefore, the bottom block
outputs 15.5.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Shift Arithmetic

1-1547

Sign
Indicate sign of input
Library: Simulink / Math Operations

Description
Block Behavior for Real Inputs
For real inputs, the Sign block outputs the sign of the input:

Input Output
Greater than zero 1
Equal to zero 0
Less than zero –1

For vector and matrix inputs, the block outputs a vector or matrix where each element is
the sign of the corresponding input element, as shown in this example:

Block Behavior for Complex Inputs
When the input u is a complex scalar, the block output matches the MATLAB result for:

sign(u) = u./ abs(u)

1 Blocks — Alphabetical List

1-1548

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_sign_block_matrix_input_real')))

When an element of a vector or matrix input is complex, the block uses the same formula
that applies to scalar input, as shown in this example:

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal whose sign will determine the output.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal that is the sign of the input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters
Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

 Sign

1-1549

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_sign_block_matrix_input_complex')))

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

1 Blocks — Alphabetical List

1-1550

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block has a single, default HDL architecture.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Abs

Introduced before R2006a

 Sign

1-1551

Signal Builder
Create and generate interchangeable groups of signals whose waveforms are piecewise
linear
Library: Simulink / Sources

Description
The Signal Builder block allows you to create interchangeable groups of piecewise linear
signal sources and use them in a model. You can quickly switch the signal groups into and
out of a model to facilitate testing. In the Signal Builder window, create signals and define
the output waveforms.To open the window, double-click the block. See “Signal Groups”.

Note Use the signalbuilder function to create and access Signal Builder blocks
programmatically.

Ports

Output
Signal 1 — First output signal
scalar | vector | matrix

First output signal from the signal group currently visible in the Signal Builder window.
Data Types: double | bus

Signal n — nth output signal
scalar | vector | matrix

nth output signal from the signal group currently visible in the Signal Builder window. n
corresponds to the signal index.

1 Blocks — Alphabetical List

1-1552

Data Types: double | bus

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

Topics
“Signal Groups”
“Signal Basics”

Introduced before R2006a

 Signal Builder

1-1553

Signal Conversion
Convert signal to new type without altering signal values

Library
Signal Attributes

Description
The Signal Conversion block converts a signal from one type to another. Use the Output
parameter to select the type of conversion to perform.

Data Type Support
The Signal Conversion block accepts signals of the following data types:

• Scalar
• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated
• Virtual and nonvirtual bus signals

You can use an array of buses as an input signal to a Signal Conversion block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

For more information about data types, see “Data Types Supported by Simulink”.

1 Blocks — Alphabetical List

1-1554

Parameters
Output

Specify the type of conversion to perform. The type of conversion that you use
depends on your modeling goal.

Modeling Goal Output Option
Reduce generated code for a muxed signal.

For an example involving Simulink Coder software, see
“Generate Reentrant Code from Subsystems”
(Simulink Coder).

Signal copy

Connect a block with a constant sample time to an
output port of an enabled subsystem.

Signal copy

Pass a bus signal, or array of buses signal, whose
components have different data types to a nonvirtual
Inport block in an atomic subsystem that has direct
feedthrough.

For more information, see “Composite Signals”.

Signal copy

Save memory by converting a nonvirtual bus to a
virtual bus.

Virtual bus

Pass a virtual bus signal to a modeling construct that
requires a nonvirtual bus, such as a Model block.

Nonvirtual bus

Pass a nonvirtual bus signal from a Bus Selector block. Nonvirtual bus

• The Signal copy option is the default. The type of conversion that the Signal
Conversion block performs using the Signal copy option depends on the type of
input signal.

 Signal Conversion

1-1555

Type of Input Signal Conversion that the Signal Copy
Option Performs

Muxed (nonbus) signal Converts the muxed signal, whose
elements occupy discontiguous
areas of memory, to a vector signal,
whose elements occupy contiguous
areas of memory. The conversion
allocates a contiguous area of
memory for the elements of the
muxed signal and copies the values
from the discontiguous areas
(represented by the block's input) to
the contiguous areas (represented
by the block's output) at each time
step.

Bus signal Outputs a contiguous copy of the
bus signal that is the input to the
Signal Conversion block.

For an array of buses input signal, use the Signal copy option.

In the following example, a muxed signal inputs to a Signal Conversion block that
has the Output parameter set to Signal copy. The Signal Conversion block
converts the input signal to a vector.

In the following example, a nonvirtual bus signal from a Bus Creator block inputs
to a Signal Conversion block that has Output set to Signal copy. The Signal
Conversion block creates another contiguous copy of the input bus signal.

1 Blocks — Alphabetical List

1-1556

• The Virtual bus option converts a nonvirtual bus to a virtual bus.

In the following example, a Bus Creator block inputs to a Signal Conversion block
that has Output set to Virtual bus. The Signal Conversion block converts the
nonvirtual bus signal from the Bus Creator block to a virtual bus signal that inputs
to the Bus Selector block.

• The Nonvirtual bus option converts a virtual bus to a nonvirtual bus.

In the following example, the Signal Conversion block converts a virtual bus signal
from the first Bus Selector block to a nonvirtual bus signal that inputs to the
second Bus Selector block. The Signal Conversion block has its Output parameter
set to Nonvirtual bus, and specifies a bus object that matches the bus signal
hierarchy of the bus that the first Bus Creator block outputs.

 Signal Conversion

1-1557

Data type
Specify the output data type of the nonvirtual bus that the Signal Conversion block
produces.

This option is available only when you set the Output parameter to Nonvirtual
bus.

The default option is Inherit: auto, which uses a rule that inherits a data type.

You must specify a Simulink.Bus object in the Data type parameter for one or both
of the following blocks:

• Signal Conversion block
• An upstream Bus Creator block

If you specify a bus object for the Signal Conversion block, but not for its upstream
Bus Creator block, then use a bus object that matches the hierarchy of the bus that
upstream Bus Creator block outputs.

If you specify a bus object for both the Signal Conversion block and its upstream Bus
Creator block, use the same bus object for both blocks.

You can select the button to the right of the Data type parameter to open the Data
Type Assistant, which helps you to set the Data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.
Exclude this block from 'Block reduction' optimization

This option is available only when you set the Output parameter to Signal copy. If
the elements of the input signal occupy contiguous areas of memory, then as an

1 Blocks — Alphabetical List

1-1558

optimization, Simulink software eliminates the block from the compiled model . If you
select the Exclude this block from 'Block reduction' optimization check box, the
optimization occurs the next time you compile the model. For more information, see
“Block reduction”.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated
Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Bus Creator | Data Type Conversion

Topics
“Buses”

Introduced before R2006a

 Signal Conversion

1-1559

Signal Editor
Display, create, edit, and switch interchangeable scenarios
Library: Sources

Description
The Signal Editor block displays, creates, and edits interchangeable scenarios. You can
also use the block to switch scenarios in and out of models.

The Signal Editor block supports MAT-files that contain one or more scalar
Simulink.SimulationData.Dataset objects.

You can port Signal Builder block configurations to the Signal Editor block using the
signalBuilderToSignalEditor function. Internal storage format and preprocessing
of data differs between the Signal Builder and Signal Editor blocks. When using the
variable step solver, this difference causes different simulation time steps and
mismatched output between the two blocks. The difference between the outputs of both
blocks can be minimized by reducing the value of Max step size of the variable step
solver. Another option is to insert more data points in the input signal of Signal Editor to
better represent its shape. This can be done using the Signal Editor user interface. To
better match the output from both blocks, use the fixed-step solver or set the sample time
for both blocks to the same discrete sample time (greater than 0). For more information
on discrete sample times, see “Discrete Sample Time”.

Limitations
The Signal Editor block does not support:

• Function-calls
• Array of buses
• Buses while using rapid accelerator mode

1 Blocks — Alphabetical List

1-1560

• timetable objects
• Ground signals

Ports

Output Arguments
Signal1 — Signals in scenario
multidimensional

One or more signals, which can be:

• A MATLAB timeseries object
• A structure of MATLAB timeseries objects
• A two-dimensional matrix

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
File name — Data set file
untitled.mat (default) | character vector

Data set file, specified as character vector, containing one or more scalar
Simulink.SimulationData.Dataset objects. Do not use a file name from one locale
in a different locale. When using the block on multiple platforms, consider specifying just
the MAT-file name and having the MAT-file be on the MATLAB path.

Dependencies

• If untitled.mat does not exist in the current folder, these parameters are disabled:

• Active scenario
• Signals
• Output a bus signal

 Signal Editor

1-1561

• Unit
• Sample time
• Interpolate data
• Enable zero-crossing detection
• Form output after final data value by

•
To create a MAT-file, click . This button starts the Signal Editor user interface,
which lets you create and edit scenario MAT-files.

Active scenario — Active scenario
Scenario (default) | character vector

Active scenario, specified as a character vector. The specified MAT-file must exist.

Dependencies

• To enable this parameter, ensure that the specified MAT-file exists.
• With fast restart enabled, you can:

• Change the active scenario
• Change the active signal
• Start the Signal Editor user interface and edit data

While you can change the active signal, you cannot edit the signal properties in the
block.

To create and edit scenarios, launch Signal Editor user interface —
Start Signal Editor
button click

To start Signal Editor user interface, click .

Active Signal — Signal to configure
Signal 1 (default) | character vector

Signal to configure, specified as a signal name. This signal is considered the active signal.
The MAT-file must exist before you can configure signals.

To enable this parameter, ensure that the specified MAT-file exists.

1 Blocks — Alphabetical List

1-1562

Tip Do not use the set_param function to set the active signal property Name-Value
argument ('ActiveSignal') in combination with another Name-Value pair argument for
the Signal Editor block.

Dependencies

Output a bus signal — Configure signal as bus
off (default) | on

Configure signal as a bus:

 On
Configure signal as a bus.

 Off
Do not configure signal as a bus.

The specified MAT-file must exist.

Dependencies

• Selecting Output a bus signal check box enables the Select bus object parameter.
• To enable this parameter, ensure that the specified MAT-file exists.

Select bus object — Bus object
Bus: BusObject (default) | bus object name

Select the bus object name. To edit the bus object or create a bus object using the Data
Type Assistant, click >>. The specified MAT-file must exist.

Dependencies

To enable this parameter, ensure that the specified MAT-file exists.

Mode — Bus object mode
Bus Object (default) | bus object data type

Select the bus object name. If you do not have a bus object, create one by clicking Edit,
which starts the Bus Editor. For more information, see “Create Bus Objects with the Bus
Editor”.

 Signal Editor

1-1563

Unit — Physical unit
inherit (default) | supported physical unit

Physical unit of the signal, specified as an allowed unit. To specify a unit, begin typing in
the text box. As you type, the parameter displays potential matching units. For more
information, see “Unit Specification in Simulink Models”. For a list of supported units, see
Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use
that dialog box to specify allowed and disallowed unit systems for the component.

• If a Unit System Configuration block does not exist in the component, the model
Configuration Parameters dialog box displays. Use that dialog box to specify allowed
and disallowed unit systems for the model.

The specified MAT-file must exist.

Dependencies

To enable this parameter, ensure that the specified MAT-file exists.

Sample time — Time interval between samples
0 (default) | -1 | sample time in seconds

Time interval between samples, specified in seconds. The specified MAT-file must exist.

Dependencies

To enable this parameter, ensure that the specified MAT-file exists.

Interpolate data — Linearly interpolate data
off (default) | on

Linearly interpolate data at time hits for which no corresponding workspace data exist.
The specified MAT-file must exist.

The Signal Editor block linearly interpolates:

 On
Linearly interpolate at time hits for which no corresponding workspace data exist,
select this option.

1 Blocks — Alphabetical List

1-1564

matlab:showunitslist

 Off
The current output equals the output at the most recent time for which data exists.

The Signal Editor block interpolates by using the two corresponding workspace samples:

• For double data, linearly interpolates the value by using the two corresponding
samples

• For Boolean data, uses false for the first half of the time between two time values
and true for the second half

• For a built-in data type other than double or Boolean:

• Upcasts the data to double
• Performs linear interpolation (as described for double data)
• Downcasts the interpolated value to the original data type

You cannot use linear interpolation with enumerated (enum) data.

The block uses the value of the last known data point as the value of time hits that occur
after the last known data point.

To determine the block output after the last time hit for which data is available, combine
the settings of these parameters:

• Interpolate data
• Form output after final data value by

For details, see the Form output after final data value by parameter.
Dependencies

To enable this parameter, ensure that the specified MAT-file exists.

Enable zero-crossing detection — Detect zero-crossings
off (default) | on

If you select the Enable zero-crossing detection parameter, then when the input array
contains multiple entries for the same time hit, Simulink detects a zero crossing. For
example, suppose that the input array has this data:

time: 0 1 2 2 3
signal: 2 3 4 5 6

 Signal Editor

1-1565

At time 2, there is a zero crossing from input signal discontinuity. For more information,
see “Zero-Crossing Detection”.

For bus signals, Simulink detects zero crossings across all leaf bus elements.

The specified MAT-file must exist.
Dependencies

To enable this parameter, ensure that the specified MAT-file exists.

Form output after final data value by — Block output after the last time
hit for which data is available
Setting to zero (default) | Extrapolation | Holding final value

To determine the block output after the last time hit for which workspace data is
available, combine the settings of these parameters:

• Interpolate data
• Form output after final data value by

This table lists the block output, based on the values of the two options.

Setting for Form Output
After Final Data Value By

Setting for
Interpolate
Data

Block Output After Final Data

Extrapolation On Extrapolated from final data value
Off Error

Setting to zero On Zero
Off Zero

Holding final value On Final value from workspace
Off Final value from workspace

For example, the block uses the last two known data points to extrapolate data points that
occur after the last known point if you:

• Select Interpolate data.
• Set Form output after final data value by to Extrapolation.

The specified MAT-file must exist.

1 Blocks — Alphabetical List

1-1566

Dependencies

To enable this parameter, ensure that the specified MAT-file exists.

See Also
Signal Builder | signalBuilderToSignalEditor | signalEditor

Topics
“Create Bus Objects with the Bus Editor”

Introduced in R2017b

 Signal Editor

1-1567

Signal Generator
Generate various waveforms
Library: Simulink / Sources

Description

Supported Operations
The Signal Generator block can produce one of four different waveforms:

• sine
• square
• sawtooth
• random

You can express signal parameters in hertz or radians per second. Using default
parameter values, you get one of the following waveforms:

1 Blocks — Alphabetical List

1-1568

Waveform Scope Output
Sine wave

 Signal Generator

1-1569

Waveform Scope Output
Square wave

1 Blocks — Alphabetical List

1-1570

Waveform Scope Output
Sawtooth wave

 Signal Generator

1-1571

Waveform Scope Output
Random wave

A negative Amplitude parameter value causes a 180-degree phase shift. You can
generate a phase-shifted wave at other than 180 degrees in many ways. For example, you
can connect a Clock block signal to a MATLAB Function block and write the equation for
the specific wave.

You can vary the output settings of the Signal Generator block while a simulation is in
progress to determine quickly the response of a system to different types of inputs.

The Amplitude and Frequency parameters determine the amplitude and frequency of
the output signal. The parameters must be of the same dimensions after scalar expansion.
If you clear the Interpret vector parameters as 1-D check box, the block outputs a
signal of the same dimensions as the Amplitude and Frequency parameters (after scalar
expansion). If you select the Interpret vector parameters as 1-D check box, the block
outputs a vector (1-D) signal if the Amplitude and Frequency parameters are row or
column vectors, that is, single-row or column 2-D arrays. Otherwise, the block outputs a
signal of the same dimensions as the parameters.

1 Blocks — Alphabetical List

1-1572

Solver Considerations
If your model uses a fixed-step solver, Simulink uses the same step size for the entire
simulation. In this case, the Signal Generator block output provides a uniformly sampled
representation of the ideal waveform.

If your model uses a variable-step solver, Simulink might use different step sizes during
the simulation. In this case, the Signal Generator block output does not always provide a
uniformly sampled representation of the ideal waveform. To ensure that the block output
is a uniformly sampled representation, add a Hit Crossing block directly downstream of
the Signal Generator block. These models show the difference in Signal Generator block
output with and without the Hit Crossing block.

Model That Uses a Variable-Step
Solver

Signal Generator Block Output

 Signal Generator

1-1573

Model That Uses a Variable-Step
Solver

Signal Generator Block Output

Ports

Output
Port_1 — Generated output signal
scalar | vector | matrix

Output signal specified as one of these waveforms.

1 Blocks — Alphabetical List

1-1574

• sine
• square
• sawtooth
• random

Data Types: double

Parameters
Wave form — Wave form to generate
sine (default) | square | sawtooth | random

Specify the wave form.

Programmatic Use
Block Parameter: WaveForm
Type: character vector
Values: 'sine' | 'square' | 'sawtooth' | 'random'
Default: 'sine'

Time (t) — Source of time variable
Use simulation time (default) | Use external signal

Specify whether to use simulation time or an external signal as the source of values for
the waveform time variable. If you specify an external source, the block displays an input
port for connecting the source.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use simulation time'

Amplitude — Signal amplitude
1 (default) | scalar

Specify the amplitude of the generated waveform.

Programmatic Use
Block Parameter: Amplitude

 Signal Generator

1-1575

Type: character vector
Values: real scalar
Default: '1'

Frequency — Signal frequency
1 (default) | scalar

Specify the frequency of the generated waveform.

Programmatic Use
Block Parameter: Frequency
Type: character vector
Values: real scalar
Default: '1'

Units — Signal units
rad/sec (default) | Hertz

Specify the signal units as Hertz or rad/sec.

Programmatic Use
Block Parameter: Units
Type: character vector
Values: 'rad/sec' | 'Hertz'
Default: 'rad/sec'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the
Constant value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'

1 Blocks — Alphabetical List

1-1576

Default: 'on'

Block Characteristics
Data Types double
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot be used inside a triggered subsystem hierarchy.

These blocks do not reference absolute time when configured for sample-based operation.
In time-based operation, they depend on absolute time.

See Also
Pulse Generator | Signal Builder | Waveform Generator

Topics
“Signal Groups”

Introduced before R2006a

 Signal Generator

1-1577

Signal Specification
Specify desired dimensions, sample time, data type, numeric type, and other attributes of
signal

Library
Signal Attributes

Description
The Signal Specification block allows you to specify the attributes of the signal connected
to its input and output ports. If the specified attributes conflict with the attributes
specified by the blocks connected to its ports, Simulink software displays an error when it
compiles the model. For example, at the beginning of a simulation, if no conflict exists,
Simulink eliminates the Signal Specification block from the compiled model. In other
words, the Signal Specification block is a virtual block. It exists only to specify the
attributes of a signal and plays no role in the simulation of the model.

You can use the Signal Specification block to ensure that the actual attributes of a signal
meet desired attributes. For example, suppose that you and a colleague are working on
different parts of the same model. You use Signal Specification blocks to connect your
part of the model with your colleague's. If your colleague changes the attributes of a
signal without informing you, the attributes entering the corresponding Signal
Specification block do not match. When you try to simulate the model, you get an error.

You can also use the Signal Specification block to ensure correct propagation of signal
attributes throughout a model. The capability of allowing the Simulink to propagate
attributes from block to block is powerful. However, if some blocks have unspecified
attributes for the signals they accept or output, the model does not have enough
information to propagate attributes correctly. For these cases, the Signal Specification

1 Blocks — Alphabetical List

1-1578

block is a good way of providing the information Simulink needs. Using the Signal
Specification block also helps speed up model compilation when blocks are missing signal
attributes.

The Signal Specification block supports signal label propagation.

Data Type Support
The Signal Specification block accepts real or complex signals of any data type that
Simulink supports, including fixed-point and enumerated data types, as well as bus
objects. The input data type must match the data type specified by the Data type
parameter.

Note If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “Data Types Supported by Simulink”.

Parameters
• “Minimum” on page 1-1580
• “Maximum” on page 1-1581
• “Data type” on page 1-1581
• “Show data type assistant” on page 1-1583
• “Mode” on page 1-1583
• “Data type override” on page 1-1584
• “Signedness” on page 1-1585
• “Word length” on page 1-1585

 Signal Specification

1-1579

• “Scaling” on page 1-1586
• “Fraction length” on page 1-1587
• “Slope” on page 1-1587
• “Bias” on page 1-1588
• “Require nonvirtual bus” on page 1-1588
• “Lock output data type setting against changes by the fixed-point tools”

on page 1-1589
• “Unit (e.g., m, m/s^2, N*m)” on page 1-1589
• “Dimensions (-1 for inherited)” on page 1-1590
• “Variable-size signal” on page 1-1590
• “Sample time (-1 for inherited)” on page 1-1591
• “Signal type” on page 1-1591

Minimum
Specify the minimum value for the block output.

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Parameter: OutMin
Type: character vector
Value: Any valid finite real double scalar value

1 Blocks — Alphabetical List

1-1580

Default: '[]'

Maximum
Specify the maximum value for the block output.

Default:[] (unspecified)

This number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Parameter: OutMax
Type: character vector
Value: Any valid finite real double scalar value
Default: '[]'

Data type
Specify the output data type.

Default: auto

Inherit: auto
Inherits the data type.

double
Specifies the data type is double.

 Signal Specification

1-1581

single
Specifies the data type is single.

int8
Specifies the data type is int8.

uint8
Specifies the data type is uint8.

int16
Specifies the data type is int16.

uint16
Specifies the data type is uint16.

int32
Specifies the data type is int32.

uint32
Specifies the data type is uint32.

boolean
Specifies the data type is boolean.

fixdt(1,16,0)
Specifies the data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Specifies the data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Specifies the data type as enumerated.

Bus: <object name>
Data type is a bus object.

<data type expression>
The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the Data type parameters.

1 Blocks — Alphabetical List

1-1582

Parameter: OutDataTypeStr
Type: character vector
Value: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus:
<object name>' | <data type expression>
Default: 'Inherit: auto'

“Control Signal Data Types”.

Show data type assistant
Display the Data Type Assistant.

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode
Select the category of data to specify.

Default: Inherit

Inherit
Specifies inheritance rules for data types. Selecting Inherit enables auto.

Built in
Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single
• int8
• uint8
• int16
• uint16

 Signal Specification

1-1583

• int32
• uint32
• boolean

Fixed point
Specifies fixed-point data types.

Enumerated
Specifies enumerated data types. Selecting Enumerated enables you to enter a class
name.

Bus
Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details, see “Create Bus Objects with the
Bus Editor”.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Clicking the Show data type assistant button enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

“Specify Data Types Using Data Type Assistant”.

Data type override
Specify data type override mode for this signal.

Default: Inherit

1 Blocks — Alphabetical List

1-1584

Inherit
Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

This parameter appears only when the Mode is Built in or Fixed point.

Signedness
Specify whether you want the fixed-point data signed or unsigned.

Default: Signed

Signed
Specifies fixed-point data as signed.

Unsigned
Specifies the fixed-point data as unsigned.

Selecting Mode > Fixed point enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

“Specifying a Fixed-Point Data Type”.

Word length
Specify the bit size of the word that holds the quantized integer.

 Signal Specification

1-1585

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Selecting Mode > Fixed point enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

“Specifying a Fixed-Point Data Type”.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Default: Best precision

Binary point
Specify binary point location.

Slope and bias
Enter slope and bias.

Best precision
Specify best-precision values.

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

1 Blocks — Alphabetical List

1-1586

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length
Specify fraction length for fixed-point data type.

Default: 0

Binary points can be positive or negative integers.

Selecting Scaling > Binary point enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

“Specifying a Fixed-Point Data Type”.

Slope
Specify slope for the fixed-point data type.

Default: 2^0

Specify any positive real number.

Selecting Scaling > Slope and bias enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Signal Specification

1-1587

“Specifying a Fixed-Point Data Type”.

Bias
Specify bias for the fixed-point data type.

Selecting Scaling > Slope and bias enables this parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

“Specifying a Fixed-Point Data Type”.

Require nonvirtual bus
If you specify a bus object as the data type, use this parameter to specify whether to
accept only nonvirtual bus signals.

Default: off

 Off
Specifies that a signal must come from a virtual bus.

 On
Specifies that a signal must come from a nonvirtual bus.

The following Data type values enable this parameter:

• Bus: <object name>
• <data type expression> that specifies a bus object

Parameter: BusOutputAsStruct
Type: character vector

1 Blocks — Alphabetical List

1-1588

Value: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-
point tools
Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor.

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Unit (e.g., m, m/s^2, N*m)
Specify physical unit of the input signal to the block.

Default: inherit

To specify a unit, begin typing in the text box. As you type, the parameter displays
potential matching units. For a list of supported units, see Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use
that dialog box to specify allowed and disallowed unit systems for the component.

 Signal Specification

1-1589

matlab:showunitslist

• If a Unit System Configuration block does not exist in the component, the model
Configuration Parameters dialog box displays. Use that dialog box to specify allowed
and disallowed unit systems for the model.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Dimensions (-1 for inherited)
Specify the dimensions of the input and output signals.

Default: -1

-1
Specifies that signals inherit dimensions.

n
Specifies vector signal of width n.

[m n]
Specifies matrix signal having m rows and n columns.

Parameter: Dimensions
Type: character vector
Value: '-1' | n | [m n]
Default: '-1'

Variable-size signal
Specify a variable-size signal, fixed-size signal, or both.

Default: Inherit

Inherit
Allows variable-size and fixed-size signals.

No
Does not allow variable-size signals.

1 Blocks — Alphabetical List

1-1590

Yes
Allows only variable-size signals.

When the signal is a variable-size signal, the Dimensions parameter specifies the
maximum dimensions of the signal.

If you specify a bus object, the simulation allows variable-size signals only with a disabled
bus object.

Parameter: VarSizeSig
Type: character vector
Value: 'Inherit' | 'No' | 'Yes'
Default: 'Inherit'

“Variable-Size Signal Basics”

Sample time (-1 for inherited)
Specify the time interval when simulation updates the block.

Default: -1

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. See “Specify Sample Time” for more information.

Parameter: SampleTime
Type: character vector
Value: Any valid sample time
Default: '-1'

“Specify Sample Time”

Signal type
Specify the numeric type of the input and output signals.

Default: auto

 Signal Specification

1-1591

auto
Accepts either real or complex as the numeric type.

real
Specifies the numeric type as a real number.

complex
Specifies the numeric type as a complex number.

Parameter: SignalType
Type: character vector
Value: 'auto' | 'real' | 'complex'
Default: 'auto'

Bus Support
The Signal Specification block supports virtual and nonvirtual buses. If you specify a bus
object as the data type, then set these other block parameters as follows:

Block Parameter Required Value for a Bus Data Type
Variable-size signal No

All elements of the bus input to a Signal Specification block must have the same names as
specified in the bus object.

All signals in a nonvirtual bus input to a Signal Specification block must have the same
sample time, even if the elements of the associated bus object specify inherited sample
times. You can use a Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus. See “Specify Bus Signal Sample Times” and Bus-Capable
Blocks for more information.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time Specified by the Sample time parameter

1 Blocks — Alphabetical List

1-1592

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Signal Specification

1-1593

Simple Dual Port RAM
Dual port RAM with single output port

Library
HDL Coder / HDL Operations

Description
The Simple Dual Port RAM block models RAM that supports simultaneous read and write
operations, and has a single output port for read data. You can use this block to generate
HDL code that maps to RAM in most FPGAs.

The Simple Dual Port RAM is similar to the Dual Port RAM, but the Dual Port RAM has
both a write data output port and a read data output port.

Read-During-Write Behavior
During a write operation, if a read operation occurs at the same address, old data appears
at the output.

1 Blocks — Alphabetical List

1-1594

Parameters
Address port width

Address bit width. Minimum bit width is 2, and maximum bit width is 29. The default
is 8.

Ports
The block has the following ports:

wr_din
Write data input. The data can have any width. It inherits the width and data type
from the input signal.

Data type: scalar fixed point, integer, or complex
wr_addr

Write address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

wr_en
Write enable.

Data type: Boolean
rd_addr

Read address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

rd_dout
Output data from read address, rd_addr.

See Also
Dual Port RAM | Dual Rate Dual Port RAM | Single Port RAM

 Simple Dual Port RAM

1-1595

Introduced in R2014a

1 Blocks — Alphabetical List

1-1596

Simulink Function
Function defined with Simulink blocks
Library: User-Defined Functions

Description
The Simulink Function block is a Subsystem block preconfigured as a starting point for
graphically defining a function with Simulink blocks. The block provides a text interface
to function callers. You can call a Simulink Function block from a Function Caller block, a
MATLAB Function block, or a Stateflow Chart.

For a description of the block parameters, see the Subsystem block reference page in the
Simulink documentation.

You can visualize Simulink Function calls in the Sequence Viewer. The viewer shows when
calls were made with the argument and the return values. See Sequence Viewer block
reference.

Function Interface
The function interface appears on the face of a Simulink Function block. Editing the block
text adds and deletes Argument Inport blocks and Argument Outport blocks from the
function definition. Editing also sets the Function name parameter in the Trigger block
within the Simulink Function block.

For example, entering y = myfunction(u) on the face of a Simulink Function block
adds one Argument Inport block (u) and one Argument Outport block (y) within the
subsystem.

When calling a function using a Function Caller block, the parameter Function
prototype in the Function Caller block must match exactly the function interface you
specify on the Simulink Function block. This match includes the name of the function and
the names of input and output arguments. For example, the Simulink Function block and
the Function Caller block both use the argument names u and y.

 Simulink Function

1-1597

When calling a function from a Stateflow transition or state label, you can use different
argument names. For example, the Simulink Function block uses x and y arguments while
the Stateflow transition uses x2 and y2 arguments to call the function.

Function-Call Subsystems Versus Simulink Function Blocks
In general, a Function-Call Subsystem block provides better signal traceability with direct
signal connections than a Simulink Function block. While a Simulink Function block
eliminates the need for routing input and output signal lines through the model hierarchy.

1 Blocks — Alphabetical List

1-1598

Attribute Function-Call Subsystem
block

Simulink Function
block

Method of executing/invoking
function

Triggered using a signal
line

Called by reference
using the function name

Formal input arguments
(Argument Inport blocks) and
output arguments (Argument
Outport blocks)

No Yes

Local inputs (Inport block) and
outputs (Outport block)

Yes Yes

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the Simulink
Function block. The port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment. See “Connect to Local
Signals”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus | struct

ArgIn — Argument input to a subsystem block
scalar | vector | matrix

An Argument Inport block in a subsystem block provides an input port corresponding to
an input argument. A port is not displayed on the subsystem block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus | struct

 Simulink Function

1-1599

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment. See “Connect to Local
Signals”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus | struct

ArgOut — Argument output from a subsystem block
scalar | vector | matrix

An Argument Outport block in a subsystem block provides an output port corresponding
to an out put argument. A port is not displayed on the subsystem block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus | struct

See Also
Blocks
Argument Inport | Argument Outport | Chart | Function Caller | Function-Call Subsystem |
Inport | MATLAB Function | Outport | Subsystem | Trigger

Topics
“Simulink Functions”
“Using Simulink Function Blocks”
“Argument Specification for Simulink Function Blocks”
“Simulink Functions in Referenced Models”
“Scoped Simulink Function Blocks in Subsystems”
“Diagnostics Using a Client-Server Architecture”

Introduced in R2014b

1 Blocks — Alphabetical List

1-1600

Single Port RAM
Single port RAM

Library
HDL Coder / HDL Operations

Description
The Single Port RAM block models RAM that supports sequential read and write
operations.

If you want to model RAM that supports simultaneous read and write operations, use the
Dual Port RAM or Simple Dual Port RAM.

 Single Port RAM

1-1601

Parameters
Address port width

Address bit width. Minimum bit width is 2, and maximum bit width is 29. The default
is 8.

Output data during write
Controls the output data, dout, during a write access.

• New data (default): During a write, new data appears at the output port, dout.
• Old data: During a write, old data appears at the output port, dout.

Ports
The block has the following ports:

din
Data input. The data can have any width. It inherits the width and data type from the
input signal.

Data type: scalar fixed point, integer, or complex
addr

Write address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

we
Write enable.

Data type: Boolean
dout

Output data from address, addr.

See Also
Dual Port RAM | Dual Rate Dual Port RAM | Simple Dual Port RAM

1 Blocks — Alphabetical List

1-1602

Introduced in R2014a

 Single Port RAM

1-1603

Sine, Cosine
Implement fixed-point sine or cosine wave using lookup table approach that exploits
quarter wave symmetry
Library: Simulink / Lookup Tables

Description
The Sine and Cosine block implements a sine and/or cosine wave in fixed point using a
lookup table method that exploits quarter wave symmetry. The block can output the
following functions of the input signal, depending upon what you select for the Output
formula parameter:

• sin(2πu)
• cos(2πu)
• exp(j2πu)
• sin(2πu) and cos(2πu)

You define the number of lookup table points in the Number of data points for lookup
table parameter. The block implementation is most efficient when you specify the lookup
table data points to be (2^n)+1, where n is an integer.

Use the Output word length parameter to specify the word length of the fixed-point
output data type. The fraction length of the output is the output word length minus 2.

1 Blocks — Alphabetical List

1-1604

Tip To simulate a model containing this block without a Fixed-Point Designer license, you
must use data type override. For more information, see “Share Fixed-Point Models”.

Ports

Input
u — Input signal to implement as fixed-point sine or cosine wave
real-valued signal

Input signal, u, specified as a real-valued scalar, vector, matrix, or array.

Tip To obtain meaningful block output, the block input values should fall within the range
[0, 1). For input values that fall outside this range, the values are cast to an unsigned data
type, where overflows wrap. For these out-of-range inputs, the block output might not be
meaningful.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
sin(2*pi*u) — Fixed-point sine wave
real-valued fixed-point signal

Fixed-point sine wave, implemented using a lookup table approach.

Dependencies

This port is enabled when the Output formula is set to sin(2*pi*u) or sin(2*pi*u)
and cos(2*pi*u).
Data Types: fixed point

cos(2*pi*u) — Fixed-point cosine wave
real-valued fixed-point signal

Fixed-point cosine wave, implemented using a lookup table approach.

 Sine, Cosine

1-1605

Dependencies

This port is enabled when the Output formula is set to cos(2*pi*u) or sin(2*pi*u)
and cos(2*pi*u).
Data Types: fixed point

exp(j*2*pi*u) — exp(j*2*pi*u)
complex-valued fixed-point signal

exp(j*2*pi*u), implemented using a lookup table approach.

Dependencies

This port is enabled when the Output formula is set to exp(j*2*pi*u).
Data Types: fixed point

Parameters
Output formula — Select the signal(s) to output
cos(2*pi*u) | sin(2*pi*u) | exp(j*2*pi*u) | sin(2*pi*u) and cos(2*pi*u)

Programmatic Use
Block Parameter: Formula
Values: 'sin(2*pi*u)' | 'cos(2*pi*u)' | 'exp(j*2*pi*u)' | 'sin(2*pi*u)
and cos(2*pi*u)'

Number of data points for lookup table — Specify the number of data
points to retrieve from the lookup table
(2^5)+1 (default) | integer, greater than or equal to 2

The implementation is most efficient when you specify the lookup table data points to be
(2^n)+1, where n is an integer. To be compatible with the Output word length
parameter, the Number of data points for lookup table must be less than or equal to
(2^(Output word length-2)+1).

Programmatic Use
Block Parameter: NumDataPoints
Type: scalar
Value: integer >= 2
Default: '(2^5)+1'

1 Blocks — Alphabetical List

1-1606

Output word length — Specify the word length for the fixed-point data type of
the output signal
16 (default) | integer from 2 to 53

The fraction length of the output is the output word length minus 2. To be compatible
with the Number of data points for lookup table parameter, (2^(Output word length
- 2) +1) must be greater than or equal to Number of data points for lookup table.

Note The block uses double-precision floating-point values to construct lookup tables.
Therefore, the maximum amount of precision you can achieve in your output is 53 bits.
Setting the word length to values greater than 53 bits does not improve the precision of
your output.

Programmatic Use
Block Parameter: OutputWordLength
Type: scalar
Value: integer from 2 to 53
Default: '16'

Internal rule priority for lookup table — Specify the internal rule for
intermediate calculations
Speed (default) | Precision

Select Speed for faster calculations. If you do, a loss of accuracy might occur, usually up
to 2 bits.

Programmatic Use
Block Parameter: InternalRulePriority
Values: 'Speed' | 'Precision'
Default: 'Speed'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

 Sine, Cosine

1-1607

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see Cosine.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Sine Wave | Trigonometric Function

Topics
“About Lookup Table Blocks”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1608

Sine HDL Optimized
Implement fixed-point sine wave by using lookup table approach that exploits quarter
wave symmetry

Library
HDL Coder / Lookup Tables

Description
The Sine HDL Optimized block implements a fixed-point sine wave by using a lookup table
method that exploits quarter-wave symmetry.

You define the number of lookup table points in the Number of data points parameter.
The block implementation is most efficient for HDL code generation when you specify the
lookup table data points to be (2^n), where n is an integer. For information about the
behavior of this block in HDL Coder, see Sine HDL Optimized.

Depending on your selection of the Output formula parameter, the blocks can output
these functions of the input signal:

• sin(2πu)
• cos(2πu)
• exp(i2πu)
• sin(2πu) and cos(2πu)

Use the Table data type parameter to specify the word length of the fixed-point output
data type. The fraction length of the output is the output word length minus 2.

 Sine HDL Optimized

1-1609

Data Type Support
The Sine HDL Optimized block accepts signals of these data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The output of the block is a fixed-point data type.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Output formula

Select the signal(s) to output.
Number of data points

Specify the number of data points to retrieve from the lookup table. The
implementation is most efficient when you specify the lookup table data points to be
(2^n), where n is an integer.

Table data type
Specify the table data type. You can specify an expression that evaluates to a data
type, for example, fixdt(1,16,0).

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the table data type.

Show data type assistant
Display the Data Type Assistant. In the Data Type Assistant, you can select the
mode to specify the data type.
Mode

Select the mode of data type specification. If you select Expression, enter an
expression that evaluates to a data type, for example, fixdt(1,16,0).

1 Blocks — Alphabetical List

1-1610

If you select Fixed point, you can use the options in the Data Type Assistant
to specify the fixed-point data type. In the Fixed point mode, you can choose
binary point scaling, and specify the signedness, word length, fraction length, and
the data type override setting.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Cosine HDL Optimized | Sine, Cosine | Trigonometric Function

Introduced in R2016b

 Sine HDL Optimized

1-1611

Sine Wave
Generate sine wave, using simulation time as time source
Library: Simulink / Sources

Description
The Sine Wave block outputs a sinusoidal waveform. The block can operate in time-based
or sample-based mode.

Note This block is the same as the Sine Wave Function block that appears in the Math
Operations library. If you select Use external signal for the Time parameter in the
block dialog box, you get the Sine Wave Function block.

Time-Based Mode
The block calculates the output waveform.

y amplitude frequency time phase bias= ¥ ¥ + +sin() .

In time-based mode, the value of the Sample time parameter determines whether the
block operates in continuous mode or discrete mode.

• 0 (the default) causes the block to operate in continuous mode.
• >0 causes the block to operate in discrete mode.

For more information, see “Specify Sample Time”.

When operating in continuous mode, the Sine Wave block can become inaccurate due to
loss of precision as time becomes very large.

A Sample time parameter value greater than zero causes the block to behave as if it
were driving a Zero-Order Hold block whose sample time is set to that value.

1 Blocks — Alphabetical List

1-1612

This way, you can build models with sine wave sources that are purely discrete, rather
than models that are hybrid continuous/discrete systems. Hybrid systems are inherently
more complex and as a result take more time to simulate.

In discrete mode, this block uses a differential incremental algorithm instead of one based
on absolute time. As a result, the block can be useful in models intended to run for an
indefinite length of time, such as in vibration or fatigue testing.

The differential incremental algorithm computes the sine based on the value computed at
the previous sample time. This method uses the following trigonometric identities:

sin() sin()cos() sin()cos()

cos() cos()cos(

t t t t t t

t t t

+ D = D + D

+ D = Dtt t t) sin()sin()- D

In matrix form, these identities are:

sin()

cos()

cos() sin()

sin() cos()

t t

t t

t t

t t

+ D

+ D

È

Î
Í

˘

˚
˙ =

D D

- D D

È

Î
Í

˘

˚̊
˙

È

Î
Í

˘

˚
˙

sin()

cos()

t

t

Because Δt is constant, the following expression is a constant:

cos() sin()

sin() cos()

D D

- D D

È

Î
Í

˘

˚
˙

t t

t t

Therefore, the problem becomes one of a matrix multiplication of the value of sin()t by a

constant matrix to obtain sin()t t+ D .

Discrete mode reduces but does not eliminate the accumulation of round-off errors, for
example, (4*eps). This accumulation can happen because computation of the block
output at each time step depends on the value of the output at the previous time step.

To handle round-off errors when the Sine Wave block operates in time-based discrete
mode, use one of these methods.

 Sine Wave

1-1613

Method Rationale
Insert a Saturation block directly
downstream of the Sine Wave block.

By setting saturation limits on the Sine
Wave block output, you can remove
overshoot due to accumulation of round-off
errors.

Set up the Sine Wave block to use the
sin() math library function to calculate
block output.

1 On the Sine Wave block dialog box, set
Time to Use external signal so
that an input port appears on the block
icon.

2 Connect a clock signal to this input
port using a Digital Clock block.

3 Set the sample time of the clock signal
to the sample time of the Sine Wave
block.

The sin() math library function computes
block output at each time step
independently of output values from other
time steps, preventing the accumulation of
round-off errors.

Sample-Based Mode
Sample-based mode uses this formula to compute the output of the Sine Wave block.

y A k o p b= + +sin(() /)2p

• A is the amplitude of the sine wave.
• p is the number of time samples per sine wave period.
• k is a repeating integer value that ranges from 0 to p–1.
• o is the offset (phase shift) of the signal.
• b is the signal bias.

In this mode, Simulink sets k equal to 0 at the first time step and computes the block
output, using the formula. At the next time step, Simulink increments k and recomputes
the output of the block. When k reaches p, Simulink resets k to 0 before computing the
block output. This process continues until the end of the simulation.

The sample-based method of computing block output at a given time step does not
depend on the output of the previous time steps. Therefore, this mode avoids the

1 Blocks — Alphabetical List

1-1614

accumulation of round-off errors. Sample-based mode supports reset semantics in
subsystems that offer it. For example, if a Sine Wave block is in a resettable subsystem
that receives a reset trigger, the repeating integer k resets and the block output resets to
its initial condition.

Ports

Output
Port_1 — Sine wave output signal
scalar | vector

Output sine wave signal created based on the block parameter values.
Data Types: double

Parameters
Sine type — Type of sine wave
Time based (default) | Sample based

Specify the type of sine wave that this block generates. Some parameters in the dialog
box appear depending on whether you select time-based or sample-based.

Programmatic Use
Block Parameter: SineType
Type: character vector
Values: 'Time based' | 'Sample based'
Default: 'Time based'

Time (t) — Source of time variable
Use simulation time (default) | Use external signal

Specify whether to use simulation time as the source of values for the time variable, or an
external source. If you specify an external time source, the block creates an input port for
the time source. When you select an external time source, the block is the same as the
Sine Wave Function block.

 Sine Wave

1-1615

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use simulation time'

Amplitude — Amplitude of the sine wave
1 (default) | scalar

Specify the amplitude of the output sine wave signal.

Programmatic Use
Block Parameter: Amplitude
Type: character vector
Value: scalar
Default: '1'

Bias — Constant added to sine wave
0 (default) | scalar

Specify the constant value added to the sine to produce the output.

Programmatic Use
Block Parameter: Bias
Type: character vector
Value: scalar
Default: '0'

Frequency (rad/sec) — Frequency of sine wave
1 (default) | scalar

Specify the frequency, in rad/sec.

Dependencies

To enable this parameter, set Sine type to Time based.

Programmatic Use
Block Parameter: Frequence
Type: character vector
Value: scalar
Default: '1'

1 Blocks — Alphabetical List

1-1616

Phase (rad) — Phase shift of sine wave
0 (default) | scalar

Specify the phase shift of the sine wave.

You cannot configure this parameter to appear in the generated code as a tunable global
variable if you set Time (t) to Use simulation time. For example, if you set Default
parameter behavior to Tunable or apply a storage class to a Simulink.Parameter
object, the Phase parameter does not appear in the generated code as a tunable global
variable.

To generate code so that you can tune the phase during execution, set Time (t) to Use
external signal. You can provide your own time input signal or use a Digital Clock
block to generate the time signal. For an example, see “Tune Phase Parameter of Sine
Wave Block During Code Execution” (Simulink Coder).

Dependencies

To enable this parameter, set Sine type to Time based.

Programmatic Use
Block Parameter: Phase
Type: character vector
Value: scalar
Default: '0'

Samples per period — Samples per period
0 (default) | integer

Specify the number of samples per period.

Dependencies

To enable this parameter, set Sine type to Sample based.

Programmatic Use
Block Parameter: Samples
Type: character vector
Value: scalar
Default: '10'

Number of offset samples — Offset in number of time samples
0 (default) | integer

 Sine Wave

1-1617

Specify the offset (discrete phase shift) in number of sample times.

Dependencies

To enable this parameter, set Sine type to Sample based.

Programmatic Use
Block Parameter: Offset
Type: character vector
Value: scalar
Default: '0'

Sample time — Sample period
0 (default) | scalar

Specify the sample period in seconds. The default is 0. If the sine type is sample-based,
the sample time must be greater than 0. See “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: scalar
Default: '0'

Interpret vector parameters as 1-D — Output dimensions for one-row or
one-column matrices
off (default) | on

Specify the output dimensions to be a 1-D vector signal when other parameters are one-
row and one-column matrices. If you do not select this box, the block outputs a signal of
the same dimensionality as the numeric parameters. See “Determining the Output
Dimensions of Source Blocks” in the Simulink documentation. This parameter is not
available when an external signal specifies time. In this case, if numeric parameters are
column or row matrix values, the output is a 1-D vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'off' | 'on'
Default: 'on'

1 Blocks — Alphabetical List

1-1618

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Depends on absolute time when placed inside a triggered subsystem hierarchy. These
blocks do not reference absolute time when configured for sample-based operation. In
time-based operation, they depend on absolute time.

See Also
Sine Wave Function | Sine, Cosine

Introduced before R2006a

 Sine Wave

1-1619

Sine Wave Function
Generate sine wave, using external signal as time source
Library: Simulink / Math Operations

Description
The Sine Wave Function block outputs a sinusoidal waveform. The block can operate in
time-based or sample-based mode.

Note This block is the same as the Sine Wave block that appears in the Math Operations
library. If you select Use simulation time for the Time parameter in the block dialog
box, you get the Sine Wave Function block.

Time-Based Mode
The block calculates the output waveform.

y amplitude frequency time phase bias= ¥ ¥ + +sin() .

In time-based mode, the value of the Sample time parameter determines whether the
block operates in continuous mode or discrete mode.

• 0 (the default) causes the block to operate in continuous mode.
• >0 causes the block to operate in discrete mode.

For more information, see “Specify Sample Time”.

When operating in continuous mode, the Sine Wave block can become inaccurate due to
loss of precision as time becomes very large.

1 Blocks — Alphabetical List

1-1620

A Sample time parameter value greater than zero causes the block to behave as if it
were driving a Zero-Order Hold block whose sample time is set to that value.

This way, you can build models with sine wave sources that are purely discrete, rather
than models that are hybrid continuous/discrete systems. Hybrid systems are inherently
more complex and as a result take more time to simulate.

In discrete mode, this block uses a differential incremental algorithm instead of one based
on absolute time. As a result, the block can be useful in models intended to run for an
indefinite length of time, such as in vibration or fatigue testing.

The differential incremental algorithm computes the sine based on the value computed at
the previous sample time. This method uses the following trigonometric identities:

sin() sin()cos() sin()cos()

cos() cos()cos(

t t t t t t

t t t

+ D = D + D

+ D = Dtt t t) sin()sin()- D

In matrix form, these identities are:

sin()

cos()

cos() sin()

sin() cos()

t t

t t

t t

t t

+ D

+ D

È

Î
Í

˘

˚
˙ =

D D

- D D

È

Î
Í

˘

˚̊
˙

È

Î
Í

˘

˚
˙

sin()

cos()

t

t

Because Δt is constant, the following expression is a constant:

cos() sin()

sin() cos()

D D

- D D

È

Î
Í

˘

˚
˙

t t

t t

Therefore, the problem becomes one of a matrix multiplication of the value of sin()t by a

constant matrix to obtain sin()t t+ D .

Discrete mode reduces but does not eliminate the accumulation of round-off errors, for
example, (4*eps). This accumulation can happen because computation of the block
output at each time step depends on the value of the output at the previous time step.

To handle round-off errors when the Sine Wave block operates in time-based discrete
mode, use one of these methods.

 Sine Wave Function

1-1621

Method Rationale
Insert a Saturation block directly
downstream of the Sine Wave block.

By setting saturation limits on the Sine
Wave block output, you can remove
overshoot due to accumulation of round-off
errors.

Set up the Sine Wave block to use the
sin() math library function to calculate
block output.

1 On the Sine Wave block dialog box, set
Time to Use external signal so
that an input port appears on the block
icon.

2 Connect a clock signal to this input
port using a Digital Clock block.

3 Set the sample time of the clock signal
to the sample time of the Sine Wave
block.

The sin() math library function computes
block output at each time step
independently of output values from other
time steps, preventing the accumulation of
round-off errors.

Sample-Based Mode
Sample-based mode uses this formula to compute the output of the Sine Wave block.

y A k o p b= + +sin(() /)2p

• A is the amplitude of the sine wave.
• p is the number of time samples per sine wave period.
• k is a repeating integer value that ranges from 0 to p–1.
• o is the offset (phase shift) of the signal.
• b is the signal bias.

In this mode, Simulink sets k equal to 0 at the first time step and computes the block
output, using the formula. At the next time step, Simulink increments k and recomputes
the output of the block. When k reaches p, Simulink resets k to 0 before computing the
block output. This process continues until the end of the simulation.

The sample-based method of computing block output at a given time step does not
depend on the output of the previous time steps. Therefore, this mode avoids the

1 Blocks — Alphabetical List

1-1622

accumulation of round-off errors. Sample-based mode supports reset semantics in
subsystems that offer it. For example, if a Sine Wave block is in a resettable subsystem
that receives a reset trigger, the repeating integer k resets and the block output resets to
its initial condition.

Ports

Input
Port_1 — Time source signal
scalar

Input signal representing the time source in the sine wave calculation.
Data Types: double

Output
Output 1 — Output sine wave signal
scalar

Output signal that is the created sine wave.
Data Types: double

Parameters
Sine type — Type of sine wave
Time based (default) | Sample based

Specify the type of sine wave that this block generates. Some parameters in the dialog
box appear depending on whether you select time-based or sample-based.

Programmatic Use
Block Parameter: SineType
Type: character vector
Values: 'Time based' | 'Sample based'
Default: 'Time based'

 Sine Wave Function

1-1623

Time (t) — Source of time variable
Use external signal (default) | Use simulation time

Specify whether to use simulation time as the source of values for the time variable, or an
external source. If you specify an external time source, the block creates an input port for
the time source.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use external signal'

Amplitude — Amplitude of the sine wave
1 (default) | scalar

Specify the amplitude of the output sine wave signal.

Programmatic Use
Block Parameter: Amplitude
Type: character vector
Value: scalar
Default: '1'

Bias — Constant added to sine wave
0 (default) | scalar

Specify the constant value added to the sine to produce the output.

Programmatic Use
Block Parameter: Bias
Type: character vector
Value: scalar
Default: '0'

Frequency (rad/sec) — Frequency of sine wave
1 (default) | scalar

Specify the frequency, in radians per second.

Dependency

To enable this parameter, set Sine type to Time based.

1 Blocks — Alphabetical List

1-1624

Programmatic Use
Block Parameter: Frequence
Type: character vector
Value: scalar
Default: '1'

Phase (rad) — Phase shift of sine wave
0 (default) | scalar

Specify the phase shift of the sine wave.

You cannot configure this parameter to appear in the generated code as a tunable global
variable if you set Time (t) to Use simulation time. For example, if you set Default
parameter behavior to Tunable or apply a storage class to a Simulink.Parameter
object, the Phase parameter does not appear in the generated code as a tunable global
variable.

To generate code so that you can tune the phase during execution, set Time (t) to Use
external signal. You can provide your own time input signal or use a Digital Clock
block to generate the time signal. For an example, see “Tune Phase Parameter of Sine
Wave Block During Code Execution” (Simulink Coder).

Dependencies

To enable this parameter, set Sine type to Time based.

Programmatic Use
Block Parameter: Phase
Type: character vector
Value: scalar
Default: '0'

Samples per period — Samples per period
0 (default) | integer

Specify the number of samples per period.

Dependencies

To enable this parameter, set Sine type to Sample based.

Programmatic Use
Block Parameter: Samples

 Sine Wave Function

1-1625

Type: character vector
Value: scalar
Default: '10'

Number of offset samples — Offset in number of time samples
0 (default) | integer

Specify the offset (discrete phase shift) in number of sample times.

Dependencies

To enable this parameter, set Sine type to Sample based.

Programmatic Use
Block Parameter: Offset
Type: character vector
Value: scalar
Default: '0'

Sample time — Sample period
0 (default) | scalar

Specify the sample period in seconds. The default is 0. If the sine type is sample-based,
the sample time must be greater than 0. See “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: scalar
Default: '0'

Interpret vector parameters as 1-D — Output dimensions for one-row or
one-column matrices
off (default) | on

Specify the output dimensions to be a 1-D vector signal when other parameters are one-
row and one-column matrices. If you do not select this box, the block outputs a signal of
the same dimensionality as the numeric parameters. See “Determining the Output
Dimensions of Source Blocks” in the Simulink documentation. This parameter is not
available when an external signal specifies time. In this case, if numeric parameters are
column or row matrix values, the output is a 1-D vector.

1 Blocks — Alphabetical List

1-1626

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Depends on absolute time when placed inside a triggered subsystem hierarchy. These
blocks do not reference absolute time when configured for sample-based operation. In
time-based operation, they depend on absolute time.

See Also
Sine Wave | Sine, Cosine

Introduced before R2006a

 Sine Wave Function

1-1627

Slider
Tune parameter value with sliding scale
Library: Simulink / Dashboard

Description
The Slider block tunes the value of the connected block parameter during simulation. For
example, you can connect the Slider block to a Gain block in your model and adjust its
value during simulation. You can modify the range of the Slider block's scale to fit your
data. Use the Slider block with other Dashboard blocks to create an interactive dashboard
to control your model.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can

1 Blocks — Alphabetical List

1-1628

access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

 Slider

1-1629

Scale Type — Type of scale
'Linear' (default) | 'Log'

Type of scale displayed on the control. Linear specifies a linear scale, and Log specifies a
logarithmic scale.

Minimum — Minimum tick mark value
0 (default) | scalar

A finite, real, double, scalar value specifying the minimum tick mark value for the scale.
The minimum must be less than the value entered for the maximum.

Maximum — Maximum tick mark value
100 (default) | scalar

A finite, real, double, scalar value specifying the maximum tick mark value for the scale.
The maximum must be greater than the value entered for the minimum.

Tick Interval — Interval between major tick marks
auto (default) | scalar

A finite, real, positive, integer, scalar value specifying the interval of major tick marks on
the scale. When set to auto, the block automatically adjusts the tick interval based on the
minimum and maximum values.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Knob | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks — Alphabetical List

1-1630

Introduced in R2015b

 Slider

1-1631

Slider Gain
Vary scalar gain using slider
Library: Simulink / Math Operations

Description
The Slider Gain block performs a scalar gain that you can modify during simulation.
Modify the gain using the slider parameter.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

The Slider Gain block accepts real or complex-valued scalar, vector, or matrix input. The
block supports fixed-point data types. If the input of the Slider Gain block is real and gain
is complex, the output is complex.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Output
Port_1 — Input multiplied by gain
scalar | vector | matrix

The Slider Gain block outputs the input multiplied by a constant gain value. When the
input to the block is real and gain is complex, the output is complex.

1 Blocks — Alphabetical List

1-1632

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Parameters
Slider gain — Gain value
0 (default) | real value

Chose the gain value applied to the input.

Programmatic Use
Block Parameter: gain
Type: character vector
Values: real scalar
Default: '1'

Low — Lower limit of the slider range
0 (default) | real value

Specify the lower limit of the slider range.

Programmatic Use
Block Parameter: low
Type: character vector
Values: real scalar
Default: '0'

High — Upper limit of slider range
2 (default) | real value

Specify the upper limit of the slider range. The default is 2.

Programmatic Use
Block Parameter: high
Type: character vector
Values: real scalar
Default: '2'

 Slider Gain

1-1633

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Gain

Introduced before R2006a

1 Blocks — Alphabetical List

1-1634

Spectrum Analyzer
Display frequency spectrum
Library: DSP System Toolbox / Sinks

Description
The Spectrum Analyzer block, referred to here as the scope, displays the frequency
spectra of signals.

 Spectrum Analyzer

1-1635

You can use the Spectrum Analyzer block in models running in Normal or Accelerator
simulation modes. You can also use the Spectrum Analyzer block in models running in
Rapid Accelerator or External simulation modes, with some limitations.

You can use the Spectrum Analyzer block inside all subsystems and conditional
subsystems. Conditional subsystems include enabled subsystems, triggered subsystems,
enabled and triggered subsystems, and function-call subsystems. See “Conditionally
Executed Subsystems Overview” for more information.

You can configure and display Spectrum Analyzer settings from the command line with
spbscopes.SpectrumAnalyzerConfiguration.

For information about the Spectrum Analyzer System object, see
dsp.SpectrumAnalyzer.

Ports

Input
Port_1 — Signals to visualize
scalar | vector | matrix | array

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals
can have these characteristics:

• Signal Domain — Frequency or time signals
• Type — Discrete (sample-based and frame-based).
• Data type — Any data type that Simulink supports. See “Data Types Supported by

Simulink”.
• Dimension — One dimensional (vector), two dimensional (matrix), or

multidimensional (array). Input must have fixed number of channels. See “Signal
Dimensions” and “Determine Output Signal Dimensions”.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

1 Blocks — Alphabetical List

1-1636

Parameters

Spectrum Settings
The Spectrum Settings pane appears at the right side of the Spectrum Analyzer window.
This pane controls how the spectrum is calculated. To show the Spectrum Settings, in the

Spectrum Analyzer menu, select View > Spectrum Settings or use the button in the
toolbar.

Main options

Input domain — Domain of the input signal
Time (default) | Frequency

The domain of the input signal you want to visualize. If you visualize time-domain signals,
the signal is transformed to the frequency spectrum based on the algorithm specified by
the Method parameter.

Programmatic Use

See InputDomain.

Type — Type of spectrum to display
Power (default) | Power density | RMS

Power — Spectrum Analyzer shows the power spectrum.

Power density — Spectrum Analyzer shows the power spectral density. The power
spectral density is the magnitude of the spectrum normalized to a bandwidth of 1 hertz.

RMS — Spectrum Analyzer shows the root mean squared spectrum.

Tunable: Yes

Dependency

To use this parameter, set “Input domain” (DSP System Toolbox) to Time.

Programmatic Use

See SpectrumType.

 Spectrum Analyzer

1-1637

View — Spectrum view
Spectrum (default) | Spectrogram | Spectrum and spectrogram

Spectrum — Spectrum Analyzer shows the spectrum.

Spectrogram — Spectrum Analyzer shows the spectrogram, which displays frequency
content over time. The most recent spectrogram update is at the bottom of the display,
and time scrolls from the bottom to the top of the display.

Spectrum and spectrogram — Spectrum Analyzer shows both the spectrum and
spectrogram.

Tunable: Yes

Programmatic Use

See ViewType.

Sample rate — Sample rate of the input signal in hertz
Inherited (default) | positive scalar

Select Inherited to use the same sample rate as the input signal. To specify a sample
rate, delete Inherited and enter a sample rate value.

Programmatic Use

See SampleRate.

Method — Spectrum estimation method
Welch (default) | Filter Bank

Select Welch or Filter Bank as the spectrum estimation method. For more details
about the two spectrum estimation algorithms, see “Algorithms” (DSP System Toolbox).

Tunable: No

Dependency

To use this parameter, set “Input domain” (DSP System Toolbox) to Time.

Programmatic Use

See Method.

1 Blocks — Alphabetical List

1-1638

Full frequency span — Use entire Nyquist frequency interval
on (default) | off

Select this check box to compute and plot the spectrum over the entire “Nyquist
frequency interval” (DSP System Toolbox).

Tunable: Yes
Dependency

To use this parameter, set “Input domain” (DSP System Toolbox) to Time.
Programmatic Use

See FrequencySpan.

Span (Hz) — Frequency span in hertz
10e3 (default) | real positive scalar

Specify the frequency span in hertz. Use this parameter with the CF (Hz) parameter to
define the frequency span around a center frequency. This parameter defines the range of
values shown on the Frequency axis in the Spectrum Analyzer window.

Tunable: Yes
Dependencies

To use this parameter, you must:

• Set “Input domain” (DSP System Toolbox) to Time.
• Clear the “Full frequency span” (DSP System Toolbox) check box.
• Set the Span (Hz)/Fstart (Hz) dropdown to Span (Hz).

Programmatic Use

See FrequencySpan and Span.

CF (Hz) — Center frequency in hertz
0 (default) | scalar

Specify the center frequency, in hertz. Use this parameter with the “Span (Hz)” (DSP
System Toolbox) parameter to define the frequency span around a center frequency. This
parameter defines the value shown at the middle point of the Frequency axis on the
Spectrum Analyzer window.

 Spectrum Analyzer

1-1639

Tunable: Yes
Dependencies

To use this parameter, you must:

• Set “Input domain” (DSP System Toolbox) to Time.
• Clear the “Full frequency span” (DSP System Toolbox) check box.
• Set the Span (Hz)/Fstart (Hz) dropdown to “Span (Hz)” (DSP System Toolbox).

Programmatic Use

See CenterFrequency.

FStart (Hz) — Start frequency in hertz
-5e3 (default) | scalar

Specify the start frequency in hertz. Use this parameter with the “FStop (Hz)” (DSP
System Toolbox) parameter to define the range of frequency-axis values using start
frequency and stop frequency. This parameter defines the value shown at the leftmost
side of the Frequency axis on the Spectrum Analyzer window.

Tunable: Yes
Dependencies

To use this parameter, you must:

• Set “Input domain” (DSP System Toolbox) to Time.
• Clear the “Full frequency span” (DSP System Toolbox) check box.
• Set the Span (Hz)/FStart (Hz) dropdown to FStart (Hz).

Programmatic Use

See StartFrequency.

FStop (Hz) — Stop frequency in hertz
5e3 (default) | scalar

Specify the stop frequency, in hertz. Use this parameter with the “FStart (Hz)” (DSP
System Toolbox) parameter to define the range of Frequency axis values. This parameter
defines the value shown at the rightmost side of the Frequency axis on the Spectrum
Analyzer window.

1 Blocks — Alphabetical List

1-1640

Tunable: Yes
Dependencies

To use this parameter, you must:

• Set “Input domain” (DSP System Toolbox) to Time.
• Clear the “Full frequency span” (DSP System Toolbox) check box.
• Set the Span (Hz)/FStart (Hz) dropdown to “FStart (Hz)” (DSP System Toolbox).

Programmatic Use

See StopFrequency.

Frequency (Hz) — Frequency vector
Auto (default) | Input port | monotonically increasing vector

Set the frequency vector which determines the x-axis of the display.

• Auto — The frequency vector is calculated from the length of the input. See
“Frequency Vector” (DSP System Toolbox).

• Input port — When selected, an input port appears on the block for the frequency
vector input.

• Custom vector — Enter a custom vector as the frequency vector. The length of the
custom vector must be equal to the frame size of the input signal.

Tunable: No
Dependency

To use this parameter, set “Input domain” (DSP System Toolbox) to Frequency.
Programmatic Use

See FrequencyVector.

RBW (Hz) — Resolution bandwidth
Auto (default) | Input port | positive scalar

The resolution bandwidth in hertz. This parameter defines the smallest positive frequency
that can be resolved. By default, this parameter is set to Auto. In this case, the Spectrum
Analyzer determines the appropriate value to ensure that there are 1024 RBW intervals
over the specified frequency span.

 Spectrum Analyzer

1-1641

If you set this parameter to a numeric value, the value must allow at least two RBW
intervals over the specified frequency span. In other words, the ratio of the overall
frequency span to RBW must be at least two:

span

RBW
> 2

For frequency input only, you can use an input port to set the RBW value.

Tunable: Yes

Dependency

To use this parameter, set either:

• “Input domain” (DSP System Toolbox) to Time and the RBW (Hz)/Window length/
Number of frequency bands dropdown to RBW (Hz).

• “Input domain” (DSP System Toolbox) to Frequency.

Programmatic Use

See RBW.

Input units — Units of frequency input
Auto (default) | dBm | dBV | dBW | Vrms | Watts

Select the units of the frequency-domain input. This property allows the Spectrum
Analyzer to scale frequency data if you choose a different display unit with the “Units”
(DSP System Toolbox) property.

Tunable: No

Dependency

This option is only available for “Input domain” (DSP System Toolbox) set to Frequency.

Programmatic Use

See InputUnits.

Window length — Length of window in samples
1024 (default) | integer greater than 2

1 Blocks — Alphabetical List

1-1642

The length of the window, in samples. The window length used to control the frequency
resolution and compute the spectral estimates. The window length must be an integer
greater than 2.
Dependencies

To use this parameter, set:

• “Method” (DSP System Toolbox) to Welch
• Set the RBW (Hz)/Window length/Number of frequency bands dropdown to

Window Length

Dependency

To use this parameter, set “Input domain” (DSP System Toolbox) to Time.
Programmatic Use

See WindowLength.

Number of frequency bands — FFT length
Auto (default) | positive integer

Specify the fast Fourier transform (FFT) length to control the number of frequency bands.
If the value is Auto, the Spectrum Analyzer uses the entire frame size to estimate the
spectrum. If you specify the number of frequency bands, you set the input buffer size.
Dependencies

To use this parameter, set:

• “Method” (DSP System Toolbox) to Filter Bank
• Set the RBW (Hz)/Window length/Number of frequency bands dropdown to

Number of frequency bands

Programmatic Use

See FFTLength

Taps per band — Number of filter taps
12 (default) | positive even integer

Specify the number of filter taps or coefficients for each frequency band. This number
must be a positive even integer. This value corresponds to the number of filter coefficients

 Spectrum Analyzer

1-1643

per polyphase branch. The total number of filter coefficients is equal to Taps Per Band +
FFT Length.

Dependency

To use this parameter, you must set the RBW (Hz)/Window length/Number of
frequency bands dropdown to “Number of frequency bands” (DSP System Toolbox).

Programmatic Use

See NumTapsPerBand.

NFFT — Number of FFT points
Auto (default) | positive integer

Specify the length of the FFT that Spectrum Analyzer uses to compute spectral estimates.
Acceptable options are Auto or a positive integer.

The NFFT value must be greater than or equal to the value of the Window length
parameter. By default, when NFFT is set to Auto, the Spectrum Analyzer sets NFFT
equal to the value of Window length. When in RBW mode, the specified RBW value is
used to calculate an FFT length that equals the window length.

When this parameter is set to a positive integer, this parameter is equivalent to the n
parameter of the fft function.

Dependencies

To use this parameter, you must set the RBW (Hz)/Window length/Number of
frequency bands dropdown to “Window length” (DSP System Toolbox).

Programmatic Use

See FFTLength.

Samples/update — Required number of input samples
positive scalar

This property is read-only.

The number of input samples required to compute one spectral update. You cannot modify
this parameter; it is shown in the spectrum analyzer for informational purposes only. This
parameter is directly related to RBW (Hz)/Window length/Number of frequency
bands. For more details, see “Algorithms” (DSP System Toolbox).

1 Blocks — Alphabetical List

1-1644

If the input does not have enough samples to achieve the resolution bandwidth that you
specify, Spectrum Analyzer produces a message on the display.

Spectrogram Settings

Channel — Spectrogram channel
channel name

Select the signal channel for which the spectrogram settings apply.

Dependencies

To use this option:

• Set “View” (DSP System Toolbox) to Spectrogram or Spectrum and spectrogram.
• There must be more than one signal channel input.

Time res. (s) — Time resolution in seconds
Auto (default) | positive number

Time resolution is the amount of data, in seconds, used to compute a spectrogram line.
The minimum attainable resolution is the amount of time it takes to compute a single
spectral estimate. The tooltip displays the minimum attainable resolution given the
current settings.

The time resolution value is determined based on frequency resolution method, the RBW
setting, and the time resolution setting.

Method Frequency
Resolution
Method

Freque
ncy
Resolut
ion
Setting

Time
Resolution
Setting

Resulting Time
Resolution in Seconds

Welch or Filter
Bank

RBW (Hz) Auto Auto 1/RBW

 Spectrum Analyzer

1-1645

Method Frequency
Resolution
Method

Freque
ncy
Resolut
ion
Setting

Time
Resolution
Setting

Resulting Time
Resolution in Seconds

Welch or Filter
Bank

RBW (Hz) Auto Manually
entered

Time Resolution

Welch or Filter
Bank

RBW (Hz) Manuall
y
entered

Auto 1/RBW

Welch or Filter
Bank

RBW (Hz) Manuall
y
entered

Manually
entered

Must be equal to or
greater than the
minimum attainable time
resolution, 1/RBW.
Several spectral
estimates are combined
into one spectrogram line
to obtain the desired time
resolution. Interpolation
is used to obtain time
resolution values that are
not integer multiples of 1/
RBW.

Welch Window length — Auto 1/RBW
Welch Window length — Manually

entered
Must be equal to or
greater than the
minimum attainable time
resolution. Several
spectral estimates are
combined into one
spectrogram line to
obtain the desired time
resolution. Interpolation
is used to obtain time
resolution values that are
not integer multiples of 1/
RBW.

1 Blocks — Alphabetical List

1-1646

Method Frequency
Resolution
Method

Freque
ncy
Resolut
ion
Setting

Time
Resolution
Setting

Resulting Time
Resolution in Seconds

Filter Bank Number of
frequency
bands

— Auto 1/RBW

Filter Bank Number of
frequency
bands

— Manually
entered

Must be equal to or
greater than the
minimum attainable time
resolution, 1/RBW.

Tunable: Yes

Dependency

To use this option, set “View” (DSP System Toolbox) to Spectrogram or Spectrum and
spectrogram.

Programmatic Use

See TimeResolution.

Time span — Time span in seconds
Auto (default) | positive scalar

The time span over which the Spectrum Analyzer displays the spectrogram specified in
seconds. The time span is the product of the desired number of spectral lines and the
time resolution. The tooltip displays the minimum allowable time span, given the current
settings. If the time span is set to Auto, 100 spectral lines are used.

Tunable: Yes

Dependency

To use this option, set “View” (DSP System Toolbox) to Spectrogram or Spectrum and
spectrogram.

Programmatic Use

See TimeSpan.

 Spectrum Analyzer

1-1647

Window Options

Overlap (%) — Segment overlap percentage
0 (default) | scalar between 0 and 100

This parameter defines the amount of overlap between the previous and current buffered
data segments. The overlap creates a window segment that is used to compute a spectral
estimate. The value must be greater than or equal to zero and less than 100.

Tunable: Yes

Programmatic Use

See OverlapPercent.

Window — Windowing method
Hann (default) | Rectangular | Blackman-Harris | Chebyshev | Flat Top | Hamming
| Kaiser | custom window function name

The windowing method to apply to the spectrum. Windowing is used to control the effect
of sidelobes in spectral estimation. The window you specify affects the window length
required to achieve a resolution bandwidth and the required number of samples per
update. For more information about windowing, see “Windows” (Signal Processing
Toolbox).

Tunable: Yes

Programmatic Use

See Window.

Attenuation — Sidelobe attenuation
60 (default) | scalar greater than or equal to 45

The sidelobe attenuation in decibels (dB). The value must be greater than or equal to 45.

Dependency

This parameter applies only when you set the Window parameter to Chebyshev or
Kaiser.

Programmatic Use

See SidelobeAttenuation.

1 Blocks — Alphabetical List

1-1648

NENBW — Normalized effective noise bandwidth
scalar

This property is read-only.

The normalized effective noise bandwidth of the window. You cannot modify this
parameter; it is shown for informational purposes only. This parameter is a measure of the
noise performance of the window. The value is the width of a rectangular filter that
accumulates the same noise power with the same peak power gain.

The rectangular window has the smallest NENBW, with a value of 1. All other windows
have a larger NENBW value. For example, the Hann window has an NENBW value of
approximately 1.5.

Trace Options

Units — Spectrum units
dBm (default) | dBW | Watts | Vrms | dBV | dBFS

The units of the spectrum. The available values depend on the value of the “Type” (DSP
System Toolbox) parameter.

Tunable: Yes

Programmatic Use

See SpectrumUnits.

Full scale — Full scale for dBFS units
Auto (default) | positive real scalar

The full scale used for the dBFS units. By default, the Spectrum Analyzer uses the entire
spectrum scale. Specify a positive real scalar for the dBFS full scale.

Tunable: Yes

Dependencies

To enable this parameter, set:

• “Input domain” (DSP System Toolbox) to Time
• “Units” on page 1-0 to dBFS

 Spectrum Analyzer

1-1649

Programmatic Use

See FullScale.

Averages — Number of spectral averages
1 (default) | positive integer

Specify the number of spectral averages as a positive integer. The spectrum analyzer
computes the current power spectrum estimate by computing a running average of the
last N power spectrum estimates. This parameter defines the number of spectral
averages, N.

Dependency

This parameter applies only when the “View” (DSP System Toolbox) parameter is
Spectrum or Spectrum and spectrogram.

Programmatic Use

See SpectralAverages.

Reference load — Reference load
1 (default) | positive real scalar

The reference load in ohms that the Spectrum Analyzer uses as a reference to compute
power values.

Dependency

To use this parameter, set “Input domain” (DSP System Toolbox) to Time.

Programmatic Use

See ReferenceLoad.

Scale — Scale of frequency axis
Linear (default) | Logarithmic

Choose a linear or logarithm scale for the frequency axis. When the frequency span
contains negative frequency values, you cannot choose the logarithmic option.

Programmatic Use

See FrequencyScale.

1 Blocks — Alphabetical List

1-1650

Offset — Constant frequency offset
0 (default) | scalar

The constant frequency offset to apply to the entire spectrum, or a vector of frequencies
to apply to each spectrum for multiple inputs. The offset parameter is added to the values
on the Frequency axis in the Spectrum Analyzer window. This parameter is not used in
any spectral computations. You must take the parameter into consideration when you set
the Span (Hz) and CF (Hz) parameters to ensure that the frequency span is within the
“Nyquist frequency interval” (DSP System Toolbox).
Dependency

To use this parameter, set “Input domain” (DSP System Toolbox) to Time.
Programmatic Use

See “FrequencyOffset” (DSP System Toolbox).

Normal trace — Normal trace view
on (default) | off

When this check box is selected, the Spectrum Analyzer calculates and plots the power
spectrum or power spectrum density. Spectrum Analyzer performs a smoothing operation
by averaging several spectral estimates.
Dependencies

To clear this check box, you must first select either the “Max hold trace” (DSP System
Toolbox) or the “Min hold trace” (DSP System Toolbox) parameter. This parameter applies
only when “View” (DSP System Toolbox) is Spectrum or Spectrum and spectrogram.
Programmatic Use

See PlotNormalTrace.

Max hold trace — Maximum hold trace view
off (default) | on

Select this check box to enable Spectrum Analyzer to plot the maximum spectral values of
all the estimates obtained.
Dependency

This parameter applies only when “View” (DSP System Toolbox) is Spectrum or
Spectrum and spectrogram.

 Spectrum Analyzer

1-1651

Programmatic Use

See PlotMaxHoldTrace.

Min hold trace — Minimum hold trace view
off (default) | on

Select this check box to enable Spectrum Analyzer to plot the minimum spectral values of
all the estimates obtained.

Dependency

This parameter applies only when “View” (DSP System Toolbox) is Spectrum or
Spectrum and spectrogram.

Programmatic Use

See PlotMinHoldTrace.

Two-sided spectrum — Enable two-sided spectrum view
off (default) | on

Select this check box to enable a two-sided spectrum view. In this view, both negative and
positive frequencies are shown. If you clear this check box, Spectrum Analyzer shows a
one-sided spectrum with only positive frequencies. Spectrum Analyzer requires that this
parameter is selected when the input signal is complex-valued.

Programmatic Use

See PlotAsTwoSidedSpectrum.

Configuration Properties
The Configuration Properties dialog box controls visual aspects of the Spectrum
Analyzer. To open the Configuration Properties, in the Spectrum Analyzer menu, select

View > Configuration Properties or select the button in the toolbar dropdown.

Title — Display title
character vector | string

Specify the display title. Enter %<SignalLabel> to use the signal labels in the Simulink
model as the axes titles.

1 Blocks — Alphabetical List

1-1652

Tunable: Yes

Programmatic Use

See Title.

Show legend — Display signal legend
off (default) | on

Show signal legend. The names listed in the legend are the signal names from the model.
For signals with multiple channels, a channel index is appended after the signal name.
Continuous signals have straight lines before their names and discrete signals have step-
shaped lines.

From the legend, you can control which signals are visible. This control is equivalent to
changing the visibility in the Style parameters. In the scope legend, click a signal name to
hide the signal in the scope. To show the signal, click the signal name again. To show only
one signal, right-click the signal name, which hides all other signals. To show all signals,
press ESC.

Dependency

To enable this parameter, set “View” (DSP System Toolbox) to Spectrum or Spectrum
and spectrogram.

Programmatic Use

See ShowLegend.

Show grid — Show internal grid lines
off (default) | on

Show internal grid lines on the Spectrum Analyzer

Programmatic Use

See ShowGrid.

Y-limits (minimum) — Y-axis minimum
-80 (default) | scalar

Specify the minimum value of the y-axis.

 Spectrum Analyzer

1-1653

Programmatic Use

See YLimits.

Y-limits (maximum) — Y-axis maximum
20 (default) | scalar

Specify the maximum value of the y-axis.

Programmatic Use

See YLimits.

Y-label — Y-axis label
character vector | string

To display signal units, add (%<SignalUnits>) to the label. At the beginning of a
simulation, Simulink replaces (%SignalUnits) with the units associated with the
signals. For example, if you have a signal for velocity with units of m/s enter

Velocity (%<SignalUnits>)

Programmatic Use

See YLabel.

Color map — Spectrogram colormap
jet(256) (default) | hot(256) | bone(256) | cool(256) | copper(256) | gray(256)
| parula(256) | 3-column matrix

Select the colormap for the spectrogram, or enter a three-column matrix expression for
the colormap. For more information about colormaps, see colormap.

Tunable: Yes

Dependency

To use this parameter, set “View” (DSP System Toolbox) to Spectrogram or Spectrum
and spectrogram.

Color-limits (minimum) — Spectrogram minimum
-80 (default) | scalar

Specify the signal power for the minimum color value of the spectrogram.

1 Blocks — Alphabetical List

1-1654

Tunable: Yes

Dependency

To use this parameter, set “View” (DSP System Toolbox) to Spectrogram or Spectrum
and spectrogram.

Programmatic Use

See ColorLimits.

Color-limits (maximum) — Spectrogram maximum
20 (default) | scalar

Specify the signal power for the maximum color value of the spectrogram.

Tunable: Yes

Dependency

To use this parameter, set “View” (DSP System Toolbox) to Spectrogram or Spectrum
and spectrogram.

Programmatic Use

See ColorLimits.

Style
The Style dialog box controls how to Spectrum Analyzer appears. To open the Style
properties, in the Spectrum Analyzer menu, select View > Style or select the button
in the toolbar dropdown.

Figure color — Window background
gray (default) | color picker

Specify the color that you want to apply to the background of the scope figure.

Plot type — Plot type
Line (default) | Stem

Specify whether to display a Line or Stem plot.

 Spectrum Analyzer

1-1655

Programmatic Use

See PlotType.

Axes colors — Axes background color
black (default) | color picker

Specify the color that you want to apply to the background of the axes.

Properties for line — Channel for visual property settings
channel names

Specify the channel for which you want to modify the visibility, line properties, and
marker properties.

Visible — Channel visibility
on (default) | off

Specify whether the selected channel is visible. If you clear this check box, the line
disappears. You can also change signal visibility using the scope legend.

Line — Line style
line, 0.5, yellow (default)

Specify the line style, line width, and line color for the selected channel.

Marker — Data point markers
none (default)

Specify marks for the selected channel to show at its data points. This parameter is
similar to the 'Marker' property for plots. You can choose any of the marker symbols from
the dropdown.

Axes Scaling
The Axes Scaling dialog box controls the axes limits of the Spectrum Analyzer. To open
the Axes Scaling properties, in the Spectrum Analyzer menu, select Tools > Axes
Scaling > Axes Scaling Properties.

Axes scaling/Color scaling — Automatic axes scaling
Auto (default) | Manual | After N Updates

1 Blocks — Alphabetical List

1-1656

Specify when the scope automatically scales the y-axis. If the spectrogram is displayed,
specify when the scope automatically scales the color axis. By default, this parameter is
set to Auto, and the scope does not shrink the y-axis limits when scaling the axes or color.
You can select one of the following options:

• Auto — The scope scales the axes or color as needed, both during and after
simulation. Selecting this option shows the Do not allow Y-axis limits to shrink or
Do not allow color limits to shrink.

• Manual — When you select this option, the scope does not automatically scale the
axes or color. You can manually scale the axes or color in any of the following ways:

• Select Tools > Scaling Properties.
• Press one of the Scale Axis Limits toolbar buttons.
• When the scope figure is the active window, press Ctrl+A.

• After N Updates — Selecting this option causes the scope to scale the axes or color
after a specified number of updates. This option is useful, and most efficient, when
your frequency signal values quickly reach steady-state after a short period. Selecting
this option shows the Number of updates edit box where you can modify the number
of updates to wait before scaling.

Tunable: Yes
Programmatic Use

See AxesScaling.

Do not allow Y-axis/color limits to shrink — Axes scaling limits
on (default) | off

When you select this parameter, the y-axis is allowed to grow during axes scaling
operations. If the spectrogram is displayed, selecting this parameter allows the color
limits to grow during axis scaling. If you clear this check box, the y-axis or color limits can
shrink during axes scaling operations.
Dependency

This parameter appears only when you select Auto for the Axis scaling or Color scaling
parameter. When you set the Axes scaling or Color scaling parameter to Manual or
After N Updates, the y-axis or color limits can shrink.

Number of updates — Number of updates before scaling
10 (default) | positive number

 Spectrum Analyzer

1-1657

The number of updates after which the axes scale, specified as a positive integer. If the
spectrogram is displayed, this parameter specifies the number of updates after which the
color axes scales.

Tunable: Yes

Dependency

This parameter appears only when you set “Axes scaling/Color scaling” (DSP System
Toolbox) to After N Updates.

Scale limits at stop — Scale axes at stop
off (default) | on

Select this check box to scale the axes when the simulation stops. If the spectrogram is
displayed, select this check box to scale the color when the simulation stops. The y-axis is
always scaled. The x-axis limits are only scaled if you also select the Scale X-axis limits
check box.

Data range (%) — Percent of axes
100 (default) | number in the range [1,100]

Set the percentage of the axis that the scope uses to display the data when scaling the
axes. If the spectrogram is displayed, set the percentage of the power values range within
the colormap. Valid values are from 1 through 100. For example, if you set this parameter
to 100, the scope scales the axis limits such that your data uses the entire axis range. If
you then set this parameter to 30, the scope increases the y-axis or color range such that
your data uses only 30% of the axis range.

Tunable: Yes

Align — Alignment along axes
Center (default) | Bottom | Top | Left | Right

Specify where the scope aligns your data along the axis when it scales the axes. If the
spectrogram is displayed, specify where the scope aligns your data along the axis when it
scales the color. If you are using CCDF Measurements (DSP System Toolbox), the x axis is
also configurable.

Tunable: Yes

1 Blocks — Alphabetical List

1-1658

Algorithms
Welch's Method
When you set the Method property to Welch, the following algorithms apply. The
Spectrum Analyzer uses the RBW or the Window Length setting in the Spectrum
Settings pane to determine the data window length. Then, it partitions the input signal
into a number of windowed data segments. Finally, Spectrum Analyzer uses the modified
periodogram method to compute spectral updates, averaging the windowed periodograms
for each segment.

Spectrum Analyzer requires that a minimum number of samples to compute a spectral
estimate. This number of input samples required to compute one spectral update is shown
as Samples/update in the Main options pane. This value is directly related to resolution
bandwidth, RBW, by the following equation, or to the window length, by the equation
shown in step 2.

N

O
NENBW F

RBW
samples

p
s

=

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ¥ ¥1

100

The normalized effective noise bandwidth, NENBW, is a factor that depends on the
windowing method. Spectrum Analyzer shows the value of NENBW in the Window
Options pane of the Spectrum Settings pane. Overlap percentage, Op, is the value of
the Overlap % parameter in the Window Options pane of the Spectrum Settings pane.
Fs is the sample rate of the input signal. Spectrum Analyzer shows sample rate in the
Main Options pane of the Spectrum Settings pane.

1 When in RBW (Hz) mode, the window length required to compute one spectral
update, Nwindow, is directly related to the resolution bandwidth and normalized
effective noise bandwidth:

N
NENBW F

RBW
window

s
=

×

When in Window Length mode, the window length is used as specified.
2 The number of input samples required to compute one spectral update, Nsamples, is

directly related to the window length and the amount of overlap by the following
equation.

 Spectrum Analyzer

1-1659

N
O

Nsamples
p

window= −

1

100

When you increase the overlap percentage, fewer new input samples are needed to
compute a new spectral update. For example, if the window length is 100, then the
number of input samples required to compute one spectral update is given as shown
in the following table.

Op Nsamples
0% 100
50% 50
80% 20

3 The normalized effective noise bandwidth, NENBW, is a window parameter
determined by the window length, Nwindow, and the type of window used. If w(n)
denotes the vector of Nwindow window coefficients, then NENBW is given by the
following equation.

NENBW N

w n

w n

window
n

N

n

N

window

window

=

=

=

∑

∑

2

1

1

2

()

()
4 When in RBW (Hz) mode, you can set the resolution bandwidth using the value of

the RBW (Hz) parameter on the Main options pane of the Spectrum Settings
pane. You must specify a value to ensure that there are at least two RBW intervals
over the specified frequency span. The ratio of the overall span to RBW must be
greater than two:

span

RBW
> 2

By default, the RBW (Hz) parameter on the Main options pane is set to Auto. In
this case, the Spectrum Analyzer determines the appropriate value to ensure that
there are 1024 RBW intervals over the specified frequency span. When you set RBW
(Hz) to Auto, RBW is calculated as:

1 Blocks — Alphabetical List

1-1660

RBW
span

auto =

1024

5 When in Window Length mode, you specify Nwindow and the resulting RBW is:

NENBW * Fs

Nwindow

Sometimes, the number of input samples provided are not sufficient to achieve the
resolution bandwidth that you specify. When this situation occurs, Spectrum Analyzer
displays a message:

Spectrum Analyzer removes this message and displays a spectral estimate when enough
data has been input.

Note The number of FFT points (Nfft) is independent of the window length (Nwindow). You
can set them to different values if Nfft is greater than or equal to Nwindow.

Filter Bank
When you set the Method property to Filter Bank, the following algorithms apply. The
Spectrum Analyzer uses the RBW (Hz) or the Number of frequency band property in
the Spectrum Settings pane to determine the input frame length.

Spectrum Analyzer requires a minimum number of samples to compute a spectral
estimate. This number of input samples required to compute one spectral update is shown
as Samples/update in the Main options pane. This value is directly related to resolution
bandwidth, RBW, by the following equation.

 Spectrum Analyzer

1-1661

N
F

RBW
samples

s
=

Fs is the sample rate of the input signal. Spectrum Analyzer shows sample rate in the
Main Options pane of the Spectrum Settings pane.

1 When in RBW (Hz) mode, you can set the resolution bandwidth using the value of
the RBW (Hz) parameter on the Main options pane of the Spectrum Settings
pane. You must specify a value to ensure that there are at least two RBW intervals
over the specified frequency span. The ratio of the overall span to RBW must be
greater than two:

span

RBW
> 2

By default, the RBW parameter on the Main options pane is set to Auto. In this
case, the Spectrum Analyzer determines the appropriate value to ensure that there
are 1024 RBW intervals over the specified frequency span. Thus, when you set RBW

to Auto, it is calculated by the following equation. RBW
span

auto =

1024
2 When in Number of frequency bands mode, you specify the input frame size. When

the number of frequency bands is Auto, the resulting RBW is:

RBW
F

s
=

Input Frame Size

When the number of frequency bands is manually specified, the resulting RBW is:

RBW
F

FFTLength

s
=

For more information about the filter bank algorithm, see “Polyphase Implementation”
(DSP System Toolbox).

Sometimes, the number of input samples provided are not sufficient to achieve the
resolution bandwidth that you specify. When this situation occurs, Spectrum Analyzer
displays a message:

1 Blocks — Alphabetical List

1-1662

Spectrum Analyzer removes this message and displays a spectral estimate when enough
data has been input.

Nyquist frequency interval
When the PlotAsTwoSidedSpectrum property is set to true, the interval is

-
È

ÎÍ
˘

˚̇
+

SampleRate SampleRate
FrequencyOffset

2 2
, hertz.

When the PlotAsTwoSidedSpectrum property is set to false, the interval is

0
2

,
SampleRate

FrequencyOffset
È

Î
Í

˘

˚
˙ + hertz.

Periodogram and Spectrogram
Spectrum Analyzer calculates and plots the power spectrum, power spectrum density, and
RMS computed by the modified Periodogram estimator. For more information about the
Periodogram method, see periodogram.

Power Spectral Density — The power spectral density (PSD) is given by the following
equation.

PSD f
P

F

x e

s
p

p

w n

n
j f n T

n

N
FFT

n

Nwindow

()

()

[]

[]
()

=

×

− −

=

∑

=

∑

1

2 1

1

2

2

1

π

==

∑
1

P

 Spectrum Analyzer

1-1663

In this equation, x[n] is the discrete input signal. On every input signal frame, Spectrum
Analyzer generates as many overlapping windows as possible, with each window denoted
as x(p)[n], and computes their periodograms. Spectrum Analyzer displays a running
average of the P most current periodograms.

Power Spectrum — The power spectrum is the product of the power spectral density and
the resolution bandwidth, as given by the following equation.

spectrumP f PSD f RBW PSD f
F NENBW

N P

s

window

x e
p

n

() () ()

()
[]

= × = ×
×

=
1

−− −

=

∑

=

∑

=
∑

j f n T

n

N
FFT

w n

n

Nwindowp

P

2 1

1

2

1

2
1

π ()

[]

Frequency Vector
When set to Auto, the frequency vector for frequency-domain input is calculated by the
software.

When the PlotAsTwoSidedSpectrum property is set to true, the frequency vector is:

-
È

ÎÍ
˘

˚̇

SampleRate SampleRate

2 2
,

When the PlotAsTwoSidedSpectrum property is set to false, the frequency vector is:

0
2

,
SampleRateÈ

ÎÍ
˘

˚̇

Occupied BW
The Occupied BW is calculated as follows.

1 Calculate the total power in the measured frequency range.
2 Determine the lower frequency value. Starting at the lowest frequency in the range

and moving upward, the power distributed in each frequency is summed until this
result is

1 Blocks — Alphabetical List

1-1664

2

100 - Occupied BW %

of the total power.
3 Determine the upper frequency value. Starting at the highest frequency in the range

and moving downward, the power distributed in each frequency is summed until the
result reaches

2

100 - Occupied BW %

of the total power.
4 The bandwidth between the lower and upper power frequency values is the occupied

bandwidth.
5 The frequency halfway between the lower and upper frequency values is the center

frequency.

Distortion Measurements
The Distortion Measurements are computed as follows.

1 Spectral content is estimated by finding peaks in the spectrum. When the algorithm
detects a peak, it records the width of the peak and clears all monotonically
decreasing values. That is, the algorithm treats all these values as if they belong to
the peak. Using this method, all spectral content centered at DC (0 Hz) is removed
from the spectrum and the amount of bandwidth cleared (W0) is recorded.

2 The fundamental power (P1) is determined from the remaining maximum value of the
displayed spectrum. A local estimate (Fe1) of the fundamental frequency is made by
computing the central moment of the power near the peak. The bandwidth of the
fundamental power content (W1) is recorded. Then, the power from the fundamental
is removed as in step 1.

3 The power and width of the higher-order harmonics (P2, W2, P3, W3, etc.) are
determined in succession by examining the frequencies closest to the appropriate
multiple of the local estimate (Fe1). Any spectral content that decreases
monotonically about the harmonic frequency is removed from the spectrum first
before proceeding to the next harmonic.

 Spectrum Analyzer

1-1665

4 Once the DC, fundamental, and harmonic content is removed from the spectrum, the
power of the remaining spectrum is examined for its sum (Premaining), peak value
(Pmaxspur), and median value (Pestnoise).

5 The sum of all the removed bandwidth is computed as Wsum = W0 + W1 + W2 +...+
Wn.

The sum of powers of the second and higher-order harmonics are computed as
Pharmonic = P2 + P3 + P4 +...+ Pn.

6 The sum of the noise power is estimated as:

P P dF P W RBWnoise remaining est noise sum= ◊ + ◊()
.

Where dF is the absolute difference between frequency bins, and RBW is the
resolution bandwidth of the window.

7 The metrics for SNR, THD, SINAD, and SFDR are then computed from the estimates.

THD
P

P

SINAD
P

P P

harmonic

harmonic no

= ◊
Ê

Ë
Á

ˆ

¯
˜

= ◊
+

10

10

10
1

10
1

log

log
iise

noise

max

SNR
P

P

SFDR
P

P

Ê

Ë
Á

ˆ

¯
˜

= ◊
Ê

Ë
Á

ˆ

¯
˜

= ◊

10

10

10
1

10
1

log

log
max sspur nP P P,max , ,...,2 3()()

Ê

Ë

Á
Á

ˆ

¯

˜
˜

Harmonic Measurements
1 The harmonic distortion measurements use the spectrum trace shown in the display

as the input to the measurements. The default Hann window setting of the Spectrum
Analyzer may exhibit leakage that can completely mask the noise floor of the
measured signal.

1 Blocks — Alphabetical List

1-1666

The harmonic measurements attempt to correct for leakage by ignoring all frequency
content that decreases monotonically away from the maximum of harmonic peaks. If
the window leakage covers more than 70% of the frequency bandwidth in your
spectrum, you may see a blank reading (–) reported for SNR and SINAD. If your
application can tolerate the increased equivalent noise bandwidth (ENBW), consider
using a Kaiser window with a high attenuation (up to 330 dB) to minimize spectral
leakage.

 Spectrum Analyzer

1-1667

2 The DC component is ignored.
3 After windowing, the width of each harmonic component masks the noise power in

the neighborhood of the fundamental frequency and harmonics. To estimate the noise
power in each region, Spectrum Analyzer computes the median noise level in the
nonharmonic areas of the spectrum. It then extrapolates that value into each region.

4 Nth order intermodulation products occur at A*F1 + B*F2,

where F1 and F2 are the sinusoid input frequencies and |A| + |B| = N. A and B are
integer values.

5 For intermodulation measurements, the third-order intercept (TOI) point is computed
as follows, where P is power in decibels of the measured power referenced to 1
milliwatt (dBm):

1 Blocks — Alphabetical List

1-1668

• TOIlower = PF1 + (PF2 - P(2F1-F2))/2
• TOIupper = PF2 + (PF1 - P(2F2-F1))/2
• TOI = + (TOIlower + TOIupper)/2

See Also
Objects
Spectrum Analyzer Configuration

System Objects
dsp.SpectrumAnalyzer

Functions
getSpectralMaskStatus | getSpectrumData

Blocks
Array Plot | Time Scope

Topics
“Display Frequency-Domain Data in Spectrum Analyzer” (DSP System Toolbox)
“Spectral Analysis” (DSP System Toolbox)
“Display Frequency-Domain Data in Spectrum Analyzer” (DSP System Toolbox)

Introduced in R2014b

 Spectrum Analyzer

1-1669

Slider Switch
Toggle parameter between two values
Library: Simulink / Dashboard

Description
The Slider Switch block toggles the value of the connected block parameter between two
values during simulation. For example, you can connect the Slider Switch block to a
Switch block in your model and change its state during simulation. Use the Slider Switch
block with other Dashboard blocks to create an interactive dashboard for your model.

Double-clicking the Slider Switch block does not open its dialog box during simulation
and when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.
2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

1 Blocks — Alphabetical List

1-1670

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

 Slider Switch

1-1671

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

States

Label (Left) — Label for left switch position
'On' (default) | character vector

Labels the left switch position. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the left, or you can enter a text label.
Example: Gain = 2

Value (Left) — Value for left switch position
1 (default) | scalar

The value assigned to the connected parameter when the switch is positioned at the left.

Label (Right) — Label for right switch position
'Off' (default) | character vector

Labels the right switch position. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the right, or you can enter a text label.
Example: Gain = 1

Value (Right) — Value for right switch position
0 (default) | scalar

The value assigned to the connected parameter when the switch is positioned at the right.

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Rocker Switch | Rotary Switch | Toggle Switch

1 Blocks — Alphabetical List

1-1672

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

 Slider Switch

1-1673

Sqrt
Calculate square root, signed square root, or reciprocal of square root
Library: Simulink / Math Operations

Description
The Sqrt block calculates the square root, signed square root, or reciprocal of square root
on the input signal. Select one of the following functions from the Function parameter
list.

Function Description Mathematical
Expression

MATLAB Equivalent

sqrt Square root of the
input

u0.5 sqrt

signedSqrt Square root of the
absolute value of the
input, multiplied by
the sign of the input

sign(u)*|u|0.5 —

rSqrt Reciprocal of the
square root of the
input

u-0.5 —

The block icon changes to match the function.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

1 Blocks — Alphabetical List

1-1674

Input signal to the block to calculate the square root, signed square root, or reciprocal of
square root. The sqrt function accepts real or complex inputs, except for complex fixed-
point signals. signedSqrt and rSqrt do not accept complex inputs.

If the input is negative, set the Output signal to complex.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal that is the square root, signed square root, or reciprocal of square root of
the input signal. When the input is an integer or fixed-point type, the output must be
floating point.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters

Main
Function — Function the block performs
sqrt (default) | signedSqrt | rSqrt

Specify the mathematical function that the block calculates. The block icon changes to
match the function you select.

Function Block Icon
sqrt

signedSqrt

 Sqrt

1-1675

Function Block Icon
rSqrt

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'sqrt' | 'signedSqrt' | 'rSqrt'
Default: 'sqrt'

Output signal type — Output signal type
auto (default) | real | complex

Specify the output signal type of the block.

Function Input Signal
Type

Output Signal Type
Auto Real Complex

sqrt real real for
nonnegative inputs

NaN for negative
inputs

real for
nonnegative inputs

NaN for negative
inputs

complex

complex complex error complex
signedSqrt real real real complex

complex error error error
rSqrt real real real error

complex error error error

Programmatic Use
Block Parameter: OutputSignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

1 Blocks — Alphabetical List

1-1676

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Algorithm
Method — Method to compute reciprocal of square root
Exact (default) | Newton-Raphson

Specify the method for computing the reciprocal of a square root. This parameter is only
valid for the rSqrt function.

Method Data Types Supported When to Use This Method
Exact Floating point

If you use a fixed-point or
built-in integer type, an
upcast to a floating-point
type occurs.

You do not want an
approximation.

Note The input or output
must be floating point.

Newton-Raphson Floating-point, fixed-point,
and built-in integer types

You want a fast,
approximate calculation.

The Exact method provides results that are consistent with MATLAB computations.

Note The algorithms for sqrt and signedSqrt are always of Exact type, no matter
what selection appears on the block dialog box.

Programmatic Use
Block Parameter: AlgorithmType

 Sqrt

1-1677

Type: character vector
Values: 'Exact' | 'Newton-Raphson'
Default: 'Exact'

Number of iterations — Number of iterations used for Newton Raphson
algorithm
3 (default) | integer

Specify the number of iterations to perform the Newton-Raphson algorithm. This
parameter is valid with the rSqrt function and the Newton-Raphson value for Method.

Note If you enter 0, the block output is the initial guess of the Newton-Raphson
algorithm.

Programmatic Use
Block Parameter: Iterations
Type: character vector
Values: integer
Default: '3'

Data Types

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Intermediate results data type — Data type of intermediate results
Inherit:Inherit via internal rule (default) | Inherit: Inherit: Inherit
from input | Inherit: Inherit: Inherit from output | double | single |
int8 | int32 | uint32 | fixdt(1,16,2^0,0) | <data type expression>

Specify the data type for intermediate results when you set Function to sqrt or rSqrt
on the Main pane.

The type can be inherited, specified directly, or expressed as a data type object such as
Simulink.NumericType.

Follow these guidelines on setting an intermediate data type explicitly for the square root
function, sqrt:

1 Blocks — Alphabetical List

1-1678

Input and Output Data Types Intermediate Data Type
Input or output is double. Use double.
Input or output is single, and any non-single
data type is not double.

Use single or double.

Input and output are fixed point. Use fixed point.

Follow these guidelines on setting an intermediate data type explicitly for the reciprocal
square root function, rSqrt:

Input and Output Data Types Intermediate Data Type
Input is double and output is not single. Use double.
Input is not single and output is double. Use double.
Input and output are fixed point. Use fixed point.

Caution Do not set Intermediate results data type to Inherit:Inherit from
output when:

• You select Newton-Raphson to compute the reciprocal of a square root.
• The input data type is floating point.
• The output data type is fixed point.

Under these conditions, selecting Inherit:Inherit from output yields suboptimal
performance and produces an error.

To avoid this error, convert the input signal from a floating-point to fixed-point data type.
For example, insert a Data Type Conversion block in front of the Sqrt block to perform the
conversion.

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit from
input' | 'Inherit: Inherit from output' | 'double' | 'single', 'int8',
'uint8', int16, 'uint16', 'int32', 'uint32', fixdt(1,16,0),
fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

 Sqrt

1-1679

Output — Output data type
Inherit: Same as first input (default) | Inherit: Inherit via internal
rule | Inherit: Inherit via back propagation | double | single | int8 |
int32 | uint32 | fixdt(1,16,2^0,0) | <data type expression> | ...

Specify the output data type. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via
back propagation' | 'Inherit: Same as first input' | 'double' | 'single',
'int8', 'uint8', int16, 'uint16', 'int32', 'uint32', fixdt(1,16,0),
fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Inherit: Same as first input'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Saturate on integer overflow — Choose the behavior when integer overflow
occurs
on (default) | boolean

1 Blocks — Alphabetical List

1-1680

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

 Sqrt

1-1681

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information on HDL code generation support, see Sqrt.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

1 Blocks — Alphabetical List

1-1682

See Also
Math Function | Trigonometric Function

Introduced in R2010a

 Sqrt

1-1683

Squeeze
Remove singleton dimensions from multidimensional signal
Library: Simulink / Math Operations

Description
The Squeeze block removes singleton dimensions from its multidimensional input signal.
A singleton dimension is any dimension whose size is one. The Squeeze block operates
only on signals whose number of dimensions is greater than two. Scalar, vector, and
matrix signals pass through the Squeeze block unchanged.

Ports

Input
Port_1 — Multidimensional input signal
multidimensional signal

Input signal that has any singleton dimensions removed in the output.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal with no singleton dimensions
multidimensional signal

Output signal with no singleton dimensions. For example, a multidimensional array of size
3-by-1-by-2 changes into a 3-by-2 signal. If there are no singleton dimensions in the input,
then the input signal is passed through unchanged to the output.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

1 Blocks — Alphabetical List

1-1684

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

Yes

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Reshape

Introduced in R2007b

 Squeeze

1-1685

State Control
Specify synchronous reset and enable behavior for blocks with state

Library
HDL Coder / HDL Subsystems

Description
The State Control block in Synchronous mode improves the HDL simulation behavior of
blocks with state, or blocks that have reset or enable ports. The simulation behavior in
Classic mode is the same as when you do not add the State Control block inside the
subsystem.

When use the Synchronous mode of the block, the Simulink simulation behavior closely
matches that of the digital hardware.

If you have HDL Coder installed, you can generate cleaner HDL code with the
Synchronous mode of the State Control block. For more information, see State Control.

Parameters
State control

Specify whether to use synchronous or classic semantics. The default is
Synchronous.

1 Blocks — Alphabetical List

1-1686

Limitations
The following limitations apply to using the State Control block in Simulink. For
information about this block in HDL Coder, see State Control in the HDL Coder
documentation.

Block-Level Limitations
• For synchronous semantics in S-function blocks, set the method

ssSetStateSemanticsClassicAndSynchronous to true.
• Discrete-Time Integrator blocks with a reset port do not support synchronous

semantics.
• All action subsystems connected to If and Switch Case blocks must have the same

semantics, either classic or synchronous.
• The following blocks are not allowed in synchronous mode:

• Continuous time blocks and blocks with continuous rate
• Simulink blocks with Input processing set to Columns as channels (frame

based), where this parameter applies.
• Trigger block
• From Workspace block
• The set of unit delay blocks in the Additional Math & Discrete > Additional

Discrete sublibrary in Simulink, such as the Unit Delay Resettable and Unit Delay
External IC blocks

Subsystem-level Limitations
• Conditional subsystems using classic semantics cannot have subsystems with

synchronous semantics inside them.
• Conditional subsystems must be single rate when you use the State Control block in

synchronous mode.
• Synchronous Enabled Subsystem cannot contain reset subsystems or a reset

parameter port. For example, you cannot have a Delay block with an external reset
port inside the subsystem.

• These blocks are not supported in synchronous mode:

 State Control

1-1687

• For Iterator Subsystem
• While Iterator Subsystem
• Function-Call Subsystem
• Triggered Subsystem

Model-Level Limitations
• Variable-size signals are not supported with synchronous semantics.
• Synchronous semantics do not propagate across model boundaries. If your parent

model has synchronous semantics, any referenced model must have synchronous
semantics explicitly specified. At the root level of each referenced model, add a State
Control block with the State control parameter set to Synchronous.

See Also
Enable | Enabled Subsystem | Enabled Synchronous Subsystem | Resettable Synchronous
Subsystem | Synchronous Subsystem

Introduced in R2016a

1 Blocks — Alphabetical List

1-1688

State Reader
Read a block state
Library: Signal Routing

Description
The State Reader block reads the current state of a supported state owner block.

Add a State Reader block to your model from the Simulink Library Browser.

State Reader blocks can read state from these state owner blocks:

• Discrete State-Space
• Discrete-Time Integrator
• Delay
• Unit Delay
• Discrete Transfer Fcn
• Discrete Filter
• Discrete FIR Filter
• S-Function (with one data type work vector declared as a discrete-state vector)

Ports

Output
Out — State value
scalar | vector

State value read from a state owner block.

 State Reader

1-1689

The dimension of the output is the dimension of the full state vector. Refer to the Initial
conditions parameter for specific blocks. For example, for a Delay block with a Delay
length of N, the State Reader block returns a state vector of length [1xN].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
State owner block — Show the state owner block
none (default)

Show the state owner block whose state this block is reading. To change the state owner
block, select a block from the State Owner Selector Tree.

Command-Line Information
Parameter: StateOwnerBlock
Type: character vector
Value: '' | '<model path/block name>'
Default: ''

See Also
Event Listener | Initialize Function | Reset Function | State Writer | Terminate Function

Topics
“Customize Initialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

1 Blocks — Alphabetical List

1-1690

State Writer
Write to a block state
Library: Signal Routing

Description
The State Writer block sets the state of a supported state owner block.

Add a State Writer block to your model from the Simulink Library Browser.

State Writer blocks can write state to these state owner blocks:

• Discrete State-Space
• Discrete-Time Integrator
• Delay
• Unit Delay
• Discrete Transfer Fcn
• Discrete Filter
• Discrete FIR Filter
• S-Function (with one data type work vector declared as a discrete-state vector)

Ports

Input
In — State value
scalar | vector

State value written to a state owner block.

When writing to a state owner block with an input scalar, the scalar value is expanded to
match the dimension of the state. All elements of the state are set to the same value.

 State Writer

1-1691

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
State owner block — Show the state owner block
none (default)

Show the state owner block whose state this block is writing. To change the state owner
block, select a block from the State Owner Selector Tree.

Command-Line Information
Parameter: StateOwnerBlock
Type: character vector
Value: '' | '<model path/block name>'
Default: ''

See Also
Event Listener | Initialize Function | Reset Function | State Reader | Terminate Function

Topics
“Customize Initialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

1 Blocks — Alphabetical List

1-1692

State-Space
Implement linear state-space system
Library: Simulink / Continuous

Description
The State-Space block implements a system whose behavior you define as

&x Ax Bu

y Cx Du

x x
t t

= +

= +

=
=

0
0 ,

where x is the state vector, u is the input vector, y is the output vector and x0 is the initial
condition of the state vector. The matrix coefficients must have these characteristics:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

In general, the block has one input port and one output port. The number of rows in C or
D matrix is the same as the width of the output port. The number of columns in the B or D
matrix are the same as the width of the input port. If you want to model an autonomous
linear system with no inputs, set the B and D matrices to empty. In this case, the block
acts as a source block with no input port and one output port, and implements the
following system:

 State-Space

1-1693

&x Ax

y Cx

x x
t t

=

=

=
=

0
0.

Simulink software converts a matrix containing zeros to a sparse matrix for efficient
multiplication.

Ports

Input
Port_1 — Input signal
scalar | vector

Real-valued input vector of type double, where the width equals the number of columns
in the B and D matrices. For more information, see “Description” on page 1-1693.
Data Types: double

Output
Port_1 — Output vector
scalar | vector

Real-valued output vector of data type double, with width equal to the number of rows in
the C and D matrices. For more information, see “Description” on page 1-1693.
Data Types: double

Parameters
A — Matrix coefficient, A
1 (default) | scalar | vector | matrix

Specify the matrix coefficient A, as a real-valued n-by-n matrix, where n is the number of
states. For more information on the matrix coefficients, see “Description” on page 1-1693

1 Blocks — Alphabetical List

1-1694

Programmatic Use
Block Parameter: A
Type: character vector
Values: scalar | vector | matrix
Default: '1'

B — Matrix coefficient, B
1 (default) | scalar | vector | matrix

Specify the matrix coefficient B, as a real-valued n-by-m matrix, where n is the number of
states and m is the number of inputs. For more information on the matrix coefficients, see
“Description” on page 1-1693

Programmatic Use
Block Parameter: B
Type: character vector
Values: scalar | vector | matrix
Default: '1'

C — Matrix coefficient, C
1 (default) | scalar | vector | matrix

Specify the matrix coefficient C as a real-valued r-by-n matrix, where r is the number of
outputs and n is the number of states. For more information on the matrix coefficients,
see “Description” on page 1-1693

Programmatic Use
Block Parameter: C
Type: character vector
Values: scalar | vector | matrix
Default: '1'

D — Matrix coefficient, D
1 (default) | scalar | vector | matrix

Specify the matrix coefficient D as a real-valued r-by-m matrix, where r is the number of
outputs and m is the number of inputs. For more information on the matrix coefficients,
see “Description” on page 1-1693

Programmatic Use
Block Parameter: D
Type: character vector

 State-Space

1-1695

Values: scalar | vector | matrix
Default: '1'

Initial conditions — Initial state vector
0 (default) | scalar | vector

Specify the initial state vector.

Limitations

The initial conditions of this block cannot be inf or NaN.

Programmatic Use
Block Parameter: X0
Type: character vector
Values: scalar | vector
Default: '0'

Absolute tolerance — Absolute tolerance for computing block states
auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar
or vector. To inherit the absolute tolerance from the Configuration Parameters, specify
auto or -1.

• If you enter a real scalar, then that value overrides the absolute tolerance in the
Configuration Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension
of the continuous states in the block. These values override the absolute tolerance in
the Configuration Parameters dialog box.

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector
Values: 'auto' | '-1' | any positive real-valued scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Assign unique name to each state
' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

1 Blocks — Alphabetical List

1-1696

Assign a unique name to each state. If this field is blank (' '), no name assignment
occurs.

• To assign a name to a single state, enter the name between quotes, for example,
'position'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector, cell array, or structure.

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

 State-Space

1-1697

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions
on speed and memory often found in embedded systems. The code generated can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into
discrete equivalents that support production code generation. To start the Model
Discretizer, select Analysis > Control Design > Model Discretizer. One exception is
the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Discrete State-Space | Transfer Fcn

Topics
“States”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1698

Step
Generate step function
Library: Simulink / Sources

Description
The Step block provides a step between two definable levels at a specified time. If the
simulation time is less than the Step time parameter value, the block's output is the
Initial value parameter value. For simulation time greater than or equal to the Step
time, the output is the Final value parameter value.

The numeric block parameters must be of the same dimensions after scalar expansion. If
the Interpret vector parameters as 1-D option is off, the block outputs a signal of the
same dimensions and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row or column vectors
(that is, single-row or column 2-D arrays), the block outputs a vector (1-D array) signal.
Otherwise, the block outputs a signal of the same dimensionality and dimensions as the
parameters.

Ports

Output
Port_1 — Output step signal
scalar | vector

Output step function signal defined by the parameters Step time, Initial value, and
Final value.
Data Types: double

 Step

1-1699

Parameters
Step time — Time when step occurs
1 (default) | scalar

Specify the time, in seconds, when the output jumps from the Initial value parameter to
the Final value parameter.

Programmatic Use
Block Parameter: Time
Type: character vector
Values: scalar
Default: '1'

Initial value — Output value before step
0 (default) | scalar

Specify the block output until the simulation time reaches the Step time parameter.

Programmatic Use
Block Parameter: Before
Type: character vector
Values: scalar
Default: '0'

Final value — Output value after step
1 (default) | scalar

Specify the block output when the simulation time reaches and exceeds the Step time
parameter.

Programmatic Use
Block Parameter: After
Type: character vector
Values: scalar
Default: '1'

Sample time — Sample rate
0 (default) | scalar

Specify the sample rate of step. See “Specify Sample Time” for more information.

1 Blocks — Alphabetical List

1-1700

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '0'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the
Constant value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double

 Step

1-1701

Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Ramp | Repeating Sequence Stair | Signal Builder

Topics
“Signal Basics”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1702

Stop Simulation
Stop simulation when input is nonzero

Library
Sinks

Description
The Stop Simulation block stops the simulation when the input is nonzero. The simulation
completes the current time step before terminating. If the block input is a vector, any
nonzero vector element causes the simulation to stop.

When you use the Stop Simulation block in a For Iterator subsystem, the stop action
occurs after execution of all the iterations in the subsystem during a time step. The stop
action does not interrupt execution until the start of the next time step.

You cannot use the Stop Simulation block to pause the simulation. To create a block that
pauses the simulation, see “Pause Simulation Using Assertion Blocks” in the Simulink
documentation.

Data Type Support
The Stop Simulation block accepts real signals of type double or Boolean. For more
information, see “Data Types Supported by Simulink” in the Simulink documentation.

 Stop Simulation

1-1703

Examples

Usage with the Relational Operator Block
You can use the Stop Simulation block with the Relational Operator block to control when
a simulation stops. For example, the following model stops simulation when the
simulation time reaches 10.

Usage with the Integrator Block
You can use the Stop Simulation block with the Integrator block to control when a
simulation stops. For example, the sldemo_absbrake model stops simulation when the
saturation port of the Integrator block outputs a value of 1 or –1.

1 Blocks — Alphabetical List

1-1704

matlab:open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_stop_simulation_block_relop')))
matlab:sldemo_absbrake

Characteristics
Data Types Double | Boolean
Sample Time Inherited from driving block
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Stop Simulation

1-1705

String Compare
Compare two input strings
Library: Simulink / String

Description
String Compare compares two strings. To see if two strings are identical, use this block.
You can specify if the match is case sensitive and how much of the string to compare.

Ports
Input
Port_1 — First string to compare
scalar

First string to compare, specified as a scalar.
Data Types: string

Port_2 — Second string to compare
scalar

Second string to compare, specified as a scalar.
Data Types: string

Output
Port_1 — True or false result
scalar

True or false result, specified as a scalar:

1 Blocks — Alphabetical List

1-1706

• 1 — Match.
• 0 — No match.

Data Types: Boolean

Parameters
Case sensitive — Case sensitivity for string comparison
on (default) | off

Case sensitivity for string comparison:

 on
Consider string case when comparing strings.

 off
Do not consider string case when comparing strings.

Compare Option — Amount of string to compare
Entire string (default) | First N characters

Amount of string to compare:

• Entire string — Compare both entire strings.
• First N characters — Compare the first N characters of both strings.

Dependencies

Setting this parameter to First N characters enables the Number of characters
parameter.

Number of characters — Amount of string to compare
1 (default) | scalar

Number of characters to compare

Dependencies

This parameter is enabled when the Compare Option parameter is set to First N
characters.

 String Compare

1-1707

Data Types: double

Block Characteristics
Data Types Boolean
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
ASCII to String | Compose String | Scan String | String Concatenate | String Constant |
String Find | String Length | String To ASCII | String To Enum | String to Double | String
to Single | Substring | To String

Topics
“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-1708

String Concatenate
Concatenate input strings to form one output string
Library: Simulink / String

Description
The String Concatenate block concatenates multiple input strings, in order of their input,
to form one output string. Use this block if you want to combine multiple strings into a
single string.

Ports

Input
Port_1 — First input string
scalar

First input string, specified as a scalar.
Data Types: string

Port_2 — Second input string
scalar

Second input string, specified as a scalar.
Data Types: string

Output
Port_1 — Concatenated string
scalar

 String Concatenate

1-1709

Concatenated string, specified as a scalar.
Data Types: string

Parameters
Number of Inputs — Number of input strings
scalar

Number of input strings to concatenate, specified as a scalar. You can specify from 2 to
512 input ports.

Output data type — Output data type
string (default) | scalar

Output data type, specified using the string data type to specify a string with no maximum
length.

To specify a string data type with a maximum length, specify stringtype(N). For
example, stringtype(128) creates a string data type with a maximum length of 128
characters.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Mode — Category of data
stringtype(128) (default) | scalar

Use the stringtype function, for example, stringtype(128).

Dependency

Clicking the Show data type assistant button enables this parameter.

1 Blocks — Alphabetical List

1-1710

Block Characteristics
Data Types
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
ASCII to String | Compose String | Scan String | String Compare | String Constant |
String Find | String Length | String To ASCII | String To Enum | String to Double | String
to Single | Substring | To String

Topics
“Simulink Strings”

Introduced in R2018a

 String Concatenate

1-1711

String Constant
Output specified string
Library: Simulink / String

Description
The String Constant block outputs a string specified by the String parameter. Use this
block when you want a constant whose type is string.

Ports

Output
Port_1 — Output string
scalar

Output string, specified as a scalar.
Data Types: string

Parameters
String — Input string
"Hello!" (default) | scalar

Input string, specified as a scalar.

Output data type — Output data type
stringtype(31) (default) | scalar

1 Blocks — Alphabetical List

1-1712

Output data type, specified using the string data type to specify a string with no maximum
length.

To specify a string data type with a maximum length, specify stringtype(N). For
example, stringtype(31) creates a string data type with a maximum length of 31
characters.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Mode — Category of data
stringtype(31) (default) | scalar

Use the stringtype function, for example, stringtype(31).

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Find | String Length | String To ASCII | String To Enum | String to Double | String
to Single | Substring | To String

Topics
“Convert String to ASCII and Back to String”

 String Constant

1-1713

“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-1714

String Find
Return index of first occurrence of pattern string
Library: Simulink / String

Description
The String Find block returns the index of the first occurrence of the pattern string sub in
the text string str.

Ports
Input
str — String in which to find pattern
scalar

String in which to find pattern (sub), specified as a scalar.
Data Types: string

sub — Pattern
scalar

Pattern to be found in string (str), specified as a scalar.
Data Types: string

Output
idx — Position index of found pattern
scalar

Position index of the found pattern, specified as a positive integer scalar.

 String Find

1-1715

• If the block does not find the pattern, it returns -1.
• If the sub parameter is empty (""), the block returns 1, indicating that it matched the

beginning of the searched string.

Data Types: int32

Block Characteristics
Data Types base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
Compose String | Scan String | String Compare | String Concatenate | String Constant |
String Find | String Length | String To ASCII | String To Enum | String to Double | String
to Single | Substring | To String

Topics
“Find Patterns in Strings”
“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-1716

String Length
Output number of characters in input string
Library: Simulink / String

Description
The String Length block outputs the number of characters in the input string. For
example, you can use the String Length block to move focus of attention to a particular
location in a string.

Ports

Input
Port_1 — Input string
scalar

Input string, specified as a scalar.
Data Types: string

Output
Port_1 — Number of characters
scalar

Number of characters in the input string, specified as a scalar.
Data Types: uint32

 String Length

1-1717

Block Characteristics
Data Types base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
Compose String | Scan String | String Compare | String Concatenate | String Constant |
String Find | String To ASCII | String To Enum | String to Double | String to Single |
Substring | To String

Topics
“Get Text Following a Keyword”
“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-1718

String to ASCII
Convert string signal to uint8 vector
Library: Simulink / String

Description
The String To ASCII block converts a string signal to a uint8 vector. The block converts
each character in the string to its corresponding ASCII value. For example, the block
converts the input string "Hello" to [72 101 108 108 111].

Ports

Input
Port_1 — Input string signal
scalar

Input string signal, specified as a scalar.
Data Types: string

Output
Port_1 — Converted uint8 vector signal
vector

Converted uint8 vector signal of ASCII characters from input string signal, specified as a
vector. The block converts each element in the string into its ASCII character equivalent
and outputs the ASCII equivalents as a vector. If there are fewer characters than the
maximum length, the block fills the remaining space with zeros at simulation. At code
generation, the block fills the remaining space with null characters.
Data Types: uint8

 String to ASCII

1-1719

Parameters
Maximum length — Maximum length of output vector
31 (default) | scalar

Maximum length of output string, specified as a scalar.

Block Characteristics
Data Types base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String To Enum | String to Double | String
to Single | Substring | To String

Topics
“Convert String to ASCII and Back to String”
“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-1720

String to Double
Convert string signal to double signal
Library: Simulink / String

Description
Scan String scans an input string and converts it to signals per the format specified by
the Format parameter. The block converts values to their decimal (base 10)
representation and outputs the results as numeric or string signals. For example, if the
Format parameter is set to "%s is %f.", the block outputs two parts, a string signal
and a single signal. If the input is the string "Pi is 3.14", the two outputs are "Pi"
and "3.14".

The Scan String, String to Double, and String to Single blocks are identical blocks. When
configured for String to Double, the block converts the input string signal to a double
numerical output. When configured for String to Single, the block converts the input
string signal to a single numerical output.

For code generation, configure models that contain this block for non-finite number
support by selecting the Configuration Parameters > Code Generation > Interface >
Support non-finite numbers check box.

Ports

Input
Port_1 — Input string
scalar

Input string, specified as a scalar.
Data Types: string

 String to Double

1-1721

Output
d — Output data whose format matches %d format
scalar

Output data whose format matches specified format, defined as a scalar. Total maximum
number of outputs is 128.

If the block cannot match an input string to a format operator specified in Format, it
returns a warning and outputs an appropriate value (0 or "") for each unmatched format
operator.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

f — Output data whose format matches %f format
scalar

Output data whose format matches the %f format, specified as a scalar. Total maximum
number of outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_N — Output data whose format matches N format
scalar

Output data whose format matches N format, specified as a scalar. Total maximum
number of outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Format — Format operator for input
"%lf" (default) | scalar

Format operator for input, specified as a scalar. If the block cannot match the input string
with the specified format, it returns 0. The return of 0 differs from the sscanf function
return, which is an empty matrix if the function cannot match the input with the specified
format.

1 Blocks — Alphabetical List

1-1722

• For the String to Double block, this parameter has a default value of %lf.
• For the String to Single block, this parameter has a default value of %f.

For more information about acceptable format operators, see the Algorithms section.

Block Characteristics
Data Types double | single | base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

Algorithms
The Scan String block uses this format specifier prototype:

%[width][length]specifier

Numeric Fields
This table lists available conversion specifiers to convert text to numeric outputs. The
block converts values to their decimal (base 10) representation.

Output Port Data Type Conversion Specifier Description
Integer, signed %d Base 10
Integer, unsigned %u Base 10

 String to Double

1-1723

Output Port Data Type Conversion Specifier Description
Floating-point number %f, %e, or %g Floating-point values. Input

fields can contain any of the
following (not case
sensitive): Inf, -Inf, NaN,
or -NaN. Input fields that
represents floating-point
numbers can include leading
+ or - symbols and
exponential notation using e
or E. The conversion
specifiers %f, %e, and %g all
treat input fields the same
way.

Character Fields
This table lists available conversion specifiers to convert text so that the output is a
character array.

Character Field Type Conversion
Specifier

Description

String scalar %s Read the text until the block encounters
whitespace.

%c Read any single character, including
whitespace. To read multiple characters at a
time, specify field width. For example, %10c
reads 10 characters at a time.

Pattern-matching %[...] Read only characters in the brackets up to the
first nonmatching character or whitespace.

Example: %[mus] reads 'summer' as
'summ'.

1 Blocks — Alphabetical List

1-1724

Character Field Type Conversion
Specifier

Description

%[^...] Do not read characters in the brackets up to
the first nonmatching character or
whitespace.

Example: %[m] reads 'summer' as 'su'.

Optional Operators
• Field Width — To specify the maximum number of digits or text characters to read at a

time, insert a number after the percent character. For example, %10s reads up to 10
characters at a time, including whitespace. %4f reads up to four digits at a time,
including the decimal point.

• Literal Text to Ignore — This block must match the specified text immediately before
or after the conversion specifier.

Example: Hell%s reads "Hello!" as "o!".

Length Specifiers
The Scan String block supports the h and l length subspecifiers. These specifiers can
change according to the Configuration Parameters > Hardware Implementation >
Number of bits settings.

Length i u f e g s c
No length
specifier

int unsigned int single string

h short unsigned
short

— —

l long unsigned long double —

Notes for Specifiers that Specify Integer Data Types (d, u)
• Target int, long, short type sizes are controlled by settings in the Configuration

Parameters > Hardware Implementation pane. For example, if the target int is 32
bits and the specifier is %u, then the expected input type will be uint32. For this

 String to Double

1-1725

example, the Scan String block requires that the output type be exactly int32. It
cannot be any other data type.

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String To ASCII | String To Enum | String
to Single | Substring | To String | sscanf

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-1726

String to Enum
Input string signal to enumerated signal
Library: Simulink / String

Description
The String To Enum block converts the input string signal to an enumerated signal. To
use this block, create an enumeration class in the current folder and use that class name
in the Output data type parameter.

Ports

Input
Port_1 — Input string signal
scalar

Input string signal, specified as a scalar.
Data Types: string

Output
Output 1 — Enumerated number
scalar

Enumerated number associated with the input string, specified as a scalar.
Data Types: enumerated

 String to Enum

1-1727

Parameters
Output data type — Output data type
SlDemoSign (default) | <data type expression>

Use a data type object, for example, Simulink.IntEnumType.

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Mode — Category of data
Enumerated (default) | <data type expression>

Use a data type object, for example, Simulink.IntEnumType.

• Enumerated — Enumerated data class object.
• <data type expression> — Expressions that evaluate to data types. Selecting

Expression enables a second menu/text box to the right, where you can enter the
expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

1 Blocks — Alphabetical List

1-1728

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String To ASCII | String to Double | String
to Single | Substring | To String

Topics
“Convert String to Enumerated Data Type”
“Simulink Strings”

Introduced in R2018a

 String to Enum

1-1729

String to Single
Convert string signal to single signal
Library: Simulink / String

Description
Scan String scans an input string and converts it to signals per the format specified by
the Format parameter. The block converts values to their decimal (base 10)
representation and outputs the results as numeric or string signals. For example, if the
Format parameter is set to "%s is %f.", the block outputs two parts, a string signal
and a single signal. If the input is the string "Pi is 3.14", the two outputs are "Pi"
and "3.14".

The Scan String, String to Double, and String to Single blocks are identical blocks. When
configured for String to Double, the block converts the input string signal to a double
numerical output. When configured for String to Single, the block converts the input
string signal to a single numerical output.

For code generation, configure models that contain this block for non-finite number
support by selecting the Configuration Parameters > Code Generation > Interface >
Support non-finite numbers check box.

Ports

Input
Port_1 — Input string
scalar

Input string, specified as a scalar.
Data Types: string

1 Blocks — Alphabetical List

1-1730

Output
d — Output data whose format matches %d format
scalar

Output data whose format matches specified format, defined as a scalar. Total maximum
number of outputs is 128.

If the block cannot match an input string to a format operator specified in Format, it
returns a warning and outputs an appropriate value (0 or "") for each unmatched format
operator.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

f — Output data whose format matches %f format
scalar

Output data whose format matches the %f format, specified as a scalar. Total maximum
number of outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_N — Output data whose format matches N format
scalar

Output data whose format matches N format, specified as a scalar. Total maximum
number of outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Format — Format operator for input
"%f" (default) | scalar

Format operator for input, specified as a scalar. If the block cannot match the input string
with the specified format, it returns 0. The return of 0 differs from the sscanf function
return, which is an empty matrix if the function cannot match the input with the specified
format.

 String to Single

1-1731

• For the String to Double block, this parameter has a default value of %lf.
• For the String to Single block, this parameter has a default value of %f.

For more information about acceptable format operators, see the Algorithms section.

Block Characteristics
Data Types double | single | base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

Algorithms
The Scan String block uses this format specifier prototype:

%[width][length]specifier

Numeric Fields
This table lists available conversion specifiers to convert text to numeric outputs. The
block converts values to their decimal (base 10) representation.

Output Port Data Type Conversion Specifier Description
Integer, signed %d Base 10
Integer, unsigned %u Base 10

1 Blocks — Alphabetical List

1-1732

Output Port Data Type Conversion Specifier Description
Floating-point number %f, %e, or %g Floating-point values. Input

fields can contain any of the
following (not case
sensitive): Inf, -Inf, NaN,
or -NaN. Input fields that
represents floating-point
numbers can include leading
+ or - symbols and
exponential notation using e
or E. The conversion
specifiers %f, %e, and %g all
treat input fields the same
way.

Character Fields
This table lists available conversion specifiers to convert text so that the output is a
character array.

Character Field Type Conversion
Specifier

Description

String scalar %s Read the text until the block encounters
whitespace.

%c Read any single character, including
whitespace. To read multiple characters at a
time, specify field width. For example, %10c
reads 10 characters at a time.

Pattern-matching %[...] Read only characters in the brackets up to the
first nonmatching character or whitespace.

Example: %[mus] reads 'summer' as
'summ'.

 String to Single

1-1733

Character Field Type Conversion
Specifier

Description

%[^...] Do not read characters in the brackets up to
the first nonmatching character or
whitespace.

Example: %[m] reads 'summer' as 'su'.

Optional Operators
• Field Width — To specify the maximum number of digits or text characters to read at a

time, insert a number after the percent character. For example, %10s reads up to 10
characters at a time, including whitespace. %4f reads up to four digits at a time,
including the decimal point.

• Literal Text to Ignore — This block must match the specified text immediately before
or after the conversion specifier.

Example: Hell%s reads "Hello!" as "o!".

Length Specifiers
The Scan String block supports the h and l length subspecifiers. These specifiers can
change according to the Configuration Parameters > Hardware Implementation >
Number of bits settings.

Length i u f e g s c
No length
specifier

int unsigned int single string

h short unsigned
short

— —

l long unsigned long double —

Notes for Specifiers that Specify Integer Data Types (d, u)
• Target int, long, short type sizes are controlled by settings in the Configuration

Parameters > Hardware Implementation pane. For example, if the target int is 32
bits and the specifier is %u, then the expected input type will be uint32. For this

1 Blocks — Alphabetical List

1-1734

example, the Scan String block requires that the output type be exactly int32. It
cannot be any other data type.

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String To ASCII | String To Enum | String
to Double | Substring | To String | sscanf

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

Introduced in R2018a

 String to Single

1-1735

Substring
Extract substring from input string signal
Library: Simulink / String

Description
The Substring block extracts a substring from the input string signal. The block extracts
the substring starting from the letter corresponding to idx and includes a len number of
characters starting at idx. For example, if the input string is "hello 123", input idx is
1, and input len is 5, the output is "hello". The block extracts a substring starting at 1
and the next 4 characters for a total of 5 characters (hello).

Ports

Input
str — Input string signal
scalar

Input string signal, specified as a string.
Data Types: string

idx — Start of string to extract
scalar

Start of string to extract, specified as a positive scalar integer.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

len — Length of string to extract
scalar

1 Blocks — Alphabetical List

1-1736

Length of string to extract, specified as a scalar. If len causes the substring to extend
beyond the end of the string, the output signal contains few than len characters.
Data Types: uint8 | uint16 | uint32

Output
Output 1 — Extracted string
scalar

Extracted string, specified as a scalar.
Data Types: string

Parameters
Inherit maximum length from input — Use same maximum length as input
string
off (default) | on

Use same maximum length as the input string source block.

 on
Use same maximum length. The substring includes the characters starting from the
character at idx to the end of the string.

 off
Do not use same maximum length.

Output data type — Output data type
stringtype(31) (default) | scalar

Output data type, specified using the stringtype function with a maximum length. For
example stringtype(31) creates a string data type with a maximum length of 31
characters.

To specify a dynamic string, specify string.

 Substring

1-1737

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Output string from 'idx' to end — Extract string from idx to end
off (default) | on

Extract string from idx to end of input string.

 on
Extract string from idx to end of input string.

 off
Do not extract string from idx to end of input string.

Dependencies

Selecting this parameter removes the third input port.

Block Characteristics
Data Types base integer
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String To ASCII | String To Enum | String
to Double | String to Single | To String

Topics
“Extract a String”

1 Blocks — Alphabetical List

1-1738

“Simulink Strings”

Introduced in R2018a

 Substring

1-1739

Subsystem, Atomic Subsystem, Nonvirtual
Subsystem, CodeReuse Subsystem
Group blocks to create model hierarchy
Library: Ports & Subsystems

Description
A Subsystem block contains a subset of blocks within a model or system. The Subsystem
block can represent a virtual subsystem or a nonvirtual subsystem.

• Nonvirtual subsystem – Control when the contents of the subsystem are evaluated as a
single unit (atomic execution). Create conditionally executed subsystems that run only
when an event occurs on a triggering, function-call, action, or enabling input (see
“Conditionally Executed Subsystems”).

• Virtual subsystems – Subsystem is neither conditionally nor atomically executed.
Virtual subsystems do not have checksums. To determine if a subsystem is virtual, use
the get_param function for the Boolean block parameter IsSubsystemVirtual.

An atomic subsystem is a Subsystem block with the block parameter Treat as atomic
unit selected.

A codereuse subsystem is a Subsystem block with the parameter Treat as atomic unit
selected and the parameter Function packaging set to Reusable function,
specifying the function code generation format for the subsystem.

To create a subsystem, do one of the following:

• Copy a Subsystem block from the Ports & Subsystems library into your model. Then
add blocks to the subsystem by opening the Subsystem block and copying blocks into
it.

• Select all blocks and lines that make up the subsystem, and select Diagram >
Subsystem & Model Reference > Create Subsystem from Selection. Simulink
replaces the blocks with a Subsystem block, along with the necessary Inport and
Outport blocks to reflect signals entering and leaving the subsystem.

1 Blocks — Alphabetical List

1-1740

The number of input ports drawn on the Subsystem block icon corresponds to the number
of Inport blocks in the subsystem. Similarly, the number of output ports drawn on the
block corresponds to the number of Outport blocks in the subsystem.

The Subsystem block supports signal label propagation through subsystem Inport and
Outport blocks.

Ports
Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Parameters on the Code Generation tab require a Simulink Coder or Embedded Coder
license.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1741

Main
Show port labels — Select how to display port labels
FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port labels on the Subsystem block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
Subsystem block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Subsystem block.

SignalName
If a signal name exists, display the name of the signal connected to the port on the
Subsystem block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Select access to contents of subsystem
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the subsystem.

ReadWrite
Enable opening and modification of subsystem contents.

ReadOnly
Enable opening but not modification of the subsystem. If the subsystem resides in a
block library, you can create and open links to the subsystem and can make and
modify local copies of the subsystem but cannot change the permissions or modify the
contents of the original library instance.

1 Blocks — Alphabetical List

1-1742

NoReadOrWrite
Disable opening or modification of subsystem. If the subsystem resides in a library,
you can create links to the subsystem in a model but cannot open, modify, change
permissions, or create local copies of the subsystem.

Programmatic Use
Parameter: Permissions
Type: character vector
Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Name of error callback function — Specify name of function
'' (default) | function name

Enter name of a function to be called if an error occurs while Simulink is executing the
subsystem.

Simulink passes two arguments to the function: the handle of the subsystem and a
character vector that specifies the error type. If no function is specified, Simulink displays
a generic error message if executing the subsystem causes an error.

Programmatic Use
Parameter: ErrorFcn
Type: character vector
Value: '' | '<function name>'
Default: ''

Permit hierarchical resolution — Select how to resolve workspace variable
names
All (default) | ExplicitOnly | None

Select whether to resolve names of workspace variables referenced by this subsystem.

See “Symbol Resolution” and “Symbol Resolution Process” in the Simulink User's Guide
for more information.

All
Resolve all names of workspace variables used by this subsystem, including those
used to specify block parameter values and Simulink data objects (for example,
Simulink.Signal objects).

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1743

ExplicitOnly
Resolve only names of workspace variables used to specify block parameter values,
data store memory (where no block exists), signals, and states marked as “must
resolve”.

None
Do not resolve any workspace variable names.

Programmatic Use
Parameter: PermitHierarchicalResolution
Type: character vector
Value: 'All' | 'ExplicitOnly' | 'None'
Default: 'All'

Treat as atomic unit — Control execution of a subsystem as one unit
off (default) | on

Causes Simulink to treat the subsystem as a unit when determining the execution order of
block methods.

 off
Treat all blocks in the subsystem as being at the same level in the model hierarchy as
the subsystem when determining block method execution order. This can cause
execution of methods of blocks in the subsystem to be interleaved with execution of
methods of blocks outside the subsystem.

 on
Treat the subsystem as a unit when determining the execution order of block
methods. For example, when it needs to compute the output of the subsystem,
Simulink invokes the output methods of all the blocks in the subsystem before
invoking the output methods of other blocks at the same level as the subsystem block.

Dependency

Selecting this parameter, enables the Minimize algebraic loop occurrences, Sample
time, and Function packaging parameters. Using Function packaging requires a
Simulink Coder license.

Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector

1 Blocks — Alphabetical List

1-1744

Value: 'off' | 'on'
Default: 'off'

Minimize algebraic loop occurrences — Control elimination of algebraic
loops
off (default) | on

Try to eliminate any artificial algebraic loops that include the atomic subsystem

See also “Eliminate Artificial Algebraic Loops Caused by Atomic Subsystems”.

 off
Do not try to eliminate any artificial algebraic loops that include the atomic
subsystem.

 on
Try to eliminate any artificial algebraic loops that include the atomic subsystem.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this subsystem must run at the same rate or can run at
different rates.

• If the blocks in the subsystem can run at different rates, specify the subsystem's
sample time as inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the Sample time parameter.

• If any of the blocks in the subsystem specify a different sample time (other than -1 or
inf), Simulink displays an error message when you update or simulate the model. For
example, suppose all the blocks in the subsystem must run 5 times a second. To ensure

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1745

this, specify the sample time of the subsystem as 0.2. In this example, if any of the
blocks in the subsystem specify a sample time other than 0.2, -1, or inf, Simulink
displays an error when you update or simulate the model.

-1
Specify inherited sample time. Use this sample time if the blocks in the subsystem can
run at different rates.

[Ts 0]
Specify periodic sample time.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: SystemSampleTime
Type: character vector
Value: '-1' | '[Ts 0]'
Default: '-1'

Propagate execution context across subsystem boundary — Control
execution across block boundary
off (default) | on

Enable execution context propagation across the boundary of this subsystem.

 off
Do not enable execution context propagation across this subsystem's boundary.

 on
Enable execution context propagation across this subsystem's boundary.

Dependency

Enable this parameter by adding an Enable port or Trigger port block to the Subsystem
block.

Programmatic Use
Parameter: PropExecContextOutsideSubsystem
Type: character vector
Value: 'off' | 'on'

1 Blocks — Alphabetical List

1-1746

Default: 'off'

Variant control — Specify variant control (condition) expression
Variant (default) | logical expression

Specify variant control (condition) expression that executes a variant Simulink Function
block when the expression evaluates to true.

See also Simulink.Variant

Variant
Default name for a logical (Boolean) expression.

logical expression
A logical (Boolean) expression or a Simulink.Variant object representing a logical
expression.

The function is activated when the expression evaluates to true.

If you want to generate code for your model, define the variables in the expression as
Simulink.Parameter objects.

Dependency

Enable this parameter by adding a Subsystem block inside a Variant Subsystem block.

Programmatic Use
Block parameter: VariantControl
Type: character vector
Value: 'Variant' | '<logical expression>'
Default: 'Variant'

Treat as grouped when propagating variant conditions — Control treating
subsystem as unit
on (default) | off

Causes Simulink to treat the subsystem as a unit when propagating variant conditions
from Variant Source blocks or to Variant Sink blocks.

 on
Simulink treats the subsystem as a unit when propagating variant conditions from
Variant Source blocks or to Variant Sink blocks. For example, when Simulink

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1747

computes the variant condition of the subsystem, it propagates that condition to all
the blocks in the subsystem.

 off
Simulink treats all blocks in the subsystem as being at the same level in the model
hierarchy as the subsystem itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation
Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the code format to be generated for an atomic (nonvirtual) subsystem.

Auto
Simulink Coder chooses the optimal format for you based on the type and number of
instances of the subsystem that exist in the model.

Inline
Simulink Coder inlines the subsystem unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Subsystems
with this setting generate functions that might have arguments depending on the
“Function interface” on page 1-0 parameter setting. You can name the generated
function and file using parameters “Function name” on page 1-0 and “File name
(no extension)” on page 1-0 . These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of subsystem
code when a model includes multiple instances of the subsystem.

This option also generates a function with arguments that allows subsystem code to
be reused in the generated code of a model reference hierarchy that includes multiple
instances of a subsystem across referenced models. In this case, the subsystem must
be in a library.

1 Blocks — Alphabetical List

1-1748

Tips

• When you want multiple instances of a subsystem to be represented as one reusable
function, you can designate each one of them as Auto or as Reusable function. It
is best to use one or the other, as using both creates two reusable functions, one for
each designation. The outcomes of these choices differ only when reuse is not
possible. Selecting Auto does not allow control of the function or file name for the
subsystem code.

• The Reusable function and Auto options both try to determine if multiple
instances of a subsystem exist and if the code can be reused. The difference between
the options' behavior is that when reuse is not possible:

• Auto yields inlined code, or if circumstances prohibit inlining, separate functions
for each subsystem instance.

• Reusable function yields a separate function with arguments for each
subsystem instance in the model.

• If you select Reusable function while your generated code is under source control,
set File name options to Use subsystem name, Use function name, or User
specified. Otherwise, the names of your code files change whenever you modify
your model, which prevents source control on your files.

Dependency

• This parameter requires a Simulink Coder license.
• To enable this parameter, select Treat as atomic unit.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires a license for Embedded

Coder and an ERT-based system target file)
• Memory section for execution functions (requires a license for Embedded Coder

and an ERT-based system target file)
• Setting this parameter to Nonreusable function enables Function with separate

data (requires a license for Embedded Coder and an ERT-based system target file).

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1749

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

See also

• “Create a Subsystem”
• “Control Generation of Subsystem Functions” (Simulink Coder)
• “Generate Code and Executables for Individual Subsystems” (Simulink Coder)
• “Inline Subsystem Code” (Simulink Coder)
• “Generate Subsystem Code as Separate Function and Files” (Simulink Coder)
• “Generate Reusable Code from Library Subsystems Shared Across Models” (Simulink

Coder)
• “Generate Reusable Code from Library Subsystems Shared Across Models” (Simulink

Coder)

Function name options — Select how to name generated function
Auto (default) | Use subsystem name | User specified

Select how Simulink Coder names the function it generates for the subsystem.

If you have an Embedded Coder license, you can control function names with options on
the Configuration Parameter Code Generation > Symbols pane.

Auto
Assign a unique function name using the default naming convention,
model_subsystem(), where model is the name of the model and subsystem is the
name of the subsystem (or that of an identical one when code is being reused).

If you select Reusable function for the Function packaging parameter and there
are multiple instances of the reusable subsystem in a model reference hierarchy, in
order to generate reusable code for the subsystem, Function name options must be
set to Auto.

Use subsystem name
Use the subsystem name as the function name. By default, the function name uses the
naming convention model_subsystem.

1 Blocks — Alphabetical List

1-1750

Note When a subsystem is in a library block and the subsystem parameter “Function
packaging” on page 1-0 is set to Reusable function, if you set the Use
subsystem name option, the code generator uses the name of the library block for
the subsystem's function name and file name.

User specified
Enable the Function name field. Enter any legal C or C++ function name, which
must be unique.

Dependency

• This parameter requires a Simulink Coder license.
• Setting Code generation function packaging to Nonreusable function or

Reusable function enables this parameter.
• Setting this parameter to User specified enables the Code generation function

name parameter.

Programmatic Use
Parameter: RTWFcnNameOpts
Type: character vector
Value: 'Auto' | 'Use subsystem name' | 'User specified'
Default: 'Auto'
See also

For more information, see “Control Generation of Subsystem Functions” (Simulink
Coder).

Function name — Specify function name
'' (default) | function name

Specify a unique, valid C or C++ function name for subsystem code.

Use this parameter if you want to give the function a specific name instead of allowing the
Simulink Coder code generator to assign its own autogenerated name or use the
subsystem name. For more information, see “Control Generation of Subsystem Functions”
(Simulink Coder).

Dependency

• This parameter requires a Simulink Coder license.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1751

• To enable this parameter, set the Function name options parameter to User
specified.

Programmatic Use
Parameter: RTWFcnName
Type: character vector
Value: '' | '<function name>'
Default: ''

File name options — Specify how to name generated file
Auto (default) | Use subsystem name | Use function name | User specified

Select how Simulink Coder names the separate file for the function it generates for the
subsystem.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Auto
Depending on the configuration of the subsystem and how many instances are in the
model, Auto yields different results:

• If the code generator does not generate a separate file for the subsystem, the
subsystem code is generated within the code module generated from the
subsystem's parent system. If the subsystem's parent is the model itself, the
subsystem code is generated within model.c or model.cpp.

• If you select Reusable function for the Function packaging parameter and
your generated code is under source control, consider specifying a File name
options value other than Auto. This prevents the generated file name from
changing due to unrelated model modifications, which is problematic for using
source control to manage configurations.

• If you select Reusable function for the Function packaging parameter and
there are multiple instances of the reusable subsystem in a model reference
hierarchy, in order to generate reusable code for the subsystem, File name
options must be set to Auto.

Use subsystem name
The code generator generates a separate file, using the subsystem (or library block)
name as the file name.

1 Blocks — Alphabetical List

1-1752

Note When File name options is set to Use subsystem name, the subsystem file
name is mangled if the model contains Model blocks, or if a model reference target is
being generated for the model. In these situations, the file name for the subsystem
consists of the subsystem name prefixed by the model name.

Use function name
The code generator uses the function name specified by Function name options as
the file name.

User specified
This option enables the File name (no extension) text entry field. The code
generator uses the name you enter as the file name. Enter any file name, but do not
include the .c or .cpp (or any other) extension. This file name need not be unique.

Note While a subsystem source file name need not be unique, you must avoid giving
nonunique names that result in cyclic dependencies (for example, sys_a.h includes
sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

Dependency

• This parameter requires a Simulink Coder license.
• To enable this parameter, set Function packaging to Nonreusable function or

Reusable function.
• Setting this parameter to User specified enables the File name (no extension)

parameter.

Programmatic Use
Parameter: RTWFileNameOpts
Type: character vector
Value: 'Auto' | 'Use subsystem name' | 'Use function name' | 'User
specified'
Default: 'Auto'

File name (no extension) — Specify file name
'' (default) | file name

The file name that you specify does not have to be unique. However, avoid giving non-
unique names that result in cyclic dependencies (for example, sys_a.h includes
sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1753

For more information, see “Control Generation of Subsystem Functions” (Simulink
Coder).

Dependency

• This parameter requires a Simulink Coder license.
• To enable this parameter, set File name options to User specified.

Programmatic Use
Parameter: RTWFileName
Type: character vector
Value: '' | '<file name>'
Default: ''

Function with separate data — Control code generation for subsystem
off (default) | on

Generate subsystem function code in which the internal data for an atomic subsystem is
separated from its parent model and is owned by the subsystem.

 off
Do not generate subsystem function code in which the internal data for an atomic
subsystem is separated from its parent model and is owned by the subsystem.

 on
Generate subsystem function code in which the internal data for an atomic subsystem
is separated from its parent model and is owned by the subsystem. The subsystem
data structure is declared independently from the parent model data structures. A
subsystem with separate data has its own block I/O and DWork data structure. As a
result, the generated code for the subsystem is easier to trace and test. The data
separation also tends to reduce the maximum size of global data structures
throughout the model, because they are split into multiple data structures.

Dependency

• This parameter requires a license for Embedded Coder and an ERT-based system
target file.

• To enable this parameter, set Function packaging to Nonreusable function.
• Selecting this parameter enables these parameters:

1 Blocks — Alphabetical List

1-1754

• Memory section for constants
• Memory section for internal data
• Memory section for parameters

Programmatic Use
Parameter: FunctionWithSeparateData
Type: character vector
Value: 'off' | 'on'
Default: 'off'
See also

• See the Subsystem block reference page for more information.
• For details on how to generate modular function code for an atomic subsystem, see

“Generate Modular Function Code” (Embedded Coder).
• For details on how to apply memory sections to atomic subsystems, see “Override

Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Function interface — Select to use arguments with generate function
void_void (default) | Allow arguments

Select to use arguments with generated function.

void_void
Generate a function without arguments and pass data as global variables. For
example:

void subsystem_function(void)

Allow arguments
Generate a function that uses arguments instead of passing data as global variables.
This specification reduces global RAM. It might reduce code size and improve
execution speed, and allow the code generator to apply additional optimizations. For
example:

void subsystem_function(real_T rtu_In1, real_T rtu_In2,
 real_T *rty_Out1)

Dependency

• This parameter requires an Embedded Coder license and an ERT-based system target
file.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1755

• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: FunctionInterfaceSpec
Type: character vector
Value: 'void_void' | 'Allow arguments'
Default: 'void_void'

See also

• “Reduce Global Variables in Nonreusable Subsystem Functions” (Embedded Coder)
• “Generate Modular Function Code” (Embedded Coder)

Memory section for initialize/terminate functions — Select how to apply
memory sections
Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem initialization and
termination functions.

Inherit from model
Apply the root model's memory sections to the subsystem's function code

Default
Do not apply memory sections to the subsystem's system code, overriding any model-
level specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” (Embedded Coder) and “Model Configuration
Parameters: Code Generation” (Simulink Coder).

• If you have not configured the model with a package, Inherit from model is the
only value that appears. Otherwise, the list includes Default and all memory sections
the model's package contains.

• These options can be useful for overriding the model's memory section settings for the
given subsystem.

1 Blocks — Alphabetical List

1-1756

Dependency

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• To enable this parameter, set Function packaging to Nonreusable function or
Reusable function.

Programmatic Use
Parameter: RTWMemSecFuncInitTerm
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of
interest'
Default: 'Inherit from model'
See also

• See the Subsystem block reference page for more information.
• For details on how to apply memory sections to atomic subsystems, see “Override

Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Memory section for execution functions — Select how to apply memory
sections
Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem's execution
functions.

Inherit from model
Apply the root model's memory sections to the subsystem's function code

Default
Do not apply memory sections to the subsystem system code, overriding any model-
level specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” (Embedded Coder) and “Model Configuration
Parameters: Code Generation” (Simulink Coder).

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1757

• If you have not configured the model with a package, Inherit from model is the
only value that appears. Otherwise, the list includes Default and all memory sections
the model's package contains.

• These options can be useful for overriding the model's memory section settings for the
given subsystem.

Dependency

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• To enable this parameter, set Function packaging to Nonreusable function or
Reusable function.

Programmatic Use
Parameter: RTWMemSecFuncExecute
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of
interest'
Default: 'Inherit from model'

See also

• See the Subsystem block reference page for more information.
• For details on how to apply memory sections to atomic subsystems, see “Override

Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Memory section for constants — Select how to apply memory sections
Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem constants.

Inherit from model
Apply the root model's memory sections to the subsystem's data

Default
Not apply memory sections to the subsystem's data, overriding any model-level
specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

1 Blocks — Alphabetical List

1-1758

Tips

• The memory section that you specify applies to the corresponding global data
structures in the generated code. For basic information about the global data
structures generated for atomic subsystems, see “Standard Data Structures in the
Generated Code” (Simulink Coder).

• Can be useful for overriding the model's memory section settings for the given
subsystem.

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” (Embedded Coder).

• If you have not configured the model with a package, Inherit from model is the
only value that appears. Otherwise, the list includes Default and all memory sections
the model's package contains.

Dependency

• This parameter requires a license for Embedded Coder and an ERT-based system
target file.

• To enable this parameter, set Function packaging to Nonreusable function and
select the Function with separate data parameter

Programmatic Use
Parameter: RTWMemSecDataConstants
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of
interest'
Default: 'Inherit from model'

See also

• See the Subsystem block reference page for more information.
• For details on how to apply memory sections to atomic subsystems, see “Override

Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Memory section for internal data — Select how to apply memory sections
Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem internal data.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1759

Inherit from model
Apply the root model's memory sections to the subsystem's data

Default
Not apply memory sections to the subsystem's data, overriding any model-level
specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data
structures in the generated code. For basic information about the global data
structures generated for atomic subsystems, see “Standard Data Structures in the
Generated Code” (Simulink Coder).

• Can be useful for overriding the model's memory section settings for the given
subsystem.

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” (Embedded Coder).

• If you have not configured the model with a package, Inherit from model is the
only value that appears. Otherwise, the list includes Default and all memory sections
the model's package contains.

Dependency

• This parameter requires a license for Embedded Coder and an ERT-based system
target file.

• To enable this parameter, set Function packaging to Nonreusable function and
select the Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataInternal
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of
interest'
Default: 'Inherit from model'

1 Blocks — Alphabetical List

1-1760

See also

• See the Subsystem block reference page for more information.
• For details on how to apply memory sections to atomic subsystems, see “Override

Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Memory section for parameters — Select how to apply memory sections
Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem parameters.

Inherit from model
Apply the root model's memory sections to the subsystem's function code

Default
Not apply memory sections to the subsystem's system code, overriding any model-
level specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data
structure in the generated code. For basic information about the global data
structures generated for atomic subsystems, see “Standard Data Structures in the
Generated Code” (Simulink Coder).

• Can be useful for overriding the model's memory section settings for the given
subsystem.

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” (Embedded Coder).

• If you have not configured the model with a package, Inherit from model is the
only value that appears. Otherwise, the list includes Default and all memory sections
the model's package contains.

Dependency

• This parameter requires a license for Embedded Coder and an ERT-based system
target file.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1761

• To enable this parameter, set Function packaging to Nonreusable function and
select the Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataParameters
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of
interest'
Default: 'Inherit from model'
See also

• See the Subsystem block reference page for more information.
• For details on how to apply memory sections to atomic subsystems, see “Override

Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

See Also
Enabled Subsystem | Enabled and Triggered Subsystem | Function-Call Subsystem |
Triggered Subsystem

Topics
“Create a Subsystem”
“Using Function-Call Subsystems”
“Export-Function Models”

Introduced in R2007a

1 Blocks — Alphabetical List

1-1762

AddSubtractSum of ElementsSum
Add or subtract inputs
Library: Simulink / Math Operations

Description
The Sum block performs addition or subtraction on its inputs. The Add, Subtract, Sum of
Elements, and Sum blocks are identical blocks. This block can add or subtract scalar,
vector, or matrix inputs. It can also collapse the elements of a signal and perform a
summation.

You specify the operations of the block with the List of signs parameter with plus (+),
minus (-), and spacer (|).

• The number of + and - characters equals the number of inputs. For example, +-+
requires three inputs. The block subtracts the second (middle) input from the first
(top) input, and then adds the third (bottom) input.

• A spacer character creates extra space between ports on the block icon.
• If performing only addition, you can use a numerical value equal to the number of

inputs.
• If only there is only one input port, a single + or - adds or subtracts the elements over

all dimensions or in the specified dimension.

The Sum block first converts the input data type to its accumulator data type, then
performs the specified operations. The block converts the result to its output data type
using the specified rounding and overflow modes.

Calculation of Block Output
Output calculation for the Sum block depends on the number of block inputs and the sign
of input ports:

 AddSubtractSum of ElementsSum

1-1763

If the Sum block
has...

And... The formula for
output calculation
is...

Where...

One input port The input port sign is + y = e[0] + e[1] + e[2] ...
+ e[m]

e[i] is the ith element
of input u

The input port sign is – y = 0.0 – e[0] – e[1] –
e[2] ... – e[m]

Two or more input
ports

All input port signs are
–

y = 0.0 – u[0] – u[1] –
u[2] ... – u[n]

u[i] is the input to the
ith input port

The kth input port is the
first port where the
sign is +

y = u[k] – u[0] – u[1] –
u[2] – u[k–1] (+/–) u[k
+1] ... (+/–) u[n]

Ports
Inputs
The inputs can be of different data types, unless you select the Require all inputs to
have the same data type parameter.

Port_1 — First input operand signal
scalar | vector | matrix

Input signal to the addition or subtraction operation. If there is only one input signal, then
addition or subtraction is performed on the elements over all dimensions or the specified
dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Port_n — nth input operand signal
scalar | vector | matrix

nth input signal to the operations. The number of inputs matches the number of signs in
the List of signs parameter. The block applies the operations to the inputs in the order

1 Blocks — Alphabetical List

1-1764

listed. You can also use a numerical value equal to the number of input ports as the List
of signs parameter. The block creates the input ports and applies addition to all inputs.
For example, if you assign 5 for the List of signs parameter, the block creates 5 input
ports and adds them together to produce the output.

All nonscalar inputs must have the same dimensions. Scalar inputs are expanded to have
the same dimensions as other inputs.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output signal
scalar | vector | matrix

Output signal resulting from addition and/or subtraction operations. The output signal has
the same dimension as the input signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters

Main
Icon shape — Block icon shape
rectangular (default) | round

Designate the icon shape of the block as rectangular or round.

For a rectangular block, the first input port is the top port. For a round Sum block, the
first input port is the port closest to the 12 o'clock position going in a counterclockwise
direction around the block. Similarly, other input ports appear in counterclockwise order
around the block.

Programmatic Use
Block Parameter: IconShape
Type: character vector
Values: 'rectangular' | 'round'

 AddSubtractSum of ElementsSum

1-1765

Default: 'on'

List of signs — Operations performed on inputs
++ (default) | + | - | | | integer

Enter addition and subtraction operations performed on the inputs. An input port is
created for each operation. A spacer (|) creates extra space between the input ports on
the block icon. Addition is the default operation. If you only want to add the inputs, enter
the number of input ports. The operations are performed in the order listed.

When you enter only one element, the block enables the Sum over parameter. For a
single vector input, + or - adds or subtracts the elements over all dimensions or in the
specified dimension.

Tips

You can manipulate the positions of the input ports on the block by inserting spacers (|)
between the signs in the List of signs parameter. For example, “++|--” creates an extra
space between the second and third input ports.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '+' | '-' | | | integer
Default: '++'

Sum over — Dimensions for operations on a single vector input
All dimensions (default) | Specified dimension

Select the dimension over which the block performs the sum-over operation. For All
dimensions, all input elements are summed. When you select Specified dimensions,
another parameter Dimension appears. Choose the specific dimension for summing the
vector input.

Dependency

Enabled when you list only one sign in the List of signs parameter.

Programmatic Use
Block Parameter: CollapseMode
Type: character vector
Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

1 Blocks — Alphabetical List

1-1766

Dimension — Dimension for summation on vector input
1 (default) | integer

When you choose Specified dimension for the Sum over parameter, specify the
dimension over which to perform the operation.

The block follows the same summation rules as the MATLAB sum function.

Suppose that you have a 2-by-3 matrix U.

• Setting Dimension to 1 results in the output Y being computed as:

Y U i j
i

=
=Â (,)
1

2

• Setting Dimension to 2 results in the output Y being computed as:

Y U i j
j

=
=Â (,)

1

3

If the specified dimension is greater than the dimension of the input, an error message
appears.

Dependency

Enabled when you choose Specified dimension for the Sum over parameter.

Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Value: integer
Default: '1'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

 AddSubtractSum of ElementsSum

1-1767

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Require all inputs to have the same data type — Require that all inputs
have the same data type
off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter,
then an error occurs during simulation if the input signal types are different.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Accumulator data type — Data type of the accumulator
Inherit: Inherit via internal rule (default) | Inherit: Same as first
input | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type of the accumulator. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType. When you choose
Inherit: Inherit via internal rule, Simulink chooses a data type to balance
numerical accuracy, performance, and generated code size, while taking into account the
properties of the embedded target hardware.

Programmatic Use
Block Parameter: AccumDataTypeStr
Type: character vector

1 Blocks — Alphabetical List

1-1768

Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first
input' | 'double''single' | 'int8' | 'uint8' | 'int16' | 'uint16', 'int32' |
'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data
type expression>'
Default: 'Inherit: Inherit via internal rule'

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

 AddSubtractSum of ElementsSum

1-1769

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | Inherit: Same as
accumulator | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule—Simulink chooses a data type to balance
numerical accuracy, performance, and generated code size, while taking into account
the properties of the embedded target hardware. If you change the embedded target
settings, the data type selected by the internal rule might change. It is not always
possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy
or performance, use one of the following options:

1 Blocks — Alphabetical List

1-1770

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of how to
use this block are available in the Signal Attributes library Data Type Propagation
Examples block.

Note The accumulator internal rule favors greater numerical accuracy, possibly at the
cost of less efficient generated code. To get the same accuracy for the output, set the
output data type to Inherit: Inherit same as accumulator.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of the first input signal.
• Inherit: Inherit same as accumulator— Use data type of the accumulator.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via
back propagation''Inherit: Same as first input' | 'Inherit: Same as
accumulator' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16',
'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'
| '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock data type settings against changes by the fixed-point tools —
off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor.

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

 AddSubtractSum of ElementsSum

1-1771

See Also

For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks — Alphabetical List

1-1772

Action Rationale Impact on Overflows Example
Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 AddSubtractSum of ElementsSum

1-1773

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Add.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Bias | Divide | Gain

Topics
“Control Signal Data Types”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1774

Switch
Combine multiple signals into single signal
Library: Simulink / Commonly Used Blocks

Simulink / Signal Routing

Description
The Switch block passes through the first input or the third input signal based on the
value of the second input. The first and third inputs are data input. The second input is a
control input. Specify the condition under which the block passes the first input by using
the Criteria for passing first input and Threshold parameters.

Bus Support
The Switch block is a bus-capable block. The data inputs can be virtual or nonvirtual bus
signals subject to the following restrictions:

• All the buses must be equivalent (same hierarchy with identical names and attributes
for all elements).

• All signals in a nonvirtual bus input to a Switch block must have the same sample
time. The requirement holds even if the elements of the associated bus object specify
inherited sample times.

You can use a Rate Transition block to change the sample time of an individual signal, or
of all signals in a bus. See “Specify Bus Signal Sample Times” and Bus-Capable Blocks for
more information.

You can use an array of buses as an input signal to a Switch block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”. When
using an array of buses, set the Threshold parameter to a scalar value.

 Switch

1-1775

Limitations
• If the data inputs to the Switch block are buses, the element names of both buses must

be the same. Using the same element names ensures that the output bus has the same
element names no matter which input bus the block selects. To ensure that your model
meets this requirement, use a bus object to define the buses and set the Element
name mismatch diagnostic to error. See “Connectivity Diagnostics Overview” for
more information.

Ports

Input
Port_1 — First data input signal
scalar | vector

First of two data inputs. The block propagates either the first or second data input to the
output. The block selects which input to pass based on the control input. Specify the
condition for the control input to pass the first input using the Criteria for passing first
input and Threshold parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_2 — Control input signal
scalar | vector

Control signal the block uses to determine whether to pass the first or second data input
to the output. If the control input meets the condition set in the Criteria for passing
first input parameter, then the block passes the first data input. Otherwise, the block
passes the second data input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_3 — Second data input signal
scalar | vector

Second of two data inputs. The block propagates either the first or second data input to
the output. The block selects which input to pass based on the control input. Specify the

1 Blocks — Alphabetical List

1-1776

condition for the control input to pass the first or second input using the Criteria for
passing first input and Threshold parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
scalar | vector

Output signal progagated from either the first or second input signal, based on the
control signal value.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Main
Criteria for passing first input — Selection criteria to pass first data
input
u2 >= Threshold (default) | u2 > Threshold | u2 ~= 0

Select the condition under which the block passes the first data input. If the control input
meets the condition set in the Criteria for passing first input parameter, the block
passes the first input. Otherwise, the block passes the second data input signal from input
Port_3.

u2 >= Threshold
Checks whether the control input is greater than or equal to the threshold value.

u2 > Threshold
Checks whether the control input is greater than the threshold value.

u2 ~=0
Checks whether the control input is nonzero.

Note The Switch block does not support u2 ~=0 mode for enumerated data types.

 Switch

1-1777

Tip

When the control input is a Boolean signal, use one of these combinations of condition
and threshold value:

• u2 >= Threshold, where the threshold value equals 1
• u2 > Threshold, where the threshold value equals 0
• u2 ~=0

Otherwise, the Switch block ignores threshold values and uses the Boolean value for
signal routing. For a value of 1, the block passes the first input, and for a value of 0, the
block passes the third input. A warning message that describes this behavior also appears
in the MATLAB Command Window.

Command-Line Information
Parameter: Criteria
Type: character vector
Value: 'u2 >= Threshold' | 'u2 > Threshold' | 'u2 ~=0'
Default: 'u2 >= Threshold'

Threshold — Threshold used in criteria
0 (default) | scalar

Assign the threshold used in the Criteria for passing first input that determines which
input the block passes to the output. Threshold must be greater than Output minimum
and less than Output maximum.

To specify a nonscalar threshold, use brackets. For example, the following entries are
valid:

• [1 4 8 12]
• [MyColors.Red, MyColors.Blue]

Dependencies

Setting Criteria for passing first input to u2 ~=0 disables this parameter.

Command-Line Information
Parameter: Threshold
Type: character vector
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1778

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | Boolean

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.
Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Signal Attributes

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Require all data port inputs to have the same data type — Require data
ports to have the same data type
off (default) | on

Require all data inputs to have the same data type.
Command-Line Information
Parameter: InputSameDT
Type: character vector
Value:
Default: '0'

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

 Switch

1-1779

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

1 Blocks — Alphabetical List

1-1780

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> |
<data type expression>

Specify the output data type.

Inherit: Inherit via internal rule
Uses the following rules to determine the output data type.

Data Type of First Input Port Output Data Type
Has a larger positive range than the
third input port

Inherited from the first input port

Has the same positive range as the
third input port

Inherited from the third input port

Has a smaller positive range than the
third input port

Inherit: Inherit via back propagation
Uses data type of the driving block.

double
Specifies output data type is double.

single
Specifies output data type is single.

int8
Specifies output data type is int8.

uint8
Specifies output data type is uint8.

 Switch

1-1781

int16
Specifies output data type is int16.

uint16
Specifies output data type is uint16.

int32
Specifies output data type is int32.

uint32
Specifies output data type is uint32.

fixdt(1,16,0)
Specifies output data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Specifies output data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Uses an enumerated data type, for example, Enum: BasicColors.

<data type expression>
Uses a data type object, for example, Simulink.NumericType.

Tip

When the output is of enumerated type, both data inputs should use the same enumerated
type as the output.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16', 'int32' | 'uint32' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | Enum: <class name> | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock data type settings against changes by the fixed-point tools —
Prevent fixed-point tools from overriding data types
off (default) | on

1 Blocks — Alphabetical List

1-1782

Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on this block. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

 Switch

1-1783

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type

can represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or
127.

Tip

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Check for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

1 Blocks — Alphabetical List

1-1784

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Allow different data input sizes — Allow different data input sizes
off (default) | on

Select this check box to allow input signals with different sizes. The block propagates the
input signal size to the output signal. If the two data inputs are variable-size signals, the
maximum size of the signals can be equal or different.

Command-Line Information
Parameter: AllowDiffInputSizes
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

 Switch

1-1785

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL Code Generation, see Switch.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Manual Switch | Multiport Switch

Introduced before R2006a

1 Blocks — Alphabetical List

1-1786

Switch Case
Select subsystem execution using logic similar to a switch statement
Library: Simulink / Ports & Subsystems

Description
The Switch Case block with Switch Case Action Subsystem blocks containing Action Port
blocks, implements switch logic to control subsystem execution.

A Switch Case block has a single input. To select a case, define the input value using the
Case conditions parameter. The cases are evaluated top down starting with the first
case.

Each case is associated with an output port that is attached to a Switch Case Action
Subsystem block. When a case is selected, the associated output port sends an action
signal to execute the subsystem.

 Switch Case

1-1787

A default case is selected after all of the other case conditions evaluate to false.
Providing a default case is optional, even if the other case conditions do not exhaust
every possible input value.

Cases for the Switch Case block contain an implied break after a Switch Case Action
Subsystem block is executed. Therefore, there is no fall through behavior for the Simulink
Switch Case block as found in standard C switch statements.

Ports

Input
u1 (logical operator) — Value for case selection
scalar

Input to the port labeled u1 of a Switch Case block can be:

• A scalar value with a built-in data type that Simulink supports. However, the Switch
Case block does not support Boolean or fixed-point data types, and it truncates
numeric inputs to 32-bit signed integers.

• A scalar value of any enumerated data type.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
enumerated

Output
case — Action signal for a Switch Case Action Subsystem block
scalar

Output from the Case and default ports are action signals connected to Switch Case
Action Subsystem blocks.

Parameters
Case conditions — Specify case values
{1} (default) | list of cases

1 Blocks — Alphabetical List

1-1788

Specify the cases values using MATLAB cell notation.

{1}
Specify the output port labeled case[1]outputs an action signal when the input port
value is 1.

list of ports with case assignments
Specify multiple cases and ports using MATLAB cell notation. For example, entering
{1,[7,9,4]} specifies that output port case[1] is run when the input value is 1,
and output port case [7 9 4] is run when the input value is 7, 9, or 4.

You can use colon notation to specify a range of integer case conditions. For example,
entering {[1:5]} specifies that output port case[1 2 3 4 5] is run when the input
value is 1, 2, 3, 4, or 5.

Depending on block size, cases from a long list of case conditions are displayed in
shortened form on the face of the Switch Case block, using a terminating ellipsis (...).

You can use the enumeration function to specify case conditions that include a case
for every value in an enumerated type.

Programmatic Use
Block Parameter: CaseConditions
Type: character vector
Values: '{1}' | '<list of cases>'
Default: '{1}'

Show default case — Control display of default output port
off (default) | on

Control display of default output port.

off
Hide default output port.

on
Display default output port as the last case on the Switch Case block. This allows you
to specify a default case that executes when the input value does not match any of the
other case values.

Programmatic Use
Block Parameter: ShowDefaultCase

 Switch Case

1-1789

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Enable zero-crossing detection — Control zero-crossing detection
on (default) | off

Control zero-crossing detection.

 on
Detect zero crossings.

 off
Do not detect zero crossings.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double | single | base integer | enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
Blocks
Action Port | Subsystem | Switch Case Action Subsystem

Topics
Select Subsystem Execution

1 Blocks — Alphabetical List

1-1790

Introduced before R2006a

 Switch Case

1-1791

Switch Case Action Subsystem
Subsystem whose execution is enabled by a Switch Case block
Library: Simulink / Ports & Subsystems

Description
The Switch Case Action Subsystem block is a Subsystem block preconfigured as a starting
point for creating a subsystem whose execution is controlled by a Switch Case block. The
input port to a Switch Case block selects a case defined using the Case conditions
parameter. Depending on input value and case selected, an action signal is sent to
execute a Switch Case Action Subsystem block.

Merging signals from Switch Case Subsystem blocks.

1 Blocks — Alphabetical List

1-1792

All blocks in a Switch Case Action Subsystem block must run at the same rate as the
driving Switch Case block. You can achieve this requirement by setting each block sample
time parameter to be either inherited (-1) or the same value as the Switch Case block
sample time.

Ports

Input
In1 — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Action — Control signal input to a subsystem block
scalar | vector | matrix

Placing an Action Port block in a subsystem block adds an external input port to the block
and changes the block to a Switch Case Action Subsystem block.

 Switch Case Action Subsystem

1-1793

Dot-dash lines from a Switch Case block to an Switch Case Action Subsystem block
represent action signals. An action signal is a control signal connected to the action port
of an Switch Case Action Subsystem block. A message on the action signal initiates
executition of the subsystem.
Data Types: action

Output
Out1 — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa

Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-1794

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Blocks
Action Port | Subsystem | Switch Case

Topics
Select Subsystem Execution

Introduced before R2006a

 Switch Case Action Subsystem

1-1795

Synchronous Subsystem
Represent subsystem that has synchronous reset and enable behavior

Library
HDL Coder / HDL Subsystems

Description
A Synchronous Subsystem is a subsystem that uses the Synchronous mode of the State
Control block. If an S symbol appears in the subsystem, then it is synchronous.

To create a Synchronous Subsystem, add the block to your Simulink model from the HDL
Subsystems block library. You can also add a State Control block with State control set
to Synchronous inside a subsystem. For more information about the State Control block,
see State Control.

Data Type Support
See Inport for information on the data types accepted by a subsystem's input ports. See
Outport for information on the data types output by a subsystem's output ports.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1796

Parameters

Show port labels
Cause Simulink software to display labels for the subsystem's ports on the subsystem's
icon.

Default: FromPortIcon

none
Does not display port labels on the subsystem block.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
subsystem block. Otherwise, display the port block's name.

FromPortBlockName
Display the name of the corresponding port block on the subsystem block.

SignalName
If a name exists, display the name of the signal connected to the port on the
subsystem block; otherwise, the name of the corresponding port block.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Read/Write permissions
Control user access to the contents of the subsystem.

Default: ReadWrite

ReadWrite
Enables opening and modification of subsystem contents.

ReadOnly
Enables opening but not modification of the subsystem. If the subsystem resides in a
block library, you can create and open links to the subsystem and can make and

 Synchronous Subsystem

1-1797

modify local copies of the subsystem but cannot change the permissions or modify the
contents of the original library instance.

NoReadOrWrite
Disables opening or modification of subsystem. If the subsystem resides in a library,
you can create links to the subsystem in a model but cannot open, modify, change
permissions, or create local copies of the subsystem.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Name of error callback function
Enter name of a function to be called if an error occurs while Simulink software is
executing the subsystem.

Default: ' '

Simulink software passes two arguments to the function: the handle of the subsystem and
a character vector that specifies the error type. If no function is specified, Simulink
software displays a generic error message if executing the subsystem causes an error.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Permit hierarchical resolution
Specify whether to resolve names of workspace variables referenced by this subsystem.

Default: All

All
Resolve all names of workspace variables used by this subsystem, including those
used to specify block parameter values and Simulink data objects (for example,
Simulink.Signal objects).

ExplicitOnly
Resolve only names of workspace variables used to specify block parameter values,
data store memory (where no block exists), signals, and states marked as “must
resolve”.

1 Blocks — Alphabetical List

1-1798

None
Do not resolve any workspace variable names.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Treat as atomic unit
Causes Simulink software to treat the subsystem as a unit when determining the
execution order of block methods.

Default: Off

 On
Cause Simulink software to treat the subsystem as a unit when determining the
execution order of block methods. For example, when it needs to compute the output
of the subsystem, Simulink software invokes the output methods of all the blocks in
the subsystem before invoking the output methods of other blocks at the same level
as the subsystem block.

 Off
Cause Simulink software to treat all blocks in the subsystem as being at the same
level in the model hierarchy as the subsystem when determining block method
execution order. This can cause execution of methods of blocks in the subsystem to be
interleaved with execution of methods of blocks outside the subsystem.

This parameter enables:

• “Minimize algebraic loop occurrences” on page 1-0 .
• “Sample time” on page 1-0
• “Function packaging” on page 1-0 (requires a Simulink Coder license)

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Synchronous Subsystem

1-1799

Treat as grouped when propagating variant conditions
Causes Simulink software to treat the subsystem as a unit when propagating variant
conditions from Variant Source blocks or to Variant Sink blocks.

Default: On

 On
Simulink treats the subsystem as a unit when propagating variant conditions from
Variant Source blocks or to Variant Sink blocks. For example, when Simulink
computes the variant condition of the subsystem, it propagates that condition to all
the blocks in the subsystem.

 Off
Simulink treats all blocks in the subsystem as being at the same level in the model
hierarchy as the subsystem itself when determining their variant condition.

“Treat as grouped when propagating variant conditions” on page 1-0 enables this
parameter.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Function packaging
Specify the code format to be generated for an atomic (nonvirtual) subsystem.

Default: Auto

Auto
Simulink Coder software chooses the optimal format for you based on the type and
number of instances of the subsystem that exist in the model.

Inline
Simulink Coder software inlines the subsystem unconditionally.

Nonreusable function
Simulink Coder software explicitly generates a separate function in a separate file.
Subsystems with this setting generate functions that might have arguments

1 Blocks — Alphabetical List

1-1800

depending on the “Function interface” on page 1-0 parameter setting. You can
name the generated function and file using parameters “Function name” on page 1-
0 and “File name (no extension)” on page 1-0 . These functions are not
reentrant.

Reusable function
Simulink Coder software generates a function with arguments that allows reuse of
subsystem code when a model includes multiple instances of the subsystem.

This option also generates a function with arguments that allows subsystem code to
be reused in the generated code of a model reference hierarchy that includes multiple
instances of a subsystem across referenced models. In this case, the subsystem must
be in a library.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-Point |

Enumerated | Bus
Multidimensional Signals Yes
Variable-Size Signals Yes
HDL Code Generation Yes

See Also
Enabled Synchronous Subsystem | Resettable Synchronous Subsystem | State Control

Introduced in R2016a

 Synchronous Subsystem

1-1801

Tapped Delay
Delay scalar signal multiple sample periods and output all delayed versions

Library
Discrete

Description
The Tapped Delay block delays an input by the specified number of sample periods and
outputs all the delayed versions. Use this block to discretize a signal in time or resample a
signal at a different rate.

The block accepts one scalar input and generates an output vector that contains each
delay. Specify the order of the delays in the output vector with the Order output vector
starting with parameter:

• Oldest orders the output vector starting with the oldest delay version and ending
with the newest delay version.

• Newest orders the output vector starting with the newest delay version and ending
with the oldest delay version.

Specify the output vector for the first sampling period with the Initial condition
parameter. Careful selection of this parameter can minimize unwanted output behavior.

Specify the time between samples with the Sample time parameter. Specify the number
of delays with the Number of delays parameter. A value of -1 instructs the block to
inherit the number of delays by back propagation. Each delay is equivalent to the z-1

discrete-time operator, which the Unit Delay block represents.

1 Blocks — Alphabetical List

1-1802

Data Type Support
The Tapped Delay block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Initial condition

Specify the initial output of the simulation. The Initial condition parameter is
converted from a double to the input data type offline using round-to-nearest and
saturation. Simulink software does not allow you to set the initial condition of this
block to inf or NaN.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “Specify Sample Time” in the online Simulink documentation for
more information.

Number of delays
Specify the number of discrete-time operators.

Order output vector starting with
Specify whether to output the oldest delay version first, or the newest delay version
first.

Include current input in output vector
Select to include the current input in the output vector.

 Tapped Delay

1-1803

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point
Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, when Include current input in output

vector check box is selected. No, otherwise.
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also
Delay | Resettable Delay | Unit Delay | Variable Integer Delay

Introduced before R2006a

1 Blocks — Alphabetical List

1-1804

Terminate Function
Execute contents on a model terminate event
Library: User-Defined Functions

Description
The Terminate Function block is a pre-configured subsystem block that executes on a
model terminate event. By default, the Terminate Function block includes an Event
Listener block with Event set to Terminate, a Terminator block, and a State Reader
block.

Replace the Terminator block with blocks to save the state value from the State Reader
block.

For a list of unsupported blocks and features, see “Initialize, Reset, and Terminate
Function Limitations”.

The input and output ports of a component containing Initialize Function and Terminate
Function blocks must connect to input and output port blocks.

The code generated from this block is part of the model_terminate function that is
called once at the end of model execution.

 Terminate Function

1-1805

See Also
Event Listener | Initialize Function | Reset Function | State Reader | State Writer

Topics
“Customize Initialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”
“Generate Code That Responds to Initialize, Reset, and Terminate Events” (Simulink
Coder)

1 Blocks — Alphabetical List

1-1806

Terminator
Terminate unconnected output port
Library: Simulink / Commonly Used Blocks

Simulink / Sinks

Description
Use the Terminator block to cap blocks whose output ports do not connect to other
blocks. If you run a simulation with blocks having unconnected output ports, Simulink
issues warning messages. Using Terminator blocks to cap those blocks helps prevent
warning messages.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix | n-D array | bus

Use this port to direct signals from output ports that are otherwise unconnected during a
simulation. The port accepts real or complex signals of all data types.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

 Terminator

1-1807

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

When you use this block in your model, HDL Coder does not generate code for it.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Ground | “Unconnected block output ports”

Topics
“Model Configuration Parameters: Connectivity Diagnostics”
“Systematic Diagnosis of Errors and Warnings”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1808

Timed-Based Linearization
Generate linear models in base workspace at specific times

Library
Model-Wide Utilities

Description
This block calls linmod or dlinmod to create a linear model for the system when the
simulation clock reaches the time specified by the Linearization time parameter. No
trimming is performed. The linear model is stored in the base workspace as a structure,
along with information about the operating point at which the snapshot was taken.
Multiple snapshots are appended to form an array of structures.

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the model appended
by _Timed_Based_Linearization, for example, vdp_Timed_Based_Linearization.
The structure has the following fields:

Field Description
a The A matrix of the linearization
b The B matrix of the linearization

 Timed-Based Linearization

1-1809

Field Description
c The C matrix of the linearization
d The D matrix of the linearization
StateName Names of the model's states
OutputName Names of the model's output ports
InputName Names of the model's input ports
OperPoint A structure that specifies the operating point of the

linearization. The structure specifies the operating point time
(OperPoint.t). The states (OperPoint.x) and inputs
(OperPoint.u) fields are not used.

Ts The sample time of the linearization for a discrete linearization

Use the Trigger-Based Linearization block if you need to generate linear models
conditionally.

You can use state and simulation time logging to extract the model states and inputs at
operating points. For example, suppose that you want to get the states of the f14 example
model at linearization times of 2 seconds and 5 seconds.

1 Open the model and drag an instance of this block from the Model-Wide Utilities
library and drop the instance into the model.

2 Open the block's parameter dialog box and set the Linearization time to 2 and 5.
3 Open the model's Model Configuration Parameters dialog box.
4 Select the Data Import/Export pane.
5 Check States and Time on the Save to Workspace control panel
6 Select OK to confirm the selections and close the dialog box.
7 Simulate the model.

At the end of the simulation, the following variables appear in the MATLAB
workspace: f14_Timed_Based_Linearization, tout, and xout.

8 Get the indices to the operating point times by entering the following at the MATLAB
command line:
ind1 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);
ind2 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vectors at the operating points.

1 Blocks — Alphabetical List

1-1810

x1 = xout(ind1,:);
x2 = xout(ind2,:);

Data Type Support
Not applicable.

Parameters
Linearization time

Time at which you want the block to generate a linear model. Enter a vector of times
if you want the block to generate linear models at more than one time step.

Sample time (of linearized model)
Specify a sample time to create discrete-time linearizations of the model (see
“Discrete-Time System Linearization” on page 2-48).

Characteristics
Data Types Not applicable
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Code Generation No

See Also
Trigger-Based Linearization

Introduced in R2010a

 Timed-Based Linearization

1-1811

To File
Write data to file

Library
Sinks

Description
The To File block inputs a signal and writes the signal data into a MAT-file. Use the To File
block to log signal data.

The To File block icon shows the name of the output file.

The block writes to the output file incrementally, with minimal memory overhead during
simulation. If the output file exists when the simulation starts, the block overwrites the
file. The file automatically closes when simulation is complete or paused. If simulation
terminates abnormally, the To File block saves the data it has logged up until the point of
the abnormal termination.

Tip If MATLAB encounters memory issues when you log a large number of signals in a
long simulation that has many time steps, consider logging to persistent storage. When
you log to persistent storage, the Dataset format logging data is stored in a MAT-file.
Compared to logging to persistent storage, connecting a To File block to signals:

• Is a per-signal approach that can clutter a model with several To File blocks attached
to individual signals.

• Creates a separate MAT-file for each To File block, compared to the one MAT-file that
logging to persistent storage uses.

For details, see “Log Data to Persistent Storage”.

1 Blocks — Alphabetical List

1-1812

Specifying the Format for Writing Data
Use the Save format parameter to specify the format for writing data:

• Timeseries (default)
• Array

Use the Array format only for vector, double, noncomplex signals. To save bus data, use
the Timeseries format.

For the Timeseries format, the To File block:

• Writes data in a MATLAB timeseries object
• Supports writing multidimensional, real or complex output values
• Supports writing output values that have any built-in data type, including Boolean,

enumerated (enum), and fixed-point data with a word length of up to 32 bits
• For bus input signals, creates a MATLAB structure that matches the bus hierarchy.

Each leaf of the structure is a MATLAB timeseries object.

For the Array format, the To File block:

• Writes data into a matrix containing two or more rows. The matrix has the following
form:

t t t

u u u

un un un

final

final

final

1 2

1 2

1 2

1 1 1

…

…

…

…

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

Simulink writes one column to the matrix for each data sample. The first element of
the column contains the time stamp. The remainder of the column contains data for
the corresponding output values.

• Supports writing data that is one-dimensional, double, and noncomplex.

The following table shows how simulation mode support depends on the Save format
value.

 To File

1-1813

Simulation Mode Timeseries Array
Normal Supported. Supported.
Accelerator Supported. Supported.
Rapid Accelerator Supported. Supported.
Software-in-the-Loop (SIL) Not supported. Supported if MAT-file logging is

enabled.
Processor-in-the-Loop
(PIL)

Not supported. Supported if MAT-file logging is
available and enabled.

External Not supported. Supported if MAT-file logging is
enabled.

RSim target Supported. Supported if MAT-file logging is
enabled.

Controlling When Data Is Written to the File
The To File block Decimation and Sample Time parameters control when data is
written to the file.

The To File block does not log data outside of the intervals specified by the Model
Configuration Parameters > Data Import/Export > Logging intervals parameter.
The block stores the logged data in the file associated with the block instead of storing
the data in the variable that you specify for the Single simulation output parameter.

Saving Data for Use by a From File Block
The From File block can use data written by a To File block in any format (Timeseries
or Array) without any modifications to the data or other special provisions.

Saving Data for Use by a From Workspace Block
The From Workspace block can read data that is in the Array format and is the
transposition of the data written by the To File block. To provide the required format, use
MATLAB commands to load and transpose the data from the MAT-file.

1 Blocks — Alphabetical List

1-1814

Simulation Stepper Interaction with To File Block
If you pause using the Simulation Stepper, the To File block captures the simulation data
up to the point of the pause. When you step back, the To File data file no longer contains
any simulation data past the new reduced time of the last output.

Limitations of To File blocks in a Referenced Model
When a To File block is in a referenced model, that model must be a single-instance
model. Only one instance of such a model can exist in a model hierarchy. See “Specify
Reusability of Referenced Models” for more information.

Compressing MAT-File Data
To avoid the overhead of compressing data in real time, the To File block writes an
uncompressed Version 7.3 MAT-file. To compress the data within the MAT-file, load and
save the file in MATLAB. The resaved file is smaller than the original MAT-file that the To
File block created, because the Save command compresses the data in the MAT-file.

Saving Bus Data
The To File block supports virtual and nonvirtual bus input.

To save bus data, set the Save format parameter to Timeseries.

If the input signal is a bus, then the To File block creates a MATLAB structure that
matches the bus hierarchy. Each leaf of the structure is a MATLAB timeseries object.

Pausing a Simulation
After pausing a simulation, do not alter any file that a To File block logs into. For example,
do not save such a file with the MATLAB save command. Altering the file can cause an
error when you resume the simulation. If you want to alter the file after pausing, copy the
file and work with the copy of the file.

Generating Code
To generate code for a To File block, on the Code Generation > Interface pane, you
must select the configuration parameter “MAT-file logging” (Simulink Coder).

 To File

1-1815

Data Type Support
The To File block accepts real or complex signal data of any data type that Simulink
supports, with the exception that the word length for fixed-point data must be 32 bits or
less.

The To File block accepts bus data.

Parameters
File name
The path or file name of the MAT-file in which to store the output. On UNIX systems, the
pathname can start with a tilde (~) character signifying your home folder. The default file
name is untitled.mat. If you specify a file name without path information, Simulink
stores the file in the MATLAB working folder. (To determine the working folder, type pwd
at the MATLAB command line.) If the file already exists, Simulink overwrites it.

Variable name
The name of the matrix contained in the named file. The default name is ans.

Save format
The data format that the To File block uses for writing data:

• Timeseries (default)
• Array

Decimation
The decimation factor, n, where n specifies writing data at every nth time that the block
executes. The default decimation is 1, which writes data at every time step.

Sample time
Specifies the sample period and offset at which to collect points. This parameter is useful
when you are using a variable-step solver where the interval between time steps might

1 Blocks — Alphabetical List

1-1816

not be constant. The default is-1, which inherits the sample time from the driving block.
See “Specify Sample Time” for more information.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

See Also
“Save Runtime Data from Simulation”, “Convert Logged Data to Dataset Format”, From
File, From Workspace, To Workspace

Introduced before R2006a

 To File

1-1817

To Workspace
Write data to workspace

Library
Sinks

Description
The To Workspace block inputs a signal and writes the signal data to a workspace. During
the simulation, the block writes data to an internal buffer. When the simulation is
completed or paused, that data is written to the workspace. Data is not available until the
simulation is stopped or paused.

• For menu-based simulation, data is written in the MATLAB base workspace.
• A sim command in a MATLAB function sends data logged with the To Workspace block

to the workspace of the calling function, not to the MATLAB (base) workspace. To send
the logged data to the base workspace, use an assignin command in the function.
For example:

function myfunc
 a = sim('mTest','SimulationMode','normal');
 b = a.get('simout')
 assignin('base','b',b);
end

The block icon shows the name of the variable to which the data is written. To specify the
name of the workspace variable to which the To Workspace block writes the data, use the
Variable name parameter.

To specify the data format of the variable, use the Save format parameter. You can
specify to save the data in one of the following formats:

1 Blocks — Alphabetical List

1-1818

• A MATLAB timeseries object (or structure of MATLAB timeseries objects for bus
data)

• An array
• Structure
• Structure with time

From one of these formats, you can convert the data to Dataset format. Converting to
Dataset format makes it easier to post-process with other logged data (for example,
logged states), which can also use Dataset format. For more information, see “Convert
Logged Data to Dataset Format”. You can also use signal logging with a variable-size
signal exception.

Saving Data for Use by a From Workspace Block
To use a From Workspace block to read into Simulink the sample-based data that was
saved by a To Workspace block in a previous simulation, in the To Workspace block,
specify time information using the Timeseries or Structure with time format.

Controlling the Amount of Data Saved
If you specify intervals with the Model Configuration Parameters > Data Import/
Export > Logging intervals parameter, the block does not log data outside of the
intervals. For example, the block logs no data if the intervals are empty ([]).

For variable-step solvers, to control the amount of data available to the To Workspace
block, use the Model Configuration Parameters > Data Import/Export > Additional
parameters > Output options parameter. For example, to have Simulink write data at
identical time points over multiple simulations, select the Produce specified output
only option.

Then use To Workspace block parameters to control when and how much of this data the
block writes:

• Use the Limit data points to last parameter to specify how many sample points to
save. If the simulation generates more data points than the specified maximum, the
simulation saves only the most recently generated samples. To capture all the data, set
this value to inf.

 To Workspace

1-1819

• Use the Decimation parameter to have the To Workspace block write data at every
nth sample, where n is the decimation factor. The default decimation, 1, writes data at
every time hit.

• Use the Sample time parameter to specify a sampling interval at which to collect
points. This parameter is useful when you are using a variable-step solver where the
interval between time hits might not be the same. The default value of -1 causes the
block to inherit the sample time from the driving block when determining the points to
write. See “Specify Sample Time” in the online documentation for more information.

For example, suppose you have a simulation where the start time is 0, the Limit data
points to last is 100, the Decimation is 1, and the Sample time is 0.5. The To
Workspace block collects a maximum of 100 points, at time values of 0, 0.5, 1.0, 1.5, ...,
seconds. Specifying a Decimation value of 1 directs the block to write data at each step.

In a similar example, the Limit data points to last is 100 and the Sample time is 0.5,
but the Decimation is 5. In this example, the block collects up to 100 points, at time
values of 0, 2.5, 5.0, 7.5, ..., seconds. Specifying a Decimation value of 5 directs the
block to write data at every fifth sample. The sample time ensures that data is written at
these points.

In another example, all parameters are as defined in the first example except that the
Limit data points to last is 3. In this case, only the last three sample points collected
are written to the workspace. If the simulation stop time is 100, data corresponds to times
99.0, 99.5, and 100.0 seconds (three points).

MAT-File Logging
When you enable the MAT-file logging parameter in Configuration Parameters, To
Workspace logs its data to a MAT-file. For information about this parameter, in the
Simulink Coder documentation, see “MAT-file logging” (Simulink Coder).

Frame-Based Signals
By default, the To Workspace block treats input signals as sample-based.

To have the To Workspace block treat input signals as frame-based, set:

1 Save format to either Array or Structure
2 Save 2-D signals as to 2-D array (concatenate along first dimension)

1 Blocks — Alphabetical List

1-1820

Data Type Support
The To Workspace block can save to the MATLAB workspace real or complex inputs of any
data type that Simulink supports, including fixed-point and enumerated data types, as
well as bus objects.

For more information, see “Data Types Supported by Simulink”.

Parameters

Variable name
Specify the name of the variable for the saved the data.

Limit data points to last
Specify the maximum number of input samples to save. The default is inf.

Decimation
Specify the decimation factor. The default is 1.

Save format
Specify one of these formats for saving simulation output to the workspace:

• Timeseries (Default)

Save non-bus signals as a MATLAB timeseries object and bus signals as a structure
of MATLAB timeseries objects.

• Array

Save the input as an N-dimensional array where N is one more than the number of
dimensions of the input signal. For example, if the input signal is a vector, the
resulting workspace array is two-dimensional. If the input signal is a matrix, then the
array is three-dimensional.

 To Workspace

1-1821

How Simulink stores samples in the array depends on whether the input signal is a
scalar, vector, or matrix. If the input is a scalar or a vector, each input sample is output
as a row of the array. For example, suppose that the name of the output array is
simout. Then, simout(1,:) corresponds to the first sample, simout(2,:)
corresponds to the second sample, and so on. If the input signal is a matrix, time
corresponds to the third dimension. For example, suppose again that simout is the
name of the resulting workspace array. Then, simout(:,:,1) is the value of the
input signal at the first sample point; simout(:,:,2) is the value of the input signal
at the second sample point; and so on.

If you select Array, the Save 2-D signals as parameter appears.

To treat input signals as frame-based, set Save format to either Array or Structure
and set the Save 2-D signals parameter to 2-D array (concatenate along
first dimension).

• Structure

This format consists of a structure with three fields:

• time — This field is empty for this format.
• signals — A structure with three fields: values, dimensions, and label. The

values field contains the array of signal values. The dimensions field specifies
the dimensions of the corresponding signals. The label field contains the label of
the input line.

• blockName — Name of the To Workspace block

If you select Structure, the Save 2-D signals as parameter appears.

To treat input signals as frame-based, set Save format to either Structure or Array
and set the Save 2-D signals parameter to 2-D array (concatenate along
first dimension).

• Structure With Time

This format is the same as Structure, except that the time field contains a vector of
simulation time hits.

To read To Workspace block output directly with a From Workspace block, use either
the Timeseries or Structure with Time format. For details, see “Comparison of
Signal Loading Techniques”.

1 Blocks — Alphabetical List

1-1822

Structure with Time format does not support frame-based signals. Use Array or
Structure format instead.

The following table shows how simulation mode support depends on the Save format
value.

Simulation Mode Timeseries Array, Structure, or
Structure With Time

Normal Supported. Supported.
Accelerator Supported. Supported only in top model, not

referenced models.
Rapid Accelerator Not supported. Supported only in top model, not

referenced models.
Software-in-the-Loop (SIL) Not supported. If MAT-file logging is enabled,

supported only in top model, not
referenced models.

Processor-in-the-Loop
(PIL)

Not supported. If MAT-file logging is available and
enabled, supported only in top
model, not referenced models.

External Not supported. Supported only in top model, not
referenced models.

Simulink Coder Targets Not supported. If MAT-file logging is enabled,
supported only in top model, not
referenced models.

Save 2-D signal as
If you set Save format to Array or Structure, the Save 2-D signals as parameter
appears.

Specify one of these formats for saving 2-D signals to the workspace:

• 3-D array (concatenate along third dimension) (Default)

This setting is well-suited for sample-based signals. Data is concatenated along the
third dimension. For example, 2-by-4 matrix input for 10 samples is stored as a 2x4x10
array.

 To Workspace

1-1823

• 2-D array (concatenate along first dimension)

This setting is well-suited for frame-based signals. The data is concatenated along the
first dimension. For example, 2-by-4 matrix input for 10 samples is stored as a 20x4
array

• Inherit from input (this choice will be removed — see release
notes)

This setting is for backward compatibility. To configure this block to treat input signals
as frame-based in future releases, set this parameter to 2-D array (concatenate
along first dimension). To configure this block to treat input signals as sample-
based in future releases, set this parameter to 3-D array (concatenate along
third dimension).

When the Save format is set to Array or Structure, the dimensions of the output
depend on the input dimensions and the setting of the Save 2-D signals as parameter.
The following table summarizes the output dimensions under various conditions. In the
table, K represents the value of the Limit data points to last parameter.

Input Signal Dimensions Save 2-D Signals as ... Signal To Workspace
Output Dimension

M-by-N matrix 2-D array
(concatenate along
first dimension)

K-by-N matrix.

If you set the Limit data
points to last parameter to
inf, K represents the total
number of samples acquired
in each column by the end of
simulation. This is
equivalent to multiplying the
input frame size (M) by the
total number of M-by-N
inputs acquired by the
block.

1 Blocks — Alphabetical List

1-1824

Input Signal Dimensions Save 2-D Signals as ... Signal To Workspace
Output Dimension

M-by-N matrix 3-D array
(concatenate along
third dimension)

M-by-N-by-K array.

If you set the Limit data
points to last parameter to
inf, K represents the total
number of M-by-N inputs
acquired by the end of the
simulation.

Length-N unoriented vector Any setting K-by-N matrix
N-dimensional array where
N > 2

Any setting Array with N+1 dimensions,
where the size of the last
dimension is equal to K. If
you set the Limit data
points to last parameter to
inf, K represents the total
number of M-by-N inputs
acquired by the end of
simulation

Log fixed-point data as a fi object
By default, the To Workspace block logs fixed-point data to the MATLAB workspace as a
Fixed-Point Designer fi object. If you clear this parameter, fixed-point data is logged to
the workspace as double.

Sample time
Specify the sample period and offset at which to collect data. This parameter is useful
when you are using a variable-step solver where the interval between time hits might not
be constant. The default is-1, which inherits the sample time from the driving block. See
“Specify Sample Time” for more information.

Examples
The sldemo_varsize_basic example shows how to use the To Workspace block.

 To Workspace

1-1825

matlab:sldemo_varsize_basic

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation No

See Also
“Export Simulation Data”, “Convert Logged Data to Dataset Format”, From File, From
Workspace, To File

Introduced before R2006a

1 Blocks — Alphabetical List

1-1826

Toggle Switch
Toggle parameter between two values
Library: Simulink / Dashboard

Description
The Toggle Switch block toggles the value of the connected block parameter between two
values during simulation. For example, you can connect the Toggle Switch block to a
Switch block in your model and change its state during simulation. Use the Toggle Switch
block with other Dashboard blocks to create an interactive dashboard for your model.

Double-clicking the Toggle Switch block does not open its dialog box during simulation
and when the block is selected. To edit the block's parameters, you can use the Property
Inspector, or you can right-click the block and select Block Parameters from the
context menu.

Note Dashboard blocks cannot connect to variables until you update your model
diagram. To connect Dashboard blocks to variables or modify variable values between
opening your model and running a simulation, update your model diagram with Ctrl+D.

Connection
Dashboard block controls connect to variables and block parameters. To connect a
Dashboard block to a variable or parameter, use the connection table in the block
parameters. To see variables in the Connection table, update the model diagram with
Ctrl+D.

1 Double-click the block.

 Toggle Switch

1-1827

2 Populate the Connection table by selecting blocks of interest in your model.
3 Mark the button next to the parameter or variable you want to adjust during

simulation.
4 Click Apply.

Parameter Logging
Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector, where you can view parameter values along with logged signal data. You can
access logged parameter data in the MATLAB workspace by exporting the parameter data
from the Simulation Data Inspector UI or by using the Simulink.sdi.exportRun
function. For more information about exporting data with the Simulation Data Inspector
UI, see “Export Data from the Simulation Data Inspector”. The parameter data is stored
in a Simulink.SimulationData.Parameter object, accessible as an element in the
exported Simulink.SimulationData.Dataset.

Limitations
• You cannot save the block connections or properties in model files that use the MDL

format.

To save connections and properties, save the model file in the SLX format.
• Dashboard blocks can only connect to real scalar signals.
• Dashboard blocks cannot connect to blocks that are commented out.
• Dashboard blocks cannot connect to signals inside reference models.

• Parameters specified by indexing a variable array do not appear in the Connection
table. For example, a block parameter defined using the variable engine(1) does not
appear in the table.

To access the parameter in the Connection table, assign the indexed value to a scalar
variable, such as engine_1. Then, use the scalar variable to define the block
parameter.

1 Blocks — Alphabetical List

1-1828

Parameters
Connection — Select a block parameter to connect
signal connection options

Select the block parameter to control using the Connection table. To open the dialog
box, double-click the block. Then, populate the Connection table by selecting a block in
your model. Select the variable or parameter you want to control, and click Apply.

Note To see workspace variables in the connection table, update the model diagram
using Ctrl+D.

States

Label (Top) — Label for top switch position
'On' (default) | character vector

Labels the top switch position. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the top, or you can enter a text label.
Example: Gain = 2

Value (Top) — Value for top switch position
1 (default) | scalar

The value assigned to the connected parameter when the switch is positioned at the top.

Label (Bottom) — Label for bottom switch position
'Off' (default) | character vector

Labels the bottom switch position. You can use the Label to display the value the
connected parameter takes when the switch is positioned at the bottom, or you can enter
a text label.
Example: Gain = 1

Value (Bottom) — Value for bottom switch position
0 (default) | scalar

The value assigned to the connected parameter when the switch is positioned at the
bottom.

 Toggle Switch

1-1829

Label — Block label position
'Top' (default) | 'Bottom' | 'Hide'

Position of the block label. When the block is connected to a signal, the label is the name
of the connected signal. When the block is not connected, the label is the instructional
text.

See Also
Rocker Switch | Rotary Switch | Slider Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Introduced in R2015a

1 Blocks — Alphabetical List

1-1830

To String
Convert input signal to string signal
Library: Simulink / String

Description
The To String block creates a string signal from an input signal. For example, consider
using this signal to convert a logical value 1 or 0 to its string equivalent "false" or
"true".

Ports

Input
Port_1 — Input signal
scalar

Input signal, specified as a scalar.

Output
Port_1 — Output string
scalar

Output string, specified as a scalar. This block returns the output as a string, surrounded
by double quotes.

• If the input is a Boolean, the output is a logical value (1 or 0) and the block returns its
textual equivalent (true or false).

 To String

1-1831

• If the input is a numeric data type, such as an integer, single, double, or fixed point,
the block returns the number as a string. For example, an input of 1 converts to "1"
and an input of 0 converts to "0".

Data Types: string

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

Variable-Size
Signals

No

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String To ASCII | String To Enum | String
to Double | String to Single | Substring

Topics
“Get Text Following a Keyword”
“Simulink Strings”

Introduced in R2018a

1 Blocks — Alphabetical List

1-1832

Transfer Fcn
Model linear system by transfer function
Library: Simulink / Continuous

Description
The Transfer Fcn block models a linear system by a transfer function of the Laplace-
domain variable s. The block can model single-input single-output (SISO) and single-input
multiple-output (SIMO) systems.

Conditions for Using This Block
The Transfer Fcn block assumes the following conditions:

• The transfer function has the form

H s
y s

u s

num s

den s

num s num s num nnn nn

()
()

()

()

()

() () (
= = =

+ + +
- -1 21 2

… nn

den s den s den ndnd nd

)

() () ()
,

1 21 2- -
+ + +…

where u and y are the system input and outputs, respectively, nn and nd are the
number of numerator and denominator coefficients, respectively. num(s) and den(s)
contain the coefficients of the numerator and denominator in descending powers of s.

• The order of the denominator must be greater than or equal to the order of the
numerator.

• For a multiple-output system, all transfer functions have the same denominator and all
numerators have the same order.

Modeling a Single-Output System
For a single-output system, the input and output of the block are scalar time-domain
signals. To model this system:

 Transfer Fcn

1-1833

1 Enter a vector for the numerator coefficients of the transfer function in the
Numerator coefficients field.

2 Enter a vector for the denominator coefficients of the transfer function in the
Denominator coefficients field.

Modeling a Multiple-Output System
For a multiple-output system, the block input is a scalar and the output is a vector, where
each element is an output of the system. To model this system:

1 Enter a matrix in the Numerator coefficients field.

Each row of this matrix contains the numerator coefficients of a transfer function that
determines one of the block outputs.

2 Enter a vector of the denominator coefficients common to all transfer functions of the
system in the Denominator coefficients field.

Specifying Initial Conditions
A transfer function describes the relationship between input and output in Laplace
(frequency) domain. Specifically, it is defined as the Laplace transform of the response
(output) of a system with zero initial conditions to an impulse input.

Operations like multiplication and division of transfer functions rely on zero initial state.
For example, you can decompose a single complicated transfer function into a series of
simpler transfer functions. Apply them sequentially to get a response equivalent to that of
the original transfer function. This will not be correct if one of the transfer functions
assumes a non-zero initial state. Furthermore, a transfer function has infinitely many time
domain realizations, most of whose states do not have any physical meaning.

For these reasons, Simulink presets the initial conditions of the Transfer Fcn block to
zero. To specify initial conditions for a given transfer function, convert the transfer
function to its controllable, canonical state-space realization using tf2ss . Then, use the
State-Space block. The tf2ss utility provides the A, B, C, and D matrices for the system.

For more information, type help tf2ss or see the Control System Toolbox™
documentation.

1 Blocks — Alphabetical List

1-1834

Transfer Function Display on the Block
The Transfer Fcn block displays the transfer function depending on how you specify the
numerator and denominator parameters.

• If you specify each parameter as an expression or a vector, the block shows the
transfer function with the specified coefficients and powers of s. If you specify a
variable in parentheses, the block evaluates the variable.

For example, if you specify Numerator coefficients as [3,2,1] and Denominator
coefficients as (den), where den is [7,5,3,1], the block looks like this:

• If you specify each parameter as a variable, the block shows the variable name
followed by (s).

For example, if you specify Numerator coefficients as num and Denominator
coefficients as den, the block looks like this:

Ports

Input
Port_1 — Input signal
scalar

 Transfer Fcn

1-1835

Input signal, specified as a scalar with data type double.
Data Types: double

Output
Port_1 — Output signal
scalar | vector

Output signal, provided as a scalar or vector with data type double.

• For a single-output system, the input and output of the block are scalar time-domain
signals.

• For a multiple-output system, the input is a scalar, and the output is a vector, where
each element is an output of the system.

Data Types: double

Parameters
Numerator coefficients — Vector or matrix of numerator coefficients
[1] (default) | vector | matrix

Define the numerator coefficients of the transfer function.

• For a single-output system, enter a vector for the numerator coefficients of the
transfer function.

• For a multiple-output system, enter a matrix. Each row of this matrix contains the
numerator coefficients of a transfer function that determines one of the block outputs.

Programmatic Use
Block Parameter: Numerator
Type: character vector
Value: vector | matrix
Default: '[1]'

Denominator coefficients — Row vector of denominator coefficients
[1 1] (default) | vector

Define the row vector of denominator coefficients.

1 Blocks — Alphabetical List

1-1836

• For a single-output system, enter a vector for the denominator coefficients of the
transfer function.

• For a multiple-output system, enter a vector containing the denominator coefficients
common to all transfer functions of the system.

Programmatic Use
Block Parameter: Denominator
Type: character vector
Value: vector
Default: '[1 1]'

Absolute tolerance — Absolute tolerance for computing block states
auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar
or vector. To inherit the absolute tolerance from the Configuration Parameters, specify
auto or -1.

• If you enter a real scalar, then that value overrides the absolute tolerance in the
Configuration Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension
of the continuous states in the block. These values override the absolute tolerance in
the Configuration Parameters dialog box.

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector
Values: 'auto' | '-1' | any positive real-valued scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Assign unique name to each state
' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

Assign a unique name to each state. If this field is blank (' '), no name assignment
occurs.

• To assign a name to a single state, enter the name between quotes, for example,
'position'.

 Transfer Fcn

1-1837

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector, cell array, or structure.

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-1838

Not recommended for production-quality code. Relates to resource limits and restrictions
on speed and memory often found in embedded systems. The code generated can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets often cannot
support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into
discrete equivalents that support production code generation. To start the Model
Discretizer, select Analysis > Control Design > Model Discretizer. One exception is
the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Discrete Transfer Fcn | State-Space

Topics
“States”

Introduced before R2006a

 Transfer Fcn

1-1839

Transfer Fcn Direct Form II
Implement Direct Form II realization of transfer function

Library
Additional Math & Discrete / Additional Discrete

Description
The Transfer Fcn Direct Form II block implements a Direct Form II realization of the
transfer function that the Numerator coefficients and Denominator coefficients
excluding lead parameters specify. The block supports only single input-single output
(SISO) transfer functions.

The block automatically selects the data types and scalings of the output, the coefficients,
and any temporary variables.

Data Type Support
The Transfer Fcn Direct Form II block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1840

Parameters
Numerator coefficients

Specify the numerator coefficients.
Denominator coefficients excluding lead

Specify the denominator coefficients, excluding the leading coefficient, which must be
1.0.

Initial condition
Set the initial condition.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Transfer Fcn Direct Form II Time Varying

 Transfer Fcn Direct Form II

1-1841

Introduced before R2006a

1 Blocks — Alphabetical List

1-1842

Transfer Fcn Direct Form II Time Varying
Implement time varying Direct Form II realization of transfer function

Library
Additional Math & Discrete / Additional Discrete

Description
The Transfer Fcn Direct Form II Time Varying block implements a Direct Form II
realization of the specified transfer function. The block supports only single input-single
output (SISO) transfer functions.

The input signal labeled Den No Lead contains the denominator coefficients of the
transfer function. The full denominator has a leading coefficient of one, but it is excluded
from the input signal. For example, a denominator of [1 -1.7 0.72] is represented by a
signal with the value [-1.7 0.72]. The input signal labeled Num contains the numerator
coefficients. The data types of the numerator and denominator coefficients can be
different, but the length of the numerator vector and the full denominator vector must be
the same. Pad the numerator vector with zeros, if needed.

The block automatically selects the data types and scalings of the output, the coefficients,
and any temporary variables.

Data Type Support
The Transfer Fcn Direct Form II Time Varying block accepts signals of the following data
types:

 Transfer Fcn Direct Form II Time Varying

1-1843

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Initial condition

Set the initial condition.
Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” (Fixed-Point Designer).

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

1 Blocks — Alphabetical List

1-1844

See Also
Transfer Fcn Direct Form II

Introduced before R2006a

 Transfer Fcn Direct Form II Time Varying

1-1845

Transfer Fcn First Order
Implement discrete-time first order transfer function
Library: Simulink / Discrete

Description
The Transfer Fcn First Order block implements a discrete-time first order transfer
function of the input. The transfer function has a unity DC gain.

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal to the first order transfer function algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Transfer function output signal
scalar | vector

Output signal that is the discrete-time first order transfer function of the input with a
unity DC gain.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

1 Blocks — Alphabetical List

1-1846

Parameters
Pole (in Z plane) — Pole
0.95 (default) | scalar

Specify the pole.
Programmatic Use
Block Parameter: PoleZ
Type: character vector
Value: real scalar
Default: '0.95'

Initial condition for previous output — Initial condition for previous
output
0.0 (default) | scalar

Specify the initial condition for the previous output.
Programmatic Use
Block Parameter: ICPrevOutput
Type: character vector
Value: real scalar
Default: '0.0'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action
off (default) | on

 Transfer Fcn First Order

1-1847

When you select this check box, overflows saturate to the maximum or minimum value
that the data type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.
Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

1 Blocks — Alphabetical List

1-1848

See Also
Transfer Fcn | Transfer Fcn Lead or Lag

Introduced before R2006a

 Transfer Fcn First Order

1-1849

Transfer Fcn Lead or Lag
Implement discrete-time lead or lag compensator
Library: Simulink / Discrete

Description
The Transfer Fcn Lead or Lag block implements a discrete-time lead or lag compensator
of the input. The instantaneous gain of the compensator is 1, and the DC gain is equal to
(1-z)/(1-p), where z is the zero and p is the pole of the compensator.

The block implements a lead compensator when 0<z<p<1, and implements a lag
compensator when 0<p<z<1.

Ports
Input
Port_1 — Input signal
scalar | vector

Input signal that the block applies the discrete-time lead or lag compensation to.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector

Output signal that is discrete-time lead or lag compensation of the input sign.

1 Blocks — Alphabetical List

1-1850

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Pole of compensator (in Z plane) — Pole
0.95 (default) | scalar

Specify the pole of the compensator.

Programmatic Use
Block Parameter: PoleZ
Type: character vector
Value: real scalar
Default: '0.95'

Zero of compensator (in Z plane) — Zero of compensator
0.75 (default) | scalar

Specify the zero of compensator in the Z plane.

Programmatic Use
Block Parameter: ZeroZ
Type: character vector
Value: real scalar
Default: '0.75'

Initial condition for previous output — Initial condition for previous
output
0.0 (default) | scalar

Specify the initial condition for the previous output.

Programmatic Use
Block Parameter: ICPrevOutput
Type: character vector
Value: real scalar
Default: '0.0'

Initial condition for previous input — Initial condition for previous input
0.0 (default) | scalar

 Transfer Fcn Lead or Lag

1-1851

Specify the initial condition for the previous input.
Programmatic Use
Block Parameter: ICPrevInput
Type: character vector
Value: real scalar
Default: '0.0'

Initial condition for previous output — Initial condition for previous
output
0.0 (default) | scalar

Specify the initial condition for the previous output.
Programmatic Use
Block Parameter: ICPrevOutput
Type: character vector
Value: real scalar
Default: '0.0'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action
off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value
that the data type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect

1 Blocks — Alphabetical List

1-1852

when overflow is not possible. In this case, the code generator does not produce
saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Booleana | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

a. This block is not recommended for use with Boolean signals.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Transfer Fcn Lead or Lag

1-1853

See Also
Transfer Fcn | Transfer Fcn First Order

Introduced before R2006a

1 Blocks — Alphabetical List

1-1854

Transfer Fcn Real Zero
Implement discrete-time transfer function that has real zero and no pole
Library: Simulink / Discrete

Description
The Transfer Fcn Real Zero block implements a discrete-time transfer function that has a
real zero and effectively no pole.

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal to the discrete-time transfer function algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector

Output signal that is the discrete-time transfer function wih a real zero and effectively no
pole of the input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

 Transfer Fcn Real Zero

1-1855

Parameters
Zero (in Z plane) — Zero
0.75 (default) | scalar

Specify the zero in the Z plane.
Programmatic Use
Block Parameter: ZeroZ
Type: character vector
Value: real scalar
Default: '0.75'

Initial condition for previous input — Initial condition for previous input
0.0 (default) | scalar

Specify the initial condition for the previous input.
Programmatic Use
Block Parameter: ICPrevInput
Type: character vector
Value: real scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by

1 Blocks — Alphabetical List

1-1856

looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

 Transfer Fcn Real Zero

1-1857

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action
off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value
that the data type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Booleana | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

Yes

a. This block is not recommended for use with Boolean signals.

1 Blocks — Alphabetical List

1-1858

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Transfer Fcn | Transfer Fcn Lead or Lag

Introduced before R2006a

 Transfer Fcn Real Zero

1-1859

Transport Delay
Delay input by given amount of time

Library
Continuous

Description
The Transport Delay block delays the input by a specified amount of time. You can use
this block to simulate a time delay. The input to this block should be a continuous signal.

At the start of simulation, the block outputs the Initial output parameter until the
simulation time exceeds the Time delay parameter. Then, the block begins generating
the delayed input. During simulation, the block stores input points and simulation times in
a buffer. You specify this size with the Initial buffer size parameter.

When you want output at a time that does not correspond to times of the stored input
values, the block interpolates linearly between points. When the delay is smaller than the
step size, the block extrapolates from the last output point, which can produce inaccurate
results. Because the block does not have direct feedthrough, it cannot use the current
input to calculate an output value. For example, consider a fixed-step simulation with a
step size of 1 and the current time at t = 5. If the delay is 0.5, the block must generate a
point at t = 4.5. Because the most recent stored time value is at t = 4, the block performs
forward extrapolation.

The Transport Delay block does not interpolate discrete signals. Instead, the block
returns the discrete value at the required time.

This block differs from the Unit Delay block, which delays and holds the output on sample
hits only.

1 Blocks — Alphabetical List

1-1860

Tip Avoid using linmod to linearize a model that contains a Transport Delay block. For
more information, see “Linearizing Models” in the Simulink documentation.

Data Type Support
The Transport Delay block accepts and outputs real signals of type double.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters

Time delay
Specify the amount of simulation time to delay the input signal before propagation to the
output.

Default: 1

This value must be nonnegative.

Parameter: DelayTime
Type: scalar or vector
Value: '1'
Default: '1'

Initial output
Specify the output that the block generates until the simulation time first exceeds the
time delay input.

Default: Run-to-run tunable parameter

A Run-to-run tunable parameter cannot be changed during a simulation’s run time.
However, changing it before a simulation begins will not cause Accelerator or Rapid
Accelerator to regenerate code.

 Transport Delay

1-1861

Also, the initial output of this block cannot be inf or NaN.

Parameter: InitialOutput
Type: scalar or vector
Value: '0'
Default: '0'

Initial buffer size
Define the initial memory allocation for the number of input points to store.

Default: 1024

• If the number of input points exceeds the initial buffer size, the block allocates
additional memory.

• After simulation ends, a message shows the total buffer size needed.

• Because allocating memory slows down simulation, choose this value carefully if
simulation speed is an issue.

• For long time delays, this block can use a large amount of memory, particularly for
dimensionalized input.

Parameter: BufferSize
Type: scalar
Value: '1024'
Default: '1024'

Use fixed buffer size
Specify use of a fixed-size buffer to save input data from previous time steps.

Default: Off

 On
The block uses a fixed-size buffer.

1 Blocks — Alphabetical List

1-1862

 Off
The block does not use a fixed-size buffer.

The Initial buffer size parameter specifies the size of the buffer. If the buffer is full, new
data replaces data already in the buffer. Simulink software uses linear extrapolation to
estimate output values that are not in the buffer.

Note If you have a Simulink Coder license, ERT or GRT code generation uses a fixed-size
buffer even if you do not select this check box.

• If the input data is linear, selecting this check box can save memory.
• If the input data is nonlinear, do not select this check box. Doing so can yield

inaccurate results.

Parameter: FixedBuffer
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Direct feedthrough of input during linearization
Cause the block to output its input during linearization and trim, which sets the block
mode to direct feedthrough.

Default: Off

 On
Enables direct feedthrough of input.

 Off
Disables direct feedthrough of input.

• Selecting this check box can cause a change in the ordering of states in the model
when you use the functions linmod, dlinmod, or trim. To extract this new state
ordering:

 Transport Delay

1-1863

1 Compile the model using the following command, where model is the name of the
Simulink model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');
2 Terminate the compilation with the following command.

 model([],[],[],'term');
• The output argument x_str, which is a cell array of the states in the Simulink model,

contains the new state ordering. When you pass a vector of states as input to the
linmod, dlinmod, or trim functions, the state vector must use this new state
ordering.

Parameter: TransDelayFeedthrough
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Pade order (for linearization)
Set the order of the Pade approximation for linearization routines.

Default: 0

• The default value is 0, which results in a unity gain with no dynamic states.
• Setting the order to a positive integer n adds n states to your model, but results in a

more accurate linear model of the transport delay.

Parameter: PadeOrder
Type: character vector
Value: '0'
Default: '0'

Characteristics
Data Types Double
Sample Time Continuous
Direct Feedthrough No

1 Blocks — Alphabetical List

1-1864

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Variable Time Delay

Introduced before R2006a

 Transport Delay

1-1865

Trigger
Add trigger port to subsystem or model
Library: Ports & Subsystems

Description
The Trigger block allows an external signal to control the execution of a subsystem or a
model. To enable this functionality, add this block to a Subsystem block or at the root level
of a model that is referenced in a Model block.

Then, configure the Trigger block to execute a subsystem or model:

• Once at each time step, when the value of the trigger signal changes in a way that you
specify.

• Multiple times during a time step, when the trigger signal is a function-call from a
Stateflow chart, Function-Call Generator block, or S-Function block.

Ports

Output
Trigger signal — External trigger signal for a subsystem or model
scalar

Trigger signal attached externally to the outside of an Subsystem block or a Model block
that is passed to the inside of the block. To enable this port, select Show output port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | expression

1 Blocks — Alphabetical List

1-1866

Parameters
Main
Trigger type — Select the type of event
rising (default) | falling | either | function-call

Select the type of event that triggers execution of the subsystem or model.

rising
Trigger execution of subsystem or model when the trigger signal rises from a
negative or zero value to a positive value. If the initial value is negative, a rising
signal to zero triggers execution.

falling
Trigger execution of subsystem or model when the trigger signal falls from a positive
or a zero value to a negative value. If the initial value is positive, a falling signal to
zero triggers execution.

either
Trigger execution of subsystem or model when the trigger signal is either rising or
falling.

function-call
Trigger execution of subsystem or model when the trigger signal is a function-call
event from a Stateflow chart, Function-Call Generator block, or an S-function block.

Programmatic Use
Block parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling' | 'either' | 'function-call'
Default: 'rising'

Treat as Simulink function — Create Simulink Function block
off (default) | on

Create a Simulink Function block by configuring a Subsystem block that is callable with
arguments from a function caller.

 off
Remove configuration.

 Trigger

1-1867

 on
Configure a Subsystem block as a Simulink Function block. The Trigger block must
reside within the subsystem.

You can edit the function prototype that displays on the block face to specify input
and output arguments for the block.

Dependency

To display and enable this parameter, select function-call from the Trigger type list.

Programmatic Use
Block parameter: IsSimulinkFunction
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Function name — Specify function name for Simulink Function block
f (default) | function name

Specify the function name for a Simulink Function block. Alternatively, you can specify
the name by editing the function prototype on the face of the block.

f
Default name for a Simulink Function block.

function name
Function name that displays on the face of a Simulink Function block.

Dependency

To display and enable this parameter, select function-call from the Trigger type list
and select the Treat as a Simulink Function check box.

Programmatic Use
Block parameter: FunctionName
Type: character vector
Value: 'f' | '<function name>'
Default: 'f'

Enable variant condition — Controls activating the variant control (condition)
on (default) | off

1 Blocks — Alphabetical List

1-1868

Control activating the variant control (condition) defined with the Variant Control
parameter.

 off
Deactivate variant control of subsystem.

 on
Activate variant control of subsystem. Selecting this parameter:

• Enables the Variant control parameter.
• Displays a variant badge on the face of the block indicating variant conditions

are enabled.

Dependency

To display and enable this parameter, select function-call from the Trigger type list
and select the Treat as a Simulink Function check box..

Programmatic Use
Block parameter: Variant
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Variant control — Specify variant control (condition) expression
(inherit) (default) | <logical expression>

Specify variant control (condition) expression that executes a variant Simulink Function
block when the expression evaluates to true.

(inherit)
Default value for variant control. Inherits the variant condition from the
corresponding Function Caller blocks in the model. When Variant Control is set as
(inherit) the value for Generate preprocessor conditionals is inherited
automatically from the Function Caller block in the model.

logical expression
A logical (Boolean) expression or a Simulink.Variant object representing a logical
expression.

The function is activated when the expression evaluates to true.

 Trigger

1-1869

If you want to generate code for your model, define the variables in the expression as
Simulink.Parameter objects.

Dependency

To display and enable this parameter, select function-call from the Trigger type list,
select the Treat as a Simulink Function check box and then select the Enable variant
condition check box.

Programmatic Use
Block parameter: VariantControl
Type: character vector
Value: '(inherit)'|<logical expression> | Simulink.Variant object
Default: '(inherit)'

Generate preprocessor conditionals — Control enclosing variant choices
off (default) | on

Control enclosing variant choices within C preprocessor conditional statements.

 off
Do not enclose variant choices within C preprocessor conditional statements.

 on
When generating code for an ERT target, enclose variant choices within C
preprocessor conditional statements (#if).

Dependency

To display and enable this parameter, select the Enable variant condition check box.

Programmatic Use
Block parameter: GeneratePreprocessorConditionals
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Function visibility — Select scope visibility of function
scoped (default) | global

Select scope of Simulink Function block within subsystem or model.

1 Blocks — Alphabetical List

1-1870

scoped
Limit accessibility of function to:

• Hierarchic level containing the Simulink Function block and levels below.
• One hierarchical level above with qualification.

global
Function accessible from any part of the model hierarchy.

Dependency

To display and enable this parameter, select function-call from the Trigger type list
and then select the Treat as a Simulink Function check box..
Programmatic Use
Block parameter: FunctionVisibility
Type: character vector
Value: 'scoped' | 'global'
Default: 'scoped'

States when enabling — Select how to set block state values
held (default) | reset | inherit

Select how to set block state values when the subsystem or model is disabled.

held
Leave the block states at their current values.

reset
Reset the block state values.

inherit
Use the held or reset setting from the parent subsystem initiating the function-call.
If the parent of the initiator is the model root, the inherited setting is held. If the
trigger has multiple initiators, set the parents of all initiators to either held or
reset.

Dependencies

To enable this parameter, select function-call from the Trigger Type list.

This parameter setting applies only if the model explicitly enables and disables the
function-call subsystem. For example:

 Trigger

1-1871

• The function-call subsystem resides in an enabled subsystem. In this case, the model
enables and disables the function-call subsystem along with the parent subsystem.

• The function-call initiator that controls the function-call subsystem resides in an
enabled subsystem. In this case, the model enables and disables the function-call
subsystem along with the enabled subsystem containing the function-call initiator.

• The function-call initiator is a Stateflow event bound to a particular state. See “Control
Function-Call Subsystems Using Bind Actions” (Stateflow).

• The function-call initiator is an S-function that explicitly enables and disables the
function-call subsystem. See ssEnableSystemWithTid for an example.

Programmatic Use
Block parameter: StatesWhenEnabling
Type: character vector
Value: 'held' | 'reset'| 'inherit'
Default: 'held'

Propagate sizes of variable-size signals — Select when to propagate
variable-size signals
During execution (default) | Only when enabling

Select when to propagate variable-size signals.

During execution
Propagate variable-size signals at each time step.

Only when enabling
Propagate variable-size signals when executing a Subsystem block or Model block
containing an Enable port, Trigger port with Trigger type set to function- call,
or Action Port block. When you select this option, sample time must be periodic.

Dependencies

To display and enable this parameter for a Trigger port block, select Function-call
from the Trigger type list.

Programmatic Use
Block parameter: PropagateVarSize
Type: character vector
Value: 'During execution' | 'Only when enabling'
Default: 'During execution'

1 Blocks — Alphabetical List

1-1872

Show output port — Control display of output port
off (default) | on

Control display of an output port for a signal that identifies the trigger signal.

 off
Remove the output port.

 on
Display the output port and determine which signal caused the trigger. The width of
the output port signal is the width of the triggering signal. The signal value is:

• 1 for a signal that causes a rising trigger
• -1 for a signal that causes a falling trigger
• 2 for a function-call trigger
• 0 in all other cases

Programmatic Use
Block parameter: ShowOutputPort
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Output data type — Select output port data type
auto (default) | double | int8

Select output port data type for the signal that identifies the trigger signal.

auto
Data type is the same as the port connected to the output.

double
Double value.

int8
Integer value

Dependency

To enable this parameter, select the Show output port check box.

 Trigger

1-1873

The Trigger block ignores the Data type override setting for the Fixed-Point Tool.

Programmatic Use
Block parameter: OutputDataType
Type: character vector
Value: 'auto' | 'double' | 'int8'
Default: 'auto'

Sample time type — Select calling rate
triggered (default) | periodic

Select the calling rate for a subsystem or model.

triggered
Apply to applications that do not have a periodic calling frequency.

periodic
Apply if the caller of the parent function-call subsystem calls the subsystem once per
time step when the subsystem is active (enabled). A Stateflow chart is an example of a
caller.

Dependency

To enable this parameter, select Function-call from the Trigger type list.

Programmatic Use
Block parameter: SampleTimeType
Type: character vector
Value: 'triggered' | 'periodic'
Default: 'triggered'

Sample time — Specify time interval
-1 (default) | Ts | [Ts, To]

Specify the time interval between function calls to a subsystem or model containing this
Trigger port block. If the actual calling rate for the subsystem or model differs from the
time interval this parameter specifies, Simulink displays an error.

-1
Inherit time interval from the trigger signal.

Ts
Scalar where Ts is the time interval.

1 Blocks — Alphabetical List

1-1874

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Dependencies

To enable this parameter, select function-call from the Trigger type list and
periodic from the Sample time type list.

Programmatic Use
Block parameter: SampleTime
Type: character vector
Value: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

Enable zero-crossing detection — Control zero-crossing detection
on (default) | off

Control .

 on
Detect zero crossings.

 off
Do not detect zero crossings.

Dependencies

To enable this parameter, select rising, falling, or either from the Trigger type list.

Programmatic Use
Block parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Initial trigger signal state — Select the initial state of the trigger signal
compatibility (no trigger on first evaluation) (default) | zero | positive
| negative

Select the initial state of the trigger signal.

 Trigger

1-1875

compatibility (no trigger on first evaluation)
No trigger at the first evaluation of trigger signal. If you choose this option and the
Trigger block is in a subsystem where the states are reset, the block does not reset.

zero
Zero. Helps to evaluate a rising or falling trigger signal at the first time step.

positive
Positive value. Helps to evaluate a falling trigger signal at the first time step.

negative
Negative value. Helps to evaluate a rising trigger signal at the first time step.

Dependency

To display and activate this parameter, select rising, falling, or either from the
Trigger type list.

Programmatic Use
Block parameter: InitialTriggerSignalState
Type: character vector
Value: 'compatibility (no trigger on first evaluation)' | 'zero' |
'positive' | 'negative'
Default: 'compatibility (no trigger on first evaluation)'

Signal Attribute
Port dimensions — Specify dimensions for the trigger signal
1 (default) | [n] | [m n]

Specify dimensions for the trigger signal attached externally to the Model block and
passed to the inside of the block.

1
Scalar signal.

[n]
Vector signal of width n.

[m n]
Matrix signal having m rows and n columns.

1 Blocks — Alphabetical List

1-1876

Dependency

To display and enable this parameter for a Trigger port block at the root-level of a model,
select rising, falling, or either from the Trigger type list.
Programmatic Use
Block parameter: PortDimensions
Type: character vector
Value: '1' | '[n]' | '[m n]'
Default: '1'

Trigger signal sample time — Specify time interval
-1 (default) | Ts | [Ts, To]

Specify time interval between block method executions for the block driving the trigger
signal.

-1
Inherit time interval.

Ts
Scalar where Ts is the time interval.

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Dependency

To display and enable this parameter for a Trigger port block at the root-level of a model,
select rising, falling, or either from the Trigger type list.
Programmatic Use
Block parameter: TriggerSignalSampleTime
Type: character vector
Value: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

Minimum — Specify minimum output value for the trigger signal
[] (default) | real scalar

Specify minimum value for the trigger signal attached externally to a Model block and
passed to the inside of the block.

Simulink uses this value to perform:

 Trigger

1-1877

• Simulation range checking. See “Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and
affect the results of some simulation modes such as SIL or external mode. See
“Optimize using the specified minimum and maximum values” (Simulink Coder).

[]
Unspecified minimum value.

real scalar
Real scalar value.

Dependency

To display and enable this parameter for a Trigger port block at the root-level of a model,
select rising, falling, or either from the Trigger type list.
Programmatic Use
Block parameter: OutMin
Type: character vector
Value: '[]' | '<real scalar>'
Default: '[]'

Maximum — Specify maximum output value for the trigger signal
[] (default) | real scalar

Specify maximum value for the trigger signal attached externally to a Model block and
passed to the inside of the block.

Simulink uses this value to perform:

• Simulation range checking. See “Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and
affect the results of some simulation modes such as SIL or external mode. See
“Optimize using the specified minimum and maximum values” (Simulink Coder).

[]
Unspecified maximum value.

real scalar
Real scalar value.

1 Blocks — Alphabetical List

1-1878

Dependency

To display and enable this parameter for a Trigger port block at the root-level of a model,
select rising, falling, or either from the Trigger type list.

Programmatic Use
Block parameter: OutMax
Type: character vector
Value: '[]' | '<real scalar>'
Default: '[]'

Data type — Select output data type for the trigger signal
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean
| fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^,0) | <data type expression>

Select data type for the trigger signal attached externally to a Model block and passed to
the inside of the block.

double
Double-precision floating point.

single
Single-precision floating point.

int8
Signed 8-bit integer.

uint8
Unsigned 8-bit integer.

int16
Signed 16-bit integer.

uint16
Unsigned 16-bit integer.

int32
Signed 32-bit integer.

uint32
Unsigned 32-bit integer.

boolean
Boolean with a value of true or false.

 Trigger

1-1879

fixdt(1,16)
Signed 16-bit fixed point number with binary point undefined.

fixdt(1,16,0)
Signed 16-bit fixed point number with binary point set to zero.

fixdt(1,16,2^,0)
Signed 16-bit fixed point number with slope set to 2^0 and bias set to 0.

<data type expression>
Data type object, for example Simulink.NumericType. Do not specify a bus object
as the expression.

Dependency

To display and enable this parameter for a Trigger port block at the root-level of a model,
select rising, falling, or either from the Trigger type list.

Programmatic Use
Block parameter: OutDataTypeStr
Type: character vector
Value: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'double'

Mode — Select data type category
Build in (default) | Fixed point | Expression

Select data type category and display drop-down lists to help you define the data type.

Build in
Display drop-down lists for data type and Data type override.

Fixed point
Display drop-down lists for Signedness, Scaling, and Data type override.

Expression
Display text box for entering an expression.

Dependency

To enable this parameter, select the Show data type assistant button .

1 Blocks — Alphabetical List

1-1880

Programmatic Use

No equivalent command-line parameter.

Interpolate data — Control how missing workspace data is estimated
on (default) | off

Control how missing workspace data is estimated when loading data from the MATLAB
workspace.

 on
Linearly interpolate output at time steps for which no corresponding workspace data
exists.

 off
Do not interpolate output at time steps. The current output equals the output at the
most recent time step for which data exists.

Dependency

To display and enable this parameter for a Trigger port block at the root-level of a model,
select rising, falling, or either from the Trigger type list.

Programmatic Use
Block parameter: Interpolate
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also
Enabled and Triggered Subsystem | Function-Call Subsystem | Subsystem | Triggered
Subsystem

Topics
“Conditionally Executed Subsystems Overview”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”
“Export-Function Models”

 Trigger

1-1881

Introduced before R2006a

1 Blocks — Alphabetical List

1-1882

Trigger-Based Linearization
Generate linear models in base workspace when triggered

Library
Model-Wide Utilities

Description
When triggered, this block calls linmod or dlinmod to create a linear model for the
system at the current operating point. No trimming is performed. The linear model is
stored in the base workspace as a structure, along with information about the operating
point at which the snapshot was taken. Multiple snapshots are appended to form an array
of structures.

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the model appended
by _Trigger_Based_Linearization, for example,
vdp_Trigger_Based_Linearization. The structure has the following fields:

Field Description
a The A matrix of the linearization
b The B matrix of the linearization

 Trigger-Based Linearization

1-1883

Field Description
c The C matrix of the linearization
d The D matrix of the linearization
StateName Names of the model's states
OutputName Names of the model's output ports
InputName Names of the model's input ports
OperPoint A structure that specifies the operating point of the

linearization. The structure specifies the value of the model's
states (OperPoint.x) and inputs (OperPoint.u) at the
operating point time (OperPoint.t).

Ts The sample time of the linearization for a discrete linearization

Use the Timed-Based Linearization block to generate linear models at predetermined
times.

You can use state and simulation time logging to extract the model states at operating
points. For example, suppose that you want to get the states of the vdp example model
when the signal x1 triggers the Trigger-Based Linearization block on a rising edge.

1 Open the model and drag an instance of this block from the Model-Wide Utilities
library and drop the instance into the model.

2 Connect the block's trigger port to the signal labeled x1.
3 Open the model's Model Configuration Parameters dialog box.
4 Select the Data Import/Export pane.
5 Check States and Time on the Save to Workspace control panel
6 Select OK to confirm the selections and close the dialog box.
7 Simulate the model.

At the end of the simulation, the following variables appear in the MATLAB
workspace: vdp_Trigger_Based_Linearization, tout, and xout.

8 Get the index to the first operating point time by entering the following at the
MATLAB command line:
ind1 = find(vdp_Trigger_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vector at this operating point.

x1 = xout(ind1,:);

1 Blocks — Alphabetical List

1-1884

Data Type Support
The trigger port accepts signals of any numeric data type that Simulink supports.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters
Trigger type

Type of event on the trigger input signal that triggers generation of a linear model.
See the Trigger type parameter of the Trigger block for an explanation of the various
trigger types that you can select.

Sample time (of linearized model)
Specify a sample time to create a discrete-time linearization of the model (see
“Discrete-Time System Linearization” on page 2-48).

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Code Generation No

See Also
Timed-Based Linearization

Introduced before R2006a

 Trigger-Based Linearization

1-1885

Triggered Subsystem
Subsystem whose execution is triggered by external input
Library: Ports & Subsystems

Description
The Triggered Subsystem block is a Subsystem block preconfigured as a starting point for
creating a subsystem that executes each time the control signal has a trigger event.

Use Trigger Subsystem blocks to model:

• A task that runs with the detection of an event.
• An interrupt from I/O hardware.
• A processor request to handle an exception or error.

1 Blocks — Alphabetical List

1-1886

Ports

Input
In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Trigger — Control signal input to a subsystem block
scalar

Placing a Trigger block in a subsystem block adds an external input port to the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

 Triggered Subsystem

1-1887

See Also
Blocks
Enabled Subsystem | Enabled and Triggered Subsystem | Function-Call Subsystem |
Subsystem | Trigger

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

Introduced before R2006a

1 Blocks — Alphabetical List

1-1888

Trigonometric Function
Specified trigonometric function on input
Library: Simulink / Math Operations

Description
The Trigonometric Function block performs common trigonometric functions and outputs
the result in rad.

Supported Functions
You can select one of these functions from the Function parameter list.

Function Description Mathematical
Expression

MATLAB Equivalent

sin Sine of the input sin(u) sin
cos Cosine of the input cos(u) cos
tan Tangent of the input tan(u) tan
asin Inverse sine of the

input
asin(u) asin

acos Inverse cosine of the
input

acos(u) acos

atan Inverse tangent of
the input

atan(u) atan

atan2 Four-quadrant
inverse tangent of
the input

atan2(u) atan2

 Trigonometric Function

1-1889

Function Description Mathematical
Expression

MATLAB Equivalent

sinh Hyperbolic sine of
the input

sinh(u) sinh

cosh Hyperbolic cosine of
the input

cosh(u) cosh

tanh Hyperbolic tangent
of the input

tanh(u) tanh

asinh Inverse hyperbolic
sine of the input

asinh(u) asinh

acosh Inverse hyperbolic
cosine of the input

acosh(u) acosh

atanh Inverse hyperbolic
tangent of the input

atanh(u) atanh

sincos Sine of the input;
cosine of the input

— —

cos + jsin Complex exponential
of the input

— —

CORDIC Approximation Method
If you use the CORDIC approximation method (see “Definitions” on page 1-1900), the
block input has some further requirements.

When you set Function to sin, cos, sincos, or cos + jsin, and set the
Approximation method to CORDIC, the block has these limitations:

• When you use signed fixed-point types, the input angle must fall within the range [–2π,
2π) rad.

• When you use unsigned fixed-point types, the input angle must fall within the range [0,
2π) rad.

When you set Function to atan2 and the Approximation method to CORDIC, the block
has these limitations:

• Inputs must be the same size, or at least one value must be a scalar value.

1 Blocks — Alphabetical List

1-1890

• Both inputs must have the same data type.
• When you use signed fixed-point types, the word length must be 126 or less.
• When you use unsigned fixed-point types, the word length must be 125 or less.

This table summarizes what happens for an invalid input.

Block Usage Effect of Invalid Input
Simulation An error appears.
Generated code Undefined behavior occurs. Avoid relying on

undefined behavior for generated code or
accelerator modes.

Accelerator modes

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input specified as a scalar, vector, or matrix. The block accepts input signals of the
following data types:

Functions Input Data Types
• sin
• cos
• sincos
• cos + jsin
• atan2

• Floating point
• Fixed point (only when Approximation

method is CORDIC)

 Trigonometric Function

1-1891

Functions Input Data Types
• tan
• asin
• acos
• atan
• sinh
• cosh
• tanh
• asinh
• acosh
• atanh

• Floating point

Dependencies

• When you set Function to atan2, the block shows two input ports. The first input
(Port_1) is the y-axis or imaginary part of the function argument. The second input
(Port_2) is the x-axis or real part of the function argument.

• You can use floating-point input signals when you set Approximation method to
None or CORDIC. However, the block output data type depends on which of these
approximation method options you choose.

Input Data Type Approximation
Method

Output Data Type

Floating point None Depends on your selection for
Output signal type. Options are
auto (same data type as input),
real, or complex.

Floating point CORDIC Same as input. Output signal type
is not available when you use the
CORDIC approximation method to
compute the block output.

For CORDIC approximations:

• Input must be real for the sin, cos, sincos, cos + jsin, and atan2 functions.

1 Blocks — Alphabetical List

1-1892

• Output is real for the sin, cos, sincos, and atan2 functions.
• Output is complex for the cos + jsin function.

Limitations

Complex input signals are supported for all functions in this block, except atan2.

You can use fixed-point input signals only when Approximation method is set to
CORDIC. The CORDIC approximation is available for the sin, cos, sincos, cos + jsin,
and atan2 functions. For the atan2 function, the relationship between input and output
data types depends also on whether the fixed-point input is signed or unsigned.

Input Data Type Function Output Data Type
Fixed point, signed or
unsigned

sin, cos, sincos, and
cos + jsin

fixdt(1, WL, WL - 2) where WL
is the input word length

This fixed-point type provides the
best precision for the CORDIC
algorithm.

Fixed point, signed atan2 fixdt(1, WL, WL – 3)
Fixed point, unsigned atan2 fixdt(1, WL, WL – 2)

When you set Function to sin, cos, sincos, or cos + jsin, and set the
Approximation method to CORDIC, the block has these limitations:

• When you use signed fixed-point types, the input angle must fall within the range [–2π,
2π) rad.

• When you use unsigned fixed-point types, the input angle must fall within the range [0,
2π) rad.

When you set Function to atan2 and the Approximation method to CORDIC, the block
has these limitations:

• Inputs must be the same size, or at least one value must be a scalar value.
• Both inputs must have the same data type.
• When you use signed fixed-point types, the word length must be 126 or less.
• When you use unsigned fixed-point types, the word length must be 125 or less.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

 Trigonometric Function

1-1893

Port_2 — x-axis or real part of the function argument for atan2
scalar | vector | matrix

Input the x-axis or real part of the function argument for atan2. When you set Function
to atan2, the block shows two input ports. The first input (Port_1) is the y-axis or
imaginary part of the function argument. The second input (Port_2) is the x-axis or real
part of the function argument. (See “Port Location After Rotating or Flipping” for a
description of the port order for various block orientations.)

Dependencies

To enable this port, set Function to atan2.

Limitations

• Fixed-point input signals are supported only when you set Approximation method to
CORDIC.

• When you set Function to atan2 and Approximation method to CORDIC:

• Inputs must be the same size, or at least one value must be a scalar value.
• Both inputs must have the same data type.
• When you use signed fixed-point types, the word length must be 126 or less.
• When you use unsigned fixed-point types, the word length must be 125 or less.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Specified trigonometric function of input
scalar | vector | matrix

Result of applying the specified trigonometric function to one or more inputs in rad. Each
function supports:

• Scalar operations
• Element-wise vector and matrix operations

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

1 Blocks — Alphabetical List

1-1894

sin — Sine of input signal
scalar | vector | matrix

Sine of the input signal, in rad.

Dependencies

To enable this port, set Function to sincos.

Limitations

Fixed-point input signals are supported only when you set Approximation method to
CORDIC.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

cos — Cosine of input signal
scalar | vector | matrix

Cosine of the input signal, in rad.

Dependencies

To enable this port, set Function to sincos.

Limitations

Fixed-point input signals are supported only when you set Approximation method to
CORDIC.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Parameters
Function — Trigonometric function
sin (default) | cos | tan | asin | acos | atan | atan2 | sinh | cosh | tanh | asinh |
acosh | atanh | sincos | cos + jsin

Specify the trigonometric function. The name of the function on the block icon changes to
match your selection.

 Trigonometric Function

1-1895

Limitations

When you set Function to sin, cos, sincos, or cos + jsin, and set the
Approximation method to CORDIC, the block has these limitations:

• When you use signed fixed-point types, the input angle must fall within the range [–2π,
2π) rad.

• When you use unsigned fixed-point types, the input angle must fall within the range [0,
2π) rad.

When you set Function to atan2 and the Approximation method to CORDIC, the block
has these limitations:

• Inputs must be the same size, or at least one value must be a scalar value.
• Both inputs must have the same data type.
• When you use signed fixed-point types, the word length must be 126 or less.
• When you use unsigned fixed-point types, the word length must be 125 or less.

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'sin' | 'cos' | 'tan' | 'asin' | 'acos' | 'atan' | 'atan2' |
'sinh' | 'cosh' | 'tanh' | 'asinh' | 'acosh' | 'atanh' | 'sincos' |
'cos + jsin'
Default: 'sin'

Approximation method — CORDIC or none
None (default) | CORDIC

Specify the type of approximation for computing output.

Approximation Method Data Types Supported When to Use This Method
None (default) Floating point You want to use the default

Taylor series algorithm.
CORDIC Floating point and fixed

point
You want a fast,
approximate calculation.

If you select CORDIC and enlarge the block from the default size, the block icon changes:

1 Blocks — Alphabetical List

1-1896

Function Block Icon
sin

cos

sincos

cos + jsin

atan2

Dependencies

To enable this parameter, set Function to sin, cos, sincos, cos + jsin, or atan2.

To use fixed-point input signals, you must set Approximation method to CORDIC.

 Trigonometric Function

1-1897

Limitations

When you set Function to sin, cos, sincos, or cos + jsin, and set the
Approximation method to CORDIC, the block has these limitations:

• When you use signed fixed-point types, the input angle must fall within the range [–2π,
2π) rad.

• When you use unsigned fixed-point types, the input angle must fall within the range [0,
2π) rad.

When you set Function to atan2 and the Approximation method to CORDIC, the block
has these limitations:

• Inputs must be the same size, or at least one value must be a scalar value.
• Both inputs must have the same data type.
• When you use signed fixed-point types, the word length must be 126 or less.
• When you use unsigned fixed-point types, the word length must be 125 or less.

Programmatic Use
Block Parameter: ApproximationMethod
Type: character vector
Values: 'None' | 'CORDIC'
Default: 'None'

Number of iterations — Number of iterations for CORDIC algorithm
11 (default) | positive integer, less than or equal to word length of fixed-point input

Specify the number of iterations to perform the CORDIC algorithm. The default value is
11.

• When the block input uses a floating-point data type, the number of iterations can be a
positive integer.

• When the block input is a fixed-point data type, the number of iterations cannot
exceed the word length.

For example, if the block input is fixdt(1,16,15), the word length is 16. In this
case, the number of iterations cannot exceed 16.

Dependencies

To enable this parameter, you must set the Function and Approximation method
parameters as follows:

1 Blocks — Alphabetical List

1-1898

• Set Function to sin, cos, sincos, cos + jsin, or atan2.
• Set Approximation method to CORDIC.

Programmatic Use
Block Parameter: NumberOfIterations
Type: character vector
Values: positive integer, less than or equal to word length of fixed-point input
Default: '11'

Output signal type — complexity of output signal
auto (default) | real | complex

Specify the output signal type of the Trigonometric Function block as auto, real, or
complex.

Function Input Signal
Type

Output Signal Type
Auto Real Complex

Any selection for
the Function
parameter

real real real complex
complex complex error complex

Dependencies

Setting Approximation method to CORDIC disables this parameter.

Note When Function is atan2, complex input signals are not supported for simulation
or code generation.

Programmatic Use
Block Parameter: OutputSignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

 Trigonometric Function

1-1899

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Definitions

CORDIC
CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

1 Blocks — Alphabetical List

1-1900

References
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on

Electronic Computers EC-8 (1959); 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24 (1998): 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference (1971): 379–386. (from the
collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical
Monthly 90, no. 5 (1983): 317–325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not all compilers support the asinh, acosh, and atanh functions. If you use a compiler
that does not support those functions, a warning appears and the generated code fails to
link.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Trigonometric Function.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Trigonometric Function

1-1901

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

This block supports fixed-point and base integer data types when you set the Function to
sin, cos, sincos, cos + jsin, or atan2, and set the Approximation method to
CORDIC.

See Also
Math Function | Sine, Cosine | Sqrt

Introduced before R2006a

1 Blocks — Alphabetical List

1-1902

Unary Minus
Negate input
Library: Simulink / Math Operations

Description
The Unary Minus block negates the input.

Ports

Input
Port_1 — Signal to negate
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | fixed point

Output
Port_1 — Negation of input signal
scalar | vector | matrix | N-D array

Negation of the input signal. The output has the same data type and dimensions as the
input.
Data Types: single | double | int8 | int16 | int32 | fixed point

 Unary Minus

1-1903

Parameters
Saturate on integer overflow — Method of overflow action
off (default) | on

Select to have integer overflows saturate. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. In general, the code generation process can detect
when overflow is not possible. In this case, the code generator does not produce
saturation code.

For signed-integer data types, the unary minus of the most negative value is not
representable by the data type. In this case, the Saturate on integer overflow check
box controls the behavior of the block:

Parameter
Setting

Block Behavior Examples

Saturate on
integer overflow
= on

Values saturate to the
most positive value of
the integer data type

• For 8-bit signed integers, -128 maps to
127.

• For 16-bit signed integers, -32768
maps to 32767.

• For 32-bit signed integers,
-2147483648 maps to 2147483647.

Saturate on
integer overflow
= off

Values wrap to the most
negative value of the
integer data type

• For 8-bit signed integers, -128 remains
-128.

• For 16-bit signed integers, -32768
remains -32768.

• For 32-bit signed integers,
-2147483648 remains -2147483648.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Specify sample time as a value other than -1
-1 (default) | scalar

1 Blocks — Alphabetical List

1-1904

Specify the sample time as a value other than -1. For more information, see “Specify
Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn
more, see “Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types double | single | base integera | fixed pointa

Multidimensional
Signals

Yes

Variable-Size
Signals

No

a. This block only supports signed fixed-point data types.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Unary Minus.

 Unary Minus

1-1905

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

This block only supports signed fixed-point data types.

See Also
uminus

Topics
“Operator Precedence” (MATLAB)

Introduced before R2006a

1 Blocks — Alphabetical List

1-1906

Uniform Random Number
Generate uniformly distributed random numbers
Library: Simulink / Sources

Description
The Uniform Random Number block generates uniformly distributed random numbers
over an interval that you specify. To generate normally distributed random numbers, use
the Random Number block.

You can generate a repeatable sequence using any Uniform Random Number block with
the same nonnegative seed and parameters. The seed resets to the specified value each
time a simulation starts.

Avoid integrating a random signal, because solvers must integrate relatively smooth
signals. Instead, use the Band-Limited White Noise block.

The numeric parameters of this block must have the same dimensions after scalar
expansion. If you select the Interpret vector parameters as 1-D check box and the
numeric parameters are row or column vectors after scalar expansion, the block outputs a
1-D signal. If you clear the Interpret vector parameters as 1-D check box, the block
outputs a signal of the same dimensionality as the parameters.

Ports
Output
Port_1 — Random number output signal
scalar | vector

Output signal of generated uniformly distributed random numbers over the interval you
specify.

 Uniform Random Number

1-1907

Data Types: double

Parameters
Minimum — Minimum interval
-1 (default) | scalar | vector

Specify the minimum of the interval.

Programmatic Use
Block Parameter: Minimum
Type: character vector
Values: scalar
Default: '-1'

Maximum — Maximum interval
1 (default) | scalar | vector

Specify the maximum of the interval.

Programmatic Use
Block Parameter: Maximum
Type: character vector
Values: scalar
Default: '1'

Seed — Random number seed
0 (default) | scalar

Specify the starting seed for the random number generator.

The seed must be 0 or a positive integer. Output is repeatable for a given seed.

Programmatic Use
Block Parameter: See
Type: character vector
Values: scalar
Default: '0'

Sample time — Sample time
0.1 (default) | scalar

1 Blocks — Alphabetical List

1-1908

Specify the time interval between samples. See “Specify Sample Time” in the Simulink
documentation for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '0.1'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the
Constant value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Multidimensional
Signals

Yes

Variable-Size
Signals

No

 Uniform Random Number

1-1909

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Random Number | Repeating Sequence

Introduced before R2006a

1 Blocks — Alphabetical List

1-1910

Unit System Configuration
Configure units

Library
Ports & Subsystems

Description
The Unit System Configuration block specifies allowed and disallowed unit systems for
the component. It restricts units systems for a subsystem or top model and all its
children, unless you override it with another Unit System Configuration block in a child.

This block supports normal, accelerator, and rapid accelerator modes and fast restart.

Parameters

Disallowed unit systems
Displays disallowed unit system.

To designate a unit system as disallowed, select it in the Allowed unit systems column
and click <<Disallow.

Default: None

See “Block-Specific Parameters” on page 6-130 for the command-line information.

 Unit System Configuration

1-1911

Allowed unit systems
Displays allowed unit system.

To designate a unit system as allowed, select it in the Disallowed unit systems column
and click Allow>>.

Default: SI, English, SI (extended), CGS

See “Block-Specific Parameters” on page 6-130 for the command-line information.

Allow all unit systems
Allow or restrict unit systems.

Default: On

 On
Allow all unit systems.

 Off
Restrict unit systems to those in Allowed unit systems.

Selecting the Allow all unit systems check box disables the Disallowed unit systems
and Allowed unit systems parameters.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See Also
Inport | Outport | Unit Conversion

Topics
“Units in Simulink”
“Unit Specification in Simulink Models”
“Restricting Unit Systems”

1 Blocks — Alphabetical List

1-1912

Introduced in R2016a

 Unit System Configuration

1-1913

Unit Conversion
Convert units

Library
Signal Attributes

Description
The Unit Conversion block converts the unit of the input signal to the output signal. The
block can convert if the units are separated by a scaling factor or offset, or are inverse
units, for example:

• y=a*U
• y=a*U+b, where a is the scale and b is the offset
• y=a/U

This block supports normal, accelerator, and rapid accelerator modes and fast restart.

Data Type Support
The Unit Conversion block accepts and outputs real or complex values of the following
data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “Data Types Supported by Simulink”.

1 Blocks — Alphabetical List

1-1914

Parameters
Output data type
Specify the output data type.

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule
Simulink chooses intermediate and output data types to balance numerical accuracy,
performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data
type selected by the internal rule might change.

Inherit: Inherit via back propagation
Output data type is inherited via back propagation. Internal rules determine the
intermediate data types and Simulink casts the final results to the output data type.

See “Block-Specific Parameters” on page 6-130 for the command-line information.

See “Converting Units” for more information.

Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
“Converting Units”

 Unit Conversion

1-1915

Topics
“Units in Simulink”

Introduced in R2016a

1 Blocks — Alphabetical List

1-1916

Unit Delay
Delay signal one sample period
Library: Simulink / Discrete

Description
The Unit Delay block holds and delays its input by the sample period you specify. When
placed in an iterator subsystem, it holds and delays its input by one iteration. This block is
equivalent to the z-1 discrete-time operator. The block accepts one input and generates
one output. Each signal can be scalar or vector. If the input is a vector, the block holds
and delays all elements of the vector by the same sample period.

You specify the block output for the first sampling period with the Initial conditions
parameter. Careful selection of this parameter can minimize unwanted output behavior.
You specify the time between samples with the Sample time parameter. A setting of -1
means the block inherits the Sample time.

Note The Unit Delay block errors out if you use it to create a transition between blocks
operating at different sample rates. Use the Rate Transition block instead.

Comparison with Similar Blocks
The Memory, Unit Delay, and Zero-Order Hold blocks provide similar functionality but
have different capabilities. Also, the purpose of each block is different.

This table shows recommended usage for each block.

 Unit Delay

1-1917

Block Purpose of the Block Reference Examples
Unit Delay Implement a delay using a

discrete sample time that you
specify. The block accepts and
outputs signals with a discrete
sample time.

• sldemo_enginewc
(Compression subsystem)

Memory on page
1-1056

Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed
in minor time step) signals and
outputs a signal that is fixed in
minor time step.

• sldemo_bounce
• sldemo_clutch (Friction

Mode Logic/Lockup FSM
subsystem)

Zero-Order Hold Convert an input signal with a
continuous sample time to an
output signal with a discrete
sample time.

• sldemo_radar_eml
• aero_dap3dof

Each block has the following capabilities.

Capability Memory Unit Delay Zero-Order Hold
Specification of
initial condition

Yes Yes No, because the block
output at time t = 0
must match the input
value.

Specification of
sample time

No, because the block
can only inherit
sample time from the
driving block or the
solver used for the
entire model.

Yes Yes

Support for frame-
based signals

No Yes Yes

Support for state
logging

No Yes No

1 Blocks — Alphabetical List

1-1918

matlab:sldemo_enginewc
matlab:sldemo_bounce
matlab:sldemo_clutch
matlab:sldemo_radar_eml
matlab:aero_dap3dof

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal that the block delays by one sample period.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
scalar | vector

Output signal that is the input delayed by one sample period.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Main
Initial condition — First sample period output
0 (default) | scalar | vector

Specify the output of the simulation for the first sampling period, during which the output
of the Unit Delay block is otherwise undefined.

Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Value: scalar | vector
Default: '0'

 Unit Delay

1-1919

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

1 Blocks — Alphabetical List

1-1920

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Sample time (-1 for inherited) — Discrete interval between sample time
hits
-1 (default) | scalar

Enter the discrete interval between sample time hits or specify -1 to inherit the sample
time.

See also “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you
click Apply.

 Unit Delay

1-1921

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).
Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state
names resolve to signal object
Off (default) | Boolean

Specify if requiring that state name resolve to Simulink signal objects or not. If selected,
the software generates an error at run time if you specify a state name that does not
match the name of a Simulink signal object.
Dependency

Enabled when you give the parameter State name a value and set the model
configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.
Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default)

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom

1 Blocks — Alphabetical List

1-1922

storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'
Default: 'Simulink.Signal'

Code generation storage class — Storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | Bitfield (Custom) | Volatile (Custom) |
ExportToFile (Custom) | ImportFromFile (Custom) | FileScope (Custom) |
Struct (Custom) | GetSet (Custom) | Reusable (Custom)

Select state storage class for code generation. If you do not need to interface to external
code, select Auto.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder) and “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'Model default' | 'ExportedGlobal'' | 'ImportedExtern' |
'ImportedExternPointer' | 'Custom'
Default: 'Auto'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

 Unit Delay

1-1923

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (strong.h) under certain
conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see Unit Delay.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Delay | Resettable Delay

Introduced before R2006a

1 Blocks — Alphabetical List

1-1924

Unit Delay Enabled Resettable Synchronous
Delay input signal by one sample period when external Enable signal is true and external
Reset signal is false
Library: HDL Coder / Discrete / Unit Delay Enabled Resettable

Synchronous

Description
The Unit Delay Enabled Resettable Synchronous block combines the functionality of the
Unit Delay Enabled Synchronous block and the Unit Delay Resettable Synchronous block.

The Unit Delay Enabled Resettable Synchronous block delays the input signal u by one
sample period when the external Enable signal is true and when the external Reset signal
is false. When the Enable signal is false, the state and output signal hold the previous
value. When the Reset signal is true, the state and output signal take the value of the
Initial condition parameter. The Enable and Reset signals are true when E and R are
nonzero and false when E and R equal zero.

The Unit Delay Enabled Synchronous block implementation consists of a Synchronous
Subsystem that contains an Enabled Delay block with a Delay length of one and a State
Control block in Synchronous mode. When you use this block in your model and have
HDL Coder installed, your model generates cleaner HDL code and uses fewer hardware
resources due to the Synchronous behavior of the State Control block.

Limitations
• The block does not support vector inputs on the Reset and Enable ports.
• You cannot use the block inside Enabled Subsystem, Triggered Subsystem, or

Resettable Subsystem blocks that use Classic semantics. The Subsystem must use
Synchronous semantics.

 Unit Delay Enabled Resettable Synchronous

1-1925

Ports
Input
u — Input signal
Scalar | Vector | Matrix | Array | Bus

The Unit Delay Enabled Resettable Synchronous block accepts the input signal of the data
types listed below. For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Input
E — Enable signal
Scalar

The Unit Delay Enabled Synchronous block accepts the Enable signal of the data types
listed below. For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

R — Reset signal
Scalar

The Unit Delay Resettable Synchronous block accepts the Reset signal of the data types
listed below. For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
y — Output signal
Scalar | Vector | Matrix | Array | Bus

Output data type always matches input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

1 Blocks — Alphabetical List

1-1926

Parameters
Initial condition — Initial output of simulation
0.0 (default) | Scalar | Vector | Matrix | Array | Bus

The Initial condition can take a scalar input or use the same data type as the input
signal. You cannot run the simulation with NaN or Inf as the Initial condition.

Programmatic Use
Block parameter: InitialCondition
Type: character vector
Value: '0' | '[n]' | '[m n]'
Default: '0'

Sample time — Time interval between samples
-1 (default) | Scalar | Vector

The Sample time must be a real double scalar that specifies the period or a real double
vector of length two that specifies the period and offset. The period and offset must be
finite and non-negative with offset less than the period.

Programmatic Use
Block parameter: SampleTime
Type: character vector
Value: '-1' | '[n]' | '[m n]'
Default: '-1'

Block Characteristics
Data Types double | single | base integer | fixed point | bus
Sample Time Inherit
Direct
Feedthrough

Yes

Multidimensional
Signals

Scalar

Variable-Size
Signals

Yes

 Unit Delay Enabled Resettable Synchronous

1-1927

Zero-Crossing
Detection

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
State Control | Unit Delay | Unit Delay Resettable Synchronous | Unit Delay Enabled
Synchronous

Introduced in R2017b

1 Blocks — Alphabetical List

1-1928

Unit Delay Enabled Synchronous
Delay input signal by one sample period when external Enable signal is true
Library: HDL Coder / Discrete / Unit Delay Enabled

Synchronous

Description
The Unit Delay Enabled Synchronous block delays the input signal u by one sample period
when the external Enable signal is true. When the Enable signal is false, the state and
output signal hold the previous value. The Enable signal is true when E is not zero and
false when E is zero.

The Unit Delay Enabled Synchronous block implementation consists of a Synchronous
Subsystem that contains an Enabled Delay block with a Delay length of one and a State
Control block in Synchronous mode. When you use this block in your model and have
HDL Coder installed, your model generates cleaner HDL code and uses fewer hardware
resources due to the Synchronous behavior of the State Control block.

Limitations
• The block does not support vector inputs on the Enable port.
• You cannot use the block inside Enabled Subsystem, Triggered Subsystem, or

Resettable Subsystem blocks that use Classic semantics. The Subsystem must use
Synchronous semantics.

 Unit Delay Enabled Synchronous

1-1929

Ports

Input
u — Input signal
Scalar | Vector | Matrix | Array | Bus

The Unit Delay Enabled Synchronous block accepts the input signal of the data types
listed below. For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Input
E — Enable signal
Scalar

The Unit Delay Enabled Synchronous block accepts the Enable signal of the data types
listed below. For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
y — Output signal
Scalar | Vector | Matrix | Array | Bus

Output data type always matches input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Initial condition — Initial output of simulation
0.0 (default) | Scalar | Vector | Matrix | Array | Bus

1 Blocks — Alphabetical List

1-1930

The Initial condition can take a scalar input or use the same data type as the input
signal. You cannot run the simulation with NaN or Inf as the Initial condition.

Programmatic Use
Block parameter: InitialCondition
Type: character vector
Value: '0' | '[n]' | '[m n]'
Default: '0'

Sample time — Time interval between samples
-1 (default) | Scalar | Vector

The Sample time must be a real double scalar that specifies the period or a real double
vector of length two that specifies the period and offset. The period and offset must be
finite and non-negative with offset less than the period.

Programmatic Use
Block parameter: SampleTime
Type: character vector
Value: '-1' | '[n]' | '[m n]'
Default: '-1'

Block Characteristics
Data Types double | single | base integer | fixed point | bus
Sample Time Inherit
Direct
Feedthrough

Yes

Multidimensional
Signals

Scalar

Variable-Size
Signals

Yes

Zero-Crossing
Detection

No

 Unit Delay Enabled Synchronous

1-1931

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
State Control | Unit Delay | Unit Delay Resettable Synchronous | Unit Delay Enabled
Resettable Synchronous

Introduced in R2017b

1 Blocks — Alphabetical List

1-1932

Unit Delay Resettable Synchronous
Delay input signal by one sample period when external Reset signal is false
Library: HDL Coder / Discrete / Unit Delay Resettable

Synchronous

Description
The Unit Delay Resettable Synchronous block delays the input signal u by one sample
period when the external Reset signal is false. When the Reset signal is true, the state
and output signal take the value of the Initial condition parameter. The Reset signal is
true when R is not zero and false when R is zero.

The Unit Delay Resettable Synchronous block implementation consists of a Synchronous
Subsystem that contains a Resettable Delay block with a Delay length of one and a State
Control block in Synchronous mode. When you use this block in your model and have
HDL Coder installed, your model generates cleaner HDL code and uses fewer hardware
resources due to the Synchronous behavior of the State Control block.

Limitations
• The block does not support vector inputs on the Reset port.
• You cannot use the block inside Enabled Subsystem, Triggered Subsystem, or

Resettable Subsystem blocks that use Classic semantics. The Subsystem must use
Synchronous semantics.

 Unit Delay Resettable Synchronous

1-1933

Ports

Input
u — Input signal
Scalar | Vector | Matrix | Array | Bus

The Unit Delay Resettable Synchronous block accepts the input signal of the data types
listed below. For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Input
R — Reset signal
Scalar

The Unit Delay Resettable Synchronous block accepts the Reset signal of the data types
listed below. For more information, see “Data Types Supported by Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
y — Output signal
Scalar | Vector | Matrix | Array | Bus

Output data type always matches input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Initial condition — Initial output of simulation
0.0 (default) | Scalar | Vector | Matrix | Array | Bus

1 Blocks — Alphabetical List

1-1934

The Initial condition can take a scalar input or use the same data type as the input
signal. You cannot run the simulation with NaN or Inf as the Initial condition.

Programmatic Use
Block parameter: InitialCondition
Type: character vector
Value: '0' | '[n]' | '[m n]'
Default: '0'

Sample time — Time interval between samples
-1 (default) | Scalar | Vector

The Sample time must be a real double scalar that specifies the period or a real double
vector of length two that specifies the period and offset. The period and offset must be
finite and non-negative with offset less than the period.

Programmatic Use
Block parameter: SampleTime
Type: character vector
Value: '-1' | '[n]' | '[m n]'
Default: '-1'

Block Characteristics
Data Types double | single | base integer | fixed point | bus
Sample Time Inherit
Direct
Feedthrough

Yes

Multidimensional
Signals

Scalar

Variable-Size
Signals

Yes

Zero-Crossing
Detection

No

 Unit Delay Resettable Synchronous

1-1935

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
State Control | Unit Delay | Unit Delay Enabled Resettable Synchronous | Unit Delay
Enabled Synchronous

Introduced in R2017b

1 Blocks — Alphabetical List

1-1936

Variable Integer Delay
Delay input signal by variable sample period
Library: Simulink / Discrete

Description
The Variable Integer Delay block is a variant of the Delay block that has the source of the
delay length set to Input port, by default.

 Variable Integer Delay

1-1937

Ports

Input
u — Data input signal
scalar | vector

Input data signal delayed according to parameters settings.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

d — Delay length
scalar

Delay length specified as inherited from an input port. Enabled when you select the Delay
length: Source parameter as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Enable — External enable signal
scalar

Enable signal that enables or disables execution of the block. To create this port, select
the Show enable port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

External reset — External reset signal
scalar

External signal that resets execution of the block to the initial condition. To create this
port, select the External reset parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

x0 — Initial condition
scalar | vector

1 Blocks — Alphabetical List

1-1938

Initial condition specified as inherited from an input port. Enabled when you select the
Initial Condition: Source parameter as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
fixed point

Output
Port_1 — Output signal
scalar | vector

Output signal that is the input signal delayed by the length of time specified by the
parameter Delay length. The initial value of the output signal depends on several
conditions. See “Initial Block Output” on page 1-296.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters

Main
Delay length — Delay length
Dialog (default) | Input port

Specify whether to enter the delay length directly on the dialog box (fixed delay) or to
inherit the delay from an input port (variable delay).

• If you set Source to Dialog, enter the delay length in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies a delay

length for the d input port. You can also specify its maximum value by specifying the
parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or non-
integer value in the dialog box (fixed delay) returns an error. An out-of-range value from
an input port (variable delay) casts it into the range. A non-integer value from an input
port (variable delay) truncates it to the integer.

 Variable Integer Delay

1-1939

Programmatic Use
Block Parameter: DelayLengthSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: DelayLength
Type: character vector
Values: scalar
Default: '2'
Block Parameter: DelayLengthUpperLimit
Type: character vector
Values: scalar
Default: '100'

Initial condition — Initial condition
Dialog (default) | Input port

Specify whether to enter the initial condition directly on the dialog box or to inherit the
initial condition from an input port.

• If you set Source to Dialog, enter the initial condition in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies an initial

condition for the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the input
signal u using a round-to-nearest operation and saturation.

Note When State name must resolve to Simulink signal object is selected on the
State Attributes pane, the block copies the initial value of the signal object to the Initial
condition parameter. However, when the source for Initial condition is Input port,
the block ignores the initial value of the signal object.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: InitialCondition
Type: character vector

1 Blocks — Alphabetical List

1-1940

Values: scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels
(frame based) | Inherited

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System
Toolbox).

• Elements as channels (sample based) — Treat each element of the input as a
separate channel (sample-based processing).

• Inherited — Inherit the processing mode from the input signal and delay the input
accordingly. You can identify whether the input signal is sample or frame based by
looking at the signal line. Simulink represents sample-based signals with a single line
and frame-based signals with a double line.

Note When you choose the Inherited option for the Input processing parameter,
and the input signal is frame based, Simulink generates a warning or error in future
releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input signals
must be sample based.

Input Signal u Input Processing Mode Block Works?
Sample based Sample based Yes
Frame based No, produces an error
Sample based Frame based Yes
Frame based Yes

 Variable Integer Delay

1-1941

Input Signal u Input Processing Mode Block Works?
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-Based
Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels
(sample based)' |'Inherited'
Default: 'Elements as channels (sample based)'

Use circular buffer for state — Circular buffer for storing state
off (default) | on

Select to use a circular buffer for storing the state in simulation and code generation.
Otherwise, an array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large. For
an array buffer, the number of copy operations increases as the delay length goes up. For
a circular buffer, the number of copy operations is constant for increasing delay length.

If one of the following conditions is true, an array buffer always stores the state because a
circular buffer does not improve execution speed:

• For sample-based signals, the delay length is 1.
• For frame-based signals, the delay length is no larger than the frame size.

Programmatic Use
Block Parameter: UseCircularBuffer
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Prevent direct feedthrough — Prevent direct feedthrough
off (default) | on

Select to increase the delay length from zero to the lower limit for the Input processing
mode:

1 Blocks — Alphabetical List

1-1942

• For sample-based signals, increase the minimum delay length to 1.
• For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the output
port. However, this check box cannot prevent direct feedthrough from the initial condition
port, x0, to the output port.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: PreventDirectFeedthrough
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Remove delay length check in generated code — Remove delay length out-
of-range check
off (default) | on

Select to remove code that checks for out-of-range delay length.

Check Box Result When to Use
Selected Generated code does not

include conditional
statements to check for out-
of-range delay length.

For code efficiency

Cleared Generated code includes
conditional statements to
check for out-of-range delay
length.

For safety-critical
applications

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: RemoveDelayLengthCheckInGeneratedCode
Type: character vector
Values: 'off' | 'on'

 Variable Integer Delay

1-1943

Default: 'off'

Diagnostic for delay length — Diagnostic checks for delay length
None (default) | Warning | Error

Specify whether to produce a warning or error when the input d is less than the lower
limit or greater than the Delay length: Upper limit. The lower limit depends on the
setting for Prevent direct feedthrough.

• If the check box is cleared, the lower limit is zero.
• If the check box is selected, the lower limit is 1 for sample-based signals and frame

length for frame-based signals.

Options for the diagnostic include:

• None — Simulink software takes no action.
• Warning — Simulink software displays a warning and continues the simulation.
• Error — Simulink software terminates the simulation and displays an error.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: DiagnosticForDelayLength
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Show enable port — Create enable port
off (default) | on

Select to control execution of this block with an enable port. The block is considered
enabled when the input to this port is nonzero, and is disabled when the input is 0. The
value of the input is checked at the same time step as the block execution.

External reset — External state reset
None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

1 Blocks — Alphabetical List

1-1944

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when the reset signal is nonzero at the
current time step

• when the reset signal value changes
from nonzero at the previous time step
to zero at the current time step

Level hold Reset when the reset signal is nonzero at
the current time step

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Sample time (-1 for inherited) — Discrete interval between sample time
hits
-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. This block supports discrete sample time, but not continuous sample time.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

State Attributes
State name — Unique name for block state
'' (default) | alphanumeric string

 Variable Integer Delay

1-1945

Use this parameter to assign a unique name to the block state. The default is ' '. When
this field is blank, no name is assigned. When using this parameter, remember these
considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you
click Apply.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder).
Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name
resolve to a signal object
off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.
Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if
you set the model configuration parameter Signal resolution to a value other than None.

Selecting this check box disables Code generation storage class.
Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal object class — Custom storage class package name
Simulink.Signal (default) | <StorageClass.PackageName>

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package

1 Blocks — Alphabetical List

1-1946

mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the list, select Customize class lists.
For instructions, see “Target Class Does Not Appear in List of Signal Object Classes”
(Embedded Coder).

For information about storage classes, see “Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Simulink Coder). For information about custom
storage classes, see “Apply Custom Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Embedded Coder).

Programmatic Use
Block Parameter: StateSignalObject
Type: character vector
Values: 'Simulink.Signal' | '<StorageClass.PackageName>'
Default: 'Simulink.Signal'

Code generation storage class — State storage class for code generation
Auto (default) | Model default | ExportedGlobal | ImportedExtern |
ImportedExternPointer | BitField (Custom) | Model default | ExportToFile
(Custom) | ImportFromFile (Custom) | FileScope (Custom) | AutoScope
(Custom) | Struct (Custom) | GetSet (Custom) | Reusable (Custom)

Select state storage class for code generation.

• Auto is the appropriate storage class for states that you do not need to interface to
external code.

• StorageClass applies the storage class or custom storage class that you select from
the list. For information about storage classes, see “Apply Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Simulink Coder). For
information about custom storage classes, see “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder).

Use Signal object class to select custom storage classes from a package other than
Simulink.

Dependencies

To enable this parameter, specify a value for State name.

 Variable Integer Delay

1-1947

Programmatic Use
Block Parameter: StateStorageClass
Type: character vector
Values: 'Auto' | 'SimulinkGlobal' | 'ExportedGlobal' |
'ImportedExtern' | 'ImportedExternPointer' | 'Custom' | ...
Default: 'Auto'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Consider using the Model Discretizer to map these continuous blocks into discrete
equivalents that support code generation. From a model, select Analysis > Control
Design > Model Discretizer.

Not reommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see Delay.

1 Blocks — Alphabetical List

1-1948

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Delay | Resettable Delay | Tapped Delay | Unit Delay

Topics
“Using Enabled Subsystems”

Introduced in R2012b

 Variable Integer Delay

1-1949

Variable Time Delay, Variable Transport
Delay
Delay input by variable amount of time

Library
Continuous

Description
The Variable Transport Delay and Variable Time Delay appear as two blocks in the
Simulink block library. However, they are the same Simulink block with different settings
of a Select delay type parameter. Use this parameter to specify the mode in which the
block operates.

Variable Time Delay
In this mode, the block has a data input, a time delay input, and a data output. (See “Port
Location After Rotating or Flipping” in the Simulink documentation for a description of
the port order for various block orientations.) The output at the current time step equals
the value of its data input at a previous time step. This time step is the current simulation
time minus a delay time specified by the time delay input.

y t u t t u t t() () (())= - = -0 t

u(t)

τ(t)
y(t) = u(t − τ(t))

To

Variable
Time Delay

−C−

−C−

1 Blocks — Alphabetical List

1-1950

During the simulation, the block stores time and input value pairs in an internal buffer. At
the start of simulation, the block outputs the value of the Initial output parameter until
the simulation time exceeds the time delay input. Then, at each simulation step, the block
outputs the signal at the time that corresponds to the current simulation time minus the
delay time.

If you want the output at a time between input storing times and the solver is a
continuous solver, the block interpolates linearly between points. If the time delay is
smaller than the step size, the block extrapolates an output point from a previous point.
For example, consider a fixed-step simulation with a step size of 1 and the current time at
t = 5. If the delay is 0.5, the block needs to generate a point at t = 4.5, but the most
recent stored time value is at t = 4. Thus, the block extrapolates the input at 4.5 from the
input at 4 and uses the extrapolated value as its output at t = 5.

Extrapolating forward from the previous time step can produce a less accurate result
than extrapolating back from the current time step. However, the block cannot use the
current input to calculate its output value because the input port does not have direct
feedthrough.

If the model specifies a discrete solver, the block does not interpolate between time steps.
Instead, it returns the nearest stored value that precedes the required value.

Variable Transport Delay
In this mode, the block output at the current time step is equal to the value of its data
(top, or left) input at an earlier time step equal to the current time minus a transportation
delay.

y t u t t td() (())= -

Simulink software finds the transportation delay, t t
d

() , by solving the following equation:

1
1

t
d

i
t t t

t

d (() t
t

)
=

-Ú

This equation involves an instantaneous time delay, t t
i
() , given by the time delay (bottom,

or right) input.

 Variable Time Delay, Variable Transport Delay

1-1951

u(t)

t
i
(t)

y(t) = u(t − t
d
(t))

Ti

Variable
Transport Delay

−C−

1

Suppose you want to use this block to model the fluid flow through a pipe where the fluid
speed varies with time. In this case, the time delay input to the block is

t t
L

v t
i

i

()
()

=

where L is the length of the pipe and v t
i
() is the speed of the fluid.

Data Type Support
The Variable Time Delay and Variable Transport Delay blocks accept and output real
signals of type double.

For more information, see “Data Types Supported by Simulink” in the Simulink
documentation.

Parameters

Select delay type
Specify the mode in which the block operates.

Default: The Variable Time Delay block has a default value of Variable time delay.
The Variable Transport Delay block has a default value of Variable transport delay.

Variable time delay
Specifies a Variable Time Delay block.

1 Blocks — Alphabetical List

1-1952

Variable transport delay
Specifies a Variable Transport Delay block.

Setting this parameter to Variable time delay enables the Handle zero delay
parameter.

Setting this parameter to Variable transport delay enables the Absolute
tolerance and State Name parameters.

Parameter: VariableDelayType
Type: character vector
Value: 'Variable transport delay' | 'Variable time delay'
Default: 'Variable time delay'

Maximum delay
Set the maximum value of the time delay input.

Default: 10

• This value defines the largest time delay input that this block allows. The block clips
any delay that exceeds this value.

• This value cannot be negative. If the time delay becomes negative, the block clips it to
zero and issues a warning message.

Parameter: MaximumDelay
Type: scalar or vector
Value: '10'
Default: '10'

Initial output
Specify the output that the block generates until the simulation time first exceeds the
time delay input.

Default:Run-to-run tunable parameter

A Run-to-run tunable parameter cannot be changed during simulation run time.
However, changing it before a simulation begins will not cause Accelerator or Rapid

 Variable Time Delay, Variable Transport Delay

1-1953

Accelerator to regenerate code. Also, the initial output of this block cannot be inf or
NaN.

Parameter: InitialOutput
Type: scalar or vector
Value: '0'
Default: '0'

Initial buffer size
Define the initial memory allocation for the number of input points to store. The input
points define the history of the input signal up to the current simulation time.

Default: 1024

• If the number of input points exceeds the initial buffer size, the block allocates
additional memory.

• After simulation ends, a message displays if the buffer is not sufficient and more
memory needs to be allocated.

• Because allocating memory slows down simulation, choose this value carefully if
simulation speed is an issue.

• For long time delays, this block might use a large amount of memory, particularly for
dimensionalized input.

Parameter: MaximumPoints
Type: scalar
Value: '1024'
Default: '1024'

Use fixed buffer size
Specify use of a fixed-size buffer to save input data from previous time steps.

Default: Off

1 Blocks — Alphabetical List

1-1954

 On
The block uses a fixed-size buffer.

 Off
The block does not use a fixed-size buffer.

The Initial buffer size parameter specifies the buffer size. If the buffer is full, new data
replaces data already in the buffer. Simulink software uses linear extrapolation to
estimate output values that are not in the buffer.

Note ERT or GRT code generation uses a fixed-size buffer even if you do not select this
check box.

• If the input data is linear, selecting this check box can save memory.
• If the input data is nonlinear, do not select this check box. Doing so might yield

inaccurate results.

Parameter: FixedBuffer
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Handle zero delay
Convert this block to a direct feedthrough block.

Default: Off

 On
The block uses direct feedthrough.

 Off
The block does not use direct feedthrough.

Setting Select delay type to Variable time delay enables this parameter.

 Variable Time Delay, Variable Transport Delay

1-1955

Parameter: ZeroDelay
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Direct feedthrough of input during linearization
Cause the block to output its input during linearization and trim, which sets the block
mode to direct feedthrough.

Default: Off

 On
Enables direct feedthrough of input.

 Off
Disables direct feedthrough of input.

• Selecting this check box can cause a change in the ordering of states in the model
when you use the functions linmod, dlinmod, or trim. To extract this new state
ordering:

1 Compile the model using the following command, where model is the name of the
Simulink model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');
2 Terminate the compilation with the following command.

 model([],[],[],'term');

• The output argument x_str, which is a cell array of the states in the Simulink model,
contains the new state ordering. When you pass a vector of states as input to the
linmod, dlinmod, or trim functions, the state vector must use this new state
ordering.

Parameter: TransDelayFeedthrough
Type: character vector
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1956

Pade order (for linearization)
Set the order of the Pade approximation for linearization routines.

Default: 0

• The default value is 0, which results in a unity gain with no dynamic states.
• Setting the order to a positive integer n adds n states to your model, but results in a

more accurate linear model of the transport delay.

Parameter: PadeOrder
Type: character vector
Value: '0'
Default: '0'

Absolute tolerance
Specify the absolute tolerance for computing the block state.

Default: auto

• You can enter auto, -1, or a positive real scalar or vector.
• If you enter auto, or -1, then Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute the block states.

• If you enter a real scalar, then that value overrides the absolute tolerance in the
Configuration Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension
of the continuous states in the block. These values override the absolute tolerance in
the Configuration Parameters dialog box.

Setting Select delay type to Variable transport delay enables this parameter.

Parameter: AbsoluteTolerance
Type: character vector, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

 Variable Time Delay, Variable Transport Delay

1-1957

State Name (e.g., 'position')
Assign a unique name to each state.

Default: ' '

If this field is blank, no name assignment occurs.

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector, cell array, or structure.

Setting Select delay type to Variable transport delay enables this parameter.

Parameter: ContinuousStateAttributes
Type: character vector
Value: ' ' | user-defined
Default: ' '

Examples
The sldemo_VariableTransportDelay and
sldemo_VariableTransportDelay_pipe models show how you can use the Variable
Transport Delay block.

1 Blocks — Alphabetical List

1-1958

matlab:sldemo_VariableTransportDelay
matlab:sldemo_VariableTransportDelay_pipe

The sldemo_VariableTransportDelay model shows how to model vertical wheel
displacement on a one-dimensional car. The Variable Transport Delay block models the
delay in vertical displacement of the rear wheel when the road profile changes:

The sldemo_VariableTransportDelay_pipe model shows how to model
incompressible flow through a fixed-length pipe. The Variable Transport Delay block
models the delay in temperature change at the outlet when fluid flow occurs:

 Variable Time Delay, Variable Transport Delay

1-1959

Characteristics
Data Types Double
Sample Time Continuous
Direct Feedthrough Yes, of the time delay (second) input
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Transport Delay

Introduced in R2007a

1 Blocks — Alphabetical List

1-1960

Variant Sink
Route amongst multiple outputs using variants
Library: Simulink / Signal Routing

Description
The Variant Sink block has one input port and one or more output ports. You can define
variant choices as blocks that are connected to the output port so that, at most, one
choice is active.

Each output port is associated with a variant control. The variant control that evaluates to
true, determines which output port is active.

During simulation, Simulink connects the active choice directly to the input port of the
Variant Sink block and ignores the inactive choices.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix, to be connected to the active output
port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus | struct

 Variant Sink

1-1961

Output
Port_1 — Output from first variant
scalar | vector | matrix

Output signal from the first variant. The variant control that evaluates to true,
determines which output port is active.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_N — Output from Nth variant
scalar | vector | matrix

Output signal from the Nth variant. The variant control that evaluates to true,
determines which output port is active.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Port — Number of connected input port
no default

Number of the input port that is connected to one variant choice upstream of the Variant
Sink block. This value is read-only.

Click to add a port or to delete an existing one.

Variant Control — Variant controls available in the base workspace
'Variant' (default)

Displays the variant controls available in the base workspace. The variant control can be
a Boolean condition expression or a Simulink.Variant object representing a Boolean
condition expression. If you want to generate code for your model, you must define the
control variables as Simulink.Parameter objects.

To enter a variant name, double-click a Variant control cell in a new row and type in the
variant control expression. Click Apply after you edit a variant control name. If you add

1 Blocks — Alphabetical List

1-1962

or delete a variant control without applying the changes, the previous edits on the variant
control name are lost.

Programmatic Use
Block Parameter: VariantControls
Type: cell array of character vectors
Value: Variant control that is associated with the variant choice.
Default: 'Variant'

Condition (read-only) — Condition for variant controls
no default

Displays the Condition for the variant controls that are Simulink.Variant objects.
Create or change a variant condition in the Simulink.Variant parameter dialog box or
in the base workspace.

For more information, see “Create Variant Controls Programmatically” and
Simulink.Variant.

Override variant conditions and use the following variant — Ignore
variant control value while determining the active variant
off (default) | on

When you select this check box,the block ignores the variant control value while
determining the active variant and uses the overridden variant control as the active
variant. The overriding variant control must be defined in the variant block dialog box.

If you do not select this option, Simulink determines the active variant choice based on
the variant control that evaluates to true in the global workspace.

When you select this option, the variant badge indicates the change.

Dependencies

Selecting this check box enables the Variant parameter.

For more information, see “Working with Variant Choices”.

Programmatic Use
Block Parameter: OverrideUsingVariant
Type: character vector
Value: '' if no overriding variant is specified.
Default: ''

 Variant Sink

1-1963

Variant — Overriding variant control
Variant_1 (default) | name of variant control

Select the variant control that Simulink uses if you select Override variant conditions
and use the following variant.

The Variant drop-down list displays all variant controls that are currently defined in the
base workspace or a data dictionary. Use valid MATLAB identifiers to specify variant
controls.

See Simulink.Variant for more information.

Dependencies

To enable this parameter, select the Override variant conditions and use the
following variant check box.

Programmatic Use
Block Parameter: OverrideUsingVariant
Type: character vector
Value: Specified by the variant control expression.
Default: Variant_1

Allow zero active variant controls — Simulate model without active
variant choice
off (default) | on

To simulate a model (containing a variant block) without an active variant choice, select
the Allow zero active variant controls option. When this option is selected and there is
no active variant choice, Simulink disables all the blocks connected to the input and
output stream of Variant Sink block. The removed blocks are ignored from update
diagram or simulation.

If you do not select this option, Simulink generates an error when there is no active
variant choice.

When you select this option, the variant badge indicates the change.

Dependencies

To enable this parameter, clear the Override variant conditions and use the following
variant check box.

1 Blocks — Alphabetical List

1-1964

Programmatic Use
Block Parameter: AllowZeroVariantControls
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show variant condition on block — Annotate block ports
off (default) | on

When you select this option, Simulink annotates each variant control (condition
expression) on the Variant Sink block ports.

Programmatic Use
Block Parameter: ShowConditionOnBlock
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Analyze all choices during update diagram and generate preprocessor
conditionals — Analyze all variant choices during update diagram or simulation
off (default) | on

When you select this option, Simulink analyzes all variant choices during an update
diagram or simulation. This analysis helps Simulink to maintain consistency of all variant
branches during simulation and code generation. Simulink routes the output of the active
and inactive regions to an internal VariantMerge block.

When you select this option, the preprocessor conditionals (#if) are generated in the
code with ERT-based targets.

When you select this option, the variant badge indicates the change.

For more information, see “Represent Variant Source and Sink Blocks in Generated Code”
(Embedded Coder)

Dependencies

• To enable this parameter, clear the Override variant conditions and use the
following variant check box ('off')

• The check box is available for generating ERT targets only.

 Variant Sink

1-1965

Programmatic Use
Block Parameter: GeneratePreprocessorConditionals
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Manual Variant Sink | Manual Variant Source | Model | Simulink.Variant | Variant
Source | Variant Subsystem

Topics
“Introduction to Variant Controls”
“Define, Configure, and Activate Variants”

1 Blocks — Alphabetical List

1-1966

“Working with Variant Choices”
“Variant Systems” (Embedded Coder)
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)
“Variants Example Models”

Introduced in R2016a

 Variant Sink

1-1967

Variant Source
Route amongst multiple inputs using variants
Library: Simulink / Signal Routing

Description
The Variant Source block has one or more input ports and one output port. You can define
variant choices as blocks that are connected to the input port so that, at most, one choice
is active.

Each input port is associated with a variant control. The variant control that evaluates to
true, determines which input port is active.

When the Analyze all choices during update diagram and generate preprocessor
conditionals option in the block dialog box is cleared, then during simulation Simulink
connects the active choice directly to the output port of the Variant Source block and
ignores the inactive choices.

Ports

Input
Port_1 — Input port associated with first variant control
scalar | vector | matrix

Input port associated with the first variant control. The variant control that evaluates to
true, determines which input port is active.

1 Blocks — Alphabetical List

1-1968

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus | struct

Port_N — Input port associated with Nth variant control
scalar | vector | matrix

Input port associated with the Nth variant control. The variant control that evaluates to
true, determines which input port is active.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output of active variant
scalar | vector | matrix

Output signal from the active variant.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Port — Number of connected input port
no default

Number of the input port that is connected to one variant choice upstream of the Variant
Source block. This value is read-only.

Click to add a port or to delete an existing one.

Variant control — Variant controls available in the base workspace
'Variant' (default)

Displays the variant controls available in the base workspace. The variant control can be
a Boolean condition expression or a Simulink.Variant object representing a Boolean
condition expression. If you want to generate code for your model, you must define the
control variables as Simulink.Parameter objects.

 Variant Source

1-1969

To edit a variant name, double-click a Variant control cell and type in the variant control
expression. Click Apply after you edit a variant control name. If you add or delete a
variant control without applying the changes, the previous edits on the variant control
name are lost.

The Variant control that evaluates to true determines which input port must be active.

Programmatic Use
Block Parameter: VariantControls
Type: cell array of character vectors
Value: Variant control that is associated with the variant choice.
Default: 'Variant'

Condition (read-only) — Condition for variant controls
no default

Displays the Condition for the variant controls that are Simulink.Variant objects.
Create or change a variant condition in the Simulink.Variant parameter dialog box or
in the base workspace.

For more information, see “Create Variant Controls Programmatically” and
Simulink.Variant.

Override variant conditions and use the following variant — Ignore
variant control value while determining the active variant
off (default) | on

When you select this check box, the block ignores the variant control value while
determining the active variant and uses the overridden variant control as the active
variant. The overriding variant control must be defined in the variant block dialog box.

If you do not select this option, Simulink determines the active variant choice based on
the variant control that evaluates to true in the global workspace.

When you select this option, the variant badge indicates the change.

For more information, see “Working with Variant Choices”.

Dependencies

Selecting this check box enables the Variant parameter.

1 Blocks — Alphabetical List

1-1970

Programmatic Use
Block Parameter: OverrideUsingVariant
Type: character vector
Value: '' if no overriding variant is specified.
Default: ''

Variant — Overriding variant control
Variant_1 (default) | name of variant control

Select the variant control that Simulink uses if you select Override variant conditions
and use the following variant.

The Variant drop-down list displays all variant controls that are currently defined in the
base workspace or a data dictionary. Use valid MATLAB identifiers to specify variant
controls. For more information, see Simulink.Variant.

Dependencies

To enable this parameter, select the Override variant conditions and use the
following variant check box.

Programmatic Use
Block Parameter: OverrideUsingVariant
Type: character vector
Value: Specified by the variant control expression.
Default: Variant_1

Allow zero active variant controls — Simulate model without active
variant choice
off (default) | on

To simulate a model (containing a variant block) without an active variant choice, select
the Allow zero active variant controls option. When this option is selected and there is
no active variant choice, Simulink disables all the blocks connected to the input and
output stream of Variant Source block. The removed blocks are ignored from update
diagram or simulation.

If you do not select this option, Simulink generates an error when there is no active
variant choice.

When you select this option, the variant badge indicates the change.

 Variant Source

1-1971

Dependencies

To enable this parameter, clear the Override variant conditions and use the following
variant check box.

Programmatic Use
Block Parameter: AllowZeroVariantControls
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show variant condition on block — Annotate block ports
off (default) | on

When you select this option, Simulink annotates each variant control (condition
expression) on the Variant Source block ports.

Programmatic Use
Block Parameter: ShowConditionOnBlock
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Analyze all choices during update diagram and generate preprocessor
conditionals — Analyze all variant choices during update diagram or simulation
off (default) | on

When you select this option, Simulink analyzes all variant choices during an update
diagram or simulation. This analysis helps Simulink to maintain consistency of all variant
branches during simulation and code generation. Simulink routes the output of the active
and inactive regions to an internal VariantMerge block.

When this option is selected, the preprocessor conditionals (#if) are generated in the
code with ERT-based targets.

If this option is selected during code generation, the data type and the semantics at all
input ports of the Variant Source block must be same to avoid failure.

When you select this option, the variant badge indicates the change.

For more information, see “Represent Variant Source and Sink Blocks in Generated Code”
(Embedded Coder)

1 Blocks — Alphabetical List

1-1972

Dependencies

• To enable this parameter, clear the Override variant conditions and use the
following variant check box.

• The check box is available for generating ERT targets only.

Programmatic Use
Block Parameter: GeneratePreprocessorConditionals
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Variant Source

1-1973

See Also
Manual Variant Sink | Manual Variant Source | Model | Simulink.Variant | Variant
Sink | Variant Subsystem

Topics
“Introduction to Variant Controls”
“Define, Configure, and Activate Variants”
“Create Variant Controls Programmatically”
“Variant Systems” (Embedded Coder)
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)
“Variants Example Models”

Introduced in R2016a

1 Blocks — Alphabetical List

1-1974

Variant Subsystem
Template subsystem containing Subsystem blocks as variant choices
Library: Simulink / Ports & Subsystems

Description
The Variant Subsystem block can have one active choice for simulation. The Variant
Subsystem block is a template preconfigured to contain two Subsystem blocks to use as
variant systems. The Variant Subsystem block (variant system container blocks) can
contain a mixture of Subsystem and Model blocks as variant systems. The variant system
container blocks can also include Inport, Outport, and Connection Port blocks. There are
no drawn connections inside the variant system container blocks.

Each variant system is associated with a variant control that is created in the base
workspace. The variant control determines which variant system is active. The variant
control can be a condition expression, a Simulink.Variant object specifying a
condition expression, or a default variant. The variant control that evaluates to true
determines the active variant.

When you select the Specify output when source is unconnected option in the
Outport block that is in a variant subsystem container block, you can specify a nonground
value as its output. Specify the data type in the Signal Attributes section of the Outport
block dialog box.

Ports
During simulation, Simulink disables the inactive ports in a variant subsystem container
block.

 Variant Subsystem

1-1975

Input
Input_Port_1 — Input port corresponding to root-level Inport blocks contained
in variant subsystem
same data types accepted by Inport blocks

Each Subsystem or Model block contained within a variant subsystem represents one
variant system. If the inport names on a variant system are a subset of the inport names
used by the variant subsystem container block, then variant system blocks can have
different numbers of inports than the variant subsystem container block has.

Output
Output_Port_1 — Output port corresponding to root-level Outport blocks
contained in variant subsystem
same data types accepted by Outport blocks

Each Subsystem or Model block contained within a variant subsystem represents one
variant system. If the outport names on a variant system are a subset of the outport
names used by the variant subsystem container block, then variant system blocks can
have different numbers of outports than the variant subsystem container block has.

Parameters
Variant choices (table of variant systems) — Table of variant choices,
variant controls, and conditions
empty table (default)

The table has a row for each variant system contained in the variant subsystem. If there
are no variant systems, the table is empty.

You can use buttons to the left of the Variant choices table to modify the elements in the
table.

To... Click...
Create and add a new subsystem choice: Place a new
subsystem variant choice in the table and create a Subsystem
block in the variant subsystem container block diagram.

1 Blocks — Alphabetical List

1-1976

To... Click...
Create and add a new model variant choice: Place a new
model variant choice in the table and create a Model block in the
variant subsystem container block.
Create/Edit selected variant object: Create a
Simulink.Variant object in the base workspace and open the
Simulink.Variant object parameter dialog box to specify the
variant Condition.
Open selected variant choice block: Open the subsystem block
diagram for the selected row in the Variant choices table.
Refresh dialog information from Variant Subsystem
contents: Update the Variant choices table according to the
variant system and values of the variant control in the base
workspace.

Name (read-only) — Variant system name
'' (default) | name of Subsystem or Model block contained in the variant subsystem

This read-only field is based on the variant system name. To add a subsystem variant

choice, click . To add a model variant choice, click .

Variant Control — Variant control in base workspace
Variant (default) | boolean condition expression | a Simulink.Variant object representing
a boolean condition expression | a Simulink.Parameter object (required for code
generation)

To enter a variant name, double-click a Variant control cell in a new row and type in the
variant control expression.

Programmatic Use
Structure field: Represented by the read-only variant.Name field in the Variant
parameter structure
Type: character vector
Value: Variant control that is associated with the variant choice
Default: ''

Condition (read-only) — Condition for variant controls
'' (default)

 Variant Subsystem

1-1977

This read-only field is based on the condition for the associated variant control in the base
workspace. Create or change a variant condition in the Simulink.Variant parameter
dialog box or in the base workspace.

Override variant conditions and use the following variant — Override
variant conditions and use specified variant
off (default) | on

To choose the active variant based on the evaluation of the variant conditions, use the
default (off) . To choose the active variant based on the value specified in the Variant
parameter, select the Override variant conditions and use following variant
parameter.

For Override variant conditions and use following variant option, the variant control
need not be a Boolean condition expression or a Simulink.Variant object. Variant
controls that start with a % symbol are ignored.

When you select this option, the variant badge indicates the change.

Programmatic Use
Parameter: OverrideUsingVariant
Type: character vector
Value: '' if no overriding variant is specified
Default: ''

Variant — Name of variant to use if overriding variant conditions
'' (default) | character vector

If you select Override variant conditions and use following variant, specify the name
of the variant to use. The variant name must be valid MATLAB identifier.

For Override variant conditions and use following variant option, the variant control
need not be a boolean condition expression, or a Simulink.Variant object. Variant
controls that start with a % symbol are ignored.

Tip You can use the Variant drop-down list to see a list of variant controls that are
specified in the variant choice section.

1 Blocks — Alphabetical List

1-1978

Dependencies

To enable this parameter, select the Override variant conditions and use the
following variant parameter.

Programmatic Use
Parameter: ActiveVariant
Type: character vector
Value: '' if no variant is active, the value is either empty or the name of the active
variant.
Default: ''

Allow zero active variant controls — Simulate model without using active
variant
off (default) | on

To simulate a model (containing a variant system) without an active variant choice, select
the Allow zero active variant controls option. When you select this option and there is
no active variant choice, Simulink disables all the blocks connected to the input and
output stream of variant subsystem container block. The disabled blocks are ignored from
update diagram or simulation.

If you do not select this option, Simulink generates an error when there is no active
variant choice.

Dependencies

• No (default) option of variant is selected
• Override variant conditions and use following variant is cleared ('off')

Programmatic Use
Parameter: AllowZeroVariantControls
Type: character vector
Value: 'off' 'on'
Default: 'off'

Analyze all choices during update diagram and generate preprocessor
conditionals — Generate preprocessor conditionals
off (default) | on

When generating code for an ERT target, this parameter determines whether variant
choices are enclosed within C preprocessor conditional statements (#if).

 Variant Subsystem

1-1979

When you select this option, Simulink analyzes all variant choices during an update
diagram or simulation. This analysis provides early validation of the code generation
readiness of all variant choices.

When you select this option, the variant badge indicates the change.

Dependencies

• The check box is available for generating only ERT targets.
• Override variant conditions and use following variant is cleared ('off').

Programmatic Use
Parameter: GeneratePreprocessorConditionals
Type: character vector
Value: 'off' 'on'
Default: 'off'

Propagate conditions outside of Variant Subsystem — Propagate variant
conditions outside of variant subsystem container block
off (default) | on

When you select this option, Simulink propagates the variant conditions outside of the
variant subsystem container block to determine which components of the model are
active during simulation.

When you select this option, the variant badge indicates the change.

Programmatic Use
Parameter: PropagateVariantConditions
Type: character vector
Value: 'off' 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1980

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa

Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Inport | Outport | Simulink.Variant

Topics
“Variant Systems” (Embedded Coder)

 Variant Subsystem

1-1981

“Define, Configure, and Activate Variants”
“Define, Configure, and Activate Variants”
“Working with Variant Choices”
“Introduction to Variant Controls”
“Create Variant Controls Programmatically”

Introduced in R2010b

1 Blocks — Alphabetical List

1-1982

Vector Concatenate, Matrix Concatenate
Concatenate input signals of same data type to create contiguous output signal
Library: Simulink / Commonly Used Blocks

Simulink / Math Operations
Simulink / Signal Routing

Description
The Concatenate block concatenates the input signals to create an output signal whose
elements reside in contiguous locations in memory.

Tip The Concatenate block is useful for creating an output signal that is nonvirtual.
However, to create a vector of function calls, use a Mux block instead.

You use a Concatenate block to define an array of buses. For details about defining an
array of buses, see “Combine Buses into an Array of Buses”.

The Concatenate block operates in either vector or multidimensional array concatenation
mode, depending on the setting of its Mode parameter. In either case, the block
concatenates the inputs from the top to bottom, or left to right, input ports.

Vector Mode
In vector mode, all input signals must be either vectors or row vectors (1-by-M matrices)
or column vectors (M-by-1 matrices) or a combination of vectors and either row or column
vectors. When all inputs are vectors, the output is a vector.

If any of the inputs are row or column vectors, the output is a row or column vector,
respectively.

 Vector Concatenate, Matrix Concatenate

1-1983

Multidimensional Array Mode
Multidimensional array mode accepts vectors and arrays of any size. It assumes that the
trailing dimensions are all ones for input signals with lower dimensionality. For example,
if the output is 4-D and the input is [2x3] (2-D), this block treats the input as
[2x3x1x1]. The output is always an array. The Concatenate dimension parameter
allows you to specify the output dimension along which the block concatenates its input
arrays.

If you set the Concatenate dimension parameter to 2 and inputs are 2-D matrices, the
block performs horizontal matrix concatenation and places the input matrices side-by-side
to create the output matrix. For example, see the ex_concatenate_horizontal model:

If you set the Concatenate dimension parameter to 1 and inputs are 2-D matrices, the
block performs vertical matrix concatenation and stacks the input matrices on top of each
other to create the output matrix. For example, see the ex_concatenate_vertical model:

For horizontal concatenation, the input matrices must have the same column dimension.
For vertical concatenation, the input matrices must have the same row dimension. All
input signals must have the same dimension for all dimensions other than the
concatenation dimensions.

1 Blocks — Alphabetical List

1-1984

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_concatenate_horizontal.slx')))
matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_concatenate_vertical.slx')))

If you set the Mode parameter to Multidimensional array, the Concatenate
dimension parameter to 3, and the inputs are 2-D matrices, the block performs
multidimensional matrix concatenation. For example, see the ex_concatenate_multidims
model:

Ports

Input
Port_1 — First input to concatenate
scalar | vector | matrix | N-D array

First input to concatenate, specified as a scalar, vector, matrix, or N-D array.

Dependencies

• Inputs must be of the same data type.
• Matrix and N-D array inputs are supported only when you set Mode to

Multidimensional array.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Port_N — Nth input to concatenate
scalar | vector | matrix | N-D array

Nth input to concatenate, specified as a scalar, vector, matrix, or N-D array.

 Vector Concatenate, Matrix Concatenate

1-1985

matlab: open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','blocks','ex_concatenate_multidims.slx')))

Dependencies

• To enable this port, set Number of inputs to an integer greater than or equal to 2.
• Inputs must be of the same data type.
• Matrix and N-D array inputs are supported only when you set Mode to

Multidimensional array.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Concatenation of input signals
scalar | vector | matrix | N-D array

Concatenation of input signals, along specified dimension. Outputs have the same data
type as the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated

Parameters
Number of inputs — Number of input ports
2 (default) | positive integer

Specify the number of inputs for the block as a real-valued, positive integer, less than or
equal to 65536.
Programmatic Use
Block Parameter: NumInputs
Type: character vector
Values: positive integer
Default: '2'

Mode — Type of concatenation
Vector | Multidimensional array

Select the type of concatenation that this block performs. The default Mode of the Vector
Concatenate block is Vector. The default Mode of the Matrix Concatenate block is
Multidimensional array.

1 Blocks — Alphabetical List

1-1986

• When you select Vector the block performs vector concatenation (see “Vector Mode”
on page 1-1983 for details).

• When you select Multidimensional array, the block performs matrix
concatenation (see “Multidimensional Array Mode” on page 1-1984 for details).

Programmatic Use
Block Parameter: Mode
Type: character vector
Values: 'Vector' | 'Multidimensional array'
Default: 'Vector'

Concatenate dimension — Output dimension along which to concatenate input
arrays
1 (default) | scalar integer

Specify the output dimension along which to concatenate the input arrays.

• To concatenate input arrays vertically, enter 1.
• To concatenate input arrays horizontally, enter 2.
• To perform multidimensional concatenation on the inputs, specify an integer greater

than 2.

Dependencies

To enable this parameter, set Mode to Multidimensional array.

Programmatic Use
Block Parameter: ConcatenateDimension
Type: character vector
Values: scalar integer
Default: '1'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated
Multidimensional
Signals

No

 Vector Concatenate, Matrix Concatenate

1-1987

Variable-Size
Signals

Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information about HDL code generation, see Vector Concatenate.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Mux | cat

Topics
“Combine Buses into an Array of Buses”
“Creating and Concatenating Matrices” (MATLAB)

Introduced in R2009b

1 Blocks — Alphabetical List

1-1988

Weighted Sample Time
Support calculations involving sample time

Library
Signal Attributes

Description
The Weighted Sample Time block is an implementation of the Weighted Sample Time
Math block. See Weighted Sample Time Math for more information.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

 Weighted Sample Time

1-1989

Waveform Generator
Output waveforms using signal notations

Description
The Waveform Generator block outputs waveforms based on signal notations that you
enter in the Waveform Definition table.

This block supports these syntaxes for the signal notations:

• Function syntax — Specify all arguments in the specific order for the signal syntax
(see “Algorithms” on page 1-1999).

• Name-value syntax — Specify optional comma-separated pairs of Name,Value
arguments. Name is the argument name and Value is the corresponding value. Name
must appear inside single quotes (' '). You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN. For more
information, see “Algorithms” on page 1-1999.

This block supports normal, accelerator, and rapid accelerator modes and fast restart.

Supported Operators
Operation Operator
Absolute value abs()
Addition +
Division /
Multiplication *
Parentheses ()
Subtraction -
Unary minus -

The Waveform block observes the following rules of operator precedence:

1 Blocks — Alphabetical List

1-1990

1 ()
2 + - (unary)
3 * /
4 + -

Supported Operations
The Waveform Generator block outputs one signal at a time. You can change this output
signal. Express frequency and phase offset parameters in radians. You can also:

• Nest signal notations, for example:
sin('Amplitude',sin('Amplitude',1,'Frequency',1,'Phase',0),'Frequency',1,'Phase',1)

 Waveform Generator

1-1991

• Reference real scalar variables in the base or model workspace, for example:

sin('Amplitude',x,'Frequency',y,'Phase',z)

x, y, and z exist in the base workspace.

For more information on waveforms, see the Algorithms section.

To quickly determine the response of a system to different types of inputs, you can vary
the output signal of the Waveform Generator block while a simulation is in progress.

Limitations
• You cannot tune the parameters of a waveform, such as frequency or amplitude,

during execution of the code that you generate by using Simulink Coder. Instead, you
can generate code that enables you to switch between waveform variants that you
specify. For more information, see “Switch Between Output Waveforms During Code
Execution for Waveform Generator Block” (Simulink Coder).

Ports

Output
Port_1 — Generated output signal
scalar | vector

Output signal specified by an entry in the Waveform Definition table.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Parameters

Main
Output Signal — Waveform for output signal
1 (default) | integer

1 Blocks — Alphabetical List

1-1992

Select waveform definition to specify the output signal. The number corresponds to the
line item in the Waveform Definition table. You can change this parameter while a
simulation is running.

Programmatic Use
Block Parameter: SelectedSignal
Type: character vector
Values: scalar
Default: '1'

Waveform Definition — Waveform signal notations
constant | gaussian(mean,variance,seed) |
pulse(amplitude,trigger_time,duration) |
sawtooth(amplitude,frequence,phase_offset) |
sin(amplitude,frequence,phase_offset) |
square(amplitude,frequence,phase_offset) |
step(step_time,initial_value,final_value)

Enter signal notations in the Waveform Definition table, one waveform definition per
line. For syntax details, see Algorithms.

Signal Attributes

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. See “Specify Data Types Using Data Type
Assistant” in the Simulink User's Guide for more information.

Output minimum — Minimum output value for range checking
[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.

 Waveform Generator

1-1993

• Optimization of the code that you generate from the model. This optimization can
remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block
Parameters”) for some blocks.

• Simulation range checking (see “Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can

remove algorithmic code and affect the results of some simulation modes such as SIL
or external mode. For more information, see “Optimize using the specified minimum
and maximum values” (Simulink Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector

1 Blocks — Alphabetical List

1-1994

Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type
double (default) | Inherit: Inherit via back propagation | single | int8 |
int32 | uint32 | fixdt(1,16,2^0,0) | <data type expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: , 'Inherit: Inherit via back propagation', 'single', 'int8',
'uint8', int16, 'uint16', 'int32', 'uint32', fixdt(1,16,0),
fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Double'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type
Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock data type settings against changes by the fixed-point tools —
off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor.

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

 Waveform Generator

1-1995

See Also

For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

1 Blocks — Alphabetical List

1-1996

See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

 Waveform Generator

1-1997

Action Rationale Impact on Overflows Example
Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Time interval between samples
0.1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar

1 Blocks — Alphabetical List

1-1998

Default: '0.1'

Algorithms
Enter signal notations in the Waveform Definition table, one waveform definition per
line. To add a waveform definition, click Add. The new waveform appears as an empty
character vector. The block interprets empty character vectors or white space character
vectors as ground.

To remove a waveform definition, click Remove. You can select multiple waveforms using
Ctrl+click or Shift+click.

Constant
Constant values can be:

• Numbers
• Workspace variables

• Scalar, real variables only
• Built-in MATLAB constant, pi

• 1
• 1.1
• x
• pi

Gaussian Noise

gaussian(mean,variance,seed)

gaussian('Mean',mean,'Variance',variance,'Seed',seed)

• mean — Mean value of the random variable output.

 Waveform Generator

1-1999

• Default: 0
• variance — Standard deviation squared of the random variable output.

• Default: 1
• Value: Positive constant or positive real scalar variable

• seed — Initial seed value for the random number generator.

• Default: 0
• Value: Constant or real scalar variable

gaussian('Mean',0,'Variance',10,'Seed',1)

Pulse

pulse(amplitude,trigger_time,duration)

pulse('Amplitude',amplitude,'TriggerTime',trigger_time,'Duration',duration)

• amplitude — Value of signal when pulse is high.

1 Blocks — Alphabetical List

1-2000

• Default: 1
• trigger_time — Elapsed simulation time when signal changes to amplitude, in

seconds.

• Default: 1
• Value: Constant or real scalar variable

• duration — How long the signal remains at the given amplitude before returning to
ground, in seconds.

• Default: 1
• Value: Positive constant or positive real scalar variable

pulse('Amplitude',1,'TriggerTime',1,'Duration',1)

Sawtooth

sawtooth(amplitude,frequency,phase_offset)

sawtooth('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_offset)

 Waveform Generator

1-2001

• amplitude — Sawtooth peak value.

• Default: 1
• frequency — Waveform frequency, in rad/s.

• Default: 1
• phase_offset — Horizontal signal shift, based on elapsed simulation time, in

seconds.

• Default: 0

sawtooth('Amplitude',1,'Frequency',1,'Phase',0)

1 Blocks — Alphabetical List

1-2002

Sine Wave

sin(amplitude,frequency,phase_offset)

sin('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_offset)

• amplitude — Amplitude of sine wave.

• Default: 1
• frequency — Waveform frequency, in rad/s.

• Default: 1
• phase_offset — Phase offset, in rads.

• Default: 0

sin('Amplitude',1,'Frequency',1,'Phase',0)

To get the cosine waveform:

sin('Amplitude',1,'Frequency',1,'Phase',pi/2)

 Waveform Generator

1-2003

Square

square(amplitude,frequency,phase_delay,duty_cycle)

square('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_delay,...
'DutyCycle',duty_cycle)

• amplitude — Amplitude of signal.

• Default: 1
• frequency — Waveform frequency in rad/s.

• Default: 1
• phase_delay — Horizontal signal shift based on elapsed simulation time, in seconds.

• Default: 0
• duty_cycle — Percentage of high signal per period (0–100%). The block clips the

minimum signal to 0% and the maximum signal to 100%.

• Default: 50

1 Blocks — Alphabetical List

1-2004

square('Amplitude',1,'Frequency',1,'Phase',0,'DutyCycle',50)

Step

step(step_time,initial_value,final_value)

step('StepTime',step_time,'InitialValue',initial_value,'FinalValue',final_value)

• step_time — Elapsed simulation time when signal changes from initial value to
final value, in seconds.

• Default: 1
• Value: Constant or positive real scalar variable.

• initial_value — Value of signal when elapsed simulation time is less than
step_time, in seconds.

• Default: 0
• final_value — Value of signal when elapsed simulation time is greater than or equal

to step time, in seconds.

 Waveform Generator

1-2005

• Default: 1

step('StepTime',1,'InitialValue',0,'FinalValue',1)

See Also
Repeating Sequence | Signal Builder

Topics
“Signal Basics”

Introduced in R2015b

1 Blocks — Alphabetical List

1-2006

Weighted Sample Time Math
Support calculations involving sample time
Library: Simulink / Math Operations

Description
The Weighted Sample Time Math block adds, subtracts, multiplies, or divides its input
signal, u, by a weighted sample time, Ts. If the input signal is continuous, Ts is the
sample time of the Simulink model. Otherwise, Ts is the sample time of the discrete input
signal. If the input signal is constant, Simulink assigns a finite sample time to the block
based on its connectivity and context.

You specify the math operation with the Operation parameter. The block can output just
a weighted sample time (Ts Only) or a weighted sample rate (1/Ts Only).

Enter the weighting factor in the Weight value parameter. If the weight, w, is 1, that
value does not appear in the equation on the block icon.

Tip You can use the Weighted Sample Time and Weighted Sample Time Math blocks to
extract the sample time from a Simulink signal. To do so, set the Operation parameter to
Ts and the Weight value to 1.0. In this configuration, the block outputs the sample time
of the input signal.

The block computes its output using the precedence rules for MATLAB operators (see
“Operator Precedence” (MATLAB) in the MATLAB documentation). For example, if the
Operation parameter specifies +, the block calculates output using this equation:

u + (Ts * w)

However, if the Operation parameter specifies /, the block calculates output using this
equation:

(u / Ts) / w

 Weighted Sample Time Math

1-2007

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

Specify the input signal, u to add, subtract, multiply, or divide by the weighted sample
time, Ts.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Output
Port_1 — Input signal, adjusted by weighted sample time
scalar | vector | matrix

Output the input signal, adjusted by the weighted sample time, Ts. If the input signal is
continuous, Ts is the sample time of the Simulink model. Otherwise, Ts is the sample
time of the discrete input signal. When the input signal is constant, Simulink assigns a
finite sample time to the block based on its connectivity and context.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | bus

Parameters

Main
Operation — Math operation
+ (default) | - | * | / | Ts Only | 1/Ts Only

Specify the operation to use for adjusting the input signal. You can select: +, -, *, /, Ts
Only, or 1/Ts Only.

Programmatic Use
Block Parameter: TsamMathOp

1 Blocks — Alphabetical List

1-2008

Type: character vector
Values: '+' | '-' | '*' | '/' | 'Ts Only' | '1/Ts Only'
Default: '+'

Weight value — Weight of sample time
1.0 (default) | real-valued scalar

Enter the weight of the sample time as a real-valued scalar.

Programmatic Use
Block Parameter: weightValue
Type: character vector
Values: real-valued scalar
Default: '1.0'

Implement using — Method for adjusting sample time
Online Calculations (default) | Offline Scaling Adjustment

Select one of two modes: online calculations or offline scaling adjustment.

Result of (Ts * w) Output Data Type of Two
Modes

Block Execution

A power of 2, or an integer
value

The same, when Output
data type is Inherit:
Inherit via internal
rule

Equally efficient in both
modes

Not power of 2 and not an
integer value

Different More efficient for the offline
scaling mode

Note When the Implement using parameter is not visible, operations default to online
calculations.

Dependencies

To enable this parameter, set Operation to * or /.

Programmatic Use
Block Parameter: TsampMathImp
Type: character vector

 Weighted Sample Time Math

1-2009

Values: 'Online Calculations' | 'Offline Scaling Adjustment'
Default: 'Online Calculations'

Signal Attributes
Output data type — Data type of output signal
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | <data type expression>

Specify the data type for the output.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via
back propagation' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding function
into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

1 Blocks — Alphabetical List

1-2010

Action Rationale Impact on Overflows Example
Select this
check box (on).

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select
this check box
(off).

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output, or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

 Weighted Sample Time Math

1-2011

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Probe

Topics
“What Is Sample Time?”
“Specify Sample Time”
“View Sample Time Information”

1 Blocks — Alphabetical List

1-2012

Introduced before R2006a

 Weighted Sample Time Math

1-2013

While Iterator
Repeat execution of a subsystem while a logical expression is true
Library: Ports & Subsystems

Description
The While Iterator block, when placed in a Subsystem block, repeatedly executes the
contents of the subsystem during the current time step while the value of the input
condition is true or 1. Use this block to implement the block diagram equivalent of a
while loop in a programming language.

The While Iterator Subsystem block is preconfigured with a While Iterator block. Placing
a While Iterator block in a Subsystem block makes it an atomic subsystem.

Ports

Input
cond — Logical condition signal
scalar

Signal with the result from evaluating a logical condition. Because the subsystem is not
externally triggered during a time step, evaluating a condition as true (1) or false (0)
must reside within the subsystem.

The data type and values of the signal can be:

• Logical (Boolean) — true (1) or false (0) .
• Numerical — true (any positive or negative number) or false (0).

1 Blocks — Alphabetical List

1-2014

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

IC — Initial logical condition
scalar

Signal with the initial logical condition. At the beginning of each time step:

• If IC is false (0), the subsystem does not execute during the time step.
• If IC is true (value not equal to 0), the subsystem starts executing and continues to

repeat execution as long as the cond signal is true.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output Arguments
Iteration number — Signal with the number of iterations
scalar

Signal with the number of While Iterator Subsystem block executions during each time
step.
Data Types: double | int8 | int16 | int32

Parameters
Maximum number of iterations — Specify maximum number of iterations
-1 (default) | integer

Specify maximum number of iterations allowed during a time step.

-1
Any number of iterations as long as the cond signal is true (value not equal to 0) . If
you specify -1 and the cond signal never becomes false (0), the simulation runs in an
infinite loop. In this case, the only way to stop the simulation is to terminate MATLAB.

integer
Maximum number of iterations during a time step.

 While Iterator

1-2015

Programmatic Use
Block Parameter: MaxIters
Type: character vector
Values: '5' | '-1' | '<integer>'
Default: '5'

While loop type — Select type of block
while (default) | do-while

Select type of block.

while
The While Iterator block has two inputs, a cond (logical condition) input and an IC
(initial logical condition) input. The source of the IC signal must be external to the
While Iterator Subsystem block.

At the beginning of each time step:

• If the IC input is true (value not equal to 0), the blocks in the subsystem repeat
execution while the cond input is true. This process continues during a time step
as long as the cond input is true and the number of iterations is less than or equal
to the Maximum number of iterations.

• If the IC input is false, the While Iterator block does not execute the contents of
the subsystem.

do-while
The While Iterator block has one input, the cond (while condition) input.

At each time step, the blocks in the subsystem repeat execution while the cond input
is true (value not equal to 0). This process continues as long as the cond input is true
and the number of iterations is less than or equal to the Maximum number of
iterations.

Programmatic Use
Block pParameter: WhileBlockType
Type: character vector
Values: 'while' | 'do-while'
Default: 'while'

States when starting — Select block states between time steps
held (default) | reset

1 Blocks — Alphabetical List

1-2016

Select how to handle block states between time steps.

held
Hold block states between time steps. Block state values persist across time steps.

reset
Reset block states to their initial values at the beginning of each time step and before
the first iteration loop.

Programmatic Use
Block Parameter: ResetStates
Type: character vector
Values: 'held' | 'reset'
Default: 'held'

Show iteration number port — Control display of output port
clear | select

Control display of output port for signal with number of block executions. The value of the
signal from this port starts at 1and is incremented by 1 for each succeeding iteration.

 off
Remove output port.

 on
Display output port for signal with iteration number.

Dependencies

Selecting this parameter enables the Output data type parameter.

Programmatic Use
Block Parameter: ShowIterationPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output data type — Select output data type for current iteration number
int32 (default) | int16 | int8 | double

 While Iterator

1-2017

Select output data type for iteration number signal. The value of this signal is the number
of iterations during a time step and the total number of iterations at the end of a time
step.

int32
Signed 32-bit integer.

int16
Signed 16-bit integer.

int8
Signed 8-bit integer.

double
Double-precision floating point.

Dependencies

Select the Show iteration number port check box to enable this parameter.

Programmatic Use
Block parameter: OutputDataType
Type: character vector
Value: 'int32' | 'int16' | 'int8' | 'double'
Default: 'int32'

See Also
Blocks
Subsystem | While Iterator Subsystem

Topics
Iterator Subsystem Execution

Introduced before R2006a

1 Blocks — Alphabetical List

1-2018

While Iterator Subsystem
Subsystem that repeats execution during a simulation time step
Library: Simulink / Ports & Subsystems

Description
The While Iterator Subsystem block is a Subsystem block preconfigured as a starting
point for creating a subsystem that repeats execution during a simulation time step while
a logical condition is true.

Use While Iterator Subsystem blocks to model:

• Block diagram equivalent of a program while or do-while loop.
• An iterative algorithm that converges on a more accurate solution after multiple

iterations.

When using simplified initialization mode, if you place a block that needs elapsed time
(such as a Discrete-Time Integrator block) in a While Iterator Subsystem block, Simulink
displays an error.

If the output signal from a While Iterator Subsystem block is a function-call signal,
Simulink displays an error when you simulate the model or update the diagram.

 While Iterator Subsystem

1-2019

Ports

Input
In1 — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The
port label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

IC (initial logical condition) — Control initial execution of a subsystem
block
scalar

Placing a While Iterator block connected to an Input block in a Subsystem block adds this
external input port to the block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The
port label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

1 Blocks — Alphabetical List

1-2020

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa

Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Blocks
Subsystem | While Iterator

Topics
Iterator Subsystem Execution

Introduced before R2006a

 While Iterator Subsystem

1-2021

Width
Output width of input vector

Library
Signal Attributes

Description
The Width block generates as output the width of its input vector.

You can use an array of buses as an input signal to a Width block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Data Type Support
The Width block accepts real or complex signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

The Width block also supports mixed-type signal vectors.

1 Blocks — Alphabetical List

1-2022

When the Output data type mode is not Choose intrinsic data type, the block
supports only built-in numeric types. For more information, see “Data Types Supported by
Simulink” in the Simulink documentation.

Parameters

Note The Width block ignores the Data type override setting of the Fixed-Point Tool.

Output data type mode
Specify the output data type to be the same as the input, or inherit the data type by
back propagation. You can also choose to specify a built-in data type from the drop-
down list in the Output data type parameter.

Output data type
This parameter is visible when you select Choose intrinsic data type for
Output data type mode. Select a built-in data type from the drop-down list.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus
Sample Time Constant
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Width

1-2023

Wrap To Zero
Set output to zero if input is above threshold
Library: Simulink / Discontinuities

Description
The Wrap To Zero block sets the output to zero when the input is above the Threshold
value. When the input is less than or equal to the Threshold, then the output is equal to
the input.

Ports

Input
Port_1 — Input signal
scalar | vector

Example:
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Output
Port_1 — Output signal
scalar | vector

Output signal set to the input signal value or zero. The data type of the output is the same
data type as the input.

1 Blocks — Alphabetical List

1-2024

Tip If the input data type cannot represent zero, parameter overflow occurs. To detect
this overflow, go to the Diagnostics > Data Validity pane of the Configuration
Parameters dialog box and set Parameters > Detect overflow to warning or error.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters
To edit the parameters for the Wrap to Zero block, double-click the block icon.

Threshold — Threshold for outputting zero
255 (default) | scalar

Threshold value for setting the output value to zero.

Programmatic Use
Block Parameter: Threshold
Type: character vector
Values: scalar
Default: '255'

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

No

 Wrap To Zero

1-2025

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on HDL code generation, see Wrap To Zero.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Saturation | Saturation Dynamic

Introduced before R2006a

1 Blocks — Alphabetical List

1-2026

XY Graph
Display X-Y plot of signals using MATLAB figure window
Library: Simulink / Sinks

Description
The XY Graph block displays an X-Y plot of its inputs in a MATLAB figure window.

The block has two scalar inputs. The block plots data from the first input (the x direction)
against data from the second input (the y direction). (See “Port Location After Rotating or
Flipping” for a description of the port order for various block orientations.) This block is

 XY Graph

1-2027

useful for examining limit cycles and other two-state data. Data outside the specified
range does not appear.

A figure window appears for each XY Graph block in the model at the start of simulation.

Note The XY Graph block does not support stepping back in a simulation.

Ports

Input
Port1 — X-axis values
scalar

Plot input as x values on an X-Y plot. See “Port Location After Rotating or Flipping” for a
description of the port order for various block orientations.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Port2 — Y-axis values
scalar

Plot input as y values on an X-Y plot. See “Port Location After Rotating or Flipping” for a
description of the port order for various block orientations.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point

Parameters
X-min — Minimum x
-1 (default) | real number

Specify the minimum x-axis value. Data below the minimum x is ignored.

X-max — Maximum x
1 (default) | real number

1 Blocks — Alphabetical List

1-2028

Specify the maximum x-axis value. Data above the maximum x is ignored.

Y-min — Minimum y
-1 (default) | real number

Specify the minimum y-axis value. Data below the minimum y is ignored.

Y-max — Maximum y
1 (default) | real number

Specify the maximum y-axis value. Data above the maximum y is ignored.

Sample time — Sample time
-1 (default) | positive number

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. For more information, see “Specify Sample Time”.

See Also
Scope

Topics
“Decide How to Visualize Simulation Data”

Introduced before R2006a

 XY Graph

1-2029

Zero-Order Hold
Implement zero-order hold sample period
Library: Simulink / Discrete

Description
The Zero-Order Hold block holds its input for the sample period you specify. If the input is
a vector, the block holds all elements of the vector for the same sample period.

You specify the time between samples with the Sample time parameter. A setting of -1
means the block inherits the Sample time.

Tip Do not use the Zero-Order Hold block to create a fast-to-slow transition between
blocks operating at different sample rates. Instead, use the Rate Transition block.

Bus Support
The Zero-Order Hold block is a bus-capable block. The input can be a virtual or nonvirtual
bus signal. No block-specific restrictions exist. All signals in a nonvirtual bus input to a
Zero-Order Hold block must have the same sample time, even if the elements of the
associated bus object specify inherited sample times. You can use a Rate Transition block
to change the sample time of an individual signal, or of all signals in a bus. See “Specify
Bus Signal Sample Times” and “Bus-Capable Blocks” for more information.

You can use an array of buses as an input signal to a Zero-Order Hold block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Comparison with Similar Blocks
The Memory, Unit Delay, and Zero-Order Hold blocks provide similar functionality but
have different capabilities. Also, the purpose of each block is different.

1 Blocks — Alphabetical List

1-2030

This table shows recommended usage for each block.

Block Purpose of the Block Reference Examples
Unit Delay Implement a delay using a

discrete sample time that you
specify. The block accepts and
outputs signals with a discrete
sample time.

• sldemo_enginewc
(Compression subsystem)

Memory on page
1-1056

Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed
in minor time step) signals and
outputs a signal that is fixed in
minor time step.

• sldemo_bounce
• sldemo_clutch (Friction

Mode Logic/Lockup FSM
subsystem)

Zero-Order Hold Convert an input signal with a
continuous sample time to an
output signal with a discrete
sample time.

• sldemo_radar_eml
• aero_dap3dof

Each block has the following capabilities.

Capability Memory Unit Delay Zero-Order Hold
Specification of
initial condition

Yes Yes No, because the block
output at time t = 0
must match the input
value.

Specification of
sample time

No, because the block
can only inherit
sample time from the
driving block or the
solver used for the
entire model.

Yes Yes

Support for frame-
based signals

No Yes Yes

Support for state
logging

No Yes No

 Zero-Order Hold

1-2031

matlab:sldemo_enginewc
matlab:sldemo_bounce
matlab:sldemo_clutch
matlab:sldemo_radar_eml
matlab:aero_dap3dof

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal that the block holds by one sample period.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output signal
scalar | vector

Output signal that is the input held by one sample period.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Sample time (-1 for inherited) — Discrete interval between sample time
hits
-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter
to -1. See “Specify Sample Time” in the online documentation for more information.

Do not specify a continuous sample time, either 0 or [0,0]. This block supports only
discrete sample times. When this parameter is -1, the inherited sample time must be
discrete and not continuous.

1 Blocks — Alphabetical List

1-2032

Block Characteristics
Data Types double | single | Boolean | base integer | fixed point |

enumerated | bus
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (strong.h) under certain
conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see Zero-Order Hold.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Memory | Unit Delay

 Zero-Order Hold

1-2033

Introduced before R2006a

1 Blocks — Alphabetical List

1-2034

Zero-Pole
Model system by zero-pole-gain transfer function
Library: Simulink / Continuous

Description
The Zero-Pole block models a system that you define with the zeros, poles, and gain of a
Laplace-domain transfer function. This block can model single-input single output (SISO)
and single-input multiple-output (SIMO) systems.

Conditions for Using This Block
The Zero-Pole block assumes the following conditions:

• The transfer function has the form

H s K
Z s

P s
K

s Z s Z s Z m

s P s P
()

()

()

(())(()) (())

(())(())
= =

- - -

- -

1 2

1 2

…

…((())
,

s P n-

where Z represents the zeros, P the poles, and K the gain of the transfer function.
• The number of poles must be greater than or equal to the number of zeros.
• If the poles and zeros are complex, they must be complex-conjugate pairs.
• For a multiple-output system, all transfer functions must have the same poles. The

zeros can differ in value, but the number of zeros for each transfer function must be
the same.

Note You cannot use a Zero-Pole block to model a multiple-output system when the
transfer functions have a differing number of zeros or a single zero each. Use multiple
Zero-Pole blocks to model such systems.

 Zero-Pole

1-2035

Modeling a Single-Output System
For a single-output system, the input and the output of the block are scalar time-domain
signals. To model this system:

1 Enter a vector for the zeros of the transfer function in the Zeros field.
2 Enter a vector for the poles of the transfer function in the Poles field.
3 Enter a 1-by-1 vector for the gain of the transfer function in the Gain field.

Modeling a Multiple-Output System
For a multiple-output system, the block input is a scalar and the output is a vector, where
each element is an output of the system. To model this system:

1 Enter a matrix of zeros in the Zeros field.

Each column of this matrix contains the zeros of a transfer function that relates the
system input to one of the outputs.

2 Enter a vector for the poles common to all transfer functions of the system in the
Poles field.

3 Enter a vector of gains in the Gain field.

Each element is the gain of the corresponding transfer function in Zeros.

Each element of the output vector corresponds to a column in Zeros.

Transfer Function Display on the Block
The Zero-Pole block displays the transfer function depending on how you specify the zero,
pole, and gain parameters.

• If you specify each parameter as an expression or a vector, the block shows the
transfer function with the specified zeros, poles, and gain. If you specify a variable in
parentheses, the block evaluates the variable.

For example, if you specify Zeros as [3,2,1], Poles as (poles), where poles is
[7,5,3,1], and Gain as gain, the block looks like this:

1 Blocks — Alphabetical List

1-2036

• If you specify each parameter as a variable, the block shows the variable name
followed by (s) if appropriate.

For example, if you specify Zeros as zeros, Poles as poles, and Gain as gain, the
block looks like this:

Ports

Input
Port_1 — Input signal
scalar

Input signal, specified as a scalar with data type double.
Data Types: double

Output
Port_1 — Output signal
scalar | vector

System modeled by a zero-pole gain transfer function, provided as a scalar or vector
signal with data type double.

• When modeling a single-output system, the block outputs a scalar time-domain signal.
For more information, see “Modeling a Single-Output System” on page 1-2036.

• When modeling a multiple-output system, the block outputs a vector, where each
element is an output of the system. For more information, see “Modeling a Multiple-
Output System” on page 1-2036.

Data Types: double

 Zero-Pole

1-2037

Parameters
Zeros — Matrix of zeros
[1] (default) | vector | matrix

Define the matrix of zeros.

• For a single-output system, enter a vector for the zeros of the transfer function.
• For a multiple-output system, enter a matrix. Each column of this matrix contains the

zeros of a transfer function that relates the system input to one of the outputs.

Programmatic Use
Block Parameter: Zeros
Type: character vector
Value: vector | matrix
Default: '[1]'

Poles — Vector of poles
[0 -1] (default) | vector

Define the vector of poles.

• For a single-output system, enter a vector for the poles of the transfer function.
• For a multiple-output system, enter a vector for the poles common to all transfer

functions of the system.

Programmatic Use
Block Parameter: Poles
Type: character vector
Value: vector
Default: '[0 -1]'

Gain — Vector of gains
[1] (default) | vector

Define the vector of gains.

• For a single-output system, enter a 1-by-1 vector for the gain of the transfer function.
• For a multiple-output system, enter a vector of gains. Each element is the gain of the

corresponding transfer function in Zeros.

1 Blocks — Alphabetical List

1-2038

Programmatic Use
Block Parameter: Gain
Type: character vector
Value: vector
Default: '[1]'

Absolute tolerance — Absolute tolerance for computing block states
auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar
or vector. To inherit the absolute tolerance from the Configuration Parameters, specify
auto or -1.

• If you enter a real scalar, then that value overrides the absolute tolerance in the
Configuration Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension
of the continuous states in the block. These values override the absolute tolerance in
the Configuration Parameters dialog box.

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the
Configuration Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector
Values: 'auto' | '-1' | any positive real-valued scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Assign unique name to each state
' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

Assign a unique name to each state. If this field is blank (' '), no name assignment
occurs.

• To assign a name to a single state, enter the name between quotes, for example,
'position'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a character vector, cell array, or structure.

 Zero-Pole

1-2039

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size
Signals

No

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions
on speed and memory often found in embedded systems. The code generated can contain
dynamic allocation and freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally valid and generally

1 Blocks — Alphabetical List

1-2040

acceptable in resource-rich environments, smaller embedded targets often cannot
support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into
discrete equivalents that support production code generation. To start the Model
Discretizer, select Analysis > Control Design > Model Discretizer. One exception is
the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Discrete Zero-Pole

Topics
“States”

Introduced before R2006a

 Zero-Pole

1-2041

Functions — Alphabetical List

2

add_block
Add block to model

Syntax
h = add_block(source,dest)
h = add_block(source,dest,'MakeNameUnique','on')
h = add_block(sourceIn,destIn,'CopyOption','duplicate')
h = (___ ,Name,Value)

Description
h = add_block(source,dest) adds a copy of the block source from a library or
model to the specified destination model and block name. This syntax creates the block at
the same location as it appears in the model or the library model.

If you are copying between models or from a library, load the destination model first.

h = add_block(source,dest,'MakeNameUnique','on') ensures that the
destination block name is unique in the model. This syntax adds a number to the
destination block name if a block with that name exists, incrementing to ensure a unique
name.

h = add_block(sourceIn,destIn,'CopyOption','duplicate') duplicates an
inport block in a subsystem, giving the destination block the same port number as the
source block. Duplicate an inport to branch a signal from an input port without creating a
port or adding lines. For more information, see “Creating Duplicate Inports” on page 1-
800.

h = (___ ,Name,Value) uses optional Name,Value arguments.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

2 Functions — Alphabetical List

2-2

With the add_block function, you can use block parameter and value pairs. For a list of
all the block parameters, see “Common Block Properties” on page 6-111 and “Block-
Specific Parameters” on page 6-130.

Examples

Add Block to Model from a Library

Add the block from the Simulink library to the model f14.

Load or open the destination model.

open_system('f14');

Add the Scope block from the Simulink Sinks library to f14, naming the new block
MyScope.

add_block('simulink/Sinks/Scope','f14/MyScope');

Add a Block from Another Model

Add a copy of a block from the model f14 to vdp.

Load or open the destination model.

open_system('vdp');

Add the Actuator Model block from f14 to vdp.

add_block('f14/Actuator Model','vdp/Actuator Model');

Add a Block Using a Unique Name

Add the block from the Simulink library to the model vdp. Because there is already a
block named Scope in vdp, use the MakeNameUnique option to ensure that the new block
name is unique.

Load or open the destination model.

 add_block

2-3

open_system('vdp');

Add the Scope block from the Simulink Sinks library to vdp, ensuring that the name is
unique.

add_block('simulink/Sinks/Scope','vdp/Scope','MakeNameUnique','on')

Duplicate an Inport Block in a Subsystem

Add an inport block in the f14/Controller subsystem that uses the same port number
as another inport in that subsystem.

Duplicate the Stick Input (in) block in the Controller subsystem, naming the copy Stick
Input (in)2. The resulting block uses the same port number as Stick Input (in) but does
not add an inport on the parent subsystem. The signal that enters that port branches to
both inports.

add_block('f14/Controller/Stick Input (in)',...
'f14/Controller/Stick Input (in)2','CopyOption','duplicate')

Add a Block and Set Parameters

Add a block from a library to a model and set parameters using a Name,Value pair.

Load or open the destination model.

open_system('vdp');

Add a Gain block from the library to vdp, and set the Gain value to 5.

add_block('simulink/Math Operations/Gain','vdp/Five','Gain','5')

Input Arguments
source — Block to copy to model
block path name | library block path name

Block to copy to model, specified as:

2 Functions — Alphabetical List

2-4

• The full block path name if you are copying the block from another model, for
example, 'vdp/Mu'. This usage copies the block and its settings.

• The library block path name if you want to add a block from a library, for example,
'simulink/Math Operations/Gain'.

To get the library block path name, you can hover over the block in the Library
Browser. Alternatively, you can open the library model, select the block, and enter gcb
at the command line. To open the library model, in the Library Browser, right-click the
library name in the library list and select Open library_name library.

You can also use the syntax 'built-in/blocktype' as the source block path name,
where blocktype is the programmatic block name-—the value of the BlockType
parameter (see “Common Block Properties” on page 6-111). However, blocks added using
'built-in/blocktype' sometimes have different default parameter values from
library blocks.

For subsystems and masked blocks, use the library block path name. Using the
BlockType value (SubSystem) creates an empty subsystem.
Example: 'vdp/Mu', 'simulink/Sinks/Scope'

dest — Name and location of new block
block path name

Name and location of the new block in the model, specified as the block path name.
Example: 'f14/Controller/MyNewBlock'

sourceIn — Inport block whose port number to copy
block path name

Inport block whose port number to copy, specified as the block path name.
Example: 'f14/Controller/Stick Input (in)', 'myModel/mySubsystem/In1'

destIn — Inport block to create
block path name

Inport block with duplicate port number to create, specified as the block path name.
Create the destination block in the same system as the source block.
Example: 'myModel/mySubsystem/DupPortIn'

 add_block

2-5

Output Arguments
h — New block
handle

New block, returned as a handle.

See Also
delete_block

Topics
“Delete an Annotation Programmatically”
“Create Annotations Programmatically”

Introduced before R2006a

2 Functions — Alphabetical List

2-6

add_exec_event_listener
Register listener for block method execution event

Syntax
h = add_exec_event_listener(blk,event,listener);

Description
h = add_exec_event_listener(blk,event,listener) registers a listener for a
block method execution event where the listener is a MATLAB program that performs
some task, such as logging runtime data for a block, when the event occurs (see “Listen
for Method Execution Events”). Simulink software invokes the registered listener
whenever the specified event occurs during simulation of the model. You cannot register a
listener for virtual blocks.

Note Simulink software can register a listener only while a simulation is running.
Invoking this function when no simulation is running results in an error message. To
ensure that a listener catches all relevant events triggered by a model's simulation, you
should register the listener in the model's StartFcn callback function (see “Callbacks for
Customized Model Behavior”).

Input Arguments
blk

Specifies the block whose method execution event the listener is intended to handle.
May be one of the following:

• Full pathname of a block
• A block handle
• A block runtime object (see “Access Block Data During Simulation”.)

 add_exec_event_listener

2-7

event
Specifies the type of event for which the listener listens. It may be any of the
following:

Event Occurs...
'PreDerivatives' Before a block's Derivatives method

executes
'PostDerivatives' After a block's Derivatives method

executes
'PreOutputs' Before a block's Outputs method

executes.
'PostOutputs' After a block's Outputs method

executes
'PreUpdate' Before a block's Update method

executes
'PostUpdate' After a block's Update method executes

listener
Specifies the listener to be registered. It may be either a character vector specifying a
MATLAB expression, e.g., 'disp(''here'')' or a handle to a MATLAB function
that accepts two arguments. The first argument is the block runtime object of the
block that triggered the event. The second argument is an instance of EventData
class that specifies the runtime object and the name of the event that just occurred.

Output Arguments
add_exec_event_listener returns a handle to the listener that it registered. To stop
listening for an event, use the MATLAB clear command to clear the listener handle from
the workspace in which the listener was registered.

Introduced before R2006a

2 Functions — Alphabetical List

2-8

add_line
Add line to Simulink model

Syntax
h = add_line(sys,out,in)
h = add_line(sys,out,in,'autorouting',autoOption)
h = add_line(sys,points)

Description
h = add_line(sys,out,in) adds a line in the model or subsystem sys that connects
one block's output port out to another block's input port in. This syntax draws the most
direct route from port to port, for example, diagonal lines or lines that go through other
blocks.

You can connect ports when:

• The input port does not already have a connection.
• The blocks are compatible for connecting.

h = add_line(sys,out,in,'autorouting',autoOption) connects blocks,
specifying whether to route the lines around other blocks.

h = add_line(sys,points) adds a line drawn by (x,y) coordinate points relative to
the upper-left corner of the Simulink Editor canvas before any canvas resizing. If either
end of the line is within five pixels of a corresponding port, the function connects the line
to it. The line can have multiple segments.

Examples

Connect Blocks Using Port Numbers

Use the block port numbers to add a line to connect blocks.

 add_line

2-9

Create a model and open it.

open_system(new_system('connect_model'));

Add and position a Constant block and a Gain block.
add_block('simulink/Commonly Used Blocks/Constant','connect_model/Constant');
set_param('connect_model/Constant','position',[140,80,180,120]);
add_block('simulink/Commonly Used Blocks/Gain','connect_model/Gain');
set_param('connect_model/Gain','position',[220,80,260,120]);

Connect the blocks. Each block has one port, so specify port 1.

add_line('connect_model','Constant/1','Gain/1');

Connect Blocks Using Port Handles

Get the port handles and connect the ports using add_line.

Open the model vdp.

open_system('vdp');

Delete the line that connects the Mu gain block to the Sum block.

delete_line('vdp','Mu/1','Sum/2');

Get the port handles from the Mu block and the Sum block.

h = get_param('vdp/Mu','PortHandles');
h1 = get_param('vdp/Sum','PortHandles');

Look at the h1 structure. Notice the two handles for the Inport property.

h1

h1 =

 struct with fields:

 Inport: [47.0002 54.0002]
 Outport: 39.0002
 Enable: []
 Trigger: []
 State: []

2 Functions — Alphabetical List

2-10

 LConn: []
 RConn: []
 Ifaction: []
 Reset: []

Index into the Outport and Inport properties on the port handles to get the handles you
want and connect them. Connect to the second inport.

add_line('vdp',h.Outport(1),h1.Inport(2));

Add a Branched Line

You can branch a line by adding a connection programmatically. You can use the points
syntax to draw the segment, or you can draw the line by specifying the ports to connect.
When using the port, use automatic line routing to improve the look of the branched line.

Add a scope to the vdp model above the outport.

vdp
add_block('simulink/Commonly Used Blocks/Scope','vdp/Scope1');
set_param('vdp/Scope1','position',[470,70,500,110]);

Connect the Integrator block x1 to Scope1. This code branches the existing line from the
x1 output and connects it to the scope. With autorouting on, the resulting line is
segmented.

add_line('vdp','x1/1','Scope1/1','autorouting','on')

Connect Blocks Using Points

You can use points on the canvas as the start and end of each segment. Get the port
locations using get_param with the 'PortConnectivity' option.

Open the model vdp and delete the line that connects the Mu and Sum blocks.

vdp
delete_line('vdp','Mu/1','Sum/2')

Get the port locations for Mu. Mu has two ports. The first is the input port, and the
second is the output port.

 add_line

2-11

mu = get_param('vdp/Mu','PortConnectivity');
mu.Position

ans =

 190 150

ans =

 225 150

Get the port locations for Sum, which has three ports. The second position is the lower
input port.

s = get_param('vdp/Sum','PortConnectivity');
s.Position

ans =

 250 135

ans =

 250 150

ans =

 285 145

Connect the ports using the output and input points.

add_line('vdp',[225 150; 250 150])

Connect Blocks Using Autorouting Options

This example shows the effect of adding lines with and without autorouting options.

Create a model route. Display default block names.

open_system(new_system('route'));
set_param('route','HideAutomaticNames','off')

2 Functions — Alphabetical List

2-12

Add blocks as shown. Add an inport and outport to each subsystem.

Add lines to connect the outputs from Subsystem to the inputs of Subsystem1.

add_line('route',{'Subsystem/1','Subsystem/2'},...
 {'Subsystem1/1','Subsystem1/2'})

Because you did not use the autorouting options, the function draws straight lines, which
pass through the Gain block.

Delete the lines. Add lines again, this time using the autorouting option set to 'on'.

add_line('route',{'Subsystem/1','Subsystem/2'},...
 {'Subsystem1/1','Subsystem1/2'},'autorouting','on')

The lines route around the Gain block.

 add_line

2-13

Delete the lines. Add lines again, using the smart autorouting option. When you use an
array to connect two sets of inports and outports, 'smart' autorouting routes them
together if doing so makes better use of the space.

add_line('route',{'Subsystem/1','Subsystem/2'},...
 {'Subsystem1/1','Subsystem1/2'},'autorouting','smart')

Input Arguments
sys — Model or subsystem to add line to
character vector

Model or subsystem to add the line to, specified as character vector.
Example: 'vdp' , 'f14/Controller'

out — Block output port to connect line from
block/port name or number character vector | port handle | array of port designators

Block output port to connect line from, specified as:

• The block name, a slash, and the port name or number. Most block ports are
numbered from top to bottom or from left to right. For a state port, use the port name
State instead of a port number.

• The port handle that you want to connect from.
• An array of either of these port designators.

Use 'PortHandles' with get_param to get the handles.
Example: 'Mu/1', 'Subsystem/2', h.Outport(1){'Subsystem/
1','Subsystem/2'}

2 Functions — Alphabetical List

2-14

in — Block input port to connect line to
block/port name or number character vector | port handle | array of port designators

Block input port to connect line to, specified as:

• The block name, a slash, and the port name or number. The port name on:

• An enabled subsystem is Enable.
• A triggered subsystem is Trigger.
• If Action and Switch Case Action subsystems is Action.

• The port handle that you want to add the line to.
• An array of either of these port designators.

Use the 'PortHandles' option with get_param to get handles.
Example: 'Mu/1', 'Subsystem/2', h.Inport(1), {'Subsystem/
1','Subsystem/2'}

autoOption — Type of automatic line routing
'off' (default) | 'on' | 'smart'

Type of automatic line routing around other blocks, specified as:

• 'off' for no automatic line routing
• 'on' for automatic line routing
• 'smart' for automatic line routing that takes the best advantage of the blank spaces

on the canvas and avoids overlapping other lines and labels

points — Points of the line to draw
matrix

Points of the line to draw, specified as at least a 2-by-2 matrix. Add a row for every
segment you want to draw. Specify points as (x,y) coordinates from the upper-left corner
of the Editor before any canvas resizing.
Example: [100 300; 200 300; 200 300; 200 500]

 add_line

2-15

Output Arguments
h — Line
handle

Line created by add_line, returned as a handle.

See Also
add_block | delete_block | delete_line | get_param | set_param

Topics
“Create an Enabled Subsystem”
“Create a Triggered Subsystem”

Introduced before R2006a

2 Functions — Alphabetical List

2-16

add_param
Add parameter to Simulink system

Syntax
add_param('sys','parameter1',value1,'parameter2',value2,...)

Description
The add_param command adds the specified parameters to the specified system and
initializes the parameters to the specified values. Case is ignored for parameter names.
Value character vectors are case sensitive. The value of the parameter must be a
character vector. Once the parameter is added to a system, set_param and get_param
can be used on the new parameters as if they were standard Simulink parameters.
Simulink software saves these new parameters with the model file.

Note If you attempt to add a parameter that has the same name as an existing parameter
of the system, Simulink software displays an error.

Examples
This command
add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

adds the parameters DemoName and EquationOrder with 'VanDerPolEquation' and
'2' to the vdp system. Afterward, you can use the following command to retrieve the
value of the DemoName parameter.

get_param('vdp','DemoName')

See Also
delete_param | get_param | set_param

 add_param

2-17

Introduced before R2006a

2 Functions — Alphabetical List

2-18

addFile
Add file to Simulink Project

Syntax
addFile(proj,fileorfolder)

Description
addFile(proj,fileorfolder) adds a file to the project proj.

Examples

Add Files to a Project

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Remove a file.

removeFile(proj,'models/AnalogControl.mdl')

Add the file back to the project.

addFile(proj,'models/AnalogControl.mdl');

Create and save a new model.

new_system('mymodel');
save_system('mymodel');

Add the new file to the project and return a project file object.

newPrjFile = addFile(proj,'mymodel.slx');

 addFile

2-19

Use the project file object to manipulate the file, for example, adding a label.

addLabel(newPrjFile, 'Classification', 'Design')

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

fileorfolder — Path of file or folder
character vector | cell array of character vectors | string array

Path of the file or folder to add relative to the project root folder, specified as a character
vector, string, or array. Files must include the file extension. The file or folder must be
within the root folder.
Example: ‘models/myModelName.slx’

See Also
Functions
addFolderIncludingChildFiles | removeFile | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-20

addFolderIncludingChildFiles
Add folder and child files to Simulink Project

Syntax
addFolderIncludingChildFiles(proj,folder)

Description
addFolderIncludingChildFiles(proj,folder) adds a folder and all child files to
the project proj.

Examples

Add Folders to a Project

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Create a new folder in the project folder.

new_folder_path = fullfile(proj.RootFolder, 'new_folder')
mkdir(new_folder_path);

Create a new folder in the previous folder.

new_sub_folder_path = fullfile(new_folder_path, 'new_sub_folder')
mkdir(new_sub_folder_path);

Create a new file in the folder.

filepath = fullfile(new_sub_folder_path, 'new_model_in_subfolder.slx')
new_system('new_model_in_subfolder');
save_system('new_model_in_subfolder', filepath)

 addFolderIncludingChildFiles

2-21

Add this new folder and child files to the project.

projectFile = addFolderIncludingChildFiles(proj, new_folder_path)

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

folder — Path of folder
character vector | string

Path of the folder to add relative to the project root folder, specified as a character vector
or string. The folder must be within the root folder.
Example: ‘models’

See Also
Functions
addFile | removeFile | simulinkproject

Introduced in R2015b

2 Functions — Alphabetical List

2-22

addterms
Add terminators to unconnected ports in model

Syntax
addterms('sys')

Description
addterms('sys') adds Terminator and Ground blocks to the unconnected ports in the
Simulink block diagram sys.

See Also
slupdate

Introduced before R2006a

 addterms

2-23

attachComponent
Attach a component to a configuration set

Syntax
attachComponent(cs,component)

Description
attachComponent(cs,component) attaches a component to a Simulink.ConfigSet
object.

Examples

Replace Solver Component for Active Configuration Set

Replace the solver component of the active configuration set of one model with the solver
component of another model.

Get the active configuration set for modelB.

hCs = getActiveConfigSet('modelB');

Get the 'Solver' component for this configuration set.

hSolverConfig = getComponent(hCs,'Solver');

Create a copy of the component.

hSolverConfig = copy(hSolverConfig);

Get the active configuration set for modelA.

hCs = getActiveConfigSet('modelA');

Attach the copy of the 'Solver' component from modelB to modelA.

2 Functions — Alphabetical List

2-24

attachComponent(hCs,hSolverConfig);

Input Arguments
cs — Configuration set object
ConfigSet object

A configuration set object that you can attach a component to.

component — Component object
SimulinkConfigComponent object

A component that you can attach to configuration set.

See Also
Simulink.ConfigSet

Topics
“About Configuration Sets”
“Manage a Configuration Set”

Introduced before R2006a

 attachComponent

2-25

attachConfigSet
Associate configuration set or configuration reference with model

Syntax
attachConfigSet(model, configObj)

attachConfigSet(model, configObj, allowRename)

Arguments
model

The name of an open model, or gcs to specify the current model
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

allowRename
Boolean that determines how Simulink software handles a name conflict

Description
attachConfigSet associates the configuration set or configuration reference
(configuration object) specified by configObj with model.

You cannot attach a configuration object to a model if the configuration object is already
attached to another model, or has the same name as another configuration object
attached to the same model. The optional Boolean argument allowRename determines
how Simulink software handles a name conflict between configuration objects. If
allowRename is false and the configuration object specified by configObj has the
same name as a configuration object already attached to model, Simulink software
generates an error. If allowRename is true and a name conflict occurs, Simulink
software provides a unique name for configObj before associating configObj with
model.

2 Functions — Alphabetical List

2-26

Examples
The following example creates a copy of the current model's active configuration object
and attaches it to the model, changing its name if necessary to be unique. The code is the
same whether the object is a configuration set or configuration reference.

myConfigObj = getActiveConfigSet(gcs);
copiedConfig = myConfigObj.copy;
copiedConfig.Name = 'DevConfig';
attachConfigSet(gcs, copiedConfig, true);

See Also
attachConfigSetCopy | closeDialog | detachConfigSet | getActiveConfigSet |
getConfigSet | getConfigSets | openDialog | setActiveConfigSet

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

Introduced before R2006a

 attachConfigSet

2-27

attachConfigSetCopy
Copy configuration set or configuration reference and associate it with model

Syntax
myConfigObj = attachConfigSetCopy(model, configObj)

myConfigObj = attachConfigSetCopy(model, configObj, allowRename)

Arguments
model

The name of an open model, or gcs to specify the current model
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

allowRename
Boolean that specifies how Simulink software handles a name conflict

Description
attachConfigSetCopy copies the configuration set or configuration reference
(configuration object) specified by configObj and associates the copy with model.
Simulink software returns the copied configuration object as newConfigObj.

You cannot attach a configuration object to a model if the configuration object has the
same name as another configuration object attached to the same model. The optional
Boolean argument allowRename determines how Simulink software handles a name
conflict between configuration objects. If allowRename is false and the configuration
object specified by configObj has the same name as a configuration object already
attached to model, Simulink software generates an error. If allowRename is true and a
name conflict occurs, Simulink software provides a unique name for the copy of
configObj before associating it with model.

2 Functions — Alphabetical List

2-28

Examples
The following example creates a copy of ModelA's active configuration object and
attaches it to ModelB, changing the name if necessary to be unique. The code is the same
whether the object is a configuration set or configuration reference.
myConfigObj = getActiveConfigSet('ModelA');
newConfigObj = attachConfigSetCopy('ModelB', myConfigObj, true);

See Also
attachConfigSet | closeDialog | detachConfigSet | getActiveConfigSet |
getConfigSet | getConfigSets | openDialog | setActiveConfigSet

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

Introduced in R2006b

 attachConfigSetCopy

2-29

addLabel
Attach label to Simulink Project file

Syntax
addLabel(file,categoryName,labelName)
addLabel(file,categoryName,labelName,labelData)

Description
addLabel(file,categoryName,labelName) attaches the specified label labelName
in the category categoryName to the file.

addLabel(file,categoryName,labelName,labelData) attaches the label with data
labelData.

Examples

Attach a Label to a Project File

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'
 Labels: [1x1 slproject.Label]

2 Functions — Alphabetical List

2-30

 Revision: '2'
SourceControlStatus: Unmodified

Get the Labels property of the file.

myfile.Labels

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'
 Data: []
 DataType: 'none'
 Name: 'Design'
 CategoryName: 'Classification'

Attach the label 'Artifact' to the file.

addLabel(myfile,'Classification','Artifact')

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'
 Data: []
 DataType: 'none'
 Name: 'Artifact'
 CategoryName: 'Classification'

Index into the Labels property to get the label attached to this file.

reviewlabel = myfile.Labels(1)

reviewlabel =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'
 Data: []
 DataType: 'none'
 Name: 'Artifact'
 CategoryName: 'Classification'

Detach the new label from the file.

 addLabel

2-31

removeLabel(myfile,reviewlabel)

Attach a Label to a Subset of Files

Attach the 'Classification' category label 'Utility' to all files in the project that
have the .m file extension.

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Get the list of files.

files = proj.Files;

Loop through each file. If a file has the extension .m, attach the label 'Utility'.

for fileIndex = 1:numel(files)
 file = files(fileIndex);
 [~, ~, fileExtension] = fileparts(file.Path);
 if strcmp(fileExtension,'.m')
 addLabel(file,'Classification','Utility');
 end
end

In the Simulink Project Files view, the Classification column displays the label Utility
for each .m file in the utilities folder.

Attach a Label and Label Data to a File

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Create a new category 'Review'.

createCategory(proj,'Review','char');

For the new category, create a label 'To Review'.

2 Functions — Alphabetical List

2-32

reviewCategory = findCategory(proj,'Review');
createLabel(reviewCategory,'To Review');

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'
 Labels: [1x1 slproject.Label]
 Revision: '2'
SourceControlStatus: Unmodified

Attach the label 'To Review' and a character vector of label data to the file.

addLabel(myfile,'Review','To Review','Whole team design review')

Index into the Labels property to get the second label attached to this particular file, and
see the label data.

myfile.Labels(2)

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'
 Data: 'Whole team design review'
 DataType: 'char'
 Name: 'To Review'
 CategoryName: 'Review'

In the Simulink Project Files view, for the AnalogControl.mdl file, the Review column
displays the To Review label with label data.

Alternatively, you can set or change label data using the data property.

 addLabel

2-33

mylabel = myfile.Labels(2);
mylabel.Data = 'Final review';

Input Arguments
file — File to attach label to
file object

File to attach the label to, specified as a file object. You can get the file object by
examining the project’s Files property (proj.Files), or use findFile to find a file by
name. The file must be in the project.

categoryName — Name of category for label
character vector

Name of the category for the label, specified as a character vector.

labelName — Name of label
character vector | label definition object

Name of the label to attach, specified as a character vector or a label definition object
returned by the file.Label property or findLabel. You can specify a new label name
that does not already exist in the project.

labelData — Data to attach to label
character vector | numeric

Data to attach to the label, specified as a character vector or numeric. Data type depends
on the label definition. Get a label to examine its DataType property using file.Label
or findLabel.

See Also
Functions
createLabel | findFile | findLabel | removeLabel | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-34

bdclose
Close any or all Simulink system windows unconditionally

Syntax
bdclose
bdclose('sys')

bdclose('all')

Description
bdclose with no arguments closes the current system window unconditionally and
without confirmation. Any changes made to the system since it was last saved are lost.

bdclose('sys') closes the specified system window.

bdclose('all') closes all system windows.

Examples
This command closes the vdp system.

bdclose('vdp')

See Also
close_system | new_system | open_system | save_system

Introduced before R2006a

 bdclose

2-35

bdIsDirty
Whether block diagram has unsaved changes

Syntax
isDirty = bdIsDirty(bdname)

Description
isDirty = bdIsDirty(bdname) returns whether or not the loaded block diagram
bdname has unsaved changes.

Examples

Check Models for Unsaved Changes

Check if models contain unsaved changes using bdIsDirty.

Check if a single model is dirty.

vdp
bdIsDirty('vdp')

ans =

 logical

 0

Check if a cell array of models are dirty.

vdp
sf_car
bdIsDirty({'sf_car','vdp'})

2 Functions — Alphabetical List

2-36

ans =

 1×2 logical array

 0 0

• “Manage Shadowed and Dirty Models and Other Project Files”

Input Arguments
bdname — Loaded block diagram name
character vector | cell array of character vectors | double array

Loaded block diagram name, specified as a character vector, a cell array of character
vectors, or a double array. All character vectors must be the names of loaded block
diagrams. All doubles must be the handles of loaded block diagrams. It is an error to
supply an invalid handle, a handle to anything other than a block diagram, a path to a
block or subsystem, or a block diagram that is not loaded.
Data Types: double | char | cell

Output Arguments
isDirty — Whether block diagram has unsaved changes
logical scalar | logical array

Whether block diagram has unsaved changes, returned as a logical array with one entry
for each block diagram. The logical value is true if the block diagram has been modified in
memory since it was loaded or last saved, and false if there are no unsaved changes.

See Also
bdIsLoaded

Topics
“Manage Shadowed and Dirty Models and Other Project Files”

 bdIsDirty

2-37

Introduced in R2017a

2 Functions — Alphabetical List

2-38

bdIsLibrary
Whether block diagram is a library

Syntax
isLibrary = bdIsLibrary(bdnames)

Description
isLibrary = bdIsLibrary(bdnames) returns whether the loaded block diagrams
specified by bdnames are libraries.

Examples

Check Whether Block Diagrams Are Libraries

Load some block diagrams and get a handle to one of them.

load_system({'sf_car','hydlib','vdp'})
h = get_param('hydlib','Handle');

Check whether sf_car is a library. The returned value 0 indicates that it is not.

bdIsLibrary('sf_car')

ans =
 0

Check whether hydlib and vdp are libraries. The returned value shows that hydlib is a
library and vdp is not.

bdIsLibrary({'hydlib','vdp'})

ans =
1 0

 bdIsLibrary

2-39

Using the handle to hydlib, check whether hdlib is a library. The value returned shows
that it is.

bdIsLibrary(h)

ans =
1

Input Arguments
bdnames — Names or handles of loaded block diagrams
character vector | cell array of character vectors | double | array of doubles

Names or handles of loaded block diagrams, specified as a character vector, a cell array
of character vectors, a double, or a double array. All character vectors are names of
loaded block diagrams. All doubles are handles of loaded block diagrams.
Data Types: char | cell | double

Output Arguments
isLibrary — Logical array showing whether block diagrams are libraries
logical scalar | logical array

Logical array showing whether block diagrams are libraries, returned as a logical scalar
or array (1 for a library, 0 otherwise).

See Also
bdIsLoaded | bdroot | find_system

Introduced in R2015a

2 Functions — Alphabetical List

2-40

bdIsLoaded
Whether block diagram is in memory

Syntax
isLoaded = bdIsLoaded(bdnames)

Description
isLoaded = bdIsLoaded(bdnames) returns whether or not a block diagram is in
memory. bdnames can be a character vector or a cell array of character vectors. All
character vectors must be valid block diagram names. It is an error to supply a path to a
block or subsystem.

isLoaded is a logical array with one entry for each block diagram name.

Examples
bdIsLoaded('sf_car')

returns a logical scalar.

bdIsLoaded({'sf_car','vdp'})

returns a 1-by-2 logical array.

See Also
bdIsDirty | bdIsLibrary | find_system

Introduced in R2008a

 bdIsLoaded

2-41

bdroot
Top-level model of current system

Syntax
model = bdroot
model = bdroot(elements)

Description
model = bdroot returns the top-level model of the current system. The current system
is the currently active Simulink Editor window or the system in which a block is selected.

model = bdroot(elements) returns the top-level model of the specified model
elements. Before using bdroot, make sure the top-level model of each element in
elements is loaded.

Examples

Get Top-Level Model of Current System

Open the system Controller in the model f14.

load_system('f14')
open_system('f14/Controller')

Get the top-level model of the current system.

bdroot

ans =

 'f14'

2 Functions — Alphabetical List

2-42

Get Top-Level Model of a System

Open the system Controller in the model f14.

load_system('f14')
open_system('f14/Controller')

Get the top-level model of the current system.

bdroot(gcs)

ans =

 'f14'

Input Arguments
elements — Model elements whose top-level models to return
model name | block path name | handle | cell array of character vectors | string array |
numeric array

Model elements whose top-level model to return, specified as the model name, block or
system path name, handle, cell array of character vectors or string array of system
names, or numeric array of handles.

Tip Use bdroot with gcs, gcb, and gcbh to get the top-level model of the current
system or block.

Output Arguments
model — Top-level model
character vector | cell array | string array

Top-level model, returned as a character vector of the model name. If the input was an
array, model is returned as an array of the same type as the input.

See Also
gcb | gcbh | gcs

 bdroot

2-43

Introduced before R2006a

2 Functions — Alphabetical List

2-44

dlinmod
Extract discrete-time linear state-space model around operating point

Syntax
argout = dlinmod('sys', Ts)

argout = dlinmod('sys', Ts, x, u)

argout = dlinmod('sys', Ts, x, u, para, 'v5')

argout = dlinmod('sys', Ts, x, u, para, xpert, upert, 'v5')

Arguments
sys Name of the Simulink system from which the linear model is

extracted.
x, u State (x) and the input (u) vectors. If specified, they set the

operating point at which the linear model is extracted. When a
model has model references using the Model block, you must use
the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

Ts Sample time of the discrete-time linearized model

 dlinmod

2-45

'v5' An optional argument that invokes the perturbation algorithm
created prior to MATLAB 5.3. Invoking this optional argument is
equivalent to calling linmodv5.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that
gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

xpert, upert The perturbation values used to perform the perturbation of all the
states and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you
must use the Simulink structure format to specify xpert. To
extract the xpert structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure
by editing xpert.signals.values.

The perturbation input arguments are only available when invoking
the perturbation algorithm created prior to MATLAB 5.3, either by
calling linmodv5 or specifying the 'v5' input argument to
linmod.

2 Functions — Alphabetical List

2-46

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified state
variables x and the input u. If you omit x and u, the default
values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the linearized
model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names, input
and output names, and information about the operating point.

Description
dlinmod compute a linear state-space model for a discrete-time system by linearizing
each block in a model individually.

linmod obtains linear models from systems of ordinary differential equations described
as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using
Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians for most blocks
which should result in more accurate linearization than numerical perturbation of block
inputs and states. A list of blocks that have preprogrammed analytic Jacobians is available
in the Simulink Control Design documentation along with a discussion of the block-by-
block analytic algorithm for linearization.

The default algorithm also allows for special treatment of problematic blocks such as the
Transport Delay and the Quantizer. See the mask dialog of these blocks for more
information and options.

 dlinmod

2-47

Discrete-Time System Linearization
The function dlinmod can linearize discrete, multirate, and hybrid continuous and
discrete systems at any given sampling time. Use the same calling syntax for dlinmod as
for linmod, but insert the sample time at which to perform the linearization as the
second argument. For example,

[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

produces a discrete state-space model at the sampling time Ts and the operating point
given by the state vector x and input vector u. To obtain a continuous model
approximation of a discrete system, set Ts to 0.

For systems composed of linear, multirate, discrete, and continuous blocks, dlinmod
produces linear models having identical frequency and time responses (for constant
inputs) at the converted sampling time Ts, provided that

• Ts is an integer multiple of all the sampling times in the system.
• The system is stable.

For systems that do not meet the first condition, in general the linearization is a time-
varying system, which cannot be represented with the [A,B,C,D] state-space model that
dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an indication of the
stability of the system. The system is stable if Ts>0 and the eigenvalues are within the
unit circle, as determined by this statement:

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the left half plane, as
determined by this statement:

all(real(eig(Ad))) < 0

When the system is unstable and the sample time is not an integer multiple of the other
sampling times, dlinmod produces Ad and Bd matrices, which can be complex. The
eigenvalues of the Ad matrix in this case still, however, provide a good indication of
stability.

You can use dlinmod to convert the sample times of a system to other values or to
convert a linear discrete system to a continuous system or vice versa.

2 Functions — Alphabetical List

2-48

You can find the frequency response of a continuous or discrete system by using the bode
command.

Notes
By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For
Simulink systems, a character vector variable that contains the block name associated
with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the
routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by
replacing the linearization of the blocks with a Pade approximation. For the 'v5'
algorithm, linearization of a model that contains Derivative or Transport Delay blocks can
be troublesome. For more information, see “Linearizing Models”.

See Also
linmod | linmod2 | linmodv5

Introduced in R2007a

 dlinmod

2-49

close_system
Close Simulink system window or block dialog box

Syntax
close_system

close_system('sys')

close_system('sys', saveflag)

close_system('sys', 'newname')

close_system('sys', 'newname','ErrorIfShadowed', true)

Description
close_system with no arguments closes the current system or subsystem window. If the
current system is the top-level system and it has been modified, close_system returns
an error. The current system is defined in the description of the gcs command.

close_system('sys') closes the specified system, subsystem, or block window.

close_system('sys') unloads a model after specifying

• load_system('sys').

'sys' can be a character vector (which can be a system, a subsystem, or a full block
pathname), a cell array of character vectors, a numeric handle, or an array of numeric
handles. This command displays an error if 'sys' is a MATLAB keyword, 'simulink',
or more than 63 characters long.

close_system('sys', saveflag), if saveflag is 1, saves the specified top-level
system to a file with its current name, then closes the specified top-level system window
and removes it from memory. If saveflag is 0, the system is closed without saving. A
single saveflag can be supplied, in which case it is applied to all block diagrams.
Alternatively, separate saveflags can be supplied for each block diagram, as a numeric
array.

2 Functions — Alphabetical List

2-50

close_system('sys', 'newname') saves the specified top-level system to a file with
the specified new name, then closes the system.

Additional arguments can be supplied when saving a block diagram. These are exactly the
same as for save_system:

• ErrorIfShadowed: true or false (default: false)
• BreakAllLinks: true or false (default: false)
• SaveAsVersion: MATLAB version name (default: current)
• OverwriteIfChangedOnDisk: true or false (default: false)
• SaveModelWorkspace: true or false (default: false)

If you try to specify additional options when you are doing something other than saving a
block diagram, they are ignored. You see a warning if you try to save when closing
something other than a block diagram (e.g., a subsystem or a Block Properties dialog).

Examples
This command closes the current system.

close_system

This command closes the vdp system, unless it has been modified, in which case it
returns an error.

close_system('vdp')

This command saves the engine system with its current name, then closes it.

close_system('engine', 1)

This command saves the mymdl12 system under the new name testsys, then closes it.

close_system('mymdl12', 'testsys')

This command tries to save the vdp system to a file with the name 'max', but returns an
error because 'max' is the name of an existing MATLAB function.

close_system('vdp','max','ErrorIfShadowed', true)

 close_system

2-51

All three of the following commands save and close mymodel (saved with the same name),
and replace links to library blocks with copies of the library blocks in the saved file:

close_system('mymodel',1,'BreakAllLinks',true)
close_system('mymodel','mymodel','BreakAllLinks',true)
close_system('mymodel',[],'BreakAllLinks',true)

This command closes the dialog box of the Unit Delay block in the Combustion
subsystem of the engine system.

close_system('engine/Combustion/Unit Delay')

Note The close_system command cannot be used in a block or menu callback to close
the root-level model. Attempting to close the root-level model in a block or menu callback
results in an error and discontinues the callback's execution.

See Also
bdclose | gcs | load_system | new_system | open_system | save_system

Introduced before R2006a

2 Functions — Alphabetical List

2-52

closeDialog
Close configuration parameters dialog

Syntax
closeDialog(configObj)

Arguments
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description
closeDialog closes an open configuration parameters dialog box. If configObj is a
configuration set, the function closes the dialog box that displays the configuration set. If
configObj is a configuration reference, the function closes the dialog box that displays
the referenced configuration set, or generates an error if the reference does not specify a
valid configuration set. If the dialog box is already closed, the function does nothing.

Examples
The following example closes a configuration parameters dialog box that shows the
current parameters for the current model. The parameter values derive from the active
configuration set or configuration reference (configuration object). The code is the same
in either case; the only difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);
closeDialog(myConfigObj);

 closeDialog

2-53

See Also
attachConfigSet | attachConfigSetCopy | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | openDialog |
setActiveConfigSet

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

Introduced in R2006b

2 Functions — Alphabetical List

2-54

close
Close Simulink Project

Syntax
close(proj)

Description
close(proj) closes the project proj.

Examples

Open and Close a Simulink Project

Open a specified project and get a project object to manipulate the project at the
command line. For example,

proj = simulinkproject('C:/projects/project1/myproject.prj')

Close the project.

close(proj)

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

 close

2-55

See Also
Functions
simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-56

coder.allowpcode
Package: coder

Control code generation from protected MATLAB files

Syntax
coder.allowpcode('plain')

Description
coder.allowpcode('plain') allows you to generate protected MATLAB code (P-code)
that you can then compile into optimized MEX functions or embeddable C/C++ code. This
function does not obfuscate the generated MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as protected P-files that provide code
generation optimizations, providing intellectual property protection for your source
MATLAB code.

Call this function in the top-level function before control-flow statements, such as if,
while, switch, and function calls.

MATLAB functions can call P-code. When the .m and .p versions of a file exist in the same
folder, the P-file takes precedence.

coder.allowpcode is ignored outside of code generation.

Examples
Generate optimized embeddable code from protected MATLAB code:

1 Write an function p_abs that returns the absolute value of its input:

function out = p_abs(in) %#codegen
% The directive %#codegen indicates that the function

 coder.allowpcode

2-57

% is intended for code generation
coder.allowpcode('plain');
out = abs(in);

2 Generate protected P-code. At the MATLAB prompt, enter:

pcode p_abs

The P-file, p_abs.p, appears in the current folder.
3 Generate a MEX function for p_abs.p, using the -args option to specify the size,

class, and complexity of the input parameter (requires a MATLAB Coder license). At
the MATLAB prompt, enter:

codegen p_abs -args { int32(0) }

codegen generates a MEX function in the current folder.
4 Generate embeddable C code for p_abs.p (requires a MATLAB Coder license). At the

MATLAB prompt, enter:

codegen p_abs -config:lib -args { int32(0) };

codegen generates C library code in the codegen\lib\p_abs folder.

See Also
codegen | pcode

Introduced in R2011a

2 Functions — Alphabetical List

2-58

coder.ceval
Call external C/C++ function

Syntax
coder.ceval(cfun_name)
coder.ceval(cfun_name,cfun_arguments)

coder.ceval('-global',cfun_name)
coder.ceval('-global',cfun_name,cfun_arguments)

cfun_return = coder.ceval(___)

Description
coder.ceval(cfun_name) executes the external C/C++ function specified by
cfun_name. Define cfun_name in an external C/C++ source file or library. Provide the
external source, library, and header files to the code generator.

coder.ceval(cfun_name,cfun_arguments) executes cfun_name with arguments
cfun_arguments. cfun_arguments is a comma-separated list of input arguments in the
order that cfun_name requires.

By default, coder.ceval passes arguments by value to the C/C++ function whenever
C/C++ supports passing arguments by value. To make coder.ceval pass arguments by
reference, use the constructs coder.ref, coder.rref, and coder.wref. If C/C++ does
not support passing arguments by value, for example, if the argument is an array,
coder.ceval passes arguments by reference. If you do not use coder.ref,
coder.rref or coder.wref, a copy of the argument can appear in the generated code
to enforce MATLAB semantics for arrays.

coder.ceval('-global',cfun_name) executes cfun_name and indicates that
cfun_name uses one or more MATLAB global variables. The code generator can then
produce code that is consistent with this global variable usage.

 coder.ceval

2-59

coder.ceval('-global',cfun_name,cfun_arguments) executes cfun_name with
arguments cfun_arguments and indicates that cfun_name uses one or more MATLAB
global variables.

cfun_return = coder.ceval(___) executes cfun_name and returns a single scalar
value, cfun_return, corresponding to the value that the C/C++ function returns in the
return statement. To be consistent with C/C++, coder.ceval can return only a scalar
value. It cannot return an array. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Call External C Function

Call a C function foo(u) from a MATLAB function from which you intend to generate C
code.

Create a C header file foo.h for a function foo that takes two input parameters of type
double and returns a value of type double.

double foo(double in1, double in2);

Write the C function foo.c.

#include <stdio.h>
#include <stdlib.h>
#include "foo.h"

double foo(double in1, double in2)
{
 return in1 + in2;
}

Write a function callfoo that calls foo by using coder.ceval. Provide the source and
header files to the code generator in the function.

function y = callfoo %#codegen
y = 0.0;
if coder.target('MATLAB')
 % Executing in MATLAB, call MATLAB equivalent of
 % C function foo

2 Functions — Alphabetical List

2-60

 y = 10 + 20;
else
 % Executing in generated code, call C function foo
 coder.updateBuildInfo('addSourceFiles','foo.c');
 coder.cinclude('foo.h');
 y = coder.ceval('foo', 10, 20);
end
end

Generate C library code for function callfoo. The codegen function generates C code in
the \codegen\lib\callfoo subfolder.

codegen -config:lib callfoo -report

Call a C Library Function

Call a C library function from MATLAB code.

Write a MATLAB function myabsval.

function y = myabsval(u)
%#codegen
y = abs(u);

Generate a C static library for myabsval, using the -args option to specify the size,
type, and complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

The codegen function creates the library file myabsval.lib and header file
myabsval.h in the folder \codegen\lib\myabsval. (The library file extension can
change depending on your platform.) It generates the functions myabsval_initialize
and myabsval_terminate in the same folder.

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval(y)
%#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
 % Executing in MATLAB, call function myabsval
 y = myabsval(y);

 coder.ceval

2-61

else
 % add the required include statements to generated function code
 coder.updateBuildInfo('addIncludePaths','$(START_DIR)/codegen/lib/myabsval');
 coder.cinclude('myabsval_initialize.h');
 coder.cinclude('myabsval.h');
 coder.cinclude('myabsval_terminate.h');

 % Executing in the generated code.
 % Call the initialize function before calling the
 % C function for the first time
 coder.ceval('myabsval_initialize');

 % Call the generated C library function myabsval
 y = coder.ceval('myabsval',y);

 % Call the terminate function after
 % calling the C function for the last time
 coder.ceval('myabsval_terminate');
end

Generate the MEX function callmyabsval_mex. Provide the generated library file at the
command line.

codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}

Rather than providing the library at the command line, you can use
coder.updateBuildInfo to specify the library within the function. Use this option to
preconfigure the build. Add this line to the else block:

coder.updateBuildInfo('addLinkObjects','myabsval.lib','$(START_DIR)\codegen\lib\myabsval',100,true,true);

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex(-2.75)

ans =

 2.7500

Call the MATLAB function callmyabsval.

callmyabsval(-2.75)

ans =

 2.7500

2 Functions — Alphabetical List

2-62

The callmyabsval function exhibits the desired behavior for execution in MATLAB and
in code generation.

Call C Function That Uses Global Variable

Use the '-global' flag when you call a C function that modifies a global variable.

Write a MATLAB function useGlobal that calls a C function addGlobal. Use the '-
global' flag to indicate to the code generator that the C function uses a global variable.

function y = useGlobal()
global g;
t = g;
% compare execution with/without '-global' flag
coder.ceval('-global','addGlobal');
y = t;
end

Create a C header file addGlobal.h for the function addGlobal.

void addGlobal(void);

Write the C function addGlobal in the file addGlobal.c. This function includes the
header file useGlobal_data.h that the code generator creates when you generate code
for the function useGlobal. This header file contains the global variable declaration for
g.

#include "addGlobal.h"
#include "useGlobal_data.h"
void addGlobal(void) {
 g++;
}

Generate the MEX function for useGlobal. To define the input to the code generator,
declare the global variable in the workspace.

global g;
g = 1;
codegen useGlobal -report addGlobal.h addGlobal.c
y = useGlobal_mex();

 coder.ceval

2-63

With the '-global' flag, the MEX function produces the result y = 1. The '-global'
flag indicates to the code generator that the C function possibly modifies the global
variable. For useGlobal, the code generator produces this code:

real_T useGlobal(const emlrtStack *sp)
{
 real_T y;
 (void)sp;
 y = g;
 addGlobal();
 return y;
}

Without the '-global' flag, the MEX function produces y = 2. Because there is no
indication that the C function modifies g, the code generator assumes that y and g are
identical. This C code is generated:

real_T useGlobal(const emlrtStack *sp)
{
 (void)sp;
 addGlobal();
 return g;
}

Input Arguments
cfun_name — C/C++ function name
character vector | string scalar

Name of external C/C++ function to call.
Example: coder.ceval('foo')
Data Types: char | string

cfun_arguments — C/C++ function arguments
scalar variable | array | element of an array | structure | structure field | object property

Comma-separated list of input arguments in the order that cfun_name requires.
Example: coder.ceval('foo', 10, 20);
Example: coder.ceval('myFunction', coder.ref(x));

2 Functions — Alphabetical List

2-64

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot use coder.ceval on functions that you declare extrinsic with

coder.extrinsic.
• When the LCC compiler creates a library, it adds a leading underscore to the library

function names. If the compiler for the library was LCC and your code generation
compiler is not LCC, you must add the leading underscore to the function name, for
example, coder.ceval('_mylibfun'). If the compiler for a library was not LCC,
you cannot use LCC to generate code from MATLAB code that calls functions from that
library. Those library function names do not have the leading underscore that the LCC
compiler requires.

• If a property has a get method, a set method, or validators, or is a System object
property with certain attributes, then you cannot pass the property by reference to an
external function. See “Passing By Reference Not Supported for Some Properties”.

Tips
• For code generation, before calling coder.ceval, you must specify the type, size, and

complexity data type of return values and output arguments.
• Use coder.ceval only in MATLAB for code generation. coder.ceval generates an

error in uncompiled MATLAB code. To determine if a MATLAB function is executing in
MATLAB, use coder.target. If the function is executing in MATLAB, call the
MATLAB version of the C/C++ function.

See Also
coder.extrinsic | coder.opaque | coder.ref | coder.rref | coder.target |
coder.updateBuildInfo | coder.wref

Topics
“Integrate C Code Using the MATLAB Function Block”
“Unknown Output Type for coder.ceval”

 coder.ceval

2-65

Introduced in R2011a

2 Functions — Alphabetical List

2-66

coder.cinclude
Include header file in generated code

Syntax
coder.cinclude(headerfile)
coder.cinclude(headerfile,'InAllSourceFiles',allfiles)

Description
coder.cinclude(headerfile) includes a header file in generated C/C++ source code.

MATLAB Coder generates the include statement in the C/C++ source files that are
generated from the MATLAB code that contains the coder.cinclude call.

In a Simulink model, when a coder.cinclude call appears in a MATLAB Function block,
the code generator puts the include statement in the model header file.

coder.cinclude(headerfile,'InAllSourceFiles',allfiles) uses the
allfiles option to determine whether to include the header file in almost all C/C++
source files.

If allfiles is true, MATLAB Coder generates the include statement in almost all C/C+
+ source files, except for some utility files. This behavior is the coder.cinclude
behavior from R2016a and earlier releases. The presence of the include statement in
these additional files can increase compile time and make the generated code less
readable. Use this option only if your code depends on the legacy behavior. If allfiles
is false, the behavior is the same as the behavior of coder.cinclude(headerfile).

In a MATLAB Function block, coder.cinclude(headerfile,'InAllSourceFiles',
allfiles) is the same as coder.cinclude(headerfile).

Examples

 coder.cinclude

2-67

Include Header File in C/C++ Code Generated by Using the MATLAB Coder
codegen Command

Generate code from a MATLAB function that calls an external C function. Use
coder.cinclude to include the required header file in the generated C code.

In a writable folder, create a subfolder mycfiles.

Write a C function myMult2.c that doubles its input. Save it in mycfiles.

#include "myMult2.h"
double myMult2(double u)
{
 return 2 * u;
}

Write the header file myMult2.h. Save it in mycfiles.

#if !defined(MYMULT2)
#define MYMULT2
extern double myMult2(double);
#endif

Write a MATLAB function, myfunc, that includes myMult2.h and calls myMult2 for code
generation only.

function y = myfunc
%#codegen
y = 21;
if ~coder.target('MATLAB')
 % Running in generated code
 coder.cinclude('myMult2.h');
 y = coder.ceval('myMult2', y);
else
 % Running in MATLAB
 y = y * 2;
end
end

Create a code configuration object for a static library. Specify the locations of myMult2.h
and myMult2.c

cfg = coder.config('lib');
cfg.CustomInclude = fullfile(pwd,'mycfiles');
cfg.CustomSource = fullfile(pwd,'mycfiles','myMult2.c');

2 Functions — Alphabetical List

2-68

Generate the code.

codegen -config cfg myfunc -report

The file myfunc.c contains this statement:

#include "myMult2.h"

The include statement does not appear in any other file.

Include Header File in C/C++ Code Generated from a MATLAB Function Block in a
Simulink Model

Generate code from a MATLAB Function block that calls an external C function. Use
coder.cinclude to include the required header file in the generated C code.

In a writable folder, create a subfolder mycfiles.

Write a C function myMult2.c that doubles its input. Save it in mycfiles.

#include "myMult2.h"
double myMult2(double u)
{
 return 2 * u;
}

Write the header file myMult2.h. Save it in mycfiles.

#if !defined(MYMULT2)
#define MYMULT2
extern double myMult2(double);
#endif

Create a Simulink model that contains a MATLAB Function block connected to an Outport
block.

 coder.cinclude

2-69

In the MATLAB Function block, add the function myfunc that includes myMult2.h and
calls myMult2.

function y = myfunc
%#codegen
y = 21;
coder.cinclude('myMult2.h');
y = coder.ceval('myMult2', y);
end

Open the Configuration Parameters dialog box.

On the Solver pane, select a fixed-step solver.

Specify the locations of myMult2.h and myMult2.c for simulation and code generation.

• On the Simulation Target pane, under Additional build information, for Include
directories, enter mycfiles.

• For Source files, enter myMult2.c.

2 Functions — Alphabetical List

2-70

• On the Code Generation > Custom Code pane, select the Use the same custom
code settings as Simulation Target check box.

Save the model as mymodel.

Build the model.

The file mymodel.h contains this statement:

#include "myMult2.h"

Input Arguments
headerfile — Name of header file
character vector | string scalar

 coder.cinclude

2-71

Name of a header file specified as a character vector or string scalar. headerfile must
be a compile-time constant.

Enclose a system header file name in angle brackets < >. The generated #include
statement for a system header file has the format #include <sysheader>. A system
header file must be in a standard location or on the include path. Specify the include path
by using code generation custom code parameters.
Example: coder.cinclude('<sysheader.h>')

For a header file that is not a system header file, omit the angle brackets. The generated
#include statement for a header file that is not a system header file has the format
#include "myHeader". The header file must be in the current folder or on the include
path. Specify the include path by using code generation custom code parameters.
Example: coder.cinclude('myheader.h')
Data Types: char

allfiles — All source files option
true | false

Option to include header file in all generated C/C++ source files. If allfiles is true,
MATLAB Coder generates the include statement in almost all of the C/C++ source files,
except for some utility files. If allfiles is false, the behavior is the same as the
behavior of coder.cinclude(headerfile).

In a MATLAB Function block, the code generator ignores the all source files option.
Data Types: logical

Limitations
• Do not call coder.cinclude inside run-time conditional constructs such as if

statements, switch statements, while-loops, and for-loops. You can call
coder.cinclude inside compile-time conditional statements, such as
coder.target. For example:

...
 if ~coder.target('MATLAB')
 coder.cinclude('foo.h');
 coder.ceval('foo');

2 Functions — Alphabetical List

2-72

end
...

Tips
• Before a coder.ceval call, call coder.cinclude to include the header file required

by the external function that coder.ceval calls.
• Extraneous include statements in generated C/C++ code can increase compile time

and reduce code readability. To avoid extraneous include statements in code generated
by MATLAB Coder, follow these best practices:

• Place a coder.cinclude call as close as possible to the coder.ceval call that
requires the header file.

• Do not set allfiles to true.

For the MATLAB Function block, the code generator generates the include statement
in the model header file.

• In R2016a and earlier releases, for any coder.cinclude call, MATLAB Coder
included the header file in almost all generated C/C++ source files, except for some
utility files. If you have code that depends on this legacy behavior, you can preserve
the legacy behavior by using this syntax:

coder.cinclude(headerfile,'InAllSourceFiles',true)

See Also
coder.ceval | coder.target

Topics
“Model Configuration Parameters: Code Generation Custom Code” (Simulink Coder)

Introduced in R2013a

 coder.cinclude

2-73

coder.const
Fold expressions into constants in generated code

Syntax
out = coder.const(expression)
[out1,...,outN] = coder.const(handle,arg1,...,argN)

Description
out = coder.const(expression) evaluates expression and replaces out with the
result of the evaluation in generated code.

[out1,...,outN] = coder.const(handle,arg1,...,argN) evaluates the multi-
output function having handle handle. It then replaces out1,...,outN with the results
of the evaluation in the generated code.

Examples

Specify Constants in Generated Code

This example shows how to specify constants in generated code using coder.const.

Write a function AddShift that takes an input Shift and adds it to the elements of a
vector. The vector consists of the square of the first 10 natural numbers. AddShift
generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

2 Functions — Alphabetical List

2-74

The code generator produces code for creating the vector. It adds Shift to each element
of the vector during vector creation. The definition of AddShift in generated code looks
as follows:

void AddShift(double Shift, double y[10])
{
 int k;
 for (k = 0; k < 10; k++) {
 y[k] = (double)((1 + k) * (1 + k)) + Shift;
 }
}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator creates the vector containing the squares of the first 10 natural
numbers. In the generated code, it adds Shift to each element of this vector. The
definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int i0;
 static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,
 49, 64, 81, 100 };

 for (i0 = 0; i0 < 10; i0++) {
 y[i0] = (double)iv0[i0] + Shift;
 }
}

Create Lookup Table in Generated Code

This example shows how to fold a user-written function into a constant in generated code.

 coder.const

2-75

Write a function getsine that takes an input index and returns the element referred to
by index from a lookup table of sines. The function getsine creates the lookup table
using another function gettable.

function y = getsine(index) %#codegen
 assert(isa(index, 'int32'));
 persistent tbl;
 if isempty(tbl)
 tbl = gettable(1024);
 end
 y = tbl(index);

function y = gettable(n)
 y = zeros(1,n);
 for i = 1:n
 y(i) = sin((i-1)/(2*pi*n));
 end

Generate code for getsine using an argument of type int32. Open the Code Generation
Report.

codegen -config:lib -launchreport getsine -args int32(0)

The generated code contains instructions for creating the lookup table.

Replace the statement:

tbl = gettable(1024);

with:

tbl = coder.const(gettable(1024));

Generate code for getsine using an argument of type int32. Open the Code Generation
Report.

The generated code contains the lookup table itself. coder.const forces the expression
gettable(1024) to be evaluated during code generation. The generated code does not
contain instructions for the evaluation. The generated code contains the result of the
evaluation itself.

2 Functions — Alphabetical List

2-76

Specify Constants in Generated Code Using Multi-Output Function

This example shows how to specify constants in generated code using a multi-output
function in a coder.const statement.

Write a function MultiplyConst that takes an input factor and multiplies every
element of two vectors vec1 and vec2 with factor. The function generates vec1 and
vec2 using another function EvalConsts.

function [y1,y2] = MultiplyConst(factor) %#codegen
 [vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);
 y1=vec1.*factor;
 y2=vec2.*factor;

function [f1,f2]=EvalConsts(z,n)
 f1=z.^(2*n)/factorial(2*n);
 f2=z.^(2*n+1)/factorial(2*n+1);

Generate code for MultiplyConst using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator produces code for creating the vectors.

Replace the statement

[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

with

[vec1,vec2]=coder.const(@EvalConsts,pi.*(1./2.^(1:10)),2);

Generate code for MultiplyConst using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator does not generate code for creating the vectors. Instead, it calculates
the vectors and specifies the calculated vectors in generated code.

 coder.const

2-77

Read Constants by Processing XML File

This example shows how to call an extrinsic function using coder.const.

Write an XML file MyParams.xml containing the following statements:

<params>
 <param name="hello" value="17"/>
 <param name="world" value="42"/>
</params>

Save MyParams.xml in the current folder.

Write a MATLAB function xml2struct that reads an XML file. The function identifies the
XML tag param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field
name of a structure s. The function also assigns the value of attribute value to the value
of the field.

function s = xml2struct(file)

s = struct();
doc = xmlread(file);
els = doc.getElementsByTagName('params');
for i = 0:els.getLength-1
 it = els.item(i);
 ps = it.getElementsByTagName('param');
 for j = 0:ps.getLength-1
 param = ps.item(j);
 paramName = char(param.getAttribute('name'));
 paramValue = char(param.getAttribute('value'));
 paramValue = evalin('base', paramValue);
 s.(paramName) = paramValue;
 end
end

Save xml2struct in the current folder.

Write a MATLAB function MyFunc that reads the XML file MyParams.xml into a structure
s using the function xml2struct. Declare xml2struct as extrinsic using
coder.extrinsic and call it in a coder.const statement.

function y = MyFunc(u) %#codegen
 assert(isa(u, 'double'));

2 Functions — Alphabetical List

2-78

 coder.extrinsic('xml2struct');
 s = coder.const(xml2struct('MyParams.xml'));
 y = s.hello + s.world + u;

Generate code for MyFunc using the codegen command. Open the Code Generation
Report.

codegen -config:dll -launchreport MyFunc -args 0

The code generator executes the call to xml2struct during code generation. It replaces
the structure fields s.hello and s.world with the values 17 and 42 in generated code.

Input Arguments
expression — MATLAB expression or user-written function
expression with constants | single-output function with constant arguments

MATLAB expression or user-defined single-output function.

The expression must have compile-time constants only. The function must take constant
arguments only. For instance, the following code leads to a code generation error, because
x is not a compile-time constant.

function y=func(x)
 y=coder.const(log10(x));

To fix the error, assign x to a constant in the MATLAB code. Alternatively, during code
generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args coder.Constant(10)

Example: 2*pi, factorial(10)

handle — Function handle
function handle

Handle to built-in or user-written function.
Example: @log, @sin
Data Types: function_handle

 coder.const

2-79

arg1,...,argN — Arguments to the function with handle handle
function arguments that are constants

Arguments to the function with handle handle.

The arguments must be compile-time constants. For instance, the following code leads to
a code generation error, because x and y are not compile-time constants.

function y=func(x,y)
 y=coder.const(@nchoosek,x,y);

To fix the error, assign x and y to constants in the MATLAB code. Alternatively, during
code generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args {coder.Constant(10),coder.Constant(2)}

Output Arguments
out — Value of expression
value of the evaluated expression

Value of expression. In the generated code, MATLAB Coder replaces occurrences of
out with the value of expression.

out1,...,outN — Outputs of the function with handle handle
values of the outputs of the function with handle handle

Outputs of the function with handle handle.MATLAB Coder evaluates the function and
replaces occurrences of out1,...,outN with constants in the generated code.

Tips
• When possible, the code generator constant-folds expressions automatically. Typically,

automatic constant-folding occurs for expressions with scalars only. Use coder.const
when the code generator does not constant-fold expressions on its own.

• When constant-folding computationally intensive function calls, to reduce code
generation time, make the function call extrinsic. The extrinsic function call causes
evaluation of the function call by MATLAB instead of by the code generator. For
example:

2 Functions — Alphabetical List

2-80

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(feval('besselj',3,zTable));
j = interp1(zTable,jTable,z);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).
• If coder.const is unable to constant-fold a function call, try to force constant-folding

by making the function call extrinsic. The extrinsic function call causes evaluation of
the function call by MATLAB instead of by the code generator. For example:

function yi = fcn(xi)
y = coder.const(feval('rand',1,100));
yi = interp1(y,xi);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).

See Also

Topics
“Fold Function Calls into Constants” (MATLAB Coder)
“Use coder.const with Extrinsic Function Calls” (MATLAB Coder)

Introduced in R2013b

 coder.const

2-81

coder.cstructname
Package: coder

Name C structure type in generated code

coder.cstructname names the generated or externally defined C structure type to use
for MATLAB variables that are represented as structures in generated code.

Syntax
coder.cstructname(var,structName)
coder.cstructname(var,structName,'extern','HeaderFile',headerfile)
coder.cstructname(var,structName,'extern','HeaderFile',
headerfile,'Alignment',alignment)

outtype = coder.cstructname(intype,structName)
outtype = coder.cstructname(intype,structName,'extern','HeaderFile',
headerfile)
outtype = coder.cstructname(inptype,
structName,'extern','HeaderFile',headerfile,'Alignment',alignment)

Description
coder.cstructname(var,structName) names the C structure type generated for the
MATLAB variable var. The input var can be a structure or a cell array. Use this syntax in
a function from which you generate code. Place coder.cstructname after the definition
of var and before the first use of var. If var is an entry-point (top-level) function input
argument, place coder.cstructname at the beginning of the function, before any
control flow statements.

coder.cstructname(var,structName,'extern','HeaderFile',headerfile)
specifies that the C structure type to use for var has the name structName and is
defined in the external file, headerfileName.

2 Functions — Alphabetical List

2-82

It is possible to use the 'extern' option without specifying the header file. However, it is
a best practice to specify the header file so that the code generator produces the
#include statement in the correct location.

coder.cstructname(var,structName,'extern','HeaderFile',
headerfile,'Alignment',alignment) also specifies the run-time memory alignment
for the externally defined structure type structName. If you have Embedded Coder and
use custom Code Replacement Libraries (CRLs), specify the alignment so that the code
generator can match CRL functions that require alignment for structures. See “Data
Alignment for Code Replacement” (Embedded Coder).

outtype = coder.cstructname(intype,structName) returns a structure or cell
array type object outtype that specifies the name of the C structure type to generate.
coder.cstructname creates outtype with the properties of the input type intype.
Then, it sets the TypeName property to structName. Use this syntax to create a type
object that you use with the codegen -args option. You cannot use this syntax in a
function from which you generate code.

You cannot use this syntax in a MATLAB Function block.

outtype = coder.cstructname(intype,structName,'extern','HeaderFile',
headerfile) returns a type object outtype that specifies the name and location of an
externally defined C structure type. The code generator uses the externally defined
structure type for variables with type outtype.

You cannot use this syntax in a MATLAB Function block.

outtype = coder.cstructname(inptype,
structName,'extern','HeaderFile',headerfile,'Alignment',alignment)
creates a type object outtype that also specifies the C structure type alignment.

You cannot use this syntax in a MATLAB Function block.

Examples

Name the C Structure Type for a Variable in a Function

In a MATLAB function, myfun, assign the name MyStruct to the generated C structure
type for the variable v.

 coder.cstructname

2-83

function y = myfun()
%#codegen
v = struct('a',1,'b',2);
coder.cstructname(v, 'myStruct');
y = v;
end

Generate standalone C code. For example, generate a static library.

codegen -config:lib myfun -report

To see the generated structure type, open codegen/lib/myfun/myfun_types.h or
view myfun_types.h in the code generation report. The generated C structure type is:

typedef struct {
 double a;
 double b;
} myStruct;

Name the C Structure Type Generated for a Substructure

In a MATLAB function, myfun1, assign the name MyStruct to the generated C structure
type for the structure v. Assign the name mysubStruct to the structure type generated
for the substructure v.b.

function y = myfun()
%#codegen
v = struct('a',1,'b',struct('f',3));
coder.cstructname(v, 'myStruct');
coder.cstructname(v.b, 'mysubStruct');
y = v;
end

The generated C structure type mysubStruct is:

typedef struct {
 double f;
} mysubStruct;

The generated C structure type myStruct is:

typedef struct {
 double a;

2 Functions — Alphabetical List

2-84

 mysubStruct b;
} myStruct;

Name the Structure Type Generated for a Cell Array

In a MATLAB function, myfun2, assign the name myStruct to the generated C structure
type for the cell arrayc.

function z = myfun2()
c = {1 2 3};
coder.cstructname(c,'myStruct')
z = c;

The generated C structure type for c is:

typedef struct {
 double f1;
 double f2;
 double f3;
} myStruct;

Name an Externally Defined C Structure Type

Specify that a structure passed to a C function has a structure type defined in a C header
file.

Create a C header file mycadd.h for the function mycadd that takes a parameter of type
mycstruct. Define the type mycstruct in the header file.

#ifndef MYCADD_H
#define MYCADD_H

typedef struct {
 double f1;
 double f2;
} mycstruct;

double mycadd(mycstruct *s);
#endif

Write the C function mycadd.c.

 coder.cstructname

2-85

#include <stdio.h>
#include <stdlib.h>

#include "mycadd.h"

double mycadd(mycstruct *s)
{
 return s->f1 + s->f2;
}

Write a MATLAB function mymAdd that passes a structure by reference to mycadd. Use
coder.cstructname to specify that in the generated code, the structure has the C type
mycstruct, which is defined in mycadd.h.

function y = mymAdd
%#codegen
s = struct('f1', 1, 'f2', 2);
coder.cstructname(s, 'mycstruct', 'extern', 'HeaderFile', 'mycadd.h');
y = 0;
y = coder.ceval('mycadd', coder.ref(s));

Generate a C static library for function mymAdd.

codegen -config:lib mymAdd mycadd.c

The generated header file mymadd_types.h does not contain a definition of the structure
mycstruct because mycstruct is an external type.

Create a Structure Type Object That Names the Generated C Structure Type

Suppose that the entry-point function myFunction takes a structure argument. To specify
the type of the input argument at the command line:

1 Define an example structure S.
2 Create a type T from S by using coder.typeof.
3 Use coder.cstructname to create a type T1 that:

• Has the properties of T.
• Names the generated C structure type myStruct.

4 Pass the type to codegen by using the -args option.

2 Functions — Alphabetical List

2-86

For example:

S = struct('a',double(0),'b',single(0));
T = coder.typeof(S);
T1 = coder.cstructname(T,'myStruct');
codegen -config:lib myFunction -args T1

Alternatively, you can create the structure type directly from the example structure.

S = struct('a',double(0),'b',single(0));
T1 = coder.cstructname(S,'myStruct');
codegen -config:lib myFunction -args T1

Input Arguments
var — MATLAB structure or cell array variable
structure | cell array

MATLAB structure or cell array variable that is represented as a structure in the
generated code.

structName — Name of C structure type
character vector | string scalar

Name of generated or externally defined C structure type, specified as a character vector
or string scalar.

headerfile — Header file that contains the C structure type definition
character vector | string scalar

Header file that contains the C structure type definition, specified as a character vector or
string scalar.

To specify the path to the file:

• Use the codegen -I option or the Additional include directories parameter on the
MATLAB Coder app settings Custom Code tab.

• For a MATLAB Function block, on the Simulation Target and the Code Generation
> Custom Code panes, under Additional build information, set the Include
directories parameter.

Alternatively, use coder.updateBuildInfo with the 'addIncludePaths' option.

 coder.cstructname

2-87

Example: 'mystruct.h'

alignment — Run-time memory alignment for structure
-1 (default) | power of 2 not greater than 128

Run-time memory alignment for generated or externally defined structure.

intype — Type object or variable for creation of new type object
coder.StructType | coder.CellType | structure | cell array

Structure type object, cell array type object, structure variable, or cell array variable from
which to create a type object.

Limitations
• You cannot apply coder.cstructname directly to a global variable. To name the

structure type to use with a global variable, use coder.cstructname to create a type
object that names the structure type. Then, when you run codegen, specify that the
global variable has that type. See “Name the C Structure Type to Use With a Global
Structure Variable” (MATLAB Coder).

• For cell array inputs, the field names of externally defined structures must be f1, f2,
and so on.

Tips
• For information about how the code generator determines the C/C++ types of

structure fields, see “Mapping MATLAB Types to Types in Generated Code” (MATLAB
Coder).

• Using coder.cstructname on a structure array sets the name of the structure type
of the base element, not the name of the array. Therefore, you cannot apply
coder.cstructname to a structure array element, and then apply it to the array with
a different C structure type name. For example, the following code is not allowed. The
second coder.cstructname attempts to set the name of the base type to
myStructArrayName, which conflicts with the previously specified name,
myStructName.

% Define scalar structure with field a
myStruct = struct('a', 0);

2 Functions — Alphabetical List

2-88

coder.cstructname(myStruct,'myStructName');
% Define array of structure with field a
myStructArray = repmat(myStruct,k,n);
coder.cstructname(myStructArray,'myStructArrayName');

• Applying coder.cstructname to an element of a structure array produces the same
result as applying coder.cstructname to the entire structure array. If you apply
coder.cstructname to an element of a structure array, you must refer to the
element by using a single subscript. For example, you can use var(1), but not
var(1,1). Applying coder.cstructname to var(:) produces the same result as
applying coder.cstructname to var or var(n).

• Heterogeneous cell arrays are represented as structures in the generated code. Here
are considerations for using coder.cstructname with cell arrays:

• In a function from which you generate code, using coder.cstructname with a
cell array variable makes the cell array heterogeneous. Therefore, if a cell array is
an entry-point function input and its type is permanently homogeneous, then you
cannot use coder.cstructname with the cell array.

• Using coder.cstructname with a homogeneous coder.CellType object
intype makes the returned object heterogeneous. Therefore, you cannot use
coder.cstructname with a permanently homogeneous coder.CellType object.
For information about when a cell array is permanently homogeneous, see “Specify
Cell Array Inputs at the Command Line” (MATLAB Coder).

• When used with a coder.CellType object, coder.cstructname creates a
coder.CellType object that is permanently heterogeneous.

• These tips apply only to MATLAB Function blocks:

• MATLAB Function block input and output structures are associated with bus
signals. The generated name for the structure type comes from the bus signal
name. Do not use coder.cstructname to name the structure type for input or
output signals. See “Create Structures in MATLAB Function Blocks”.

• The code generator produces structure type names according to identifier naming
rules, even if you name the structure type with coder.cstructname. If you have
Embedded Coder, you can customize the naming rules. See “Construction of
Generated Identifiers” (Embedded Coder).

See Also
coder.ceval

 coder.cstructname

2-89

Topics
“Structure Definition for Code Generation”
“Code Generation for Cell Arrays”

Introduced in R2011a

2 Functions — Alphabetical List

2-90

coder.extrinsic
Package: coder

Declare extrinsic function or functions

Syntax
coder.extrinsic('function_name');

coder.extrinsic('function_name_1', ... , 'function_name_n');

coder.extrinsic('-sync:on', 'function_name');

coder.extrinsic('-sync:on', 'function_name_1', ... ,
'function_name_n');

coder.extrinsic('-sync:off','function_name');

coder.extrinsic('-sync:off', 'function_name_1', ... ,
'function_name_n');

Arguments
function_name
function_name_1, ... , function_name_n

Declares function_name or function_name_1 through function_name_n as
extrinsic functions.

–sync:on
function_name or function_name_1 through function_name_n.

Enables synchronization of global data between MATLAB and MEX functions before
and after calls to the extrinsic functions, function_name or function_name_1
through function_name_n. If only a few extrinsic calls modify global data, turn off
synchronization before and after all extrinsic function calls by setting the global
synchronization mode to At MEX-function entry and exit. Use the –sync:on

 coder.extrinsic

2-91

option to turn on synchronization for only the extrinsic calls that do modify global
data.

–sync:off
Disables synchronization of global data between MATLAB and MEX functions before
and after calls to the extrinsic functions, function_name or function_name_1
through function_name_n. If most extrinsic calls modify global data, but a few do
not, you can use the –sync:off option to turn off synchronization for the extrinsic calls
that do not modify global data.

Description
coder.extrinsic declares extrinsic functions. During simulation, the code generator
produces code for the call to an extrinsic function, but does not produce the function's
internal code. Therefore, simulation can run only on platforms where MATLAB software is
installed. During standalone code generation, MATLAB attempts to determine whether
the extrinsic function affects the output of the function in which it is called — for example
by returning mxArrays to an output variable. Provided that there is no change to the
output, MATLAB proceeds with code generation, but excludes the extrinsic function from
the generated code. Otherwise, compilation errors occur.

You cannot use coder.ceval on functions that you declare extrinsic by using
coder.extrinsic.

coder.extrinsic is ignored outside of code generation.

Limitations
• Extrinsic function calls have some overhead that can affect performance. Input data

that is passed in an extrinsic function call must be provided to MATLAB, which
requires making a copy of the data. If the function has any output data, this data must
be transferred back into the MEX function environment, which also requires a copy.

Tips
• The code generator detects calls to many common visualization functions, such as

plot, disp, and figure. The software treats these functions like extrinsic functions,
but you do not have to declare them extrinsic using the coder.extrinsic function.

2 Functions — Alphabetical List

2-92

• Use the coder.screener function to detect which functions you must declare
extrinsic. This function opens the code generations readiness tool that detects code
generation issues in your MATLAB code.

Examples
The following code declares the MATLAB function patch as extrinsic in the MATLAB local
function create_plot.

function c = pythagoras(a,b,color) %#codegen
% Calculates the hypotenuse of a right triangle
% and displays the triangle as a patch object.

c = sqrt(a^2 + b^2);

create_plot(a, b, color);

function create_plot(a, b, color)

%Declare patch as extrinsic
coder.extrinsic('patch');

x = [0;a;a];
y = [0;0;b];
patch(x, y, color);
axis('equal');

By declaring patch as extrinsic, you instruct the code generator not to compile or
produce code for patch. Instead, the code generator dispatches patch to MATLAB for
execution.

See Also
coder.ceval | coder.screener

Topics
“Extrinsic Functions”
“Controlling Synchronization for Extrinsic Function Calls” (MATLAB Coder)
“Resolution of Function Calls for Code Generation”

 coder.extrinsic

2-93

“Restrictions on Extrinsic Functions for Code Generation”

Introduced in R2011a

2 Functions — Alphabetical List

2-94

coder.ignoreConst
Prevent use of constant value of expression for function specializations

Syntax
coder.ignoreConst(expression)

Description
coder.ignoreConst(expression) prevents the code generator from using the
constant value of expression to create function specializations on page 2-97.
coder.ignoreConst(expression) returns the value of expression.

Examples

Prevent Function Specializations Based on Constant Input Values

Use coder.ignoreConst to prevent function specializations for a function that is called
with constant values.

Write the function call_myfn, which calls myfcn.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, 'mode1');
y = myfcn(n, 'mode2');
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')
 y = n;
else
 y = -n;

 coder.ignoreConst

2-95

end
end

Generate standalone C code. For example, generate a static library. Enable the code
generation report.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you see two function specializations for call_myfcn.

The code generator creates call_myfcn>myfcn>1 for mode with a value of 'mode1'. It
creates call_myfcn>myfcn>2 for mode with a value of 'mode2'.

In the generated C code, you see the specializations my_fcn and b_my_fcn.

static double b_myfcn(double n)
{
 return -n;
}

static double myfcn(double n)
{
 return n;
}

To prevent the function specializations, instruct the code generator to ignore that values
of the mode argument are constant.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, coder.ignoreConst('mode1'));
y = myfcn(n, coder.ignoreConst('mode2'));
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')

2 Functions — Alphabetical List

2-96

 y = n;
else
 y = -n;
end
end

Generate the C code.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you do not see multiple function specializations.

In the generated C code, you see one function for my_fcn.

Input Arguments
expression — Expression whose value is to be treated as a nonconstant
MATLAB expression

Definitions

Function Specialization
Version of a function in which an input type, size, complexity, or value is customized for a
particular invocation of the function.

Function specialization produces efficient C code at the expense of code duplication. The
code generation report shows all MATLAB function specializations that the code
generator creates. However, the specializations might not appear in the generated C/C++
code due to later transformations or optimizations.

 coder.ignoreConst

2-97

Tips
• For some recursive function calls, you can use coder.ignoreConst to force run-time

recursion. See “Force Code Generator to Use Run-Time Recursion”.
• coder.ignoreConst(expression) prevents the code generator from using the

constant value of expression to create function specializations. It does not prevent
other uses of the constant value during code generation.

See Also
coder.inline

Topics
“Force Code Generator to Use Run-Time Recursion”
“Compile-Time Recursion Limit Reached”

Introduced in R2017a

2 Functions — Alphabetical List

2-98

coder.inline
Package: coder

Control inlining in generated code

Syntax
coder.inline('always')
coder.inline('never')
coder.inline('default')

Description
coder.inline('always') forces inlining on page 2-100 of the current function in the
generated code. Place the coder.inline directive inside the function to which it
applies. The code generator does not inline entry-point functions, inline functions into
parfor loops, or inline functions called from parfor loops.

coder.inline('never') prevents inlining of the current function in the generated
code. Prevent inlining when you want to simplify the mapping between the MATLAB
source code and the generated code.

coder.inline('default') uses internal heuristics to determine whether to inline the
current function. Usually, the heuristics produce highly optimized code. Use
coder.inline only when you need to fine-tune these optimizations.

Examples
• “Prevent Function Inlining” on page 2-99
• “Use coder.inline in Control Flow Statements” on page 2-100

Prevent Function Inlining
In this example, function foo is not inlined in the generated code:

 coder.inline

2-99

function y = foo(x)
 coder.inline('never');
 y = x;
end

Use coder.inline in Control Flow Statements
You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and
issues a warning.

Suppose that you want to generate code for a division function used by a system with
limited memory. To optimize memory use in the generated code, the inline_division
function manually controls inlining based on whether it performs scalar division or vector
division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)
 coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.
 coder.inline('never');
end

if any(divisor == 0)
 error('Cannot divide by 0');
end

y = dividend / divisor;

Definitions
Inlining
Technique that replaces a function call with the contents (body) of that function. Inlining
eliminates the overhead of a function call, but can produce larger C/C++ code. Inlining
can create opportunities for further optimization of the generated C/C++ code.

2 Functions — Alphabetical List

2-100

See Also
Introduced in R2011a

 coder.inline

2-101

coder.load
Load compile-time constants from MAT-file or ASCII file into caller workspace

Syntax
S = coder.load(filename)
S = coder.load(filename,var1,...,varN)
S = coder.load(filename,'-regexp',expr1,...,exprN)
S = coder.load(filename,'-ascii')
S = coder.load(filename,'-mat')
S = coder.load(filename,'-mat',var1,...,varN)
S = coder.load(filename,'-mat','-regexp', expr1,...,exprN)

Description
S = coder.load(filename) loads compile-time constants from filename.

• If filename is a MAT-file, then coder.load loads variables from the MAT-file into a
structure array.

• If filename is an ASCII file, then coder.load loads data into a double-precision
array.

S = coder.load(filename,var1,...,varN) loads only the specified variables from
the MAT-file filename.

S = coder.load(filename,'-regexp',expr1,...,exprN) loads only the variables
that match the specified regular expressions.

S = coder.load(filename,'-ascii') treats filename as an ASCII file, regardless
of the file extension.

S = coder.load(filename,'-mat') treats filename as a MAT-file, regardless of
the file extension.

S = coder.load(filename,'-mat',var1,...,varN) treats filename as a MAT-
file and loads only the specified variables from the file.

2 Functions — Alphabetical List

2-102

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN) treats
filename as a MAT-file and loads only the variables that match the specified regular
expressions.

Examples

Load compile-time constants from MAT-file

Generate code for a function edgeDetect1 which given a normalized image, returns an
image where the edges are detected with respect to the threshold value. edgeDetect1
uses coder.load to load the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.mat k

Write the function edgeDetect1.

function edgeImage = edgeDetect1(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

S = coder.load('sobel.mat','k');
H = conv2(double(originalImage),S.k, 'same');
V = conv2(double(originalImage),S.k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect1.

codegen -report -config cfg edgeDetect1

codegen generates C code in the codegen\lib\edgeDetect1 folder.

 coder.load

2-103

Load compile-time constants from ASCII file

Generate code for a function edgeDetect2 which given a normalized image, returns an
image where the edges are detected with respect to the threshold value. edgeDetect2
uses coder.load to load the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.

k = [1 2 1; 0 0 0; -1 -2 -1];
save sobel.dat k -ascii

Write the function edgeDetect2.

function edgeImage = edgeDetect2(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = coder.load('sobel.dat');
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect2.

codegen -report -config cfg edgeDetect2

codegen generates C code in the codegen\lib\edgeDetect2 folder.

Input Arguments
filename — Name of file
character vector | string scalar

Name of file. filename must be a compile-time constant.

2 Functions — Alphabetical List

2-104

filename can include a file extension and a full or partial path. If filename has no
extension, load looks for a file named filename.mat. If filename has an extension
other than .mat, load treats the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of
elements in each row. The file delimiter (the character between elements in each row) can
be a blank, comma, semicolon, or tab character. The file can contain MATLAB comments
(lines that begin with a percent sign, %).
Example: 'myFile.mat'

var1,...,varN — Names of variables to load
character vector | string scalar

Names of variables, specified as one or more character vectors or string scalars. Each
variable name must be a compile-time constant. Use the * wildcard to match patterns.
Example: coder.load('myFile.mat','A*') loads all variables in the file whose
names start with A.

expr1,...,exprN — Regular expressions indicating which variables to load
character vector | string scalar

Regular expressions indicating which variables to load specified as one or more character
vectors or string scalars. Each regular expression must be a compile-time constant.
Example: coder.load('myFile.mat', '-regexp', '^A') loads only variables
whose names begin with A.

Output Arguments
S — Loaded variables or data
structure array | m-by-n array

If filename is a MAT-file, S is a structure array.

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of
lines in the file and n is the number of values on a line.

 coder.load

2-105

Limitations
• coder.load does not support loading objects.
• Arguments to coder.load must be compile-time constants.
• The output S must be the name of a structure or array without any subscripting. For

example, S(i) = coder.load('myFile.mat') is not allowed.
• You cannot use save to save workspace data to a file inside a function intended for

code generation. The code generator does not support the save function.
Furthermore, you cannot use coder.extrinsic with save. Prior to generating code,
you can use save to save workspace data to a file.

Tips
• coder.load loads data at compile time, not at run time. If you are generating MEX

code or code for Simulink simulation, you can use the MATLAB function load to load
run-time values.

• If the MAT-file contains unsupported constructs, use
coder.load(filename,var1,...,varN) to load only the supported constructs.

• If you generate code in a MATLAB Coder project, the code generator practices
incremental code generation for the coder.load function. When the MAT-file or
ASCII file used by coder.load changes, the software rebuilds the code.

See Also
matfile | regexp | save

Topics
“Regular Expressions” (MATLAB)

Introduced in R2013a

2 Functions — Alphabetical List

2-106

coder.nullcopy
Package: coder

Declare uninitialized variables

Syntax
X = coder.nullcopy(A)

Description
X = coder.nullcopy(A) copies type, size, and complexity of A to X, but does not copy
element values. Preallocates memory for X without incurring the overhead of initializing
memory.

Use With Caution
Use this function with caution. See “How to Eliminate Redundant Copies by Defining
Uninitialized Variables”.

Examples
The following example shows how to declare variable X as a 1-by-5 vector of real doubles
without performing an unnecessary initialization:

function X = foo

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N
 if mod(i,2) == 0
 X(i) = i;
 else
 X(i) = 0;

 coder.nullcopy

2-107

 end
end

Using coder.nullcopy with zeros lets you specify the size of vector X without
initializing each element to zero.

Limitations
• coder.nullcopy does not support MATLAB classes as inputs.
• You cannot use coder.nullcopy on sparse matrices, or on structures, cell arrays, or

classes that contain sparse matrices.

See Also

Topics
“Eliminate Redundant Copies of Variables in Generated Code”

Introduced in R2011a

2 Functions — Alphabetical List

2-108

coder.opaque
Declare variable in generated code

Syntax
y = coder.opaque(type)
y = coder.opaque(type,value)
y = coder.opaque(___ ,'Size',Size)
y = coder.opaque(___ ,'HeaderFile',HeaderFile)

Description
y = coder.opaque(type) declares a variable y with the specified type and no initial
value in the generated code.

• y can be a variable or a structure field.
• MATLAB code cannot set or access y, but external C functions can accept y as an

argument.
• y can be an:

• Argument to coder.rref, coder.wref, or coder.ref
• Input or output argument to coder.ceval
• Input or output argument to a user-written MATLAB function
• Input to a subset of MATLAB toolbox functions supported for code generation

• Assignment from y declares another variable with the same type in the generated
code. For example:

y = coder.opaque('int');
z = y;

declares a variable z of type int in the generated code.
• You can assign y from another variable declared using either coder.opaque or

assignment from a variable declared using coder.opaque. The variables must have
identical types.

 coder.opaque

2-109

• You can compare y to another variable declared using either coder.opaque or
assignment from a variable declared using coder.opaque. The variables must have
identical types.

y = coder.opaque(type,value) specifies the type and initial value of y.

y = coder.opaque(___ ,'Size',Size) specifies the size, in bytes, of y. You can
specify the size with any of the previous syntaxes.

y = coder.opaque(___ ,'HeaderFile',HeaderFile) specifies the header file that
contains the type definition. The code generator produces the #include statement for
the header file where the statement is required in the generated code. You can specify the
header file with any of the previous syntaxes.

Examples

Declare Variable Specifying Initial Value
Generate code for a function valtest which returns 1 if the call to myfun is successful.
This function uses coder.opaque to declare a variable x1 with type int and initial value
0. The assignment x2 = x1 declares x2 to be a variable with the type and initial value of
x1.

Write a function valtest.

function y = valtest
%codegen
%declare x1 to be an integer with initial value '0'
x1 = coder.opaque('int','0');
%Declare x2 to have same type and initial value as x1
x2 = x1;
x2 = coder.ceval('myfun');
%test the result of call to 'myfun' by comparing to value of x1
if x2 == x1
 y = 0;
else
 y = 1;

2 Functions — Alphabetical List

2-110

end
end

Declare Variable Specifying Initial Value and Header File
Generate code for a MATLAB function filetest which returns its own source code using
fopen/fread/fclose. This function uses coder.opaque to declare the variable that
stores the file pointer used by fopen/fread/fclose. The call to coder.opaque
declares the variable f with type FILE *, initial value NULL, and header file <stdio.h>.

Write a MATLAB function filetest.
function buffer = filetest
%#codegen

% Declare 'f' as an opaque type 'FILE *' with initial value 'NULL"
%Specify the header file that contains the type definition of 'FILE *';

f = coder.opaque('FILE *', 'NULL','HeaderFile','<stdio.h>');
% Open file in binary mode
f = coder.ceval('fopen', cstring('filetest.m'), cstring('rb'));

% Read from file until end of file is reached and put
% contents into buffer
n = int32(1);
i = int32(1);
buffer = char(zeros(1,8192));
while n > 0
 % By default, MATLAB converts constant values
 % to doubles in generated code
 % so explicit type conversion to int32 is inserted.
 n = coder.ceval('fread', coder.ref(buffer(i)), int32(1), ...
 int32(numel(buffer)), f);
 i = i + n;
end
coder.ceval('fclose',f);

buffer = strip_cr(buffer);

% Put a C termination character '\0' at the end of MATLAB character vector
function y = cstring(x)
 y = [x char(0)];

% Remove all character 13 (CR) but keep character 10 (LF)
function buffer = strip_cr(buffer)
j = 1;
for i = 1:numel(buffer)
 if buffer(i) ~= char(13)
 buffer(j) = buffer(i);
 j = j + 1;
 end

 coder.opaque

2-111

end
buffer(i) = 0;

Compare Variables Declared Using coder.opaque
Compare variables declared using coder.opaque to test for successfully opening a file.

Use coder.opaque to declare a variable null with type FILE * and initial value NULL.

null = coder.opaque('FILE *', 'NULL', 'HeaderFile', '<stdio.h>');

Use assignment to declare another variable ftmp with the same type and value as null.

ftmp = null;
ftmp = coder.ceval('fopen', ['testfile.txt', char(0)], ['r', char(0)]);

Compare the variables.

if ftmp == null
 %error condition
end

Cast to and from Types of Variables Declared Using
coder.opaque
This example shows how to cast to and from types of variables that are declared using
coder.opaque. The function castopaque calls the C run-time function strncmp to
compare at most n characters of the strings s1 and s2. n is the number of characters in
the shorter of the strings. To generate the correct C type for the strncmp input nsizet,
the function casts n to the C type size_t and assigns the result to nsizet. The function
uses coder.opaque to declare nsizet. Before using the output retval from strncmp,
the function casts retval to the MATLAB type int32 and stores the results in y.

Write this MATLAB function:

function y = castopaque(s1,s2)

% <0 - the first character that does not match has a lower value in s1 than in s2
% 0 - the contents of both strings are equal
% >0 - the first character that does not match has a greater value in s1 than in s2
%
%#codegen

2 Functions — Alphabetical List

2-112

coder.cinclude('<string.h>');
n = min(numel(s1), numel(s2));

% Convert the number of characters to compare to a size_t

nsizet = cast(n,'like',coder.opaque('size_t','0'));

% The return value is an int
retval = coder.opaque('int');
retval = coder.ceval('strncmp', cstr(s1), cstr(s2), nsizet);

% Convert the opaque return value to a MATLAB value
y = cast(retval, 'int32');

%--------------
function sc = cstr(s)
% NULL terminate a MATLAB character vector for C
sc = [s, char(0)];

Generate the MEX function.

codegen castopaque -args {blanks(3), blanks(3)} -report

Call the MEX function with inputs 'abc' and 'abc'.

castopaque_mex('abc','abc')

ans =

 0

The output is 0 because the strings are equal.

Call the MEX function with inputs 'abc' and 'abd'.

castopaque_mex('abc','abd')

ans =

 -1

The output is -1 because the third character d in the second string is greater than the
third character c in the first string.

Call the MEX function with inputs 'abd' and 'abc'.

 coder.opaque

2-113

castopaque_mex('abd','abc')

ans =

 1

The output is 1 because the third character d in the first string is greater than the third
character c in the second string.

In the MATLAB workspace, you can see that the type of y is int32.

Declare Variable Specifying Initial Value and Size
Declare y to be a 4-byte integer with initial value 0.

y = coder.opaque('int','0', 'Size', 4);

Input Arguments
type — Type of variable
character vector | string scalar

Type of variable in generated code. type must be a compile-time constant. The type must
be a:

• Built-in C data type or a type defined in a header file
• C type that supports copy by assignment
• Legal prefix in a C declaration

Example: 'FILE *'

value — Initial value of variable
character vector | string scalar

Initial value of variable in generated code. value must be a compile-time constant.
Specify a C expression not dependent on MATLAB variables or functions.

If you do not provide the initial value in value, initialize the value of the variable before
using it. To initialize a variable declared using coder.opaque:

2 Functions — Alphabetical List

2-114

• Assign a value from another variable with the same type declared using either
coder.opaque or assignment from a variable declared using coder.opaque.

• Assign a value from an external C function.
• Pass the address of the variable to an external function using coder.wref.

Specify a value that has the type that type specifies. Otherwise, the generated code can
produce unexpected results.
Example: 'NULL'

Size — Size of variable
integer

Number of bytes for the variable in the generated code, specified as an integer. If you do
not specify the size, the size of the variable is 8 bytes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

HeaderFile — Name of header file
character vector | string scalar

Name of header file that contains the definition of type. HeaderFile must be a compile-
time constant.

For a system header file, use angle brackets.
Example: '<stdio.h>' generates #include <stdio.h>

For an application header file, use double quotes.
Example: '"foo.h"' generates #include "foo.h"

If you omit the angle brackets or double quotes, the code generator produces double
quotes.
Example: 'foo.h' generates #include "foo.h"

Specify the include path in the build configuration parameters.
Example: cfg.CustomInclude = 'c:\myincludes'

 coder.opaque

2-115

Tips
• Specify a value that has the type that type specifies. Otherwise, the generated code

can produce unexpected results. For example, the following coder.opaque
declaration can produce unexpected results.

y = coder.opaque('int', '0.2')

• coder.opaque declares the type of a variable. It does not instantiate the variable.
You can instantiate a variable by using it later in the MATLAB code. In the following
example, assignment of fp1 from coder.ceval instantiates fp1.

% Declare fp1 of type FILE *
fp1 = coder.opaque('FILE *');
%Create the variable fp1
fp1 = coder.ceval('fopen', ['testfile.txt', char(0)], ['r', char(0)]);

• In the MATLAB environment, coder.opaque returns the value specified in value. If
value is not provided, it returns an empty character vector.

• You can compare variables declared using either coder.opaque or assignment from a
variable declared using coder.opaque. The variables must have identical types. The
following example demonstrates how to compare these variables. “Compare Variables
Declared Using coder.opaque” on page 2-112

• To avoid multiple inclusions of the same header file in generated code, enclose the
header file in the conditional preprocessor statements #ifndef and #endif. For
example:

#ifndef MyHeader_h
#define MyHeader_h
<body of header file>
#endif

• You can use the MATLAB cast function to cast a variable to or from a variable that is
declared using coder.opaque. Use cast with coder.opaque only for numeric
types.

To cast a variable declared by coder.opaque to a MATLAB type, you can use the B =
cast(A,type) syntax. For example:

x = coder.opaque('size_t','0');
x1 = cast(x, 'int32');

You can also use the B = cast(A,'like',p) syntax. For example:

2 Functions — Alphabetical List

2-116

x = coder.opaque('size_t','0');
x1 = cast(x, 'like', int32(0));

To cast a MATLAB variable to the type of a variable declared by coder.opaque, you
must use the B = cast(A,'like',p) syntax. For example:

x = int32(12);
x1 = coder.opaque('size_t', '0');
x2 = cast(x, 'like', x1));

Use cast with coder.opaque to generate the correct data types for:

• Inputs to C/C++ functions that you call using coder.ceval.
• Variables that you assign to outputs from C/C++ functions that you call using

coder.ceval.

Without this casting, it is possible to receive compiler warnings during code
generation.

See Also
coder.ceval | coder.ref | coder.rref | coder.wref

Introduced in R2011a

 coder.opaque

2-117

coder.ref
Indicate data to pass by reference

Syntax
coder.ref(arg)

Description
coder.ref(arg) indicates that arg is an expression or variable to pass by reference to
an external C/C++ function. Use coder.ref inside a coder.ceval call only. The C/C++
function can read from or write to the variable passed by reference. Use a separate
coder.ref construct for each argument that you pass by reference to the function.

Examples

Pass Scalar Variable by Reference
Consider the C function addone that returns the value of an input plus one:

double addone(double* p) {
 return *p + 1;
}

The C function defines the input variable p as a pointer to a double.

Pass the input by reference to addone:

...
y = 0;
u = 42;

2 Functions — Alphabetical List

2-118

y = coder.ceval('addone', coder.ref(u));
...

Pass Multiple Arguments by Reference
...
u = 1;
v = 2;
y = coder.ceval('my_fcn', coder.ref(u), coder.ref(v));
...

Pass Class Property by Reference
...
x = myClass;
x.prop = 1;
coder.ceval('foo', coder.ref(x.prop));
...

Pass a Structure by Reference
To indicate that the structure type is defined in a C header file, use
coder.cstructname.

Suppose that you have the C function incr_struct. This function reads from and writes
to the input argument.

#include "MyStruct.h"

void incr_struct(struct MyStruct *my_struct)
{
 my_struct->f1 = my_struct->f1 + 1;
 my_struct->f2 = my_struct->f2 + 1;
}

The C header file, MyStruct.h, defines a structure type named MyStruct:

#ifndef MYSTRUCT
#define MYSTRUCT

typedef struct MyStruct
{

 coder.ref

2-119

 double f1;
 double f2;
} MyStruct;

void incr_struct(struct MyStruct *my_struct);

#endif

In your MATLAB function, pass a structure by reference to incr_struct. To indicate
that the structure type for s has the name MyStruct that is defined in the C header file
MyStruct.h, use coder.cstructname.

function y = foo
%#codegen
y = 0;
coder.updateBuildInfo('addSourceFiles','incr_struct.c');

s = struct('f1',1,'f2',2);
coder.cstructname(s,'MyStruct','extern','HeaderFile','MyStruct.h');
coder.ceval('incr_struct', coder.ref(s));

To generate standalone library code, enter:

codegen -config:lib foo -report

Pass Structure Field by Reference
...
s = struct('s1', struct('a', [0 1]));
coder.ceval('foo', coder.ref(s.s1.a));
...

You can also pass an element of an array of structures:

...
c = repmat(struct('u',magic(2)),1,10);
b = repmat(struct('c',c),3,6);
a = struct('b',b);
coder.ceval('foo', coder.ref(a.b(3,4).c(2).u));
...

2 Functions — Alphabetical List

2-120

Input Arguments
arg — Argument to pass by reference
scalar variable | array | element of an array | structure | structure field | object property

Argument to pass by reference to an external C/C++ function. The argument cannot be a
class, a System object, a cell array, or an index into a cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot pass these data types by reference:

• Class or System object
• Cell array or index into a cell array

• If a property has a get method, a set method, or validators, or is a System object
property with certain attributes, then you cannot pass the property by reference to an
external function. See “Passing By Reference Not Supported for Some Properties”.

Tips
• If arg is an array, then coder.ref(arg) provides the address of the first element of

the array. The coder.ref(arg) function does not contain information about the size
of the array. If the C function must know the number of elements of your data, pass
that information as a separate argument. For example:

coder.ceval('myFun',coder.ref(arg),int32(numel(arg));
• When you pass a structure by reference to an external C/C++ function, use

coder.cstructname to provide the name of a C structure type that is defined in a C
header file.

• In MATLAB, coder.ref results in an error. To parameterize your MATLAB code so
that it can run in MATLAB and in generated code, use coder.target.

• You can use coder.opaque to declare variables that you pass to and from an external
C/C++ function.

 coder.ref

2-121

See Also
coder.ceval | coder.cstructname | coder.opaque | coder.rref | coder.wref |
numel

Topics
“Integrate C Code Using the MATLAB Function Block”

Introduced in R2011a

2 Functions — Alphabetical List

2-122

coder.rref
Indicate read-only data to pass by reference

Syntax
coder.rref(arg)

Description
coder.rref(arg) indicates that arg is a read-only expression or variable to pass by
reference to an external C/C++ function. Use coder.rref only inside a coder.ceval
call. Use a separate coder.rref construct for each argument that you pass by reference
to the function.

The coder.rref function can enable the code generator to optimize the generated code.
For example, the code generator can perform expression folding on assignments to arg
that occur before and after the coder.ceval call. Expression folding is the combining of
multiple operations into one statement to avoid the use of temporary variables and
improve code performance.

Note The code generator assumes that the memory that you pass with
coder.rref(arg) is read-only. To avoid unpredictable results, the C/C++ function must
not write to this variable.

Examples

Pass Scalar Variable as a Read-Only Reference
Consider the C function addone that returns the value of a constant input plus one:

double addone(const double* p) {
 return *p + 1;
}

 coder.rref

2-123

The C function defines the input variable p as a pointer to a constant double.

Pass the input by reference to addone:

...
y = 0;
u = 42;
y = coder.ceval('addone', coder.rref(u));
...

Pass Multiple Arguments as a Read-Only Reference
...
u = 1;
v = 2;
y = coder.ceval('my_fcn', coder.rref(u), coder.rref(v));
...

Pass Class Property as a Read-Only Reference
...
x = myClass;
x.prop = 1;
y = coder.ceval('foo', coder.rref(x.prop));
...

Pass Structure as a Read-Only Reference
To indicate that the structure type is defined in a C header file, use
coder.cstructname.

Suppose that you have the C function use_struct. This function reads from the input
argument but does not write to it.

#include "MyStruct.h"

double use_struct(const struct MyStruct *my_struct)
{
 return my_struct->f1 + my_struct->f2;
}

The C header file, MyStruct.h, defines a structure type named MyStruct:

2 Functions — Alphabetical List

2-124

#ifndef MYSTRUCT
#define MYSTRUCT

typedef struct MyStruct
{
 double f1;
 double f2;
} MyStruct;

double use_struct(const struct MyStruct *my_struct);

#endif

In your MATLAB function, pass a structure as a read-only reference to use_struct. To
indicate that the structure type for s has the name MyStruct that is defined in the C
header file MyStruct.h, use coder.cstructname.

function y = foo
%#codegen
y = 0;
coder.updateBuildInfo('addSourceFiles','use_struct.c');

s = struct('f1',1,'f2',2);
coder.cstructname(s,'MyStruct','extern','HeaderFile','MyStruct.h');
y = coder.ceval('use_struct', coder.rref(s));

To generate standalone library code, enter:

codegen -config:lib foo -report

Pass Structure Field as a Read-Only Reference
...
s = struct('s1', struct('a', [0 1]));
y = coder.ceval('foo', coder.rref(s.s1.a));
...

You can also pass an element of an array of structures:

...
c = repmat(struct('u',magic(2)),1,10);
b = repmat(struct('c',c),3,6);
a = struct('b',b);
coder.ceval('foo', coder.rref(a.b(3,4).c(2).u));
...

 coder.rref

2-125

Input Arguments
arg — Argument to pass by reference
scalar variable | array | element of an array | structure | structure field | object property

Argument to pass by reference to an external C/C++ function. The argument cannot be a
class, a System object, a cell array, or an index into a cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot pass these data types by reference:

• Class or System object
• Cell array or index into a cell array

• If a property has a get method, a set method, or validators, or is a System object
property with certain attributes, then you cannot pass the property by reference to an
external function. See “Passing By Reference Not Supported for Some Properties”.

Tips
• If arg is an array, then coder.rref(arg) provides the address of the first element of

the array. The coder.rref(arg) function does not contain information about the size
of the array. If the C function must know the number of elements of your data, pass
that information as a separate argument. For example:

coder.ceval('myFun',coder.rref(arg),int32(numel(arg));
• When you pass a structure by reference to an external C/C++ function, use

coder.cstructname to provide the name of a C structure type that is defined in a C
header file.

• In MATLAB, coder.rref results in an error. To parametrize your MATLAB code so
that it can run in MATLAB and in generated code, use coder.target.

• You can use coder.opaque to declare variables that you pass to and from an external
C/C++ function.

2 Functions — Alphabetical List

2-126

See Also
coder.ceval | coder.cstructname | coder.opaque | coder.ref | coder.wref

Topics
“Integrate C Code Using the MATLAB Function Block”

Introduced in R2011a

 coder.rref

2-127

coder.screener
Determine if function is suitable for code generation

Syntax
coder.screener(fcn)
coder.screener(fcn_1,...,fcn_n)

Description
coder.screener(fcn) analyzes the entry-point MATLAB function, fcn. It identifies
unsupported functions and language features as code generation compliance issues. It
displays the code generation compliance issues in a report. If fcn calls other functions
directly or indirectly that are not MathWorks® functions, coder.screener analyzes
these functions. It does not analyze MathWorks functions. It is possible that
coder.screener does not detect all code generation issues. Under certain
circumstances, it is possible that coder.screener reports false errors.

coder.screener(fcn_1,...,fcn_n) analyzes entry-point functions
(fcn_1,...,fcn_n).

Input Arguments
fcn

Name of entry-point MATLAB function that you want to analyze. Specify as a character
vector or a string scalar.

fcn_1,...,fcn_n

Comma-separated list of names of entry-point MATLAB functions that you want to
analyze. Specify as character vectors or string scalars.

2 Functions — Alphabetical List

2-128

Examples

Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for
code generation. It checks both the entry-point function, foo1, and the function foo2
that foo1 calls.

Write the function foo2 and save it in the file foo2.m.

function out = foo2(in)
 out = eval(in);
end

Write the function foo1 that calls foo2. Save foo1 in the file foo1.m.

function out = foo1(in)
 out = foo2(in);
 disp(out);
end

Analyze foo1.

coder.screener('foo1')

The code generation readiness report displays a summary of the unsupported MATLAB
function calls. The function foo2 calls one unsupported MATLAB function.

 coder.screener

2-129

In the report, click the Code Structure tab and select the Show MATLAB functions
check box.

This tab displays a pie chart showing the relative size of each file and how suitable each
file is for code generation. In this case, the report:

2 Functions — Alphabetical List

2-130

• Colors foo1.m green to indicate that it is suitable for code generation.
• Colors foo2.m yellow to indicate that it requires significant changes.
• Assigns foo1.m a code generation readiness score of 4 and foo2.m a score of 3. The

score is based on a scale of 1–5. 1 indicates that significant changes are required; 5
indicates that the code generation readiness tool does not detect issues.

• Displays a call tree.

 coder.screener

2-131

The report Summary tab indicates that foo2.m contains one call to the eval function,
which code generation does not support. To generate a MEX function for foo2.m, modify
the code to make the call to eval extrinsic.

function out = foo2(in)
 coder.extrinsic('eval');

2 Functions — Alphabetical List

2-132

 out = eval(in);
end

Rerun the code generation readiness tool.

coder.screener('foo1')

The report no longer flags that code generation does not support the eval function.
When you generate a MEX function for foo1, the code generator dispatches eval to
MATLAB for execution. For standalone code generation, the code generator does not
generate code for eval.

Identify Unsupported Data Types

The coder.screener function identifies MATLAB data types that code generation does
not support.

Write the function myfun that contains a MATLAB table.

function outTable = myfun1(A)
outTable = table(A);
end

Analyze myfun.

coder.screener('myfun1');

The code generation readiness report indicates that table data types are not supported
for code generation.

 coder.screener

2-133

The report assigns myfun1 a code readiness score of 3. Before generating code, you must
fix the reported issues.

Tips
• Before using coder.screener, fix issues that the Code Analyzer identifies.
• Before generating code, use coder.screener to check that a function is suitable for

code generation. Fix all the issues that it detects.

Alternatives
• “Run the Code Generation Readiness Tool From the Current Folder Browser”

2 Functions — Alphabetical List

2-134

See Also

Topics
“Functions and Objects Supported for C/C++ Code Generation — Alphabetical List”
“Functions and Objects Supported for C/C++ Code Generation — Category List”
“Code Generation Readiness Tool”

Introduced in R2012b

 coder.screener

2-135

coder.target
Determine if code generation target is specified target

Syntax
tf = coder.target(target)

Description
tf = coder.target(target) returns true (1) if the code generation target is target.
Otherwise, it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at class
loading time before code generation. If you use coder.target in MATLAB class property
initialization, coder.target('MATLAB') returns true.

Examples

Use coder.target to Parametrize a MATLAB Function

Parametrize a MATLAB function so that it works in MATLAB or in generated code. When
the function runs in MATLAB, it calls the MATLAB function myabsval. The generated
code, however, calls a C library function myabsval.

Write a MATLAB function myabsval.

function y = myabsval(u)
%#codegen
y = abs(u);

Generate a C static library for myabsval, using the -args option to specify the size,
type, and complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

2 Functions — Alphabetical List

2-136

The codegen function creates the library file myabsval.lib and header file
myabsval.h in the folder \codegen\lib\myabsval. (The library file extension can
change depending on your platform.) It generates the functions myabsval_initialize
and myabsval_terminate in the same folder.

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval(y)
%#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
 % Executing in MATLAB, call function myabsval
 y = myabsval(y);
else
 % add the required include statements to generated function code
 coder.updateBuildInfo('addIncludePaths','$(START_DIR)/codegen/lib/myabsval');
 coder.cinclude('myabsval_initialize.h');
 coder.cinclude('myabsval.h');
 coder.cinclude('myabsval_terminate.h');

 % Executing in the generated code.
 % Call the initialize function before calling the
 % C function for the first time
 coder.ceval('myabsval_initialize');

 % Call the generated C library function myabsval
 y = coder.ceval('myabsval',y);

 % Call the terminate function after
 % calling the C function for the last time
 coder.ceval('myabsval_terminate');
end

Generate the MEX function callmyabsval_mex. Provide the generated library file at the
command line.

codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}

Rather than providing the library at the command line, you can use
coder.updateBuildInfo to specify the library within the function. Use this option to
preconfigure the build. Add this line to the else block:

coder.updateBuildInfo('addLinkObjects','myabsval.lib','$(START_DIR)\codegen\lib\myabsval',100,true,true);

 coder.target

2-137

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex(-2.75)

ans =

 2.7500

Call the MATLAB function callmyabsval.

callmyabsval(-2.75)

ans =

 2.7500

The callmyabsval function exhibits the desired behavior for execution in MATLAB and
in code generation.

Input Arguments
target — code generation target
'MATLAB' | 'MEX' | 'Sfun' | 'Rtw' | 'HDL ' | 'Custom'

Code generation target, specified as a character vector or a string scalar. Specify one of
these targets.

'MATLAB' Running in MATLAB (not generating code)
'MEX' Generating a MEX function
'Sfun' Simulating a Simulink model
'Rtw' Generating a LIB, DLL, or EXE target
'HDL' Generating an HDL target
'Custom' Generating a custom target

Example: tf = coder.target('MATLAB')
Example: tf = coder.target("MATLAB")

2 Functions — Alphabetical List

2-138

See Also
coder.BuildConfig | coder.ceval | coder.cinclude | coder.updateBuildInfo

Introduced in R2011a

 coder.target

2-139

coder.unroll
Unroll for-loop by making a copy of the loop body for each loop iteration

Syntax
coder.unroll()
coder.unroll(flag)
for i = coder.unroll(range)
for i = coder.unroll(range, flag)

Description
coder.unroll() unrolls a for-loop. The coder.unroll call must be on a line by itself
immediately preceding the for-loop that it unrolls.

Instead of producing a for-loop in the generated code, loop unrolling produces a copy of
the for-loop body for each loop iteration. In each iteration, the loop index becomes
constant. To unroll a loop, the code generator must be able to determine the bounds of
the for-loop.

For small, tight loops, unrolling can improve performance. However, for large loops,
unrolling can increase code generation time significantly and generate inefficient code.

coder.unroll is ignored outside of code generation.

coder.unroll(flag) unrolls a for-loop if flag is true. flag is evaluated at code
generation time. The coder.unroll call must be on a line by itself immediately
preceding the for-loop that it unrolls.

for i = coder.unroll(range) is a legacy syntax that generates the same code as
coder.unroll().

for i = coder.unroll(range, flag) is a legacy syntax that generates the same
code as coder.unroll(flag).

2 Functions — Alphabetical List

2-140

Examples

Unroll a for-loop
To produce copies of a for-loop body in the generated code, use coder.unroll.

In one file, write the entry-point function call_getrand and a local function getrand.
getrand unrolls a for-loop that assigns random numbers to an n-by-1 array.
call_getrand calls getrand with the value 3.

function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
coder.unroll();
for i = 1:n
 y(i) = rand();
end
end

Generate a static library.

codegen -config:lib call_getrand -report

In the generated code, the code generator produces a copy of the for-loop body for each
of the three loop iterations.

static void getrand(double y[3])
{
 y[0] = b_rand();
 y[1] = b_rand();
 y[2] = b_rand();
}

Control for-loop Unrolling with Flag
Control loop unrolling by using coder.unroll with the flag argument.

 coder.unroll

2-141

In one file, write the entry-point function call_getrand_unrollflag and a local
function getrand_unrollflag. When the number of loop iterations is less than 10,
getrand_unrollflag unrolls the for-loop. call_getrand calls getrand with the
value 50.

function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
coder.unroll(unrollflag)
for i = 1:n
 y(i) = rand();
end
end

Generate a static library.

codegen -config:lib call_getrand_unrollflag -report

The number of iterations is not less than 10. Therefore, the code generator does not
unroll the for-loop. It produces a for-loop in the generated code.

static void getrand_unrollflag(double y[50])
{
 int i;
 for (i = 0; i < 50; i++) {
 y[i] = b_rand();
 }
}

Use Legacy Syntax to Unroll for-Loop
function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)
coder.inline('never');

2 Functions — Alphabetical List

2-142

y = zeros(n, 1);
for i = coder.unroll(1:n)
 y(i) = rand();
end
end

Use Legacy Syntax to Control for-Loop Unrolling
function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
for i = coder.unroll(1:n, unrollflag)
 y(i) = rand();
end
end

Input Arguments
flag — Indicates whether to unroll the for-loop
true (default) | false

When flag is true, the code generator unrolls the for-loop. When flag is false, the
code generator produces a for-loop in the generated code. flag is evaluated at code
generation time.

Tips
Sometimes, the code generator unrolls a for-loop even though you do not use
coder.unroll. For example, if a for-loop indexes into a heterogeneous cell array or
into varargin or varargout, the code generator unrolls the loop. By unrolling the loop,
the code generator can determine the value of the index for each loop iteration. The code
generator uses heuristics to determine when to unroll a for-loop. If the heuristics fail to
identify that unrolling is warranted, or if the number of loop iterations exceeds a limit,

 coder.unroll

2-143

code generation fails. In these cases, you can force loop unrolling by using
coder.unroll. See “Nonconstant Index into varargin or varargout in a for-Loop”.

See Also
coder.inline

Topics
“Unroll for-Loops”
“Nonconstant Index into varargin or varargout in a for-Loop”

Introduced in R2011a

2 Functions — Alphabetical List

2-144

coder.updateBuildInfo
Update build information object RTW.BuildInfo

Syntax
coder.updateBuildInfo('addCompileFlags',options)
coder.updateBuildInfo('addLinkFlags',options)
coder.updateBuildInfo('addDefines',options)
coder.updateBuildInfo(___ ,group)

coder.updateBuildInfo('addLinkObjects',filename,path)
coder.updateBuildInfo('addLinkObjects',filename,path,priority,
precompiled)
coder.updateBuildInfo('addLinkObjects',filename,path,priority,
precompiled,linkonly)
coder.updateBuildInfo(___ ,group)

coder.updateBuildInfo('addNonBuildFiles',filename)
coder.updateBuildInfo('addSourceFiles',filename)
coder.updateBuildInfo('addIncludeFiles',filename)
coder.updateBuildInfo(___ ,path)
coder.updateBuildInfo(___ ,path,group)

coder.updateBuildInfo('addSourcePaths',path)
coder.updateBuildInfo('addIncludePaths',path)
coder.updateBuildInfo(___ ,group)

Description
coder.updateBuildInfo('addCompileFlags',options) adds compiler options to
the build information object.

coder.updateBuildInfo('addLinkFlags',options) adds link options to the build
information object.

 coder.updateBuildInfo

2-145

coder.updateBuildInfo('addDefines',options) adds preprocessor macro
definitions to the build information object.

coder.updateBuildInfo(___ ,group) assigns a group name to options for later
reference.

coder.updateBuildInfo('addLinkObjects',filename,path) adds a link object
from a file to the build information object.

coder.updateBuildInfo('addLinkObjects',filename,path,priority,
precompiled) specifies if the link object is precompiled.

coder.updateBuildInfo('addLinkObjects',filename,path,priority,
precompiled,linkonly) specifies if the object is to be built before being linked or
used for linking alone. If the object is to be built, it specifies if the object is precompiled.

coder.updateBuildInfo(___ ,group) assigns a group name to the link object for
later reference.

coder.updateBuildInfo('addNonBuildFiles',filename) adds a nonbuild-related
file to the build information object.

coder.updateBuildInfo('addSourceFiles',filename) adds a source file to the
build information object.

coder.updateBuildInfo('addIncludeFiles',filename) adds an include file to
the build information object.

coder.updateBuildInfo(___ ,path) adds the file from specified path.

coder.updateBuildInfo(___ ,path,group) assigns a group name to the file for
later reference.

coder.updateBuildInfo('addSourcePaths',path) adds a source file path to the
build information object.

coder.updateBuildInfo('addIncludePaths',path) adds an include file path to
the build information object.

coder.updateBuildInfo(___ ,group) assigns a group name to the path for later
reference.

2 Functions — Alphabetical List

2-146

Examples

Add Multiple Compiler Options

Add the compiler options -Zi and -Wall during code generation for function, func.

Anywhere in the MATLAB code for func, add the following line:

coder.updateBuildInfo('addCompileFlags','-Zi -Wall');

Generate code for func using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport func

Add Source File Name

Add a source file to the project build information while generating code for a function,
calc_factorial.

1 Write a header file fact.h that declares a C function factorial.

 double factorial(double x);

fact.h will be included as a header file in generated code. This inclusion ensures
that the function is declared before it is called.

Save the file in the current folder.
2 Write a C file fact.c that contains the definition of factorial. factorial

calculates the factorial of its input.

#include "fact.h"

 double factorial(double x)
 {
 int i;
 double fact = 1.0;
 if (x == 0 || x == 1) {
 return 1.0;
 } else {
 for (i = 1; i <= x; i++) {

 coder.updateBuildInfo

2-147

 fact *= (double)i;
 }
 return fact;
 }
 }

fact.c is used as a source file during code generation.

Save the file in the current folder.
3 Write a MATLAB function calc_factorial that uses coder.ceval to call the

external C function factorial.

Use coder.updateBuildInfo with option 'addSourceFiles' to add the source
file fact.c to the build information. Use coder.cinclude to include the header file
fact.h in the generated code.

function y = calc_factorial(x) %#codegen

 coder.cinclude('fact.h');
 coder.updateBuildInfo('addSourceFiles', 'fact.c');

 y = 0;
 y = coder.ceval('factorial', x);

4 Generate code for calc_factorial using the codegen command.

 codegen -config:dll -launchreport calc_factorial -args 0

Add Link Object

Add a link object LinkObj.lib to the build information while generating code for a
function func. For this example, you must have a link object LinkObj.lib saved in a
local folder, for example, c:\Link_Objects.

Anywhere in the MATLAB code for func, add the following lines:

libPriority = '';
libPreCompiled = true;
libLinkOnly = true;
libName = 'LinkObj.lib';
libPath = 'c:\Link_Objects';

2 Functions — Alphabetical List

2-148

coder.updateBuildInfo('addLinkObjects', libName, libPath, ...
 libPriority, libPreCompiled, libLinkOnly);

Generate a MEX function for func using the codegen command. Open the Code
Generation Report.

codegen -launchreport func

Add Include Paths

Add an include path to the build information while generating code for a function, adder.
Include a header file, adder.h, existing on the path.

When header files do not reside in the current folder, to include them, use this method:

1 Write a header file mysum.h that contains the declaration for a C function mysum.

double mysum(double, double);

Save it in a local folder, for example c:\coder\myheaders.
2 Write a C file mysum.c that contains the definition of the function mysum.

#include "mysum.h"

double mysum(double x, double y)
 {
 return(x+y);
 }

Save it in the current folder.
3 Write a MATLAB function adder that adds the path c:\coder\myheaders to the

build information.

Use coder.cinclude to include the header file mysum.h in the generated code.

function y = adder(x1, x2) %#codegen
 coder.updateBuildInfo('addIncludePaths','c:\coder\myheaders');
 coder.updateBuildInfo('addSourceFiles','mysum.c');
 %Include the source file containing C function definition
 coder.cinclude('mysum.h');
 y = 0;

 coder.updateBuildInfo

2-149

 if coder.target('MATLAB')
 % This line ensures that the function works in MATLAB
 y = x1 + x2;
 else
 y = coder.ceval('mysum', x1, x2);
 end
end

4 Generate code for adder using the codegen command.

codegen -config:lib -launchreport adder -args {0,0}

Input Arguments
options — Build options
character vector | string scalar

Build options, specified as a character vector or string scalar. The value must be a
compile-time constant.

Depending on the leading argument, options specifies the relevant build options to be
added to the project’s build information.

Leading Argument Values in options
'addCompileFlags' Compiler options
'addLinkFlags' Link options
'addDefines' Preprocessor macro definitions

The function adds the options to the end of an option vector.
Example: coder.updateBuildInfo('addCompileFlags','-Zi -Wall')

group — Group name
character vector | string scalar

Name of user-defined group, specified as a character vector or string scalar. The value
must be a compile-time constant.

The group option assigns a group name to the parameters in the second argument.

2 Functions — Alphabetical List

2-150

Leading Argument Second Argument Parameters Named by
group

'addCompileFlags' options Compiler options
'addLinkFlags' options Link options
'addLinkObjects' filename Name of file containing

linkable objects
'addNonBuildFiles' filename Name of nonbuild-related

file
'addSourceFiles' filename Name of source file
'addSourcePaths' path Name of source file path

You can use group to:

• Document the use of specific parameters.
• Retrieve or apply multiple parameters together as one group.

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The value must be a compile-
time constant.

Depending on the leading argument, filename specifies the relevant file to be added to
the project’s build information.

Leading Argument File Specified by filename
'addLinkObjects' File containing linkable objects
'addNonBuildFiles' Nonbuild-related file
'addSourceFiles' Source file

The function adds the file name to the end of a file name vector.
Example: coder.updateBuildInfo('addSourceFiles', 'fact.c')

path — Path name
character vector | string scalar

 coder.updateBuildInfo

2-151

Relative path name, specified as a character vector or string scalar. The value must be a
compile-time constant.

Depending on the leading argument, path specifies the relevant path name to be added
to the project’s build information. The function adds the path to the end of a path name
vector.

Leading Argument Path Specified by path
'addLinkObjects' Path to linkable objects
'addNonBuildFiles' Path to nonbuild-related files
'addSourceFiles', 'addSourcePaths' Path to source files

The relative path starts from the build folder. If you have a function foo contained in the
folder C:\myCode, and you generate MEX code by using:

codegen foo -report

then the build folder is C:\myCode\codegen\mex\foo. You can write the path from the
build folder or write the path from the current working folder in which you generate code.
Reference the current working folder by using the START_DIR macro. For example,
suppose that your source file is contained in C:\myCode\mySrcDir, and you generate
code from C:\myCode. Write the path as in these examples:
Example: coder.updateBuildInfo('addSourceFiles','fact.c','..\..\..
\mySrcDir')

Example: coder.updateBuildInfo('addSourceFiles','fact.c','$(START_DIR)
\mySrcDir')

priority — Relative priority of link object
' '

Priority of link objects.

This feature applies only when several link objects are added. Currently, only a single link
object file can be added for every coder.updateBuildInfo statement. Therefore, this
feature is not available for use.

To use the succeeding arguments, include '' as a placeholder argument.

precompiled — Variable indicating if link objects are precompiled
logical value

2 Functions — Alphabetical List

2-152

Variable indicating if the link objects are precompiled, specified as a logical value. The
value must be a compile-time constant.

If the link object has been prebuilt for faster compiling and linking and exists in a
specified location, specify true. Otherwise, the MATLAB Coder build process creates the
link object in the build folder.

If linkonly is set to true, this argument is ignored.
Data Types: logical

linkonly — Variable indicating if objects must be used for linking only
logical value

Variable indicating if objects must be used for linking only, specified as a logical value.
The value must be a compile-time constant.

If you want that the MATLAB Coder build process must not build or generate rules in the
makefile for building the specified link object, specify true. Instead, when linking the
final executable, the process should just include the object. Otherwise, rules for building
the link object are added to the makefile.

You can use this argument to incorporate link objects for which source files are not
available.

If linkonly is set to true, the value of precompiled is ignored.
Data Types: logical

See Also
Introduced in R2013b

 coder.updateBuildInfo

2-153

coder.varsize
Package: coder

Declare variable-size array

Syntax
coder.varsize('var1', 'var2', ...)
coder.varsize('var1', 'var2', ..., ubound)
coder.varsize('var1', 'var2', ..., ubound, dims)
coder.varsize('var1', 'var2', ..., [], dims)

Description
coder.varsize('var1', 'var2', ...) declares one or more variables as variable-
size data, allowing subsequent assignments to extend their size. Each 'varn' is the name
of a variable or structure field enclosed in quotes. If the structure field belongs to an
array of structures, use colon (:) as the index expression to make the field variable-size
for all elements of the array. For example, the expression
coder.varsize('data(:).A') declares that the field A inside each element of data is
variable sized.

coder.varsize('var1', 'var2', ..., ubound) declares one or more variables as
variable-size data with an explicit upper bound specified in ubound. The argument
ubound must be a constant, integer-valued vector of upper bound sizes for every
dimension of each 'varn'. If you specify more than one 'varn', each variable must have
the same number of dimensions.

coder.varsize('var1', 'var2', ..., ubound, dims) declares one or more
variables as variable size with an explicit upper bound and a mix of fixed and varying
dimensions specified in dims. The argument dims is a logical vector, or double vector
containing only zeros and ones. Dimensions that correspond to zeros or false in dims
have fixed size; dimensions that correspond to ones or true vary in size. If you specify
more than one variable, each fixed dimension must have the same value across all
'varn'.

2 Functions — Alphabetical List

2-154

coder.varsize('var1', 'var2', ..., [], dims) declares one or more variables
as variable size with a mix of fixed and varying dimensions. The empty vector [] means
that you do not specify an explicit upper bound.

When you do not specify ubound, the upper bound is computed for each 'varn' in
generated code.

When you do not specify dims, dimensions are assumed to be variable except the
singleton ones. A singleton dimension is a dimension for which size(A,dim) = 1.

You must add the coder.varsize declaration before each 'varn' is used (read). You
can add the declaration before the first assignment to each 'varn'. However, for a cell
array element, the coder.varsize declaration must follow the first assignment to the
element. For example:

...
x = cell(3, 3);
x{1} = [1 2];
coder.varsize('x{1}');
...

You cannot use coder.varsize outside the MATLAB code intended for code generation.
For example, the following code does not declare the variable, var, as variable-size data:

coder.varsize('var',10);
codegen -config:lib MyFile -args var

Instead, include the coder.varsize statement inside MyFile to declare var as
variable-size data.

Examples

Develop a Simple Stack That Varies in Size up to 32 Elements as You Push and
Pop Data at Run Time.

Write primary function test_stack to issue commands for pushing data on and popping
data from a stack.

function test_stack %#codegen
 % The directive %#codegen indicates that the function
 % is intended for code generation

 coder.varsize

2-155

 stack('init', 32);
 for i = 1 : 20
 stack('push', i);
 end
 for i = 1 : 10
 value = stack('pop');
 % Display popped value
 value
 end
end

Write local function stack to execute the push and pop commands.

function y = stack(command, varargin)
 persistent data;
 if isempty(data)
 data = ones(1,0);
 end
 y = 0;
 switch (command)
 case {'init'}
 coder.varsize('data', [1, varargin{1}], [0 1]);
 data = ones(1,0);
 case {'pop'}
 y = data(1);
 data = data(2:size(data, 2));
 case {'push'}
 data = [varargin{1}, data];
 otherwise
 assert(false, ['Wrong command: ', command]);
 end
end

The variable data is the stack. The statement coder.varsize('data', [1,
varargin{1}], [0 1]) declares that:

• data is a row vector
• Its first dimension has a fixed size
• Its second dimension can grow to an upper bound of 32

Generate a MEX function for test_stack:

codegen -config:mex test_stack

2 Functions — Alphabetical List

2-156

codegen generates a MEX function in the current folder.

Run test_stack_mex to get these results:

value =
 20

value =
 19

value =
 18

value =
 17

value =
 16

value =
 15

value =
 14

value =
 13

value =
 12

value =
 11

At run time, the number of items in the stack grows from zero to 20, and then shrinks to
10.

Declare a Variable-Size Structure Field.

Write a function struct_example that declares an array data, where each element is a
structure that contains a variable-size field:

 coder.varsize

2-157

function y=struct_example() %#codegen

 d = struct('values', zeros(1,0), 'color', 0);
 data = repmat(d, [3 3]);
 coder.varsize('data(:).values');

 for i = 1:numel(data)
 data(i).color = rand-0.5;
 data(i).values = 1:i;
 end

 y = 0;
 for i = 1:numel(data)
 if data(i).color > 0
 y = y + sum(data(i).values);
 end;
 end

The statement coder.varsize('data(:).values') marks as variable-size the field
values inside each element of the matrix data.

Generate a MEX function for struct_example:

codegen -config:mex struct_example

Run struct_example.

Each time you run struct_example you get a different answer because the function
loads the array with random numbers.

Make a Cell Array Variable-Size

Write the function make_varsz_cell that defines a local cell array variable c whose
elements have the same class, but different sizes. Use coder.varsize to indicate that c
has variable-size.

function y = make_varsz_cell()
c = {1 [2 3]};
coder.varsize('c', [1 3], [0 1]);
y = c;
end

Generate a C static library.

2 Functions — Alphabetical List

2-158

codegen -config:lib make_varsz_cell -report

In the report, view the MATLAB variables.

c is a 1x:3 homogeneous cell array whose elements are 1x:2 double.

Make the Elements of a Cell Array Variable-Size

Write the function mycell that defines a local cell array variable c. Use coder.varsize
to make the elements of c variable-size.

function y = mycell()
c = {1 2 3};
coder.varsize('c{:}', [1 5], [0 1]);
y = c;
end

Generate a C static library.

codegen -config:lib mycell -report

In the report, view the MATLAB variables.

The elements of c are 1-by-:5 arrays of doubles.

Limitations
• If you use the cell function to create a cell array, you cannot use coder.varsize

with that cell array.
• If you use coder.varsize with a cell array element, the coder.varsize declaration

must follow the first assignment to the element. For example:

...
x = cell(3, 3);
x{1} = [1 2];
coder.varsize('x{1}');
...

• You cannot use coder.varsize with global variables.
• You cannot use coder.varsize with MATLAB class properties.

 coder.varsize

2-159

• You cannot use coder.varsize with string scalars.

Tips
• coder.varsize fixes the size of a singleton dimension unless the dims argument

explicitly specifies that the singleton dimension has a variable size.

For example, the following code specifies that v has size 1-by-:10. The first dimension
(the singleton dimension) has a fixed size. The second dimension has a variable size.

coder.varsize('v', [1 10])

By contrast, the following code specifies that v has size :1-by-:10. Both dimensions
have a variable size.

coder.varsize('v',[1,10],[1,1])

Note For a MATLAB Function block, singleton dimensions of input or output signals
cannot have a variable size.

• If you use input variables (or result of a computation using input variables) to specify
the size of an array, it is declared as variable-size in the generated code. Do not use
coder.varsize on the array again, unless you also want to specify an upper bound
for its size.

• Using coder.varsize on an array without explicit upper bounds causes dynamic
memory allocation of the array. This dynamic memory allocation can reduce the speed
of generated code. To avoid dynamic memory allocation, use the syntax
coder.varsize('var1', 'var2', ..., ubound) to specify an upper bound for
the array size (if you know it in advance).

• A cell array can be variable size only if it is homogeneous. When you use
coder.varsize with a cell array, the code generator tries to make the cell array
homogeneous. It tries to find a class and size that apply to all elements of the cell
array. For example, if the first element is double and the second element is 1x2 double,
all elements can be represented as 1x:2 double. If the code generator cannot find a
common class and size, code generation fails. For example, suppose that the first
element of a cell array is char and the second element is double. The code generator
cannot find a class that can represent both elements.

2 Functions — Alphabetical List

2-160

See Also
size

Topics
“Code Generation for Variable-Size Arrays”
“Incompatibilities with MATLAB in Variable-Size Support for Code Generation”
“Code Generation for Cell Arrays”

Introduced in R2011a

 coder.varsize

2-161

coder.wref
Indicate write-only data to pass by reference

Syntax
coder.wref(arg)

Description
coder.wref(arg) indicates that arg is a write-only expression or variable to pass by
reference to an external C/C++ function. Use coder.wref only inside a coder.ceval
call. Using coder.wref(arg) can allow the code generator to optimize the generated
code by ignoring prior assignments to arg. Use a separate coder.wref construct for
each argument that you pass by reference to the function.

Note The memory referenced by coder.wref(arg) is write-only. For your generated
code to avoid reading uninitialized memory, the C/C++ function must fully initialize the
memory in arg before reading from it. Initialize the memory by assigning values to every
element of arg in your C/C++ function. Otherwise, undefined run-time behavior can
result.

Examples
Pass Array by Reference as Write-Only
Suppose that you have a C function init_array.

void init_array(double* array, int numel) {
 for(int i = 0; i < numel; i++) {
 array[i] = 42;
 }
}

The C function defines the input variable array as a pointer to a double.

2 Functions — Alphabetical List

2-162

Call the C function init_array to initialize all elements of y to 42:

...
Y = zeros(5, 10);
coder.ceval('init_array', coder.wref(Y), int32(numel(Y)));
...

Pass Multiple Arguments as a Write-Only Reference
...
U = zeros(5, 10);
V = zeros(5, 10);
coder.ceval('my_fcn', coder.wref(U), int32(numel(U)), coder.wref(V), int32(numel(V)));
...

Pass Class Property as a Write-Only Reference
...
x = myClass;
x.prop = 1;
coder.ceval('foo', coder.wref(x.prop));
...

Pass Structure as a Write-Only Reference
To indicate that the structure type is defined in a C header file, use
coder.cstructname.

Suppose that you have the C function init_struct. This function writes to the input
argument but does not read from it.

#include "MyStruct.h"

void init_struct(struct MyStruct *my_struct)
{
 my_struct->f1 = 1;
 my_struct->f2 = 2;
}

The C header file, MyStruct.h, defines a structure type named MyStruct:

#ifndef MYSTRUCT
#define MYSTRUCT

 coder.wref

2-163

typedef struct MyStruct
{
 double f1;
 double f2;
} MyStruct;

void init_struct(struct MyStruct *my_struct);

#endif

In your MATLAB function, pass a structure as a write-only reference to init_struct. To
indicate that the structure type for s has the name MyStruct that is defined in the C
header file MyStruct.h, use coder.cstructname.

function y = foo
%#codegen
y = 0;
coder.updateBuildInfo('addSourceFiles','init_struct.c');

s = struct('f1',1,'f2',2);
coder.cstructname(s,'MyStruct','extern','HeaderFile','MyStruct.h');
coder.ceval('init_struct', coder.wref(s));

To generate standalone library code, enter:

codegen -config:lib foo -report

Pass Structure Field as a Write-Only Reference
...
s = struct('s1', struct('a', [0 1]));
coder.ceval('foo', coder.wref(s.s1.a));
...

You can also pass an element of an array of structures:

...
c = repmat(struct('u',magic(2)),1,10);
b = repmat(struct('c',c),3,6);
a = struct('b',b);
coder.ceval('foo', coder.wref(a.b(3,4).c(2).u));
...

2 Functions — Alphabetical List

2-164

Input Arguments
arg — Argument to pass by reference
scalar variable | array | element of an array | structure | structure field | object property

Argument to pass by reference to an external C/C++ function. The argument cannot be a
class, a System object, a cell array, or an index into a cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot pass these data types by reference:

• Class or System object
• Cell array or index into a cell array

• If a property has a get method, a set method, or validators, or is a System object
property with certain attributes, then you cannot pass the property by reference to an
external function. See “Passing By Reference Not Supported for Some Properties”.

Tips
• If arg is an array, then coder.wref(arg) provides the address of the first element of

the array. The coder.wref(arg) function does not contain information about the size
of the array. If the C function must know the number of elements of your data, pass
that information as a separate argument. For example:

coder.ceval('myFun',coder.wref(arg),int32(numel(arg));
• When you pass a structure by reference to an external C/C++ function, use

coder.cstructname to provide the name of a C structure type that is defined in a C
header file.

• In MATLAB, coder.wref results in an error. To parametrize your MATLAB code so
that it can run in MATLAB and in generated code, use coder.target.

• You can use coder.opaque to declare variables that you pass to and from an external
C/C++ function.

 coder.wref

2-165

See Also
coder.ceval | coder.cstructname | coder.opaque | coder.ref | coder.rref

Topics
“Integrate C Code Using the MATLAB Function Block”

Introduced in R2011a

2 Functions — Alphabetical List

2-166

createInputDataset
Generate dataset object for root-level Inport blocks in model

Syntax
[inports_dataset] = createInputDataset(model)

Description
[inports_dataset] = createInputDataset(model) generates a
Simulink.SimulationData.Dataset object from the root-level Inport blocks in a
model. Signals in the generated dataset have the properties of the root inports and the
corresponding ground values at model start and stop times. You can create timetable or
timeseries objects for the time and values for signals for which you want to load data
for simulation. The other signals use ground values.

Examples

Generate and Populate Dataset for Root-Level Inport Blocks

Create a dataset with elements for the four root-level Inport blocks in a model. Use that
dataset as a basis for creating a dataset to load signal data into the model.

Open the model. The In1 block outputs a double, In2 and In3 each output a nonvirtual
bus, and In4 outputs an int16.

mdl = 'ex_dataset_for_inports';
open_system(mdl)

 createInputDataset

2-167

Create a Dataset object for the root-level Inport blocks.

ds = createInputDataset(mdl)

Simulink.SimulationData.Dataset '' with 4 elements

 Name BlockPath
 ____ _________
 1 [1x1 timeseries] In1 ''
 2 [1x1 struct] In2 ''
 3 [1x1 struct] In3 ''
 4 [1x1 timeseries] In4 ''

 - Use braces { } to access, modify, or add elements using index.

Replace the placeholder value for the first signal in the Dataset with actual signal values
that you want to load into the model.

ds{1} = ds{1}.delsample('Index',[1,2]);
ds{1} = ds{1}.addsample('time',[1 3 3 10]','data',[1 1 5 5]');

Examine the In2 signal.

ds{2}

2 Functions — Alphabetical List

2-168

ans =

 struct with fields:

 a: [1×1 timeseries]
 b: [1×1 timeseries]

For In2, create data for bus elements a and b.

ds{2}.a = ds{2}.a.delsample('Index',[1,2]);
ds{2}.a = addsample(ds{2}.a,'time',[1:10]','data',[1:10]');
ds{2}.b = timeseries((1:10)',0.1:.1:1,'Name','sig2_b');

For In3, specify data for element a of the bus, and use ground values for element b.

ds{3}.a = timeseries((1:10)',0.1:.1:1,'Name','sig3_a');

Plot ds. For more information, see the Simulink.SimulationData.Dataset.plot
documentation.

plot(ds)

Set the Input configuration parameter to ds.

set_param(mdl,'LoadExternalInput','on');
set_param(mdl,'ExternalInput','ds');

Tip Alternatively, you can use the Root Inport Mapper tool to set the Input parameter.
For details, see “Map Root Inport Signal Data”.

Run the simulation. The Inport blocks use the signal data specified in ds or ground values
for elements that do not have specified signal data.

sim(mdl)

Input Arguments
model — Model for which to generate dataset for root-level Inport blocks
character vector | model handle

 createInputDataset

2-169

Model for which to generate a dataset with an element for each root-level Inport block,
specified as a character vector or model handle.

Output Arguments
inports_dataset — Dataset with an element for each root-level Inport block
a Simulink.SimulationData.Dataset object

Dataset with an element for each root-level Inport block, returned as a
Simulink.SimulationData.Dataset object.

Related Links
Simulink.SimulationData.Dataset MATLAB timeseries timetable “Create a
Dataset Object for Root-Level Inports”

Introduced in R2017a

2 Functions — Alphabetical List

2-170

getHardwareImplementation
Class: coder.BuildConfig
Package: coder

Get handle of copy of hardware implementation object

Syntax
hw = bldcfg.getHardwareImplementation()

Description
hw = bldcfg.getHardwareImplementation() returns the handle of a copy of the
hardware implementation object.

Input Arguments
bldcfg

coder.BuildConfig object.

Output Arguments
hw

Handle of copy of hardware implementation object.

See Also

 getHardwareImplementation

2-171

getStdLibInfo
Class: coder.BuildConfig
Package: coder

Get standard library information

Syntax
[linkLibPath,linkLibExt,execLibExt,libPrefix]=
bldcfg.getStdLibInfo()

Description
[linkLibPath,linkLibExt,execLibExt,libPrefix]=
bldcfg.getStdLibInfo() returns character vectors representing the:

• Standard MATLAB architecture-specific library path
• Platform-specific library file extension for use at link time
• Platform-specific library file extension for use at run time
• Standard architecture-specific library name prefix

Input Arguments
bldcfg

coder.BuildConfig object.

Output Arguments
linkLibPath

Standard MATLAB architecture-specific library path specified as a character vector. The
character vector can be empty.

2 Functions — Alphabetical List

2-172

linkLibExt

Platform-specific library file extension for use at link time, specified as a character vector.
The value is one of '.lib','.dylib','.so', ''.

execLibExt

Platform-specific library file extension for use at run time, specified as a character vector.
The value is one of '.dll','.dylib','.so', ''.

linkPrefix

Standard architecture-specific library name prefix, specified as a character vector. The
character vector can be empty.

 getStdLibInfo

2-173

getTargetLang
Class: coder.BuildConfig
Package: coder

Get target code generation language

Syntax
lang = bldcfg.getTargetLang()

Description
lang = bldcfg.getTargetLang() returns a character vector containing the target
code generation language.

Input Arguments
bldcfg

coder.BuildConfig object.

Output Arguments
lang

A character vector containing the target code generation language. The value is 'C' or
'C++'.

2 Functions — Alphabetical List

2-174

getToolchainInfo
Class: coder.BuildConfig
Package: coder

Returns handle of copy of toolchain information object

Syntax
tc = bldcfg.getToolchainInfo()

Description
tc = bldcfg.getToolchainInfo() returns a handle of a copy of the toolchain
information object.

Input Arguments
bldcfg

coder.BuildConfig object.

Output Arguments
tc

Handle of copy of toolchain information object.

See Also

 getToolchainInfo

2-175

isCodeGenTarget
Class: coder.BuildConfig
Package: coder

Determine if build configuration represents specified target

Syntax
tf = bldcfg.isCodeGenTarget(target)

Description
tf = bldcfg.isCodeGenTarget(target) returns true (1) if the code generation
target of the current build configuration represents the code generation target specified
by target. Otherwise, it returns false (0).

Input Arguments
bldcfg

coder.BuildConfig object.

target

Code generation target specified as a character vector or cell array of character vectors.

Specify For code generation target
'rtw' C/C++ dynamic Library, C/C++ static library, or C/C

++ executable
'sfun' S-function (Simulation)
'mex' MEX-function

Specify target as a cell array of character vectors to test if the code generation target of
the build configuration represents one of the targets specified in the cell array.

2 Functions — Alphabetical List

2-176

For example:

...
mytarget = {'sfun','mex'};
tf = bldcfg.isCodeGenTarget(mytarget);
...

tests whether the build context represents an S-function target or a MEX-function target.

Output Arguments
tf

The value is true (1) if the code generation target of the build configuration represents
the code generation target specified by target. Otherwise, the value is false (0).

See Also
coder.target

 isCodeGenTarget

2-177

isMatlabHostTarget
Class: coder.BuildConfig
Package: coder

Determine if hardware implementation object target is MATLAB host computer

Syntax
tf = bldcfg.isMatlabHostTarget()

Description
tf = bldcfg.isMatlabHostTarget() returns true (1) if the current hardware
implementation object targets the MATLAB host computer. Otherwise, it returns false (0).

Input Arguments
bldcfg

coder.BuildConfig object.

Output Arguments
tf

Value is true (1) if the current hardware implementation object targets the MATLAB host
computer. Otherwise, the value is false (0).

See Also

2 Functions — Alphabetical List

2-178

coder.ExternalDependency.getDescriptiveNa
me
Class: coder.ExternalDependency
Package: coder

Return descriptive name for external dependency

Syntax
extname = coder.ExternalDependency.getDescriptiveName(bldcfg)

Description
extname = coder.ExternalDependency.getDescriptiveName(bldcfg) returns
the name that you want to associate with an “external dependency” on page 2-180. The
code generator uses the external dependency name for error messages.

Input Arguments
bldcfg

coder.BuildConfig object. Use coder.BuildConfig methods to get information
about the “build context” on page 2-180

You can use this information when you want to return different names based on the build
context.

Output Arguments
extname

External dependency name returned as a character vector.

 coder.ExternalDependency.getDescriptiveName

2-179

Examples

Return external dependency name

Define a method that always returns the same name.

function myextname = getDescriptiveName(~)
 myextname = 'MyLibrary'
end

Return external library name based on the code generation target

Define a method that uses the build context to determine the name.

function myextname = getDescriptiveName(context)
 if context.isMatlabHostTarget()
 myextname = 'MyLibary_MatlabHost';
 else
 myextname = 'MyLibrary_Local';
 end
end

Definitions

external dependency
External code interface represented by a class derived from a
coder.ExternalDependency class. The external code can be a library, object files, or
C/C++ source.

build context
Information used by the build process including:

• Target language
• Code generation target

2 Functions — Alphabetical List

2-180

• Target hardware
• Build toolchain

See Also
coder.BuildConfig | coder.ExternalDependency | coder.ceval |
coder.updateBuildInfo

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Customize the Post-Code-Generation Build Process” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

 coder.ExternalDependency.getDescriptiveName

2-181

coder.ExternalDependency.isSupportedConte
xt
Class: coder.ExternalDependency
Package: coder

Determine if build context supports external dependency

Syntax
tf = coder.ExternalDependency.isSupportedContext(bldcfg)

Description
tf = coder.ExternalDependency.isSupportedContext(bldcfg) returns true (1)
if you can use the “external dependency” on page 2-183 in the current “build context” on
page 2-183 . You must provide this method in the class definition for a class that derives
from coder.ExternalDependency.

If you cannot use the “external dependency” on page 2-183 in the current “build context”
on page 2-183, display an error message and stop code generation. The error message
must describe why you cannot use the external dependency in this build context. If the
method returns false (0), the code generator uses a default error message. The default
error message uses the name returned by the getDescriptiveName method of the
coder.ExternalDependency class.

Use coder.BuildConfig methods to determine if you can use the external dependency
in the current build context.

Input Arguments
bldcfg

coder.BuildConfig object. Use coder.BuildConfig methods to get information
about the “build context” on page 2-183.

2 Functions — Alphabetical List

2-182

Output Arguments
tf

Value is true (1) if the build context supports the external dependency.

Examples

Report error when build context does not support external library

This method returns true(1) if the code generation target is a MATLAB host target.
Otherwise, the method reports an error and stops code generation.

Write isSupportedContext method.

function tf = isSupportedContext(ctx)
 if ctx.isMatlabHostTarget()
 tf = true;
 else
 error('adder library not available for this target');
 end
end

Definitions

external dependency
External code interface represented by a class derived from
coder.ExternalDependency class. The external code can be a library, object file, or
C/C++ source.

build context
Information used by the build process including:

• Target language

 coder.ExternalDependency.isSupportedContext

2-183

• Code generation target
• Target hardware
• Build toolchain

See Also
coder.BuildConfig | coder.ExternalDependency | coder.ceval |
coder.updateBuildInfo

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Customize the Post-Code-Generation Build Process” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

2 Functions — Alphabetical List

2-184

coder.ExternalDependency.updateBuildInfo
Class: coder.ExternalDependency
Package: coder

Update build information

Syntax
coder.ExternalDependency.updateBuildInfo(buildInfo, bldcfg)

Description
coder.ExternalDependency.updateBuildInfo(buildInfo, bldcfg) updates the
build information object whose handle is buildInfo. After code generation, the build
information object has standard information. Use this method to provide additional
information required to link to external code. Use coder.BuildConfig methods to get
information about the “build context” on page 2-186.

You must implement this method in a subclass of coder.ExternalDependency.

Input Arguments
buildInfo

Handle of build information object.

bldcfg

coder.BuildConfig object. Use coder.BuildConfig methods to get information
about the “build context” on page 2-186.

 coder.ExternalDependency.updateBuildInfo

2-185

Limitations
• The build information method AddIncludeFiles has no effect in a

coder.ExternalDependency updateBuildInfo method.

Definitions

build context
Information used by the build process including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

See Also
coder.BuildConfig | coder.ExternalDependency | coder.ceval |
coder.updateBuildInfo

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Customize the Post-Code-Generation Build Process” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

2 Functions — Alphabetical List

2-186

convertToSLDataset
Convert contents of MAT-file to Simulink.SimulationData.Dataset object

Syntax
success=convertToSLDataset(source,destination)
success=convertToSLDataset(source,destination,datasetname)

Description
success=convertToSLDataset(source,destination) converts the contents of a
MAT-file (source) to a destination MAT-file (destination).

success=convertToSLDataset(source,destination,datasetname) names the
dataset datasetname.

When converting structure signal data, the function names the signal using the value
contained in the label field of the structure signal field, such as:
mySignal.signal(1).label.

This function ignores time expressions in source.

Examples

Save Signals to Dataset in file2.mat

Save signals from file1.mat to a dataset named file1 in file2.mat.

success=convertToSLDataset('file1.mat','file2.mat')

Save Signals to Dataset Named myDataset in file2.mat

Save signals from file1.mat to a dataset named myDataset in file2.mat.

 convertToSLDataset

2-187

success=convertToSLDataset('file1.mat','file2.mat','myDataset')

Input Arguments
source — MAT-file
character vector

MAT–file that contains Simulink inputs.

destination — MAT-file
character vector

MAT–file to contain Simulink.SimulationData.Dataset converted from contents of
source.

datasetname — Data set name
character vector

Data set name for new Simulink.SimulationData.Dataset object.

Output Arguments
success — Outcome of conversion
binary

Outcome of conversion, specified as binary:

• 1

Conversion is successful.
• 0

Conversion is not successful.

See Also
Introduced in R2016a

2 Functions — Alphabetical List

2-188

copy
Copy a configuration set

Syntax
copyCs = copy(cs)

Description
copyCs = copy(cs) returns a copy of a configuration set.

Examples

Attach New Configuration Set to a Model

Create a copy of a configuration set and attach it to a model.

Get the active configuration set for your model.

activeConfig = getActiveConfigSet ('vdp');

Copy the active configuration set.

develConfig = copy(activeConfig);

Give the copied configuration set a name.

develConfig.Name = 'develConfig';

Attach the new configuration set to the model.

 copy

2-189

attachConfigSet('vdp',develConfig);

Input Arguments
cs — Configuration set
ConfigSet object

Configuration set object to copy, specified as a ConfigSet object.

Output Arguments
copyCs — Copy of configuration set
ConfigSet object

A copy of the configuration set, specified as a ConfigSet object.

See Also

Topics
“About Configuration Sets”
“Manage a Configuration Set”

Introduced before R2006a

2 Functions — Alphabetical List

2-190

createCategory
Create category of Simulink Project labels

Syntax
createCategory(proj,categoryName)
createCategory(proj,categoryName,dataType)
createCategory(proj,categoryName,dataType, single-valued)

Description
createCategory(proj,categoryName) creates a new category of labels
categoryName in the project proj.

createCategory(proj,categoryName,dataType) specifies the class of data to store
in labels of the new category.

createCategory(proj,categoryName,dataType, single-valued) specifies a
single-valued category, where you can attach only one label from the category to a file. If
you do not specify single-valued, then you can attach multiple labels from the category to
a file.

Examples

Create a New Category of Labels for File Ownership

Create a new category of labels for file ownership, and attach a new label and label data
to a file.

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

 createCategory

2-191

Create a new category of labels, called Engineers, to denote file ownership in a project.
These labels have the char datatype for attaching character vector data.

createCategory(proj,'Engineers','char');

Use findCategory to get the new category.

engineersCategory = findCategory(proj,'Engineers');

Create labels in the new category.

createLabel(engineersCategory,'Tom');
createLabel(engineersCategory,'Dick')
createLabel(engineersCategory,'Harry')

Attach one of the new labels to a file in the project.

myfile = findFile(proj,'models/AnalogControl.mdl')
addLabel(myfile,'Engineers','Tom');

Get the label and add data.

label = findLabel(file,'Engineers','Tom');
label.Data = 'Maintenance responsibility';
disp(label)

Label with properties:

 File: [1x80 char]
 Data: 'Maintenance responsibility'
 DataType: 'char'
 Name: 'Tom'
 CategoryName: 'Engineers'

Create a New Category of Labels with Datatype Double

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Create a new category of labels.

createCategory(proj,'Coverage','double')

2 Functions — Alphabetical List

2-192

category =

 Category with properties:

 Name: 'Coverage'
 DataType: 'double'
 LabelDefinitions: []

Find out what you can do with the new category.

category = findCategory(proj, 'Coverage');
methods(category)

Methods for class slproject.Category:

findLabel removeLabel createLabel

Create a Single-Valued Category

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Create a category of labels for file ownership, and specify single-valued to restrict only
one label in the category per file.

createCategory(proj,'Engineers','char', 'single-valued');

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

categoryName — Name of category
character vector

Name of the category of labels to create, specified as a character vector.

 createCategory

2-193

dataType — Class of data to store in labels
character vector

The class of data to store in labels in the new category, specified as a character vector.

single-valued — Single-valued category
character vector

Single-valued category, specified as a character vector. Single-valued means you can
attach only one label from the category to a file. If you do not specify single-valued, then
you can attach multiple labels from the category to a file.

Tips
After you create a new category, you can create labels in the new category. See
createLabel.

See Also
Functions
createLabel | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-194

createLabel
Define Simulink Project label

Syntax
createLabel(category,newLabelName)

Description
createLabel(category,newLabelName) creates a new label, newLabelName, in a
category. Use this syntax if you previously got a category by accessing a Categories
property, e.g., using a command like proj.Categories(1).

Use addLabel instead to create and attach a new label in an existing category using a
single step.

Use createCategory first if you want to make a new category of labels.

Examples

Create a New Label

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Examine the first existing category.

cat = proj.Categories(1)

cat =

 Category with properties:

 createLabel

2-195

 Name: 'Classification'
 DataType: 'none'
 LabelDefinitions: [1x8 slproject.LabelDefinition]

Define a new label in the category.

createLabel(cat,'Future');

Create a New Category of Labels for File Ownership

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Create creates a new category of labels called Engineers which can be used to denote
file ownership in a project. These labels have the char datatype for attaching character
vector data.

createCategory(proj,'Engineers','char');

Use findCategory to get the new category.

engineersCategory = findCategory(proj,'Engineers');

Create labels in the new category.

createLabel(engineersCategory,'Tom');
createLabel(engineersCategory,'Dick');
createLabel(engineersCategory,'Harry');

Attach one of the new labels to a file in the project.

myfile = findFile(proj,'models/AnalogControl.mdl')
addLabel(myfile,'Engineers', 'Tom');

Get the label and add data.

label = findLabel(myfile,'Engineers','Tom');
label.Data = 'Maintenance responsibility';
disp(label)

Label with properties:

2 Functions — Alphabetical List

2-196

 File: [1x80 char]
 Data: 'Maintenance responsibility'
 DataType: 'char'
 Name: 'Tom'
 CategoryName: 'Engineers'

Input Arguments
category — Category
category object

Category for the new label, specified as a category object. Get the category by accessing
a Categories property, e.g. with a command like proj.Categories(1), or use
findCategory. To create a new category, use createCategory.

newLabelName — The name of the new label to define
character vector

The name of the new label to define, specified as a character vector.

See Also
Functions
addLabel | createCategory

Introduced in R2013a

 createLabel

2-197

addStartupFile
Add startup file to project

Syntax
addStartupFile(proj, file)

Description
addStartupFile(proj, file) adds a startup file to the project proj. Startup files
automatically run (.m and .p files), load (.mat files), or open (Simulink models) when you
open the project.

Examples

Add a Startup File

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Create a new file.

filepath = fullfile(proj.RootFolder, 'new_model.slx')
 new_system('new_model');
 save_system('new_model', filepath)

Add the new model to the project.

 projectFile = addFile(proj, filepath)

Automatically open the model when the project opens, by making it a startup file.

2 Functions — Alphabetical List

2-198

addStartupFile(proj, filepath);

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

file — Path of file
character vector

Path of the file to add relative to the project root folder, including the file extension,
specified as a character vector. The file must be within the root folder.
Example: ‘models/myModelName.slx’

See Also
simulinkproject

Introduced in R2017b

 addStartupFile

2-199

addShutdownFile
Add shutdown file to project

Syntax
addShutdownFile(proj, file)

Description
addShutdownFile(proj, file) adds a shutdown file to the project proj. When you
close the project, it runs the shutdown file automatically. Use the shutdown list to specify
executable MATLAB code to run as the project shuts down.

Examples

Add a Shutdown File

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Specify executable MATLAB code to run as the project shuts down.

 filepath = fullfile('utilities', 'rebuild_s_functions.m');

Automatically run the file when the project closes, by making it a shutdown file.

2 Functions — Alphabetical List

2-200

addShutdownFile(project, filepath);

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

file — Path of file
character vector

Path of the MATLAB file to add relative to the project root folder, including the file
extension, specified as a character vector. The file must be within the root folder.
Example: ‘utilities/myscript.m’

See Also
simulinkproject

Introduced in R2017b

 addShutdownFile

2-201

removeStartupFile
Remove startup file from project startup list

Syntax
removeStartupFile(proj, file)

Description
removeStartupFile(proj, file) removes the startup file from the startup list in the
project proj.

Examples

Remove a Startup File

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Create a new file.

filepath = fullfile(proj.RootFolder, 'new_model.slx')
 new_system('new_model');
 save_system('new_model', filepath)

Add the new model to the project.

 projectFile = addFile(proj, filepath)

Automatically open the model when the project opens, by making it a startup file.

addStartupFile(proj, filepath);

Remove the startup file.

2 Functions — Alphabetical List

2-202

removeStartupFile(proj, filepath);

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

file — Path of file
character vector

Path of the file to add relative to the project root folder, including the file extension,
specified as a character vector. The file must be within the root folder.
Example: ‘models/myModelName.slx’

See Also
simulinkproject

Introduced in R2017b

 removeStartupFile

2-203

removeShutdownFile
Remove shutdown file from project shutdown list

Syntax
removeShutdownFile(proj, file)

Description
removeShutdownFile(proj, file) removes the shutdown file from the shutdown list
in the project proj.

Examples

Remove a Shutdown File

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = simulinkproject;

Specify executable MATLAB code to run as the project shuts down.

 filepath = fullfile('utilities', 'rebuild_s_functions.m');

Automatically run the file when the project closes, by making it a shutdown file.

addShutdownFile(project, filepath);

Remove the shutdown file.

2 Functions — Alphabetical List

2-204

removeShutdownFile(project, filepath);

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

file — Path of file
character vector

Path of the MATLAB file to add relative to the project root folder, including the file
extension, specified as a character vector. The file must be within the root folder.
Example: ‘utilities/myscript.m’

See Also
simulinkproject

Introduced in R2017b

 removeShutdownFile

2-205

delete_block
Delete blocks from Simulink system

Syntax
delete_block(blockArg)

Description
delete_block(blockArg) deletes the specified blocks from a system. Open the system
before you delete blocks.

Examples

Delete Block Using Full Path Name

Delete the block Mu from the vdp system.

open_system('vdp')
delete_block('vdp/Mu')

Delete Block Using Block Handle

Delete the block Out2 from the vdp system using the block handle.

Open the vdp system.

open_system('vdp')

Interactively select the block Out1. Get the block’s handle and assign it to the variable
Out1_handle. Delete the block using the handle.

2 Functions — Alphabetical List

2-206

Out1_handle = get_param(gcb,'Handle');
delete_block(Out1_handle)

Delete Blocks Using Vector of Handles

Delete three blocks from the vdp system.

Open the vdp system. Add three blocks and assign their handles to variables.

open_system('vdp')
Constant_handle = add_block('built-in/Constant','vdp/MyConstant');
Gain_handle = add_block('built-in/Gain','vdp/MyGain');
Outport_handle = add_block('built-in/Outport','vdp/MyOutport');

Delete the blocks you added using a vector of handles.

delete_block([Constant_handle Gain_handle Outport_handle])

Input Arguments
blockArg — Blocks to delete
full path name | handle | vector of handles | 1-D cell array of handles or block path names

Blocks to delete, specified as the full block path name, a handle, a vector of handles, or a
1-D cell array of handles or block path names.
Example: 'vdp/Mu'
Example: [handle1 handle2]
Example: {'vdp/Mu' 'vdp/Out1' 'vdp/Out2'}

See Also
add_block

Introduced before R2006a

 delete_block

2-207

delete_line
Delete line from Simulink model

Syntax
delete_line(sys,out,in)
delete_line(sys,point)
delete_line(lineHandle)

Description
delete_line(sys,out,in) deletes the line from the model or subsystem sys that
connects the output port out to the input port in.

delete_line(sys,point) deletes the line that includes the point point.

delete_line(lineHandle) deletes the line using the line handle.

Examples

Remove Line Using Block Port Names

For the model vdp, remove the line connecting the Product block with the Gain block.

load_system('vdp');
delete_line('vdp','Product/1','Mu/1');

Remove Line Using Line Handle

For the model vdp, remove a line using the line handle. You can get the line handle using
different techniques.

2 Functions — Alphabetical List

2-208

load_system('vdp');
h = get_param('vdp/Mu','LineHandles');
delete_line(h.Outport(1));

Get a line handle when you create the line. Delete the line using that handle.

a = add_line('vdp','Mu/1','Sum/2');
delete_line(a)

Delete a Line Using a Point

You can use a point on the line to delete the whole line.

Find the port coordinates for the block Mu in the model vdp.

open_system('vdp');
mu = get_param('vdp/Mu','PortConnectivity');
mu.Position

ans = 1×2

 190 150

ans = 1×2

 225 150

The line that connects the Mu block to the Sum block starts at the output port, which is at
(225,150). You can use any point to the right of that point along the same x-axis to delete
the line.

delete_line('vdp',[230,150]);

Delete Segments of Branched Lines

Use delete_line with branched lines to remove the segment for any connection.

Open the model vdp.

open_system('vdp');

 delete_line

2-209

Delete the line from x1 to the Out1 block. This command deletes only the segment of the
line that connects the branch to the specified block.

delete_line('vdp','x1/1','Out1/1')

Delete the line segment from x2 to the Mux.

delete_line('vdp','x2/1','Mux/2')

Delete the line segment from x2 to the Product block.

delete_line('vdp','x2/1','Product/2')

2 Functions — Alphabetical List

2-210

Input Arguments
sys — Model or subsystem to delete line from
character vector

Model or subsystem to delete the line from, specified as a character vector.
Example: 'vdp' , 'f14/Controller'

out — Block output port to delete line from
block/port name or number character vector | port handle

Block output port to delete line from, specified as either:

• The block name, a slash, and the port name or number. Most block ports are
numbered from top to bottom or from left to right. For a state port, use the port name
State instead of a port number.

• The port handle that you want to delete the line from.

Use 'PortHandles' with get_param to get the handles.
Example: 'Mu/1', 'Subsystem/2'

in — Block input port to delete line from
block/port name or number character vector | port handle

 delete_line

2-211

Block input port to delete line from, specified as either:

• The block name, a slash, and the port name or number. The port name on:

• An enabled subsystem is Enable.
• A triggered subsystem is Trigger.
• If Action and Switch Case Action subsystems is Action.

• The port handle that you want to delete the line from.

Use 'PortHandles' with get_param to get handles.
Example: 'Mu/1', 'Subsystem/2'

point — Point on the line you want to delete
1-by-2 matrix

Point that falls on the line you want to delete, specified as a 1-by-2 matrix.
Example: [150 200]

lineHandle — Handle of the line you want to delete
handle

Handle of the line you want to delete. You can get the line handle by using get_param
with the 'LineHandles' option or by assigning the line to a handle when you create it
programmatically.

See Also
add_line | get_param

Introduced before R2006a

2 Functions — Alphabetical List

2-212

delete_param
Delete system parameter added via add_param command

Syntax
delete_param('sys','parameter1','parameter2',...)

Description
This command deletes parameters that were added to the system using the add_param
command. The command displays an error message if a specified parameter was not
added with the add_param command.

Examples
The following example
add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')
delete_param('vdp','DemoName')

adds the parameters DemoName and EquationOrder to the vdp system, then deletes
DemoName from the system.

See Also
add_param

Introduced before R2006a

 delete_param

2-213

dependencies.fileDependencyAnalysis
Find model file dependencies

Syntax
files = dependencies.fileDependencyAnalysis('modelname')
[files, missing] = dependencies.fileDependencyAnalysis('modelname')
[files, missing, depfile] = dependencies.fileDependencyAnalysis('
modelname')
[files, missing, depfile, manifestfile] =
dependencies.fileDependencyAnalysis('modelname', 'manifestfile')

Description
files = dependencies.fileDependencyAnalysis('modelname') returns files,
a cell array of character vectors containing the full paths of all existing files referenced by
the model modelname.

[files, missing] = dependencies.fileDependencyAnalysis('modelname')
returns files, all existing files referenced by the model modelname, and any referenced
files that cannot be found in missing.

[files, missing, depfile] = dependencies.fileDependencyAnalysis('
modelname') also returns depfile, the full path of the user dependencies (.smd) file,
if it exists, that stores the names of any files you manually added or excluded.

[files, missing, depfile, manifestfile] =
dependencies.fileDependencyAnalysis('modelname', 'manifestfile') also
creates a manifest file with the name and path specified in manifestfile.

Input Arguments
modelname

Character vector specifying the name of the model to analyze for dependencies.

2 Functions — Alphabetical List

2-214

manifestfile

(Optional) Character vector to specify the name of the manifest file to create. You can
specify a full path or just a file name (in which case the file is created in the current
folder). The function adds the suffix .smf to the user-specified name.

Output Arguments
files

A cell array of character vectors containing the full-paths of all existing files referenced
by the model modelname. If there is only one dependency, the return is a character
vector. If there are no dependencies, the return is empty.

Default: []

missing

A cell array of character vectors containing the names of any files that are referenced by
the model modelname, but cannot be found.

Default: []

depfile

Character vector containing the full path of a user dependencies (.smd) file, if it exists,
that stores the names of any files you manually added or excluded. Simulink uses
the .smd file to remember your changes the next time you generate a manifest. See “Edit
Manifests”.

Default: []

manifestfile

Character vector containing the name and path of the new manifest file.

Default: []

 dependencies.fileDependencyAnalysis

2-215

Examples
The following code analyses the model mymodel for file dependencies:

files = dependencies.fileDependencyAnalysis('mymodel')

If you try dependency analysis on an example model, it returns an empty list of required
files because the standard MathWorks installation includes all the files required for the
example models.

Tip
If you try dependency analysis on an example model, it returns an empty list of required
files because the standard MathWorks installation includes all the files required for the
example models.

Alternatives
If your file is in a Simulinkproject, use listRequiredFiles instead.

You can interactively run dependency analysis in Simulink Project. See “Run Dependency
Analysis”.

To create a report to identify where dependencies arise, find required toolboxes, and for
more control over dependency analysis options, you can interactively generate a manifest
and report. See “Analyze Model Dependencies”.

To programmatically check which toolboxes are required, see
dependencies.toolboxDependencyAnalysis.

See Also
dependencies.toolboxDependencyAnalysis | listRequiredFiles

Topics
“What Are Model Dependencies?”

2 Functions — Alphabetical List

2-216

Introduced in R2012a

 dependencies.fileDependencyAnalysis

2-217

dependencies.toolboxDependencyAnalysis
Find toolbox dependencies

Syntax
names = dependencies.toolboxDependencyAnalysis(files_in)
[names, folders] = dependencies.toolboxDependencyAnalysis(files_in)

Description
names = dependencies.toolboxDependencyAnalysis(files_in) returns names,
a cell array of toolbox names required by the files in files_in.

[names, folders] = dependencies.toolboxDependencyAnalysis(files_in)
returns toolbox names and also a cell array of the toolbox folders.

Tip In a Simulink project, you can interactively run dependency analysis. You can find the
required toolboxes for the whole project or for selected files. You can see which products
a new team member requires to use the project, or find which file is introducing a product
dependency. See “Find Required Toolboxes”.

Input Arguments
files_in

Cell array of character vectors containing .m, .mdl, or .slx files on the MATLAB path.
Simulink model names (without file extension) are also allowed.

Default: []

2 Functions — Alphabetical List

2-218

Output Arguments
names

Cell array of toolbox names required by the files in files_in.

folders

(Optional) Cell-array of the required toolbox folders.

Examples
The following code reports the detectable required toolboxes for the model vdp:

files_in={'vdp'};
names = dependencies.toolboxDependencyAnalysis(files_in)

names =

 'MATLAB' 'Simulink' 'Simulink Coder'

To find all detectable toolbox dependencies of your model and the files it depends on:

1 Call fileDependencyAnalysis on your model.

For example:
files = dependencies.fileDependencyAnalysis('mymodel')

files =
 'C:\Work\foo.m'
 'C:\Work\mymodel.mdl'

2 Call toolboxDependencyAnalysis on the files output of step 1.

For example:

tbxes = dependencies.toolboxDependencyAnalysis(files)

tbxes =
[1x24 char] 'MATLAB' 'Simulink Coder' 'Simulink'

To view long product names examine the tbxes cell array as follows:

 dependencies.toolboxDependencyAnalysis

2-219

tbxes{:}

ans =
Image Processing Toolbox

ans =
MATLAB

ans =
Simulink Coder

ans =

Simulink

Tips
The function dependencies.toolboxDependencyAnalysis looks for toolbox
dependencies of the files in files_in but does not analyze any subsequent
dependencies. See “Examples” on page 2-219.

For command-line dependency analysis, the analysis uses the default settings for analysis
scope to determine required toolboxes. For example, if you have code generation
products, then the check Find files required for code generation is on by default and
Simulink Coder is always reported as required. See “Required Toolboxes” in the manifest
documentation for more examples of how your installed products and analysis scope
settings can affect reported toolbox requirements.

Alternatives
In a Simulink project, you can interactively run dependency analysis and find the required
toolboxes for the whole project or for selected files. See “Find Required Toolboxes”.

For a model that is not in a project, you can interactively generate a manifest and report.
You can create a report to identify where dependencies arise, and control dependency
analysis options. See “Analyze Model Dependencies”.

To programmatically check which files are required, see
dependencies.fileDependencyAnalysis.

2 Functions — Alphabetical List

2-220

See Also
dependencies.fileDependencyAnalysis

Topics
“Dependency Analysis”
“What Is Dependency Analysis?”

Introduced in R2012a

 dependencies.toolboxDependencyAnalysis

2-221

detachConfigSet
Dissociate configuration set or configuration reference from model

Syntax
detachConfigSet(model, configObjName)

Arguments
model

The name of an open model, or gcs to specify the current model
configObjName

The name of a configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description
detachConfigSet detaches the configuration set or configuration reference
(configuration object) specified by configObjName from model. If no such configuration
object is attached to the model, an error occurs.

Examples
The following example detaches the configuration object named DevConfig from the
current model. The code is the same whether DevConfig is a configuration set or
configuration reference.

detachConfigSet(gcs, 'DevConfig');

2 Functions — Alphabetical List

2-222

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | getActiveConfigSet |
getConfigSet | getConfigSets | openDialog | setActiveConfigSet

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

Introduced in R2006a

 detachConfigSet

2-223

removeLabel(was detachLabelFromFile)
REMOVE — RENAMED TO REMOVELABEL — consolidate with existing removeLabel
page. was: Detach label from Simulink Project file

Syntax
removeLabel(file,labelDefinition)

Description
removeLabel(file,labelDefinition) detaches the specified label
labelDefinition from the file. Before you can detach the label, you need to get the
label from the file.Label property or by using findLabel.

Examples

Detach a Label from a File

Remove a label from a particular project file.

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: [1x86 char]
 Labels: [1x1 slproject.Label]

2 Functions — Alphabetical List

2-224

Get the Labels property of the file.

myfile.Labels

ans =

 Label with properties:

 File: 'C:\work\airframe\models\AnalogControl.mdl'
 Data: []
 DataType: 'none'
 Name: 'Design'
 CategoryName: 'Classification'

Attach the label 'To Review' to the file.

addLabel(myfile,'Review','To Review')

Get the label you want to remove. Index into the Labels property to get the second label
attached to the file.

 labeltoremove = myfile.Labels(2)

labeltoremove =

 Label with properties:

 File: [1x86 char]
 Data: []
 DataType: 'char'
 Name: 'To Review'
 CategoryName: 'Review'

Remove the label from the file.

removeLabel(myfile,labeltoremove)
myfile.Labels

ans =

 Label with properties:

 File: [1x86 char]
 Data: []
 DataType: 'none'

 removeLabel(was detachLabelFromFile)

2-225

 Name: 'Design'
 CategoryName: 'Classification'

Input Arguments
file — File to detach label from
file object

File to detach the label from, specified as a file object. You can get the file object by
examining the project’s Files property (proj.Files), or use findFile to find a file by
name. The file must be within the root folder.

labelDefinition — Label to detach
label definition object

Name of the label to detach, specified as a label definition object returned by the
file.Label property or findLabel.

See Also
Functions
addLabel | createLabel | findFile | findLabel | simulinkproject

2 Functions — Alphabetical List

2-226

disableimplicitsignalresolution
Convert model to use only explicit signal resolution

Syntax
retVal = disableimplicitsignalresolution('model')
retVal = disableimplicitsignalresolution('model', displayOnly)

Description
retVal = disableimplicitsignalresolution('model') inputs a model, reports
all signals and states that implicitly resolve to signal objects, and converts the model to
resolve only signals and states that explicitly require it. The report and any changes are
limited to the model itself; they do not include blocks that are library links.

Before executing this function, ensure that all relevant Simulink data objects are defined
in the base workspace or a data dictionary to which the model is linked. The function
ignores any data objects that are defined elsewhere.

The function scans model, returns a structure of handles to signals and states that
resolve implicitly to signal objects, and performs the following operations on model:

• Search the model for all output ports and block states that resolve to Simulink signal
objects.

• Modify these ports and blocks to enforce signal object resolution in the future.
• Set the model's SignalResolutionControl parameter to 'UseLocalSettings'

(GUI: Explicit Only).

If SignalResolutionControl is already set to 'UseLocalSettings' or to
'None', the function takes no action and returns a warning.

• If any Stateflow output data resolves to a Simulink signal object:

• Turn off hierarchical scoping of signal objects from within the Stateflow chart.
• Explicitly label the output signal of the Stateflow chart.

 disableimplicitsignalresolution

2-227

• Enforce signal object resolution for this signal in the future.

Any changes made by disableimplicitsignalresolution permanently change the
model. Be sure to back up the model before calling the function with displayOnly
defaulted to or specified as false.

retVal = disableimplicitsignalresolution('model', displayOnly) is
equivalent to disableimplicitsignalresolution(model) if displayOnly is
false.

If displayOnly is true, the function returns a structure of handles to signals and states
that resolve implicitly to signal objects, but leaves the model unchanged.

Input Arguments
displayOnly

Boolean specifying whether to change the model (false) or just generate a report (true)

Default: false

model

Model name or handle

Output Arguments
retVal

A MATLAB structure containing:

Signals Handles to ports with signal names that
resolve to signal objects

States Handles to blocks with states that resolve
to signal objects

See Also
Simulink.Signal

2 Functions — Alphabetical List

2-228

Topics
“Data Validity Diagnostics Overview”
“Symbol Resolution”

Introduced in R2007a

 disableimplicitsignalresolution

2-229

docblock
Get or set editor invoked by Simulink DocBlock

Syntax
docblock(setEditorType,command)

editCommand = docblock(getEditorType)

Description
docblock(setEditorType,command) uses the specified command to set the editor
opened by double-clicking a DocBlock block.

By default, a DocBlock block opens Microsoft Word to edit HTML or RTF files. If Word is
not available on your system, the block opens these file types using the text editor
specified on the Editor/Debugger Preferences pane of the MATLAB Preferences dialog
box. For text files, the default editor is the text editor specified in the MATLAB
preferences.

editCommand = docblock(getEditorType) returns the current command to open
the specified editor from a DocBlock block.

Input Arguments
setEditorType — File type whose editor command to set
'setEditorHTML' | 'setEditorDOC' | 'setEditorTXT'

File type whose editor command you want to set, specified as 'setEditorHTML',
'setEditorDOC', or 'setEditorTXT'.

command — Command to open file in editor
character vector | ''

2 Functions — Alphabetical List

2-230

Command to open the specified file type in an editor from the MATLAB command prompt,
specified as a character vector. Use '' to reset to the default editor for that file type.

In the command, use the "%<FileName>" token to represent the full pathname to the
document.

getEditorType — File type of the editor command to return
'getEditorHTML' | 'getEditorDOC' | 'getEditorTXT'

File type of the editor command to return, specified as 'getEditorHTML',
'getEditorDOC', or 'getEditorTXT'.

Output Arguments
editCommand — Command to open the editor
character vector

Command to open the editor, returned as a character vector.

Examples

Set DocBlock Text Editor

Specify Notepad as the DocBlock editor for text files.

docblock('setEditorTXT','system(''notepad "%<FileName>"'');')

Set and Get Current HTML Editor

You can use the docblock command to get the current editor.

Set your HTML editor for the DocBlock block to Mozilla Composer. The ampersand
executes the command in the background.

docblock('setEditorHTML',...
 'system(''/usr/local/bin/mozilla -edit "%<FileName>" &'');')

Get the current HTML editor.

 docblock

2-231

htmlEd = docblock('getEditorHTML')

htmlEd =

 'system('/usr/local/bin/mozilla -edit "%<FileName>" &');'

Reset Text Editor to Default

Specify Notepad as the DocBlock editor for text files.

docblock('setEditorTXT','system(''notepad "%<FileName>"'');')

Get the current text editor.

txtEd = docblock('getEditorTXT')

txtEd =

 'system('notepad "%<FileName>"');'

Reset the editor to the default editor.

docblock('setEditorTXT','')

• “Use a Simulink DocBlock to Add a Comment” (Embedded Coder)

See Also
DocBlock

Topics
“Use a Simulink DocBlock to Add a Comment” (Embedded Coder)

Introduced in R2007a

2 Functions — Alphabetical List

2-232

export
Export Simulink Project to zip

Syntax
export(proj,zipFileName)
export(proj,zipFileName,definitionType)

Description
export(proj,zipFileName) exports the project proj to a zip file specified by
zipFileName. The zip archive preserves the project files, structure, labels, and
shortcuts, and does not include any source control information. You can use the zip
archive to send the project to customers, suppliers, or colleagues who do not have access
to your source control repository. Recipients can create a new project from the zip archive
by clicking New in the Simulink Project Tool, and then in the start page, clicking Archive.

export(proj,zipFileName,definitionType) exports the project using the specified
definitionType for the project definition files, single or multiple. If you do not specify
definitionType, the project's current setting is used. Use the definitionType export
option if you want to change project definition file management from the type selected
when the project was created. You can control project definition file management in the
preferences.

Examples

Export a Project to a Zip File

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Export the project to a zip file.

 export

2-233

export(proj,'airframeproj.zip')

• “Archive Projects in Zip Files”

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

zipFileName — Zip file name or path
character vector

Zip file name or path, specified as a character vector ending in the file extension .zip. If
zipFileName is a filename, Simulink exports the file to the current folder. You can also
specify a fully qualified path name.
Example: 'project.zip'
Data Types: char

definitionType — Definition file type
slproject.DefinitionFiles.SingleFile | slproject.DefinitionFiles.MultiFile

Definition file type, specified as slproject.DefinitionFiles.SingleFile,
slproject.DefinitionFiles.MultiFile, or
slproject.DefinitionFiles.FixedPathMultiFile . Use the definitionType
export option if you want to change project definition file management from the type
selected when the project was created. MultiFile is better for avoiding merging issues
on shared projects. SingleFile is faster but is likely to cause merge issues when two
users submit changes in the same project to a source control tool. If you need to work
with long file paths, use FixedPathMultiFile.
Example: export(proj,'proj.zip',slproject.DefinitionFiles.SingleFile)

2 Functions — Alphabetical List

2-234

See Also

Topics
“Archive Projects in Zip Files”

Introduced in R2013a

 export

2-235

findCategory
Get Simulink Project category of labels

Syntax
category = findCategory(proj,categoryName)

Description
category = findCategory(proj,categoryName) returns the project category
specified by categoryName. You need to get a category before you can use
createLabel or removeLabel.

Examples

Get a Category of Project Labels

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Use findCategory to get a category of labels by name.

category = findCategory(proj,'Classification')

category =

 Category with properties:

 Name: 'Classification'
 DataType: 'none'
 LabelDefinitions: [1x8 slproject.LabelDefinition]]

Alternatively, you can examine categories by index. Get the first category.

2 Functions — Alphabetical List

2-236

proj.Categories(1)

ans =

 Category with properties:

 Name: 'Classification'
 DataType: 'none'
 LabelDefinitions: [1x8 slproject.LabelDefinition]

Find out what you can do with the category.

methods(category)

Methods for class slproject.Category:

createLabel findLabel removeLabel

Input Arguments
proj — Project
project

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

categoryName — Name of category
character vector

Name of the category to get, specified as a character vector.

Output Arguments
category — Category of labels
category object

Category of labels, returned as a category object that you can query or modify. If the
specified category is not found, the function returns an empty array.

 findCategory

2-237

See Also
Functions
createLabel | removeLabel | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-238

findFile
Get Simulink Project file by name

Syntax
file = findFile(proj,fileorfolder)

Description
file = findFile(proj,fileorfolder) returns a specific project file by name. You
need to get a file before you can query labels, or use addLabel or removeLabel.

Examples

Find a File By Name

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Use findFile to get a file by name. You need to know the path if it is inside subfolders
under the project root.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: [1x86 char]
 Labels: [1x1 slproject.Label]
 Revision: '2'
SourceControlStatus: Unmodified

 findFile

2-239

Alternatively, you can examine files by index. Get the first file.

file = proj.Files(1);

Find out what you can do with the file.

methods(file)

Methods for class slproject.ProjectFile:

addLabel removeLabel findLabel

Input Arguments
proj — Project
project

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

fileorfolder — Path of file or folder
character vector | cell array of character vectors | string array

Path of the file or folder to find relative to the project root folder, specified as a character
vector, string, or array. Files must include any subfolders under the project root and the
file extension. The file or folder must be within the root folder.
Example: ‘models/myModelName.slx’

Output Arguments
file — Project file
file object

Project file, returned as a file object that you can query or modify.

2 Functions — Alphabetical List

2-240

See Also
Functions
addLabel | findCategory | findLabel | removeLabel | simulinkproject

Introduced in R2013a

 findFile

2-241

findLabel
Get Simulink Project file label

Syntax
label = findLabel(file,categoryName,labelName)
label = findLabel(file,labelDefinition)
label = findLabel(category,labelName)

Description
label = findLabel(file,categoryName,labelName) returns the label and its
attached data for the label labelName in the category categoryName that is attached to
the specified file or files. Use this syntax when you know the label name and category.

label = findLabel(file,labelDefinition) returns the file label and its attached
data for the label name and category specified by labelDefinition. Use this syntax if
you previously got a labelDefinition by accessing a Labels property, e.g., using a
command like myfile.Labels(1).

label = findLabel(category,labelName) returns the label definition of the label
in this category specified by labelName. Returns an empty array if the label is not found.

Examples

Find Files with the Label Utilility

Find all project files with a particular label.

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

2 Functions — Alphabetical List

2-242

Get the list of project files.

files = proj.Files;

Loop through each file. If the file has the extension .m, attach the label Utility.

for fileIndex = 1:numel(files)
 file = files(fileIndex);
 [~, ~, fileExtension] = fileparts(file.Path);
 if strcmp(fileExtension,'.m')
 addLabel(file,'Classification','Utility');
 end
end

Find all the files with the label Utility and add them to a list returned in
utility_files_to_review.

utility_files_to_review = {};
for jj=1:numel(files)
 this_file = files(jj);

 label = findLabel(this_file,'Classification','Utility');

 if (~isempty(label))
 % This is a file labeled 'Utility'. Add to the
 % list of utility files.
 utility_files_to_review = [utility_files_to_review; this_file];
 end
end

Find a Label by Name or Definition

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl');

Get a label by name.

label = findLabel(myfile,'Classification','Design');

 findLabel

2-243

Alternatively, examine the Labels property of the file to get an array of Label objects,
one for each label attached to the file.

labels = myfile.Labels

Index into the Labels property to get the label attached to the particular file.

labeldefinition = myfile.Labels(1)

After you get the label definition from the Labels property, you can use it with
findLabel.

label = findLabel(myfile,labeldefinition);

Find Labels by Name or Definition

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Get a category.

category = proj.Categories(1)

category =

 Category with properties:

 Name: 'Classification'
 DataType: 'none'
 LabelDefinitions: [1x8 slproject.LabelDefinition]

Get a label definition.

ld = findLabel(category,'Design')

ld =

 LabelDefinition with properties:

2 Functions — Alphabetical List

2-244

 Name: 'Design'
 CategoryName: 'Classification'

Input Arguments
file — File to search labels of
file object

File to search the labels of, specified as a file object or an array of file objects. You can get
the file object by examining the project’s Files property (proj.Files), or use findFile
to get a file by name. The file must be in the project.

categoryName — Name of category
character vector

Name of the parent category for the label, specified as a character vector.

labelName — Name of label
character vector

Name of the label to get, specified as a character vector.

labelDefinition — Name of label
label definition object

Name of the label to get, specified as a label definition object returned by the
file.Label property.

category — Category of labels
category object

Category of labels, specified as a category object. Get a category object from the
proj.Categories property or by using findCategory.

Output Arguments
label — Label
label object

Label, returned as a label object.

 findLabel

2-245

See Also
Functions
addLabel | createLabel | findFile | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-246

findLabelDefinition(renamed to findLabel)
Get Simulink Project label definition

Syntax
labelDefinition = findLabelDefinition(category,labelName)

Description
labelDefinition = findLabelDefinition(category,labelName) returns the
label definition of the label in this category specified by labelName. Returns an empty
array if the label is not found.

Examples

Find Labels by Name or Definition

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Get a category.

category = proj.Categories(1)

category =

 Category with properties:

 Name: 'Review'
 DataType: 'char'
 LabelDefinitions: [1x4 slproject.LabelDefinition]

Get a label definition.

 findLabelDefinition(renamed to findLabel)

2-247

ld = findLabelDefinition(category,'To Review')

ld =

 LabelDefinition with properties:

 Name: 'To Review'
 CategoryName: 'Review'

Alternatively, get a file and examine the Labels property to get an array of Label objects,
one for each label attached to the file.

myfile = findFile(proj,'models/AnalogControl.mdl');
labels = myfile.Labels

Index into the Labels property to get the second label attached to the particular file.

labeldefinition = myfile.Labels(1)

After you get the label definition from the Labels property, you can use it with
findLabel.

label = findLabel(myfile,labeldefinition);

Alternatively, get a particular file by name, and then get one of its labels by name.

myfile = findFile(proj,'models/AnalogControl.mdl');
label = findLabel(myfile,'Review','To Review');

Input Arguments
labelName — Name of label
character vector

Name of the label to get, specified as a character vector.

category — Category of labels
category object

Category of labels, specified as a category object. Get a category object from the
proj.Categories property or by using findCategory.

2 Functions — Alphabetical List

2-248

Output Arguments
labelDefinition — Label definition
label definition object

Label definition, returned as a label definition object. Query the label definition properties
to find the label data type.

See Also
Functions
addLabel | createLabel | findCategory | simulinkproject

Introduced in R2013a

 findLabelDefinition(renamed to findLabel)

2-249

find_mdlrefs
Find Model blocks and referenced models at all levels or at top level only

Syntax
[refMdls,mdlBlks] = find_mdlrefs(system)
[refMdls,mdlBlks] = find_mdlrefs(system,Name,Value)
[refMdls,mdlBlks] = find_mdlrefs(system,allLevels)

Description
[refMdls,mdlBlks] = find_mdlrefs(system) finds all referenced models and
Model blocks contained by the subsystem or model reference hierarchy that system is
the top level of.

[refMdls,mdlBlks] = find_mdlrefs(system,Name,Value) finds referenced
models and Model blocks with additional options specified by one or more Name,Value
pair arguments.

[refMdls,mdlBlks] = find_mdlrefs(system,allLevels) specifies the levels of
the system to search.

Tip The find_mdlrefs function provides two different ways to specify the levels of the
system to search. Both techniques give the same results, but only the name and value
technique allows you to control inclusion of protected and variant models in refMdls.

Examples

Find Referenced Models in Model Reference Hierarchy

Find referenced models and Model blocks for all models referenced by the specified
model. Include all model reference variants.

2 Functions — Alphabetical List

2-250

load_system('sldemo_mdlref_variants_enum');
[myModels,myModelBlks] = find_mdlrefs('sldemo_mdlref_variants_enum',...
'AllLevels',true,'Variants','AllVariants')

myModels = 9x1 cell array
 {'sldemo_mrv_linear_controller' }
 {'sldemo_mrv_nonlinear_controller' }
 {'sldemo_mrv_sig_filter1_production'}
 {'sldemo_mrv_sig_filter1_prototype' }
 {'sldemo_mrv_sig_filter2_production'}
 {'sldemo_mrv_sig_filter2_prototype' }
 {'sldemo_mrv_sig_filter3_production'}
 {'sldemo_mrv_sig_filter3_prototype' }
 {'sldemo_mdlref_variants_enum' }

myModelBlks = 8x1 cell array
 {'sldemo_mdlref_variants_enum/Controller/Linear' }
 {'sldemo_mdlref_variants_enum/Controller/Nonlinear'}
 {'sldemo_mdlref_variants_enum/Filter1/Production' }
 {'sldemo_mdlref_variants_enum/Filter1/Prototype' }
 {'sldemo_mdlref_variants_enum/Filter2/Production' }
 {'sldemo_mdlref_variants_enum/Filter2/Prototype' }
 {'sldemo_mdlref_variants_enum/Filter3/Production' }
 {'sldemo_mdlref_variants_enum/Filter3/Prototype' }

• “Set up Model Variants Using a Model Block”
• “Simulate Protected Models from Third Parties”

Input Arguments
system — System to search
character vector | handle

System to search, specified as a character vector or a handle.

• The character vector can be the path to a Model block, subsystem, or a model in a
model reference hierarchy.

• The handle can be for a Model block, subsystem, or model in a model reference
hierarchy.

 find_mdlrefs

2-251

allLevels — Levels to search
true (default) | false

Levels to search, specified as true or false.

• true — Search all Model blocks in the model reference hierarchy for which the
system is the top model.

• false — Search only the top-level system.

Data Types: logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: refModels = find_mdlrefs(top_model,'Variants',true)

AllLevels — Levels to search
true (default) | false

Levels to search, specified as a true or false.

• true — Search all Model blocks in the model reference hierarchy for which the
system is the top model.

• false — Search only the top-level system.

Data Types: logical

IncludeProtectedModels — Include protected models in search results
false (default) | true

Include protected models in search, specified as true or false. This setting does not
affect the list of Model blocks returned.
Data Types: logical

Variants — Include variants in search
'ActivePlusCodeVariants' (default) | 'ActiveVariants' | 'AllVariants'

2 Functions — Alphabetical List

2-252

Include variants in search, specified as 'ActivePlusCodeVariants',
'ActiveVariants', or 'AllVariants'.

• 'ActivePlusCodeVariants' — Include all variants for Model Variants blocks for
which you select the Generate preprocessor conditionals option.

• 'ActiveVariants' — Include the active variant for Model Variants blocks.
• 'AllVariants' — Include all variants for Model Variants blocks.

IncludeCommented — Include commented blocks in search
false (default) | true

Include commented blocks in search, specified as false or true.
Data Types: logical

KeepModelsLoaded — Keep loaded models that function loads
false (default) | true

The find_mdlrefs function loads the models in the model reference hierarchy of the
model that you specify. By default, the function closes those models, except for models
that were already loaded before execution of the function. To keep all the models loaded
that the function loads, set this argument to true.
Data Types: logical

Output Arguments
refMdls — Names of referenced models
cell array of character vectors

Names of referenced models, returned as a cell array of character vectors. The last
element is the system you specified in the system input argument or the parent model of
that system.

mdlBlks — Names of Model blocks
cell array of character vectors

Names of Model blocks, returned as a cell array of character vectors.

 find_mdlrefs

2-253

See Also
Model | find_system

Topics
“Set up Model Variants Using a Model Block”
“Simulate Protected Models from Third Parties”
“Model Referencing”

Introduced before R2006a

2 Functions — Alphabetical List

2-254

find_system
Find systems, blocks, lines, ports, and annotations

Syntax
Objects = find_system
Objects = find_system(System)
Objects = find_system(Name,Value)
Objects = find_system(System,Name,Value)

Description
Objects = find_system returns loaded systems and their blocks, including
subsystems.

Objects = find_system(System) returns the specified system and its blocks.

Objects = find_system(Name,Value) returns loaded systems and the objects in
those systems that meet the criteria specified by one or more Name,Value pair
arguments. You can use this syntax to specify search constraints and to search for specific
parameter values. Specify the search constraints before the parameter and value pairs.

Objects = find_system(System,Name,Value) returns the objects in the specified
system that meet the specified criteria.

Input Arguments
System — System to search
path name | cell array of path names | handle | vector of handles

System to search, specified as the full system path name, a cell array of system path
names, a handle, or a vector of handles.
Example: 'MyModel/Subsystem1'
Example: {'vdp','fuelsys'}

 find_system

2-255

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

When you use the find_system function, Name,Value pair arguments can include
search constraints and parameter name and value pairs. You can specify search
constraints in any order, but they must precede the parameter name and value pairs.

See “Model Parameters” on page 6-2 and “Block-Specific Parameters” on page 6-130
for the lists of model and block parameters.
Example: 'SearchDepth','0','LookUnderMasks','none','BlockType','Goto'
searches in loaded systems, excluding masked subsystems, for Goto blocks.

The table lists the possible search constraint pairs. Braces indicate default values.

Name Value Type Description
'BlockDialogParams' character vector Search block dialog box parameters

for the specified value. This pair, like
parameter and value pairs, must
follow the other search constraint
pairs.

'CaseSensitive' {'on'} | 'off' If 'on', search considers case when
matching.

'FindAll' 'on' | {'off'} If 'on', search includes lines, ports,
and annotations within systems.
find_system returns a vector of
handles when this option is set to
'on', regardless of how you specify
System.

'FirstResultOnly' 'on' | {'off'} Return only the first result found and
stop the search.

2 Functions — Alphabetical List

2-256

Name Value Type Description
'FollowLinks' 'on' | {'off'} If 'on', search follows links into

library blocks. If you do not specify a
system to search, find_system
includes loaded libraries in the
results, whether you set
'FollowLinks' to 'on' or 'off'.
You can use 'FollowLinks' with
'LookUnderMasks' to update
library links in subsystems. See
“Update Library Links in a
Subsystem” on page 2-263.

'IncludeCommented' 'on' | {'off'} Specify whether to include
commented blocks in the search.

'LoadFullyIfNeeded' {'on'} | 'off' If 'on', attempts to load any partially
loaded models. If 'off', disables
model loading. Use this pair, for
example, to prevent load warnings.

'LookUnderMasks' {'graphical'} Search includes masked subsystems
that have no workspaces and no
dialogs.

'none' Search skips masked subsystems.
'functional' Search includes masked subsystems

that do not have dialogs.
'all' Search includes all masked

subsystems.
'on' | 'off' If 'on', search includes all masked

subsystems. If 'off', search skips
masked subsystem.

'RegExp' 'on' | {'off'} If 'on', search treats search
expressions as regular expressions.
To learn more about MATLAB regular
expressions, see “Regular
Expressions” (MATLAB).

 find_system

2-257

Name Value Type Description
'SearchDepth' positive integer character

vector
Restricts the search depth to the
specified level ('0' for loaded
systems only, '1' for blocks and
subsystems of the top-level system,
'2' for the top-level system and its
children, etc.). The default is all
levels.

'Variants'

This search constraint applies
only to variant subsystems
and model variants.

{'ActiveVariants'} Search in only the active variant
subsystems.

'AllVariants' Search in all variants.
'ActivePlusCodeVariant
s'

Search all variants if any generate
preprocessor conditionals. Otherwise,
search only the active variant.

Output Arguments
Objects — Matching objects
cell array of path names | vector of handles

Matching objects found, returned as:

• A cell array of path names if you specified System as a path name or cell array of path
names, or if you did not specify a system

• A vector of handles if you specified System as a handle or vector of handles

Examples

Find Loaded Systems and Their Blocks

Return the names of all loaded systems and their blocks.

load_system('vdp')
find_system

ans = 13x1 cell array
 {'vdp' }

2 Functions — Alphabetical List

2-258

 {'vdp/Fcn' }
 {'vdp/More Info' }
 {'vdp/More Info/Model Info'}
 {'vdp/Mu' }
 {'vdp/Mux' }
 {'vdp/Product' }
 {'vdp/Scope' }
 {'vdp/Sum' }
 {'vdp/x1' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out2' }

Returns loaded systems and libraries, including vdp.

Find Specific System and Its Blocks

Return vdp system and its blocks.

load_system({'vdp','fuelsys'})
find_system('vdp')

ans = 13x1 cell array
 {'vdp' }
 {'vdp/Fcn' }
 {'vdp/More Info' }
 {'vdp/More Info/Model Info'}
 {'vdp/Mu' }
 {'vdp/Mux' }
 {'vdp/Product' }
 {'vdp/Scope' }
 {'vdp/Sum' }
 {'vdp/x1' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out2' }

 find_system

2-259

Return Names of Loaded Models

Return the names of only the loaded models, i.e., block diagrams. This command returns
library names as well, because libraries are treated as models.

load_system('vdp');
open_bd = find_system('type','block_diagram')

open_bd = 1x1 cell array
 {'vdp'}

Search Children of Subsystem

Return the names of all Goto blocks that are children of the Unlocked subsystem in the
sldemo_clutch system.

load_system('sldemo_clutch');
find_system('sldemo_clutch/Unlocked','SearchDepth',1,'BlockType','Goto')

ans = 2x1 cell array
 {'sldemo_clutch/Unlocked/Goto' }
 {'sldemo_clutch/Unlocked/Goto1'}

Search Using Multiple Criteria

Search in the vdp system and return the names of all Gain blocks whose Gain value is set
to 1.

load_system('vdp');
find_system('vdp','BlockType','Gain','Gain','1')

ans = 1x1 cell array
 {'vdp/Mu'}

2 Functions — Alphabetical List

2-260

Return Lines and Annotations as Handles

Get the handles of all lines and annotations in the vdp system. With 'FindAll', the
function returns handles regardless of how you specify the system to search.

load_system('vdp');
L = find_system('vdp','FindAll','on','type','line')

L = 17×1

 33.0012
 32.0013
 31.0012
 30.0012
 29.0012
 28.0012
 27.0012
 26.0012
 25.0012
 24.0012
 ⋮

A = find_system('vdp','FindAll','on','type','annotation')

A = 2×1

 35.0012
 34.0012

Search for Specific Block Parameter Value

Find any block dialog box parameters with a value of 0 in the vdp and fuelsys systems.

load_system({'vdp','fuelsys'})
find_system({'vdp','fuelsys'},'BlockDialogParams','0')

ans =

 'vdp/x2'
 'vdp/Out1'
 'vdp/Out2'

 find_system

2-261

 'fuelsys/Constant2'
 'fuelsys/Constant4'
 'fuelsys/Constant5'
 'fuelsys/engine …'
 'fuelsys/engine …'
 'fuelsys/engine …'
 'fuelsys/engine …'
 .
 .
 .

Search Using Regular Expressions

Find all blocks in the top level of the currently loaded systems with a block dialog
parameter value that starts with 3.

load_system({'fuelsys','vdp'});
find_system('SearchDepth','1','regexp','on','BlockDialogParams','^3')

ans = 3x1 cell array
 {'vdp/Scope' }
 {'vdp/Scope' }
 {'fuelsys/Nominal...'}

Regular Expression Search for Partial Match

When you search using regular expressions, you can specify a part of the character vector
you want to match to return all objects that contain that character vector. Find all the
inport and outport blocks in the sldemo_clutch model.

load_system('sldemo_clutch');
find_system('sldemo_clutch','regexp','on','blocktype','port')

ans = 39x1 cell array
 {'sldemo_clutch/Friction...' }
 {'sldemo_clutch/Friction...' }
 {'sldemo_clutch/Friction...' }
 {'sldemo_clutch/Friction Mode Logic/Tin' }
 {'sldemo_clutch/Friction Mode Logic/Tfmaxs' }

2 Functions — Alphabetical List

2-262

 {'sldemo_clutch/Friction Mode Logic/Break Apart...' }
 {'sldemo_clutch/Friction Mode Logic/Break Apart...' }
 {'sldemo_clutch/Friction Mode Logic/Break Apart...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'sldemo_clutch/Friction Mode Logic/Lockup FSM/lock' }
 {'sldemo_clutch/Friction Mode Logic/Lockup FSM/unlock' }
 {'sldemo_clutch/Friction Mode Logic/Lockup FSM/locked' }
 {'sldemo_clutch/Friction Mode Logic/Requisite Friction/Tin'}
 {'sldemo_clutch/Friction Mode Logic/Requisite Friction/Tf' }
 {'sldemo_clutch/Friction Mode Logic/locked' }
 {'sldemo_clutch/Friction Mode Logic/lock' }
 {'sldemo_clutch/Friction Mode Logic/unlock' }
 {'sldemo_clutch/Friction Mode Logic/Tf' }
 {'sldemo_clutch/Locked/Tin' }
 {'sldemo_clutch/Locked/w' }
 {'sldemo_clutch/Unlocked/Tfmaxk' }
 {'sldemo_clutch/Unlocked/Tin' }
 {'sldemo_clutch/Unlocked/we' }
 {'sldemo_clutch/Unlocked/wv' }
 {'sldemo_clutch/we' }
 {'sldemo_clutch/wv' }
 {'sldemo_clutch/w' }
 {'sldemo_clutch/Locked Flag' }
 {'sldemo_clutch/Lockup Flag' }
 {'sldemo_clutch/Break-Apart Flag' }
 {'sldemo_clutch/FrictionTorque...' }
 {'sldemo_clutch/Max Static...' }

Update Library Links in a Subsystem

In this example, myModel contains a single subsystem, which is a library link. After the
model was last opened, a Gain block was added to the corresponding subsystem in the
library.

 find_system

2-263

Open the model. Use find_system with 'FollowLinks' set to 'off'. The command
does not follow the library links into the subsystem and returns only the subsystem at the
top level.

open_system('myModel')
find_system(bdroot,'LookUnderMasks','on','FollowLinks', 'off')

ans =

 'myModel'
 'myModel/Subsystem'

Use find_system with 'FollowLinks' set to 'on'. find_system updates the library
links and returns the block in the subsystem.

find_system(bdroot,'LookUnderMasks','on','FollowLinks','on')

Updating Link: myModel/Subsystem/Gain
Updating Link: myModel/Subsystem/Gain

ans =

 'myModel'
 'myModel/Subsystem'
 'myModel/Subsystem/Gain'

Return Values as Handles

Provide the system to find_system as a handle. Search for block dialog box parameters
with a value of 0. If you make multiple calls to get_param for the same block, then using
the block handle is more efficient than specifying the full block path as a character vector.

load_system('vdp');
sys = get_param('vdp','Handle');
find_system(sys,'BlockDialogParams','0')

ans = 6×1

 11.0029
 14.0029
 15.0028
 15.0028
 16.0028

2 Functions — Alphabetical List

2-264

 16.0028

• “Find Model Elements in Simulink Models”
• “Edit and Manage Workspace Variables by Using Model Explorer”

See Also
Simulink.allBlockDiagrams | Simulink.findBlocks |
Simulink.findBlocksOfType | find_mdlrefs | getSimulinkBlockHandle |
get_param | set_param

Topics
“Find Model Elements in Simulink Models”
“Edit and Manage Workspace Variables by Using Model Explorer”
“Regular Expressions” (MATLAB)
“Model Parameters” on page 6-2
“Block-Specific Parameters” on page 6-130

Introduced before R2006a

 find_system

2-265

fixdt
Create Simulink.NumericType object describing fixed-point or floating-point data type

Syntax
a = fixdt(Signed, WordLength)
a = fixdt(Signed, WordLength, FractionLength)
a = fixdt(Signed, WordLength, TotalSlope, Bias)
a = fixdt(Signed, WordLength, SlopeAdjustmentFactor, FixedExponent,
Bias)
a = fixdt(DataTypeNameString)
a = fixdt(..., 'DataTypeOverride', 'Off')
[DataType,IsScaledDouble] = fixdt(DataTypeNameString)
[DataType,IsScaledDouble] = fixdt(DataTypeNameString,
'DataTypeOverride', 'Off')

Description
a = fixdt(Signed, WordLength) returns a Simulink.NumericType object
describing a fixed-point data type with unspecified scaling. The scaling would typically be
determined by another block parameter. Signed can be 0 (false) for unsigned or 1 (true)
for signed.

a = fixdt(Signed, WordLength, FractionLength) returns a
Simulink.NumericType object describing a fixed-point data type with binary point
scaling. FractionLength can be greater than WordLength. For more information, see
“Binary Point Interpretation” (Fixed-Point Designer).

a = fixdt(Signed, WordLength, TotalSlope, Bias) or a = fixdt(Signed,
WordLength, SlopeAdjustmentFactor, FixedExponent, Bias) returns a
Simulink.NumericType object describing a fixed-point data type with slope and bias
scaling.

a = fixdt(DataTypeNameString) returns a Simulink.NumericType object
describing an integer, fixed-point, or floating-point data type specified by a data type

2 Functions — Alphabetical List

2-266

name. The data type name can be either the name of a built-in Simulink data type or the
name of a fixed-point data type that conforms to the naming convention for fixed-point
names established by the Fixed-Point Designer product. For more information, see “Fixed-
Point Data Type and Scaling Notation” (Fixed-Point Designer).

a = fixdt(..., 'DataTypeOverride', 'Off') returns a
Simulink.NumericType object with its DataTypeOverride parameter set to Off. The
default value for this property is Inherit. You can specify the DataTypeOverride
parameter after any combination of other input parameters.

[DataType,IsScaledDouble] = fixdt(DataTypeNameString) returns a
Simulink.NumericType object describing an integer, fixed-point, or floating-point data
type specified by a data type name and a flag that indicates whether the specified data
type name was the name of a scaled double data type.

[DataType,IsScaledDouble] = fixdt(DataTypeNameString,
'DataTypeOverride', 'Off') returns:

• A Simulink.NumericType object describing an integer, fixed-point, or floating-point
data type specified by a data type name. The DataTypeOverride parameter of the
Simulink.NumericType object is set to Off.

• A flag that indicates whether the specified data type name was the name of a scaled
double data type.

Examples
Return a Simulink.NumericType object describing a fixed-point data type with
unspecified scaling:

a = fixdt(1,16)

a =

Simulink.NumericType
 DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Signed'
 WordLength: 16
 IsAlias: false
 HeaderFile: ''
 Description: ''

 fixdt

2-267

Return a Simulink.NumericType object describing a fixed-point data type with binary
point scaling :

a = fixdt(1,16,2)

a =

Simulink.NumericType
 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 16
 FractionLength: 2
 IsAlias: false
 HeaderFile: ''
 Description: ''

Return a Simulink.NumericType object describing a fixed-point data type with slope
and bias scaling:

a = fixdt(1, 16, 2^-2, 4)

a =

Simulink.NumericType
 DataTypeMode: 'Fixed-point: slope and bias scaling'
 Signedness: 'Signed'
 WordLength: 16
 Slope: 0.25
 Bias: 4
 IsAlias: false
 HeaderFile: ''
 Description: ''

Return a Simulink.NumericType object describing an integer, fixed-point, or floating-
point data type specified by a data type name:

[DataType,IsScaledDouble] = fixdt('ufix8')

DataType =

Simulink.NumericType
 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 8
 FractionLength: 0

2 Functions — Alphabetical List

2-268

 IsAlias: false
 HeaderFile: ''
 Description: ''
IsScaledDouble =

 0

Return a Simulink.NumericType object with its DataTypeOverride property set to
Off:

 a = fixdt(0, 8, 2, 'DataTypeOverride', 'Off')

a =

Simulink.NumericType
 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 8
 FractionLength: 2
DataTypeOverride: Off
 IsAlias: false
 HeaderFile: ''
 Description: ''

See Also
float | sfix | sfrac | sint | ufix | ufrac | uint

Topics
“Fixed-Point Data Type and Scaling Notation” (Fixed-Point Designer)

Introduced before R2006a

 fixdt

2-269

fixpt_evenspace_cleanup
Modify breakpoints of lookup table to have even spacing

Syntax
xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale)

Description
xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale) modifies
breakpoints of a lookup table to have even spacing after quantization. By adjusting
breakpoints to have even spacing after quantization, Simulink Coder generated code can
exclude breakpoints from memory.

xdata is the breakpoint vector of a lookup table to make evenly spaced, such as
0:0.005:1. xdt is the data type of the breakpoints, such as sfix(16). xscale is the
scaling of the breakpoints, such as 2^-12. Using these three inputs,
fixpt_evenspace_cleanup returns the modified breakpoints in xdata_modified.

This function works only with nontunable data and considers data to have even spacing
relative to the scaling slope. For example, the breakpoint vector [0 2 5], which has
spacing value 2 and 3, appears to have uneven spacing. However, the difference between
the maximum spacing 3 and the minimum spacing 2 equals 1. If the scaling slope is 1 or
greater, a spacing variation of 1 represents a 1-bit change or less. In this case, the
fixpt_evenspace_cleanup function considers a spacing variation of 1 bit or less to be
even.

Modifications to breakpoints can change the numerical behavior of a lookup table. To
check for changes, test the model using simulation, rapid prototyping, or other
appropriate methods.

Examples
Modify breakpoints of a lookup table to have even spacing after quantization:

2 Functions — Alphabetical List

2-270

xdata = 0:0.005:1;
xdt = sfix(16);
xscale = 2^-12;
xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale)

See Also
fixdt | fixpt_interp1 | fixpt_look1_func_approx | fixpt_look1_func_plot |
sfix | ufix

Topics
“Effects of Spacing on Speed, Error, and Memory Usage” (Fixed-Point Designer)
“Create Lookup Tables for a Sine Function” (Fixed-Point Designer)

Introduced before R2006a

 fixpt_evenspace_cleanup

2-271

fixpt_interp1
Implement 1-D lookup table

Syntax
y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)

Description
y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)
implements a one-dimensional lookup table to find output y for input x. If x falls between
two xdata values (breakpoints), y is the result of interpolating between the
corresponding ydata values. If x is greater than the maximum value in xdata, y is the
maximum ydata value. If x is less than the minimum value in xdata, y is the minimum
ydata value.

If the input data type xdt or the output data type ydt is floating point, fixpt_interp1
performs the interpolation using floating-point calculations. Otherwise, fixpt_interp1
uses integer-only calculations. These calculations handle the input scaling xscale and
the output scaling yscale and obey the rounding method rndmeth.

Input Arguments
xdata

Vector of breakpoints for the lookup table, such as linspace(0,8,33).

ydata

Vector of table data that correspond to the breakpoints for the lookup table, such as
sin(xdata).

x

Vector of input values for the lookup table to process, such as linspace(-1,9,201).

2 Functions — Alphabetical List

2-272

xdt

Data type of input x, such as sfix(8).

xscale

Scaling for input x, such as 2^-3.

ydt

Data type of output y, such as sfix(16).

yscale

Scaling for output y, such as 2^-14.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number
in the direction of positive infinity.

'Floor' (default) Round to the nearest representable number
in the direction of negative infinity.

'Nearest' Round to the nearest representable number.
'Toward Zero' Round to the nearest representable number

in the direction of zero.

Examples
Interpolate outputs for x using a 1-D lookup table that approximates the sine function:

xdata = linspace(0,8,33).';
ydata = sin(xdata);
% Define input x as a vector of 201 evenly
% spaced points between -1 and 9 (includes
% values both lower and higher than the range
% of breakpoints in xdata)
x = linspace(-1,9,201).';
% Interpolate output values for x

 fixpt_interp1

2-273

y = fixpt_interp1(xdata,ydata,x,sfix(8),2^-3,sfix(16),...
 2^-14,'Floor')

See Also
fixpt_evenspace_cleanup | fixpt_look1_func_approx |
fixpt_look1_func_plot

Topics
“Producing Lookup Table Data” (Fixed-Point Designer)

Introduced before R2006a

2 Functions — Alphabetical List

2-274

fixpt_look1_func_approx
Optimize fixed-point approximation of nonlinear function by interpolating lookup table
data points

Syntax
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax)
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax)
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydtydt,yscale,rndmeth,errmax,nptsmax,spacing)

Description
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax) returns the
optimal breakpoints of a lookup table, an ideal function applied to the breakpoints, and
the worst-case approximation error. The lookup table satisfies the maximum acceptable
error and maximum number of points that you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]) returns the optimal
breakpoints of a lookup table, an ideal function applied to the breakpoints, and the worst-
case approximation error. The lookup table satisfies the maximum acceptable error that
you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax) returns the optimal
breakpoints of a lookup table, an ideal function applied to the breakpoints, and the worst-
case approximation error. The lookup table satisfies the maximum number of points that
you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

 fixpt_look1_func_approx

2-275

xmin,xmax,xdt,xscale,ydtydt,yscale,rndmeth,errmax,nptsmax,spacing)
returns the optimal breakpoints of a lookup table, an ideal function applied to the
breakpoints, and the worst-case approximation error. The lookup table satisfies the
maximum acceptable error, maximum number of points, and breakpoint spacing that you
specify.

In each case, fixpt_look1_func_approx interpolates between lookup table data points
to optimize the fixed-point approximation. The inputs xmin and xmax specify the range
over which to approximate the breakpoints. The inputs xdt, xscale, ydt, yscale, and
rndmeth follow conventions used by fixed-point Simulink blocks.

The inputs errmax, nptsmax, and spacing are optional. Of these inputs, you must
specify at least errmax or nptsmax. If you omit one of those two inputs, you must use
brackets, [], in place of the omitted input. fixpt_look1_func_approx ignores that
requirement for the lookup table.

If you do not specify spacing, and more than one spacing satisfies errmax and nptsmax,
fixpt_look1_func_approx chooses in this order: power-of-2 spacing, even spacing,
uneven spacing. This behavior applies when you specify both errmax and nptsmax, but
not when you specify just one of the two.

Input Arguments
func

Function of x for which to approximate breakpoints. Enclose this expression in single
quotes, for example, 'sin(2*pi*x)'.

xmin

Minimum value of x.

xmax

Maximum value of x.

xdt

Data type of x.

2 Functions — Alphabetical List

2-276

xscale

Scaling for the x values.

ydt

Data type of y.

yscale

Scaling for the y values.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number
in the direction of positive infinity.

'Floor' (default) Round to the nearest representable number
in the direction of negative infinity.

'Nearest' Round to the nearest representable number.
'Toward Zero' Round to the nearest representable number

in the direction of zero.

errmax

Maximum acceptable error between the ideal function and the approximation given by
the lookup table.

nptsmax

Maximum number of points for the lookup table.

spacing

Spacing of breakpoints for the lookup table:

'even' Even spacing
'pow2' Even, power-of-2 spacing
'unrestricted' (default) Uneven spacing

 fixpt_look1_func_approx

2-277

If you specify... The breakpoints of the lookup table...
errmax and nptsmax Meet both criteria, if possible.

The errmax requirement has higher priority than
nptsmax. If the breakpoints cannot meet both
criteria with the specified spacing, nptsmax does
not apply.

errmax only Meet the error criteria, and
fixpt_look1_func_approx returns the fewest
number of points.

nptsmax only Meet the points criteria, and
fixpt_look1_func_approx returns the smallest
worst-case error.

Output Arguments
xdata

Vector of breakpoints for the lookup table.

ydata

Vector of values from applying the ideal function to the breakpoints.

errworst

Worst-case error, which is the maximum absolute error between the ideal function and
the approximation given by the lookup table.

Examples
Approximate a fixed-point sine function using a lookup table:

func = 'sin(2*pi*x)';
% Define the range over which to optimize breakpoints
xmin = 0;
xmax = 0.25;
% Define the data type and scaling for the inputs

2 Functions — Alphabetical List

2-278

xdt = ufix(16);
xscale = 2^-16;
% Define the data type and scaling for the outputs
ydt = sfix(16);
yscale = 2^-14;
% Specify the rounding method
rndmeth = 'Floor';
% Define the maximum acceptable error
errmax = 2^-10;
% Choose even, power-of-2 spacing for breakpoints
spacing = 'pow2';
% Create the lookup table
[xdata,ydata,errworst] = fixpt_look1_func_approx(func,...
 xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

See Also
fixpt_evenspace_cleanup | fixpt_interp1 | fixpt_look1_func_plot

Topics
“Producing Lookup Table Data” (Fixed-Point Designer)
“Use Lookup Table Approximation Functions” (Fixed-Point Designer)

Introduced before R2006a

 fixpt_look1_func_approx

2-279

fixpt_look1_func_plot
Plot fixed-point approximation function for lookup table

Syntax
fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)
errworst = fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description
fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth) plots a lookup table approximation
function and the error from the ideal function.

errworst = fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth) plots a lookup table approximation
function and the error from the ideal function. The output errworst is the maximum
absolute error.

You can use fixpt_look1_func_approx to generate xdata and ydata, the
breakpoints and table data for the lookup table, respectively.
fixpt_look1_func_approx applies the ideal function to the breakpoints in xdata to
produce ydata. While this method is the easiest way to generate ydata, you can choose
other values for ydata as input for fixpt_look1_func_plot. Choosing different values
for ydata can, in some cases, produce a lookup table with a smaller maximum absolute
error.

Input Arguments
xdata

Vector of breakpoints for the lookup table.

2 Functions — Alphabetical List

2-280

ydata

Vector of values from applying the ideal function to the breakpoints.

func

Function of x for which to approximate breakpoints. Enclose this expression in single
quotes, for example, 'sin(2*pi*x)'.

xmin

Minimum value of x.

xmax

Maximum value of x.

xdt

Data type of x.

xscale

Scaling for the x values.

ydt

Data type of y.

yscale

Scaling for the y values.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number
in the direction of positive infinity.

'Floor' (default) Round to the nearest representable number
in the direction of negative infinity.

'Nearest' Round to the nearest representable number.

 fixpt_look1_func_plot

2-281

'Toward Zero' Round to the nearest representable number
in the direction of zero.

Examples
Plot a fixed-point approximation of the sine function using data points generated by
fixpt_look1_func_approx:

func = 'sin(2*pi*x)';
% Define the range over which to optimize breakpoints
xmin = 0;
xmax = 0.25;
% Define the data type and scaling for the inputs
xdt = ufix(16);
xscale = 2^-16;
% Define the data type and scaling for the outputs
ydt = sfix(16);
yscale = 2^-14;
% Specify the rounding method
rndmeth = 'Floor';
% Define the maximum acceptable error
errmax = 2^-10;
% Choose even, power-of-2 spacing for breakpoints
spacing = 'pow2';
% Generate data points for the lookup table
[xdata,ydata,errworst]=fixpt_look1_func_approx(func,...
 xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);
% Plot the sine function (ideal and fixed-point) & errors
fixpt_look1_func_plot(xdata,ydata,func,xmin,xmax,...
 xdt,xscale,ydt,yscale,rndmeth);

fixpt_look1_func_plot plots the fixed-point sine function, using generated data
points, and plots the error between the ideal function and the fixed-point function. The
maximum absolute error and the number of points required appear on the plot. The error
drops to zero at a breakpoint, but increases between breakpoints due to curvature
differences between the ideal function and the line drawn between breakpoints.

2 Functions — Alphabetical List

2-282

The lookup table requires 33 points to achieve a maximum absolute error of 2^-11.3922.

See Also
fixpt_evenspace_cleanup | fixpt_interp1 | fixpt_look1_func_approx

Topics
“Producing Lookup Table Data” (Fixed-Point Designer)
“Use Lookup Table Approximation Functions” (Fixed-Point Designer)

 fixpt_look1_func_plot

2-283

Introduced before R2006a

2 Functions — Alphabetical List

2-284

fixpt_set_all
Set property for each fixed-point block in subsystem

Syntax
fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)

Description
fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue) sets the
property fixptPropertyName of every applicable block in the model or subsystem
SystemName to the value fixptPropertyValue

Examples
Set each fixed-point block in a model Filter_1 to round towards the floor and saturate
upon overflow:
% Round towards the floor
fixpt_set_all('Filter_1','RndMeth','Floor')

% Saturate upon overflow
fixpt_set_all('Filter_1','DoSatur','on')

Introduced before R2006a

 fixpt_set_all

2-285

fixptbestexp
Exponent that gives best precision for fixed-point representation of value

Syntax
out = fixptbestexp(RealWorldValue, TotalBits, IsSigned)
out = fixptbestexp(RealWorldValue, FixPtDataType)

Description
out = fixptbestexp(RealWorldValue, TotalBits, IsSigned) returns the
exponent that gives the best precision for the fixed-point representation of
RealWorldValue. TotalBits specifies the number of bits for the fixed-point number.
IsSigned specifies whether the fixed-point number is signed: 1 indicates the number is
signed and 0 indicates the number is not signed.

out = fixptbestexp(RealWorldValue, FixPtDataType) returns the exponent
that gives the best precision based on the data type FixPtDataType.

Examples
Get the exponent that gives the best precision for the real-world value 4/3 using a signed,
16-bit number:

out = fixptbestexp(4/3,16,1)

out =
 -14

Alternatively, specify the fixed-point data type:

out = fixptbestexp(4/3,sfix(16))

out =
 -14

2 Functions — Alphabetical List

2-286

This shows that the maximum precision representation of 4/3 is obtained by placing 14
bits to the right of the binary point:

01.01010101010101

You can specify the precision of this representation in fixed-point blocks by setting the
scaling to 2^-14 or 2^fixptbestexp(4/3,16,1).

See Also
fixptbestprec

Introduced before R2006a

 fixptbestexp

2-287

fixptbestprec
Determine maximum precision available for fixed-point representation of value

Syntax
out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
out = fixptbestprec(RealWorldValue,FixPtDataType)

Description
out = fixptbestprec(RealWorldValue,TotalBits,IsSigned) determines the
maximum precision for the fixed-point representation of the real-world value specified by
RealWorldValue. You specify the number of bits for the fixed- point number with
TotalBits, and you specify whether the fixed-point number is signed with IsSigned. If
IsSigned is 1, the number is signed. If IsSigned is 0, the number is not signed. The
maximum precision is returned to out.

out = fixptbestprec(RealWorldValue,FixPtDataType) determines the
maximum precision based on the data type specified by FixPtDataType.

Examples
Example 1
The following command returns the maximum precision available for the real-world value
4/3 using a signed, 8-bit number:

out = fixptbestprec(4/3,8,1)

out =
 0.015625

Alternatively, you can specify the fixed-point data type:

out = fixptbestprec(4/3,sfix(8))

2 Functions — Alphabetical List

2-288

out =
 0.015625

This value means that the maximum precision available for 4/3 is obtained by placing six
bits to the right of the binary point since 2-6 equals 0.015625:

01.010101

Example 2
You can use the maximum precision as the scaling in fixed-point blocks. This enables you
to use fixptbestprec to perform a type of autoscaling if you would like to designate a
known range of your simulation. For example, if your known range is -13 to 22, and you
are using a safety margin of 30%:

knownMax = 22;
knownMin = -13;
localSafetyMargin = 30;
slope = max(fixptbestprec((1+localSafetyMargin/100)* ...
 [knownMax,knownMin], sfix(16)));

The variable slope can then be used in the expression that you specify for the Output
data type parameter in a block mask. Be sure to select the Lock output data type
setting against changes by the fixed-point tools check box in the same block to
prevent the Fixed-Point Tool from overriding the scaling. If you know the range, you can
use this technique in place of relying on a model simulation to provide the range to the
autoscaling tool, as described in autofixexp in the Fixed-Point Designer documentation.

See Also
fixptbestexp

Introduced before R2006a

 fixptbestprec

2-289

float
Create Simulink.NumericType object describing floating-point data type

Syntax
a = float('single')
a = float('double')

Description
a = float('single') returns a Simulink.NumericType object that describes the
data type of an IEEE single (32 total bits, 8 exponent bits).

a = float('double') returns a Simulink.NumericType object that describes the
data type of an IEEE double (64 total bits, 11 exponent bits).

Note float is a legacy function. In new code, use fixdt instead. In existing code,
replace float('single') with fixdt('single') and float('double') with
fixdt('double').

Examples
Define an IEEE single data type.

>> a = float('single')

a =

 NumericType with properties:

 DataTypeMode: 'Single'
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

2 Functions — Alphabetical List

2-290

See Also
Simulink.NumericType | fixdt | sfix | sfrac | sint | ufix | ufrac | uint

Introduced before R2006a

 float

2-291

frameedit
Edit print frames for Simulink and Stateflow block diagrams

Syntax
frameedit
frameedit filename

Description
frameedit starts the PrintFrame Editor, a graphical user interface you use to create
borders for Simulink and Stateflow block diagrams. With no argument, frameedit opens
the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (.fig) previously created and saved using
frameedit.

Tips
This illustrates the main features of the PrintFrame Editor.

2 Functions — Alphabetical List

2-292

Closing the PrintFrame Editor
To close the PrintFrame Editor window, click the close box in the upper right corner, or
select Close from the File menu.

Printing Simulink Block Diagrams with Print Frames
Select Print from the Simulink File menu. Check the Frame box and supply the filename
for the print frame you want to use. Click OK in the Print dialog box.

 frameedit

2-293

Getting Help for the PrintFrame Editor
For further instructions on using the PrintFrame Editor, select PrintFrame Editor Help
from the Help menu in the PrintFrame Editor.

Introduced in R2008b

2 Functions — Alphabetical List

2-294

fxptdlg
Start Fixed-Point Tool

Syntax
fxptdlg('modelname')

Description
fxptdlg('modelname') starts the Fixed-Point Tool for the Simulink model specified by
modelname. You can also access this tool by the following methods:

• From the Simulink Analysis menu, select Data Type Design > Fixed-Point Tool.
• From a subsystem context (right-click) menu, select Fixed-Point Tool.

In conjunction with Fixed-Point Designer software, the Fixed-Point Tool provides
convenient access to:

• Model and subsystem parameters that control the signal logging, fixed-point
instrumentation mode, and data type override. (see “Model Parameters” on page 6-
2)

• Plotting capabilities that enable you to plot data that resides in the MATLAB
workspace, namely, simulation results associated with Scope, To Workspace, and root-
level Outport blocks, in addition to logged signal data (see “Signal Logging” in the
Simulink User's Guide)

• An interactive automatic data typing feature that proposes fixed-point data types for
appropriately configured objects in your model, and then allows you to selectively
accept and apply the data type proposals

You can launch the Fixed-Point Tool for any system or subsystem, and the tool controls the
object selected in its System under design pane. If Fixed-Point Designer software is
installed, the Fixed-Point Tool displays the name, data type, design minimum and
maximum values, minimum and maximum simulation values, and scaling of each model
object that logs fixed-point data. Additionally, if a signal saturates or overflows, the tool
displays the number of times saturation or overflow occurred.

 fxptdlg

2-295

Note The Fixed-Point Tool works only for models that simulate in Normal mode. The tool
does not work when you simulate your model in Accelerator or Rapid Accelerator mode.

Overriding Fixed-Point Specifications
Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer
software. However, even if you do not have Fixed-Point Designer software, you can
configure data type override settings to simulate a model that specifies fixed-point data
types. In this mode, the Simulink software temporarily overrides fixed-point data types
with floating-point data types when simulating the model.

Note If you use fi objects or embedded numeric data types in your model or workspace,
you might introduce fixed-point data types into your model. You can set fipref to prevent
the checkout of a Fixed-Point Designer license.

To simulate a model without using Fixed-Point Designer:

1 Enter the following at the command line.

set_param(gcs, 'DataTypeOverride', 'Double',...
 'DataTypeOverrideAppliesTo','AllNumericTypes',...
 'MinMaxOverflowLogging','ForceOff')

2 If you use fi objects or embedded numeric data types in your model, set the fipref
DataTypeOverride property to TrueDoubles or TrueSingles (to be consistent
with the model-wide data type override setting) and the
DataTypeOverrideAppliesTo property to All numeric types.

For example, at the MATLAB command line, enter:

 p = fipref('DataTypeOverride', 'TrueDoubles', ...
 'DataTypeOverrideAppliesTo', 'AllNumericTypes');

See Also
“Propose Fraction Lengths Using Simulation Range Data” (Fixed-Point Designer) | Fixed-
Point Tool

Introduced before R2006a

2 Functions — Alphabetical List

2-296

gcb
Get path name of current block

Syntax
bl = gcb
bl = gcb(sys)

Description
bl = gcb returns the full block path name of the current block in the current system.
The current block is:

• The most recently clicked block
• The S-Function block currently executing its corresponding MATLAB function
• The block whose callback routine is being executed
• The block whose mask is being evaluated as part of the MaskInitialization

parameter evaluation
• The last block loaded after opening a model

bl = gcb(sys) returns the full block path name of the current block in the specified
system. Load the system first.

Input Arguments
sys — System that contains the block
character vector

System that contains the block, specified as a character vector.
Example: 'vdp' 'sldemo_fuelsys/fuel_rate_control'

 gcb

2-297

Examples

Get Path Name of Most Recently Selected Block

Open a model.

vdp

In the model, select a block. For example, select the Gain block. Then, enter gcb at the
command prompt.

gcb

ans =

vdp/Mu

Get Parameters of Current Block

Open a model.

vdp

Select the Gain block.

Use the value of gcb with get_param to get the value of the Gain parameter.

x = get_param(gcb,'Gain')

x =

1

Get Current Block in Specified System

Load the model.

load_system('sldemo_fuelsys');

Get the current block in the fuel_rate_control subsystem.

2 Functions — Alphabetical List

2-298

bl = gcb('sldemo_fuelsys/fuel_rate_control')

bl =

sldemo_fuelsys/fuel_rate_control/validate_sample_time

See Also
gcbh | gcs | get_param

Topics
“Mask Callback Code”

Introduced before R2006a

 gcb

2-299

gcbh
Get handle of current block

Syntax
gcbh

Description
gcbh returns the handle of the current block in the current system.

You can use this command to identify or address blocks that have no parent system. The
command should be most useful to blockset authors.

Examples
This command returns the handle of the most recently selected block.

gcbh

ans =

 281.0001

See Also
gcb | getSimulinkBlockHandle

Introduced before R2006a

2 Functions — Alphabetical List

2-300

gcs
Get path name of current system

Syntax
gcs

Description
gcs returns the path name of the current system. The current system is one of these:

• During editing, the system or subsystem most recently clicked or that contains the
block most recently clicked

• During simulation of a system that contains an S-Function block, the system or
subsystem containing the S-Function block currently being evaluated

• During callbacks, the system containing any block whose callback routine is being
executed

• During evaluation of MaskInitialization, the system containing the block whose
mask is being evaluated

• The system most recently loaded into memory with load_system; only the first use of
load_system makes the model the current system

The current system is the current model or a subsystem of the current model. Use
bdroot to get the current model.

If you close the model that contains the current system, another open or loaded system
becomes the current one. Use gcs to find out the new current system.

To explicitly set the current system, you can either:

• Use set_param with the 'CurrentSystem' parameter on the root Simulink model,
for example:

set_param(0,'CurrentSystem','mymodel')

 gcs

2-301

• Open the model by using open_system or the model name at the MATLAB command
prompt.

Examples

Get Current System That Contains a Block

Return the path of the system that contains the most recently selected block.

Open the model sldemo_fuelsys. Open the subsystem To Controller.

sldemo_fuelsys
open_system('sldemo_fuelsys/To Controller')

Click the Rate Transition block. Get the current system.

gcs

ans =

 'sldemo_fuelsys/To Controller'

Get Current System After Loading a Model

Open the model f14 and get the current system.

f14
gcs

ans =

 'f14'

Load the model vdp using load_system. Then get the current system.

load_system('vdp');
gcs

ans =

 'vdp'

2 Functions — Alphabetical List

2-302

To remove vdp from memory, close it. In this example, the current system becomes the
open model, f14.

close_system('vdp');
gcs

ans =

 'f14'

See Also
bdroot | gcb

Introduced before R2006a

 gcs

2-303

get_param
Get parameter names and values

Syntax
ParamValue = get_param(Object,Parameter)

Description
ParamValue = get_param(Object,Parameter) returns the name or value of the
specified parameter for the specified model or block object. Open or load the Simulink
model first.

Tip If you make multiple calls to get_param for the same block, then specifying the
block using a numeric handle is more efficient than using the full block path. Use
getSimulinkBlockHandle to get a block handle.

For parameter names, see:

• “Model Parameters” on page 6-2
• “Block-Specific Parameters” on page 6-130
• “Common Block Properties” on page 6-111

Examples

Get a Block Parameter Value and a Model Parameter Value

Load the vdp model.

load_system('vdp');

Get the value for the Expression block parameter.

2 Functions — Alphabetical List

2-304

BlockParameterValue = get_param('vdp/Fcn','Expression')

BlockParameterValue =
 1 - u*u

Get the value for the SolverType model parameter.

SolverType = get_param('vdp','SolverType')

SolverType =
 Variable-step

Get Root Parameter Names and Values

Get a list of global parameter names by finding the difference between the Simulink root
parameter names and the model parameter names.

RootParameterNames = fieldnames(get_param(0,'ObjectParameters'));
load_system('vdp')
ModelParameterNames = fieldnames(get_param('vdp','ObjectParameters'));
GlobalParameterNames = setdiff(RootParameterNames,ModelParameterNames)

GlobalParameterNames =
 'AutoSaveOptions'
 'CacheFolder'
 'CallbackTracing'
 'CharacterEncoding'
 . . .
 'CurrentSystem'

Get the value of a global parameter.

GlobalParameterValue = get_param(0,'CurrentSystem')

GlobalParameterValue =
 vdp

Get Model Parameter Names and Values

Get a list of model parameters for the vdp model .

 get_param

2-305

load_system('vdp')
ModelParameterNames = get_param('vdp','ObjectParameters')

ModelParameterNames =
 Name: [1x1 struct]
 Tag: [1x1 struct]
 Description: [1x1 struct]
 Type: [1x1 struct]
 Parent: [1x1 struct]
 Handle: [1x1 struct]
 . . .
 Version: [1x1 struct]

Get the current value of the ModelVersion model parameter for the vdp model.

ModelParameterValue = get_param('vdp','ModelVersion')

ModelParameterValue =
 1.6

Get All Blocks and a Parameter Value

Get a list of block paths and names for the vdp model.

load_system('vdp')
BlockPaths = find_system('vdp','Type','Block')

BlockPaths =
 'vdp/Fcn'
 'vdp/More Info'
 'vdp/More Info/Model Info'
 'vdp/Mu'
 'vdp/Mux'
 'vdp/Product'
 'vdp/Scope'
 'vdp/Sum'
 'vdp/x1'
 'vdp/x2'
 'vdp/Out1'
 'vdp/Out2'

Get a list of block dialog parameters for the Fcn block.

BlockDialogParameters = get_param('vdp/Fcn','DialogParameters')

2 Functions — Alphabetical List

2-306

BlockDialogParameters =
 Expr: [1x1 struct]
 SampleTime: [1x1 struct]

Get the value for the Expr block parameter.

BlockParameterValue = get_param('vdp/Fcn','Expr')

BlockParameterValue =
 1 - u*u

Get a Block Parameter Value Using a Block Handle

If you make multiple calls to get_param for the same block, then using the block handle
is more efficient than specifying the full block path as a character vector, e.g., 'vdp/
Fcn'.

You can use the block handle in subsequent calls to get_param or set_param. If you
examine the handle, you can see that it contains a double. Do not try to use the number of
a handle alone (e.g., 5.007) because you usually need to specify many more digits than
MATLAB displays. Instead, assign the handle to a variable and use that variable name to
specify a block.

Use getSimulinkBlockHandle to load the vdp model if necessary (by specifying true),
and get a handle to the FCN block.

fcnblockhandle = getSimulinkBlockHandle('vdp/Fcn',true);

Use the block handle with get_param and get the value for the Expr block parameter.

BlockParameterValue = get_param(fcnblockhandle,'Expression')

BlockParameterValue =
 1 - u*u

Display Block Types for all Blocks in a Model

Get a list of block paths and names for the vdp model.

load_system('vdp')
BlockPaths = find_system('vdp','Type','Block')

 get_param

2-307

BlockPaths =
 'vdp/Fcn'
 'vdp/More Info'
 'vdp/More Info/Model Info'
 'vdp/Mu'
 'vdp/Mux'
 'vdp/Product'
 'vdp/Scope'
 'vdp/Sum'
 'vdp/x1'
 'vdp/x2'
 'vdp/Out1'
 'vdp/Out2'

Get the value for the BlockType parameter for each of the blocks in the vdp model.

BlockTypes = get_param(BlockPaths,'BlockType')

BlockTypes =
 'Fcn'
 'SubSystem'
 'SubSystem'
 'Gain'
 'Mux'
 'Product'
 'Scope'
 'Sum'
 'Integrator'
 'Integrator'
 'Outport'
 'Outport'

• “Associating User Data with Blocks”
• “Use MATLAB Commands to Change Workspace Data”

Input Arguments
Object — Name or handle of a model or block, or root
handle | character vector | cell array of character vectors | 0

Handle or name of a model or block, or root, specified as a numeric handle or a character
vector, a cell array of character vectors for multiple blocks, or 0 for root. A numeric

2 Functions — Alphabetical List

2-308

handle must be a scalar. You can also get parameters of lines and ports, but you must use
numeric handles to specify them.

Tip If you make multiple calls to get_param for the same block, then specifying a block
using a numeric handle is more efficient than using the full block path. Use
getSimulinkBlockHandle to get a block handle. Do not try to use the number of a
handle alone (e.g., 5.007) because you usually need to specify many more digits than
MATLAB displays. Assign the handle to a variable and use that variable name to specify a
block.

Specify 0 to get root parameter names, including global parameters and model
parameters for the current Simulink session.

• Global parameters include Editor preferences and Simulink Coder parameters.
• Model parameters include configuration parameters, Simulink Coder parameters, and

Simulink Code Inspector™ parameters.

Example: 'vdp/Fcn'

Parameter — Parameter of model or block, or root
character vector

Parameter of model or block, or root, specified as a character vector or 0 for root. The
table shows special cases.

Specified Parameter Result
'ObjectParameters' Returns a structure array with the

parameter names of the specified object
(model, block, or root) as separate fields in
the structure.

'DialogParameters' Returns a structure array with the block
dialog box parameter names as separate
fields in the structure. If the block has a
mask, the function instead returns the mask
parameters.

 get_param

2-309

Specified Parameter Result
Parameter name, e.g., 'BlockType'.
Specify any model or block parameter, or
block dialog box parameter.

Returns the value of the specified model or
block parameter.

If you specified multiple blocks as a cell
array, returns a cell array with the values of
the specified parameter common to all
blocks. All of the specified blocks in the cell
array must contain the parameter,
otherwise the function returns an error.

Example: 'ObjectParameters'
Data Types: char

Output Arguments
ParamValue — The name or value of the specified parameter for the specified
model or block, or root
any data type, depending on the parameter

The name or value of the specified parameter for the specified model or block, or root. If
you specify multiple objects, the output is a cell array of objects. The table shows special
cases.

Specified Parameter ParamValue Returned
'ObjectParameters' A structure array with the parameter

names of the specified object (model, block,
or root) as separate fields in the structure.

'DialogParameters' A structure array with the block dialog box
parameter names as separate fields in the
structure. If the block has a mask, the
function instead returns the mask
parameters.

2 Functions — Alphabetical List

2-310

Specified Parameter ParamValue Returned
Parameter name, e.g., 'BlockType' The value of the specified model or block

parameter. If multiple blocks are specified
as a cell array, returns a cell array with the
values of the specified parameter common
to all blocks.

If you get the root parameters by specifying get_param(0,'ObjectParameters'),
then the output ParamValue is a structure array with the root parameter names as
separate fields in the structure. Each parameter field is a structure containing these
fields:

• Type — Parameter type values are: 'boolean', 'string', 'int', 'real',
'point', 'rectangle', 'matrix', 'enum', 'ports', or 'list'

• Enum — Cell array of enumeration character vector values that applies only to
'enum' parameter types

• Attributes — Cell array of character vectors defining the attributes of the parameter.
Values are: 'read-write', 'read-only', 'read-only-if-compiled', 'write-
only', 'dont-eval', 'always-save', 'never-save', 'nondirty', or
'simulation'

See Also
bdroot | find_system | gcb | gcs | getSimulinkBlockHandle | set_param

Topics
“Associating User Data with Blocks”
“Use MATLAB Commands to Change Workspace Data”
“Model Parameters” on page 6-2
“Block-Specific Parameters” on page 6-130
“Common Block Properties” on page 6-111

Introduced before R2006a

 get_param

2-311

getActiveConfigSet
Get model's active configuration set or configuration reference

Syntax
myConfigObj = getActiveConfigSet(model)

Arguments
model

The name of an open model, or gcs to specify the current model

Description
getActiveConfigSet returns the configuration set or configuration reference
(configuration object) that is the active configuration object of model.

Examples
The following example returns the active configuration object of the current model. The
code is the same whether the object is a configuration set or configuration reference.

myConfigObj = getActiveConfigSet(gcs);

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getConfigSet | getConfigSets | openDialog | setActiveConfigSet

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

2 Functions — Alphabetical List

2-312

Introduced before R2006a

 getActiveConfigSet

2-313

getCallbackAnnotation
Get annotation executing callback

Syntax
ann = getCallbackAnnotation

Description
ann = getCallbackAnnotation gets the annotation from which a callback was
invoked. Invoke a callback from an annotation click function. After you get the annotation,
you can, for example, get text or parameters from the annotation to use someplace else in
your model.

For information on click functions, see “Associate a Click Function with an Annotation”.

Examples

Click Annotation to Change Parameter Value

Invoke a callback by way of an annotation click function. This example shows how to
change a parameter value on a block to the value shown on an annotation.

Open vdp. Add and position two annotations. Each annotation displays a different value.

open_system('vdp');
an1 = Simulink.Annotation('vdp/1');
an1.position = [100,300];
an2 = Simulink.Annotation('vdp/3');
an2.position = [150,300];

Assign a click function to each annotation. The click function uses
getAnnotationCallback to get the annotation instance. Get the text from each
annotation and use it to set the parameter on the Gain block (Mu).

2 Functions — Alphabetical List

2-314

an1.ClickFcn = 'ann = getCallbackAnnotation; v = ann.Text; set_param(''vdp/Mu'',''Gain'',v)';
an2.ClickFcn = 'ann = getCallbackAnnotation; v = ann.Text; set_param(''vdp/Mu'',''Gain'',v)';

Click each annotation. When you click, the gain value on the Mu block changes to the
number shown on the annotation.

Output Arguments
ann — Annotation
Simulink.Annotation instance

Annotation, returned as a Simulink.Annotation instance.

See Also
Simulink.Annotation

Topics
“Associate a Click Function with an Annotation”

Introduced before R2006a

 getCallbackAnnotation

2-315

getComponent
Get a configuration set component

Syntax
component = getComponent(cs,componentName)

Description
component = getComponent(cs,componentName) returns the specified component
from a configuration set. With no component name specified, returns a list of the
components contained in the configuration set.

Examples

Get a Component for a Configuration Set

Get the solver component for the active configuration set.

Get the active configuration set of the currently selected model.

hCs = getActiveConfigSet(gcs);

Get the solver component of the active configuration set.

hSolverConfig = getComponent(hCs, 'Solver);

Get List of Components for an Active Configuration Set

Get a list of the components contained in the active configuration set.

Get the active configuration set of the currently selected model.

2 Functions — Alphabetical List

2-316

hCs = getActiveConfigSet(gcs);

Get the list of components contained in the configuration set.

getComponent(hCs)

The code displays the names of the components at the MATLAB command line.

Input Arguments
cs — Configuration set object
ConfigSet object

Configuration set, specified as a ConfigSet object

componentName — Component name
character vector

Name of a component object, specified as a character vector. If a component name is not
specified, the function displays a list of the components contained in the configuration set
at the MATLABcommand line.
Example: 'Solver'

Output Arguments
component — Component
Simulink.ConfigComponent object

A component in the configuration set, returned as an instance of a
Simulink.ConfigComponent object

See Also

Topics
“About Configuration Sets”
“Manage a Configuration Set”

 getComponent

2-317

Introduced before R2006a

2 Functions — Alphabetical List

2-318

getConfigSet
Get one of model's configuration sets or configuration references

Syntax
myConfigObj = getConfigSet(model, configObjName)

Arguments
model

The name of an open model, or gcs to specify the current model
configObjName

The name of a configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description
getConfigSet returns the configuration set or configuration reference (configuration
object) that is attached to model and is named configObjName. If no such object exists,
an error occurs.

Examples
The following example returns the configuration object that is named DevConfig and
attached to the current model. The code is the same whether DevConfig is a
configuration set or configuration reference.

 myConfigObj = getConfigSet(gcs, 'DevConfig');

 getConfigSet

2-319

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSets | openDialog | setActiveConfigSet

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

Introduced before R2006a

2 Functions — Alphabetical List

2-320

getConfigSets
Get names of all of model's configuration sets or configuration references

Syntax
myConfigObjNames = getConfigSets(model)

Arguments
model

The name of an open model, or gcs to specify the current model

Description
getConfigSets returns a cell array of character vectors specifying the names of all
configuration sets and configuration references (configuration objects) attached to
model.

Examples
The following example obtains the names of the configuration objects attached to the
current model.

 myConfigObjNames = getConfigSets(gcs)

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | openDialog | setActiveConfigSet

Topics
“Manage a Configuration Set”

 getConfigSets

2-321

“Manage a Configuration Reference”

Introduced before R2006a

2 Functions — Alphabetical List

2-322

getfullname
Get pathname of block or line

Syntax
path=getfullname(handle)

Description
path=getfullname(handle) returns the full pathname of the block or line specified by
handle.

Examples
getfullname(gcb) returns the pathname of the block currently selected in the model
editor's window.

The following code returns the pathname of the line currently selected in the model
editor's window.
line = find_system(gcs, 'SearchDepth', 1, 'FindAll', 'on', ...
 'Type', 'line', 'Selected', 'on');
path = getfullname(line);

See Also
find_system | gcb

Introduced in R2007a

 getfullname

2-323

getInputString
Create comma-separated list of variables to map

Syntax
externalInputString = getInputString(inputmap,'base')

externalInputString = getInputString(inputmap,filename)

externalInputString = getInputString(inputmap)

Description
externalInputString = getInputString(inputmap,'base') creates an input
character vector using the supplied mapping inputmap and the variables loaded in the
base workspace ('base').

This function generates a comma-separated list of variables (input character vector) to be
mapped. You can then use this list:

• As input to the sim command. Load the variables in the base workspace first.
• As input for the Configuration Parameters > Data Import/Export > Input

parameter. Copy the contents of the input character vector into the text field.

This function is most useful if you have created a custom mapping.

externalInputString = getInputString(inputmap,filename) creates an input
character vector using the supplied mapping inputmap and the variables defined in
filename.

externalInputString = getInputString(inputmap) creates an input character
vector using the signals from the most recently created mapping.

Examples

2 Functions — Alphabetical List

2-324

Create an input character vector from the base workspace

Create an input character vector from the base workspace and simulate a model.

Open the model

slexAutotransRootInportsExample;

Create signal variables in the base workspace

Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));

Create a mapping (inputMap) for the model.

inputMap = getRootInportMap('model',...
'slexAutotransRootInportsExample',...
'signalName',{'Throttle','Brake'},...
'blockName',{'Throttle','Brake'});

Call getInputString with inputMap and 'base' as inputs.

externalInputString = getInputString(inputMap,'base')

externalInputString =

Throttle,Brake

Simulate the model with the input character vector.

sim('slexAutotransRootInportsExample','ExternalInput',...
externalInputString);

Create an external input character vector from variables in a MAT-file

Create an external input character vector from variables in a MAT-file named input.mat.

In a writable folder, create a MAT-file with input variables.

Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));
save('input.mat','Throttle','Brake');

Open the model.

 getInputString

2-325

slexAutotransRootInportsExample;

Create map object.

inputMap = getRootInportMap('model',...
'slexAutotransRootInportsExample',...
'signalName',{'Throttle','Brake'},...
'blockName',{'Throttle','Brake'});

Get the resulting input character vector.

externalInputString = getInputString(inputMap,'input.mat')

externalInputString =

Throttle,Brake

Load variables from the base workspace for the simulation.

load('input.mat');

Simulate the model.

sim('slexAutotransRootInportsExample','ExternalInput',...
externalInputString);

Create an external input character vector from only an input map

Create an input character vector from only an input map vector and simulate the model.

Open the model.

slexAutotransRootInportsExample;

Create signal variables in the base workspace

Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));

Create a mapping vector for the model.

inputMap = getSlRootInportMap('model', 'slexAutotransRootInportsExample',...
'MappingMode','BlockName',...

2 Functions — Alphabetical List

2-326

'signalName',{'Throttle', 'Brake'},...
'signalValue',{Throttle, Brake});

Get the resulting input character vector.

externalInputString = getInputString(inputMap)

Simulate the model with the input character vector.

sim('slexAutotransRootInportsExample','ExternalInput',...
externalInputString);

Alternatively, if you want to input the list of variables through the Configuration
Parameters dialog, copy the contents of externalInputString (Throttle,Brake) into
the Data Import/Export > Input parameter. Apply the changes, and then simulate the
model.

Input Arguments
inputmap — Map object
character vector

Map object, as returned from the getRootInportMap or getSlRootInportMap
functions.

filename — Input variables
MAT-file name as character vector

Input variables, contained in a MAT-file. The file contains variables to map.
Example: 'data.mat'
Data Types: char

Output Arguments
externalInputString — External input
comma-separated character vector

 getInputString

2-327

External input, returned as a comma-separated character vector. The character vector
contains root inport information that you can specify to the sim command or the
Configuration Parameters > Data Import/Export > Input parameter.

See Also
getRootInportMap | getSlRootInportMap

Topics
“Map Root Inport Signal Data”

Introduced in R2013a

2 Functions — Alphabetical List

2-328

getRootInportMap
Create custom object to map signals to root-level inports

Syntax
map = getRootInportMap('Empty');
map = getRootInportMap(model,mdl,Name,Value);
map = getRootInportMap(inputmap,map,Name,Value);

Description
map = getRootInportMap('Empty'); creates an empty map object, map. Use this
map object to set up an empty custom mapping object. Load the model before using this
function. If you do not load the model first, the function loads the model to make the
mapping and then closes the model afterwards.

map = getRootInportMap(model,mdl,Name,Value); creates a map object for
model, mdl, with block names and signal names specified. Load the model before using
this function. If you do not load the model first, the function loads the model to make the
mapping and then closes the model afterwards. To create a comma-separated list of
variables to map from this object, use the getInputString function.

map = getRootInportMap(inputmap,map,Name,Value); overrides the mapping
object with the specified property. You can override only the properties model,
blockName, and signalName. Load the model before using this function. If you do not
load the model first, the function loads the model to make the mapping and then closes
the model afterwards. To create a comma-separated list of variables to map from this
object, use the getInputString function.

Use the getRootInportMap function when creating a custom mapping mode to map
data to root-level inports. See the example file BlockNameIgnorePrefixMap.m, located
in matlabroot/help/toolbox/simulink/examples, for an example of a custom
mapping algorithm.

 getRootInportMap

2-329

matlab:edit(fullfile(matlabroot,'/help/toolbox/simulink/examples/BlockNameIgnorePrefixMap.m'))

Input Arguments
Empty

Create an empty map object.

Default: none

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

model

Name of model to associate with the root inport map.

Default: None

blockName

Block names of root-level input ports. The tool assigns data to ports according to the
name of the root-inport block. If the tool finds a data element whose name matches the
name of a root-inport block, it maps the data to the corresponding port.

The value for this argument can be:
Block name of root-level input ports.
Cell array containing multiple block names of root-level input ports.

Default: None

signalName

Signal names to be mapped. The tool assigns data to ports according to the name of the
signal on the port. If the tool finds a data element whose name matches the name of a
signal at a port, it maps the data to the corresponding port.

The value for this argument can be:
Signal name to be mapped.

2 Functions — Alphabetical List

2-330

Cell array containing multiple signal names of signals to be mapped.

Default: None

inputmap

Name of mapping object to override.

Default: None

Output Arguments
map

Custom object that you can use to map data to root-level input port. To create a comma-
separated list of variables to map from this object, use the getInputString function.

Examples

Empty Mapping Object

Create an empty custom mapping object.

map = getRootInportMap('Empty')

map =

 1x0 InputMap array with properties:

 Type
 DataSourceName
 Destination

Simple Mapping Object

Create a simple mapping object using a MATLAB time series object.

Create a time series object, signalIn1.

 getRootInportMap

2-331

signalIn1 = timeseries((1:10)')

Common Properties:
 Name: 'unnamed'
 Time: [10x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [10x1 double]
 DataInfo: [1x1 tsdata.datametadata]

Create a mapping object for the time series object for the model,
ex_minportsOnlyModel.

modelFile = fullfile(matlabroot,'help','toolbox','simulink',...
'examples','ex_minportsOnlyModel');
load_system(modelFile);
map = getRootInportMap('model','ex_minportsOnlyModel',...
'blockName','In1','signalname','signalIn1')

map =

 InputMap with properties:

 Type: 'Inport'
 DataSourceName: 'signalIn1'
 Destination: [1x1 Simulink.iospecification.Destination]

Mapping Object with Vectors

Create a mapping object using vectors of block names and signal names for the model
ex_minportsOnlyModel.

Create a mapping object of vectors.

modelFile = fullfile(matlabroot,'help','toolbox','simulink',...
'examples','ex_minportsOnlyModel');
load_system(modelFile);
map = getRootInportMap('model','ex_minportsOnlyModel',...
'blockName',{'In1' 'In2'}, ...
'signalname',{'signalIn1' 'signalIn2'})

map =

 1x2 InputMap array with properties:

2 Functions — Alphabetical List

2-332

matlab:open_system(fullfile(matlabroot,'/help/toolbox/simulink/examples/ex_minportsOnlyModel'))
matlab:open_system(fullfile(matlabroot,'/help/toolbox/simulink/examples/ex_minportsOnlyModel'))

 Type
 DataSourceName
 Destination

Overriding Maps

Create a mapping object that contains the signal var2, then override var2 with var1.

Create a mapping object of vectors.

% Load the model and define variables
modelFile = fullfile(matlabroot,'help','toolbox','simulink',...
'examples','ex_minportsOnlyModel');
load_system(modelFile);
modelValue = 'ex_minportsOnlyModel';
blockNameValue = 'In1';
signalNameValue = 'var2';
portType = 'Inport';

% Define var1 and override var2 with var1
signalNameToOverload = 'var1';
mapToOverload = getRootInportMap('model',modelValue,...
'blockName',blockNameValue,...
 'signalName',signalNameToOverload)

mapToOverload =

 InputMap with properties:

 Type: 'Inport'
 DataSourceName: 'var1'
 Destination: [1x1 Simulink.iospecification.Destination]

• “Create Custom Mapping File Function”

Tips
• Load the model before running this function.
• If your custom mapping mode similar to an existing Simulink mapping mode, consider

using the getSlRootInportMap function instead.

 getRootInportMap

2-333

See Also
getInputString | getSlRootInportMap

Topics
“Create Custom Mapping File Function”

Introduced in R2012b

2 Functions — Alphabetical List

2-334

getSimulinkBlockHandle
Get block handle from block path

Syntax
handle = getSimulinkBlockHandle(path)
handle = getSimulinkBlockHandle(path,true)

Description
handle = getSimulinkBlockHandle(path) returns the numeric handle of the block
specified by path, if it exists in a loaded model or library. Returns -1 if the block is not
found. Library links are resolved where necessary.

Use the numeric handle returned by getSimulinkBlockHandle to manipulate the block
in subsequent calls to get_param or set_param. This approach is more efficient than
making multiple calls to these functions using the full block path. Do not try to use the
number of a handle alone (e.g., 5.007) because you usually need to specify many more
digits than MATLAB displays. Assign the handle to a variable and use that variable name
to specify a block. The handle applies only to the current MATLAB session.

Use getSimulinkBlockHandle to check whether a block path is valid. This approach is
more efficient than calling get_param inside a try statement.

handle = getSimulinkBlockHandle(path,true) attempts to load the model or
library containing the specified block path, and then checks if the block exists. No error
is returned if the model or library is not found. Any models or libraries loaded this way
remain in memory even if the function does not find a block with the specified path.

Examples

Get the Handle of a Block

Get the handle of the Pilot block.

 getSimulinkBlockHandle

2-335

load_system('f14')
handle = getSimulinkBlockHandle('f14/Pilot')

handle =

 562.0004

You can use the handle in subsequent calls to get_param or set_param.

Load the Model and Get the Block Handle

Load the model f14 if necessary (by specifying true), and get the handle of the Pilot
block.

handle = getSimulinkBlockHandle('f14/Pilot',true)

handle =

 562.0004

You can use the handle in subsequent calls to get_param or set_param.

Check If a Model Contains a Specific Block

Check whether the model f14 is loaded and contains a block named Pilot. Valid handles
are always greater than zero. If the function does not find the block, it returns -1.

valid_block_path = getSimulinkBlockHandle('f14/Pilot') > 0

valid_block_path =

 0

The model contains the block but the model is not loaded, so this command returns 0
because it cannot find the block.

2 Functions — Alphabetical List

2-336

Using getSimulinkBlockHandle to check whether a block path is valid is more
efficient than calling get_param inside a try statement.

Input Arguments
path — Block path name
character vector | cell array of character vectors

Block path name, specified as a character vector or a cell array of character vectors.
Example: 'f14/Pilot'
Data Types: char

Output Arguments
handle — Numeric handle of a block
double | array of doubles

Numeric handle of a block, returned as a double or an array of doubles. Valid handles are
always greater than zero. If the function does not find the block, it returns -1. If the path
input is a cell array of character vectors, then the output is a numeric array of handles.
Data Types: double

See Also
get_param | set_param

Introduced in R2015a

 getSimulinkBlockHandle

2-337

getSlRootInportMap
Create custom object to map signals to root-level inports using Simulink mapping mode

Syntax
inputMap = getSlRootInportMap('model',modelname,'MappingMode',
mappingmode,'SignalName',signalname,'SignalValue',signalvalue)
[inputMap, hasASignal] = getSlRootInportMap('model',
modelname,'MappingMode',mappingmode,'SignalName',
signalname,'SignalValue',signalvalue)

inputMap = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',
customfunction,'SignalName',signalname,'SignalValue',signalvalue)
[inputMap,hasASignal] = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',
customfunction,'SignalName',signalname,'SignalValue',signalvalue)

Description
inputMap = getSlRootInportMap('model',modelname,'MappingMode',
mappingmode,'SignalName',signalname,'SignalValue',signalvalue) creates
a root inport map using one of the Simulink mapping modes. Load the model before using
this function. If you do not load the model first, the function loads the model to make the
mapping and then closes the model afterwards. To create a comma-separated list of
variables to map from this object, use the getInputString function.

[inputMap, hasASignal] = getSlRootInportMap('model',
modelname,'MappingMode',mappingmode,'SignalName',
signalname,'SignalValue',signalvalue) returns a vector of logical values
specifying whether or not the root inport map has a signal associated with it. To create a
comma-separated list of variables to map from this object, use the getInputString
function.

inputMap = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',

2 Functions — Alphabetical List

2-338

customfunction,'SignalName',signalname,'SignalValue',signalvalue)
creates a root inport map using a custom mapping mode specified in customfunction.
Load the model before using this function. If you do not load the model first, the function
loads the model to make the mapping and then closes the model afterwards. To create a
comma-separated list of variables to map from this object, use the getInputString
function.

[inputMap,hasASignal] = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',
customfunction,'SignalName',signalname,'SignalValue',signalvalue)
returns a vector of logical values specifying whether or not the root inport map has a
signal associated with it. To create a comma-separated list of variables to map from this
object, use the getInputString function.

To map signals to root-level inports using custom mapping modes, you can use
getSlRootInport with the Root Inport Mapper dialog box custom mapping capability.

Examples

Create inport map using Simulink mapping mode

Create a vector of inport maps using a built-in mapping mode.

Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));
inputMap = getSlRootInportMap('model','slexAutotransRootInportsExample',...
 'MappingMode','BlockName', ...
 'SignalName',{'Throttle' 'Brake'},...
 'SignalValue',{Throttle Brake});

Create inport map using custom function

Create a vector of inport maps using a custom function

port1 = timeseries(ones(10,1)*10);
port2 = timeseries(zeros(10,1));
inputMap = getSlRootInportMap('model','slexAutotransRootInportsExample',...
 'MappingMode','Custom', ...
 'CustomFunction','slexCustomMappingMyCustomMap',...

 getSlRootInportMap

2-339

 'SignalName',{'port1' 'port2'},...
 'SignalValue',{port1 port2});

Input Arguments
modelname — Model name
character vector

Specify the model to associate with the root inport map.
Data Types: char

mappingmode — Simulink mapping mode
character vector

Specify the mapping mode to use with model name and data source. Possible values are:

'Index' Assign sequential index numbers, starting at 1, to the data in the
MAT-file, and map this data to the corresponding inport.

'BlockName’ Assign data to ports according to the name of the root-inport
block. If the block name of a data element matches the name of a
root-inport block, map the data to the corresponding port.

‘SignalName' Assign data to ports according to the name of the signal on the
port. If the signal name of a data element matches the name of a
signal at a port, map the data to the corresponding port.

'BlockPath' Assign data to ports according to the block path of the root-inport
block. If the block path of a data element matches the block path
of a root-inport block, map the data to the corresponding port.

'Custom' Apply mappings according to the definitions in a custom file.

Data Types: char

customfunction — Custom function file name
character vector

Specify name of file that implements a custom method to map signals to root-level ports.
This function must be on the MATLAB path.
Data Types: char

2 Functions — Alphabetical List

2-340

signalname — signal name
scalar | cell array of character vectors

Specify the signal name(s) of the signal to associate with the root inport map.
Data Types: char | cell

signalvalue — signal value
scalar | cell arrays

Specify the values of the signals to map to the root inport map. For the list of supported
data types for the values, see “Choose a Base Workspace and MAT-File Format”.

Output Arguments
inputMap — input map
scalar | vector

Mapping object that defines the mapping of input signals to root-level ports. To create a
comma-separated list of variables to map from this object, use the getInputString
function.

hasASignal — signal presence indicator
scalar | vector

A vector of logical values with the same length as inputMap. If the value is true the
inputMap has a signal associated with it. If the value is false the inputMap does not have
a signal associated with it and will use a ground value as an input
Data Types: logical

Tips
• Load the model before running this function.
• If your custom mapping mode is not similar to an existing Simulink mapping mode,

consider using the getRootInportMap function instead.

 getSlRootInportMap

2-341

See Also
getInputString | getRootInportMap

Topics
“Map Root Inport Signal Data”

Introduced in R2013b

2 Functions — Alphabetical List

2-342

hdllib
Display blocks that are compatible with HDL code generation

Syntax
hdllib
hdllib('off')
hdllib('html')
hdllib('librarymodel')

Description
hdllib displays the blocks that are supported for HDL code generation, and for which
you have a license, in the Library Browser. To build models that are compatible with the
HDL Coder software, use blocks from this Library Browser view.

If you close and reopen the Library Browser in the same MATLAB session, the Library
Browser continues to show only the blocks supported for HDL code generation. To show
all blocks, regardless of HDL code generation compatibility, at the command prompt,
enter hdllib('off').

hdllib('off') displays all the blocks for which you have a license in the Library
Browser, regardless of HDL code generation compatibility.

hdllib('html') creates a library of blocks that are compatible with HDL code
generation. It generates two additional HTML reports: a categorized list of blocks
(hdlblklist.html) and a table of blocks and their HDL code generation parameters
(hdlsupported.html).

To run hdllib('html'), you must have an HDL Coder license.

hdllib('librarymodel') displays blocks that are compatible with HDL code
generation in the Library Browser. To build models that are compatible with the HDL
Coder software, use blocks from this library.

 hdllib

2-343

The default library name is hdlsupported. After you generate the library, you can save it
to a folder of your choice.

To keep the library current, you must regenerate it each time that you install a new
software release.

To run hdllib('librarymodel'), you must have an HDL Coder license.

Examples

Display Supported Blocks in the Library Browser

To display blocks that are compatible with HDL code generation in the Library Browser:

hdllib

Generating view of HDL Coder compatible blocks in Library Browser.
To restore the Library Browser to the default Simulink view, enter "hdllib off".

2 Functions — Alphabetical List

2-344

Display All Blocks in the Library Browser

To display all blocks in the Library Browser, regardless of HDL code generation
compatibility:

hdllib('off')

Restoring Library Browser to default view; removing the HDL Coder compatibility filter.

 hdllib

2-345

Create a Supported Blocks Library and HTML Reports

To create a library and HTML reports showing the blocks that are compatible with HDL
code generation:

hdllib('html')

HDL supported block list hdlblklist.html
HDL implementation list hdlsupported.html

The hdlsupported library opens. To view the reports, click the hdlblklist.html and
hdlsupported.html links.

2 Functions — Alphabetical List

2-346

Create a Supported Blocks Library

To create a library that contains blocks that are compatible with HDL code generation:

hdllib('librarymodel')

The hdlsupported block library opens.

 hdllib

2-347

• “Show Blocks Supported for HDL Code Generation” (HDL Coder)
• “View HDL-Specific Block Documentation” (HDL Coder)
• “Prepare Simulink Model For HDL Code Generation” (HDL Coder)

See Also
“Supported Blocks” (HDL Coder)

Topics
“Show Blocks Supported for HDL Code Generation” (HDL Coder)
“View HDL-Specific Block Documentation” (HDL Coder)
“Prepare Simulink Model For HDL Code Generation” (HDL Coder)

Introduced in R2006b

2 Functions — Alphabetical List

2-348

hilite_system
Highlight block, signal line, port, or annotation

Syntax
hilite_system(obj)
hilite_system(obj,style)

Description
hilite_system(obj) highlights a block, line, port, or annotation in an open model
using the default highlight style. Use hilite_system with a port to highlight the signal
line attached to the port. Each use of hilite_system adds to the highlighting.
Highlighting is not saved with the model.

hilite_system(obj,style) uses the specified highlighting style.

Input Arguments
obj — Block, port, line, or annotation to highlight
block path name | numeric handle | Simulink identifier | traceability tag

Block, port, line, or annotation to highlight, specified as:

• The full block path name
• A numeric handle for lines, ports, or annotations
• Simulink identifier
• A traceability tag from the comments of Simulink Coder generated code.

Using a traceability tag requires a Simulink Coder license.

The format for a traceability tag is <system>/block, where system is either:

 hilite_system

2-349

• Root
• A unique system number assigned by Simulink during code generation

Example: 'vdp/Mu', 'sldemo_fuelsys/fuel_rate_control/airflow_calc',
'vdp:3', '<Root>/Mu'

style — Highlighting style
'default' (default) | character vector

Highlighting style, specified as one of these values. You can customize the appearance of
any of the styles. See “Customize a Highlighting Style” on page 2-352.

• 'default' — Default color scheme: red outline, yellow fill.
• 'none' — Clears the highlight.

To clear all highlighting, in the Simulink Editor, select Display > Remove
Highlighting.

• 'debug' — Uses default color scheme.
• 'different' — Applies red outline, white fill.
• 'error' — Uses default color scheme.
• 'fade' — Applies gray outline, white fill.
• 'find' — Applies dark blue outline, blue fill.
• 'lineTrace' — Applies red outline, blue fill.
• 'unique' — Dark blue outline, white fill.
• 'user1', 'user2', 'user3', 'user4', 'user5' — Applies custom highlight: black

outline, white fill by default (i.e., no highlight).

In addition, you can use these color schemes. The first word is the outline and the second
is the fill color.

• 'orangeWhite'
• 'blackWhite'
• 'redWhite'
• 'blueWhite'
• 'greenWhite'

2 Functions — Alphabetical List

2-350

Examples

Highlight Block Using Default Highlight Style

Open the model slexAircraftExample.

slexAircraftExample

Highlight the Controller block. When you use the default highlight style, the block
appears highlighted with a red outline and yellow fill.

hilite_system('slexAircraftExample/Controller')

Highlight a Block Using a Highlight Style

Open the model vdp.

vdp

Highlight the Mu block using the style 'fade'.

hilite_system('vdp/Mu','fade')

Use Block Highlighting to Trace Generated Code

If you have a Simulink Coder license, you can trace generated code to the corresponding
source block in a model.

Open the model f14.

f14

In the model configuration parameters, in the Solver pane, set Type to Fixed-step.

Generate code for the model using Code > C/C++ Code > Build Model.

In an editor or in the code generation report, open a generated source or header file. As
you review lines of code, note traceability tags that correspond to code of interest.

 hilite_system

2-351

Highlight a block using a traceability tag.

hilite_system('<Root>/Stick Input')

Highlight a block in a subsystem.

hilite_system('<S3>/W-gust model')

2 Functions — Alphabetical List

2-352

Customize a Highlighting Style

You can customize a highlighting style by setting the 'HiliteAncestorsData'
parameter on the root-level model using set_param in this form:

set_param(0,'HiliteAncestorsData',hiliteData)

Specify hiliteData as a structure array that has these fields:

• 'HiliteType' — Highlighting style to customize, such as 'user1', 'debug', or
'error'.

• 'ForegroundColor' — Color for block fill.
• 'BackgroundColor' — Color for block outline.

The supported values for 'ForegroundColor' and 'BackgroundColor' are:

• 'black'
• 'white'
• 'gray'
• 'red'
• 'orange'
• 'yellow'
• 'green'
• 'darkGreen'
• 'blue'
• 'lightBlue'
• 'cyan'
• 'magenta'

Define a highlight style for 'user1', and customize the style for 'debug'.

set_param(0,'HiliteAncestorsData',...
 struct('HiliteType','user1',...
 'ForegroundColor','darkGreen',...
 'BackgroundColor','lightBlue'));
set_param(0,'HiliteAncestorsData',...
 struct('HiliteType','debug',...
 'ForegroundColor','red',...
 'BackgroundColor','black'));

 hilite_system

2-353

Use the defined style to highlight a block.

f14
hilite_system('f14/Controller/Alpha-sensor Low-pass Filter','user1')

See Also
find_system | rtwtrace

Introduced before R2006a

2 Functions — Alphabetical List

2-354

isLoaded
Determine if Simulink Project is loaded

Syntax
loaded = isLoaded(proj)

Description
loaded = isLoaded(proj) returns whether the project referenced by the project
object proj is loaded.

Examples

Find Out if Project Is Loaded

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Find out if the project is still loaded.

loaded = isLoaded(proj)

loaded =

 1

Input Arguments
proj — Project
project

 isLoaded

2-355

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

Output Arguments
loaded — Loaded status
1 | 0

Project loaded status, returned as true (1) if the project is loaded.
Data Types: logical

See Also
Functions
reload | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-356

legacy_code
Use Legacy Code Tool

Syntax
legacy_code('help')
specs = legacy_code('initialize')
legacy_code('sfcn_cmex_generate', specs)
legacy_code('compile', specs, compilerOptions)
legacy_code('generate_for_sim', specs, modelname)
legacy_code('slblock_generate', specs, modelname)
legacy_code('sfcn_tlc_generate', specs)
legacy_code('sfcn_makecfg_generate', specs)
legacy_code('rtwmakecfg_generate', specs)
legacy_code('backward_compatibility')

Description
The legacy_code function creates a MATLAB structure for registering the specification
for existing C or C++ code and the S-function being generated. In addition, the function
can generate, compile and link, and create a masked block for the specified S-function.
Other options include generating

• A TLC file for simulation in Accelerator mode or code generation
• An rtwmakecfg.m file that you can customize to specify dependent source and header
files that reside in a different directory than that of the generated S-function

legacy_code('help') displays instructions for using Legacy Code Tool.

specs = legacy_code('initialize') initializes the Legacy Code Tool data
structure, specs, which registers characteristics of existing C or C++ code and
properties of the S-function that the Legacy Code Tool generates.

legacy_code('sfcn_cmex_generate', specs) generates an S-function source file
as specified by the Legacy Code Tool data structure, specs.

 legacy_code

2-357

legacy_code('compile', specs, compilerOptions) compiles and links the S-
function generated by the Legacy Code Tool based on the data structure, specs, and
compiler options that you might specify. The compiler options must be supported by the
mex (MATLAB) function.

legacy_code('generate_for_sim', specs, modelname) generates, compiles, and
links the S-function in a single step. If the Options.useTlcWithAccel field of the
Legacy Code Tool data structure is set to logical 1 (true), the function also generates a
TLC file for accelerated simulations.

legacy_code('slblock_generate', specs, modelname) generates a masked S-
Function block for the S-function generated by the Legacy Code Tool based on the data
structure, specs. The block appears in the Simulink model specified by modelname. If
you omit modelname, the block appears in an empty model editor window.

legacy_code('sfcn_tlc_generate', specs) generates a TLC file for the S-function
generated by the Legacy Code Tool based on the data structure, specs. This option is
relevant if you want to:

• Force Accelerator mode in Simulink software to use the TLC inlining code of the
generated S-function. See the description of the ssSetOptions SimStruct function
and SS_OPTION_USE_TLC_WITH_ACCELERATOR S-function option for more
information.

• Use Simulink Coder software to generate code from your Simulink model. For more
information, see “Import Calls to External Code into Generated Code with Legacy
Code Tool” (Simulink Coder).

legacy_code('sfcn_makecfg_generate', specs) generates an
sFunction_makecfg.m file for the S-function generated by the Legacy Code Tool based
on the data structure, specs. This option is relevant only if you use Simulink Coder
software to generate code from your Simulink model. For more information, see “Use
makecfg to Customize Generated Makefiles for S-Functions” (Simulink Coder) and
“Import Calls to External Code into Generated Code with Legacy Code Tool” (Simulink
Coder).

legacy_code('rtwmakecfg_generate', specs) generates an rtwmakecfg.m file
for the S-function generated by the Legacy Code Tool based on the data structure, specs.
This option is relevant only if you use Simulink Coder software to generate code from
your Simulink model. For more information, see “Use rtwmakecfg.m API to Customize
Generated Makefiles” (Simulink Coder) and “Import Calls to External Code into
Generated Code with Legacy Code Tool” (Simulink Coder).

2 Functions — Alphabetical List

2-358

legacy_code('backward_compatibility') automatically updates syntax for using
Legacy Code Tool to the supported syntax described in this reference page and in
“Integrate C Functions Using Legacy Code Tool”.

Input Arguments
specs

A structure with the following fields:

Name the S-function

SFunctionName (Required) — A character vector specifying a name for the S-
function to be generated by the Legacy Code Tool.

Define Legacy Code Tool Function Specifications

• InitializeConditionsFcnSpec — A nonempty character vector specifying a
reentrant function that the S-function calls to initialize and reset states. You must
declare this function by using tokens that Simulink software can interpret as
explained in “Declaring Legacy Code Tool Function Specifications”.

• OutputFcnSpec — A nonempty character vector specifying the function that the
S-function calls at each time step. You must declare this function by using tokens
that Simulink software can interpret as explained in “Declaring Legacy Code Tool
Function Specifications”.

• StartFcnSpec — A character vector specifying the function that the S-function
calls when it begins execution. This function can access S-function parameter
arguments only. You must declare this function by using tokens that Simulink
software can interpret as explained in “Declaring Legacy Code Tool Function
Specifications”.

• TerminateFcnSpec — A character vector specifying the function that the S-
function calls when it terminates execution. This function can access S-function
parameter arguments only. You must declare this function by using tokens that
Simulink software can interpret as explained in “Declaring Legacy Code Tool
Function Specifications”.

Define Compilation Resources

• HeaderFiles — A cell array of character vectors specifying the file names of
header files required for compilation.

 legacy_code

2-359

• SourceFiles — A cell array of character vectors specifying source files required
for compilation. You can specify the source files using absolute or relative path
names.

• HostLibFiles — A cell array of character vectors specifying library files
required for host compilation. You can specify the library files using absolute or
relative path names.

• TargetLibFiles — A cell array of character vectors specifying library files
required for target (that is, standalone) compilation. You can specify the library
files using absolute or relative path names.

• IncPaths — A cell array of character vectors specifying directories containing
header files. You can specify the directories using absolute or relative path names.

• SrcPaths — A cell array of character vectors specifying directories containing
source files. You can specify the directories using absolute or relative path names.

• LibPaths — A cell array of character vectors specifying directories containing
host and target library files. You can specify the directories using absolute or
relative path names.

Specify a Sample Time

SampleTime — One of the following:

• 'inherited' (default) — Sample time is inherited from the source block.
• 'parameterized' — Sample time is represented as a tunable parameter.

Generated code can access the parameter by calling MEX API functions, such as
mxGetPr or mxGetData.

• Fixed — Sample time that you explicitly specify. For information on how to specify
sample time, see “Specify Sample Time”.

If you specify this field, you must specify it last.

Define S-Function Options

Options — A structure that controls S-function options. The structure's fields
include:

• isMacro — A logical value specifying whether the legacy code is a C macro. By
default, the value is false (0).

• isVolatile — A logical value specifying the setting of the S-function
SS_OPTION_NONVOLATILE option. By default, the value is true (1).

2 Functions — Alphabetical List

2-360

• canBeCalledConditionally — A logical value specifying the setting of the S-
function SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option. By default, the
value is true (1).

• useTlcWithAccel — A logical value specifying the setting of the S-function
SS_OPTION_USE_TLC_WITH_ACCELERATOR option. By default, the value is true
(1).

• language — A character vector specifying either 'C' or 'C++' as the target
language of the S-function that Legacy Code Tool will produce. By default, the
value is 'C'.

Note The Legacy Code Tool can interface with C++ functions, but not C++
objects. For a work around, see “Legacy Code Tool Limitations” in the Simulink
documentation.

• singleCPPMexFile — A logical value that, if true, specifies that generated
code:

• Requires you to generate and manage an inlined S-function as only one file
(.cpp) instead of two (.c and .tlc).

• Maintains model code style (level of parentheses usage and preservation of
operand order in expressions and condition expressions in if statements) as
specified by model configuration parameters.

By default, the value is false.

Limitations You cannot set the singleCPPMexFile field to true if

• Options.language='C++'
• You use one of the following Simulink objects with the IsAlias property set to

true:

• Simulink.Bus
• Simulink.AliasType
• Simulink.NumericType

• The Legacy Code Tool function specification includes a void* or void** to
represent scalar work data for a state argument

• HeaderFiles field of the Legacy Code Tool structure specifies multiple header
files

 legacy_code

2-361

• supportsMultipleExecInstances— A logical value specifying whether to
include a call to the ssSupportsMultipleExecInstances function. By default,
the value is false (0).

• convertNDMatrixToRowMajor— A logical value specifying the automatic
conversion of a matrix between a column-major format and a row-major format.
The column-major format is used by MATLAB, Simulink, and the generated code.
The row-major format is used by C. By default, the value is false (0). If you
currently specify the previous version of the option,
convert2DMatrixToRowMajor, the function automatically specifies the new
convertNDMatrixToRowMajor option.

Note This option does not support a 2–D matrix of complex data.
• supportCoverage— A logical value specifying whether the generated S-function

must be compatible with Model Coverage. By default, the value is false (0).
• supportCoverageAndDesignVerifier— A logical value specifying whether the

generated S-function must be compatible with Model Coverage and Simulink
Design Verifier™. By default, the value is false (0).

• outputsConditionallyWritten— A logical value specifying whether the
legacy code conditionally writes the output ports. If true, the generated S-
function specifies that the memory associated with each output port cannot be
overwritten and is global (SS_NOT_REUSABLE_AND_GLOBAL). If false, the
memory associated with each output port is reusable and is local
(SS_REUSABLE_AND_LOCAL). By default, the value is false (0). For more
information, see ssSetOutputPortOptimOpts.

modelname
The name of a Simulink model into which Legacy Code Tool is to insert the masked S-
function block generated when you specify legacy_code with the action character
vector 'slblock_generate'. If you omit this argument, the block appears in an
empty model editor window.

See Also

Topics
“Integrate C Functions Using Legacy Code Tool”

2 Functions — Alphabetical List

2-362

“Import Calls to External Code into Generated Code with Legacy Code Tool” (Simulink
Coder)

Introduced in R2006b

 legacy_code

2-363

libinfo
Get information about library blocks referenced by model

Syntax
libdata = libinfo('system')
libdata = libinfo('system', constraint1, value1, ...)

Description
libdata = libinfo('system') returns information about library blocks referenced
by system and all the systems underneath it.

libdata = libinfo('system', constraint1, value1, ...) restricts the search
as indicated by the search constraint(s) c1, v1, ...

Input Arguments
system

The system to search recursively for library blocks.

constraint1, value1, ...

One or more pairs, each consisting of a search constraint followed by a constraint value.
You can specify any of the search constraints that you can use with find_system.

Output Arguments
libdata

An array of structures that describes each library block referenced by system. Each
structure has the following fields:

2 Functions — Alphabetical List

2-364

Block Path of the link to the library block
Library Name of the library containing the

referenced block
ReferenceBlock Path of the library block
LinkStatus Value of the LinkStatus parameter for the

link to the library block

See Also
find_system

Topics
“Custom Libraries and Linked Blocks”

Introduced before R2006a

 libinfo

2-365

linmod
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmod('sys');
argout = linmod('sys', x, u);
argout = linmod('sys', x, u, para);
argout = linmod('sys', x, u, 'v5');
argout = linmod('sys', x, u, para, 'v5');
argout = linmod('sys', x, u, para, xpert, upert, 'v5');

Arguments
sys Name of the Simulink system from which the linear model is

extracted.
x and u State (x) and the input (u) vectors. If specified, they set the

operating point at which the linear model is extracted. When a
model has model references using the Model block, you must use
the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

Ts Sample time of the discrete-time linearized model
'v5' An optional argument that invokes the perturbation algorithm

created prior to MATLAB 5.3. Invoking this optional argument is
equivalent to calling linmodv5.

2 Functions — Alphabetical List

2-366

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that
gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

xpert and upert The perturbation values used to perform the perturbation of all the
states and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you
must use the Simulink structure format to specify xpert. To
extract the xpert structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure
by editing xpert.signals.values.

The perturbation input arguments are only available when invoking
the perturbation algorithm created prior to MATLAB 5.3, either by
calling linmodv5 or specifying the 'v5' input argument to
linmod.

 linmod

2-367

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified state
variables x and the input u. If you omit x and u, the default
values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the linearized
model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names, input
and output names, and information about the operating point.

Description
linmod compute a linear state-space model by linearizing each block in a model
individually.

linmod obtains linear models from systems of ordinary differential equations described
as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using
Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians for most blocks
which should result in more accurate linearization than numerical perturbation of block
inputs and states. A list of blocks that have preprogrammed analytic Jacobians is available
in the Simulink Control Design documentation along with a discussion of the block-by-
block analytic algorithm for linearization.

The default algorithm also allows for special treatment of problematic blocks such as the
Transport Delay and the Quantizer. See the mask dialog of these blocks for more
information and options.

2 Functions — Alphabetical List

2-368

Notes
By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For
Simulink systems, a character vector variable that contains the block name associated
with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the
routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod handle Transport Delay blocks by replacing the
linearization of the blocks with a Pade approximation. For the 'v5' algorithm,
linearization of a model that contains Derivative or Transport Delay blocks can be
troublesome. For more information, see “Linearizing Models”.

See Also
dlinmod | linmod2 | linmodv5

Introduced in R2007a

 linmod

2-369

linmod2
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmod2('sys', x, u);
argout = linmod2('sys', x, u, para);

Arguments
sys Name of the Simulink system from which the linear model is

extracted.
x, u State (x) and the input (u) vectors. If specified, they set the

operating point at which the linear model is extracted. When a
model has model references using the Model block, you must use
the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

2 Functions — Alphabetical List

2-370

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that
gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified state
variables x and the input u. If you omit x and u, the default
values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the linearized
model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names, input
and output names, and information about the operating point.

Description
linmod2 computes a linear state-space model by perturbing the model inputs and model
states, and uses an advanced algorithm to reduce truncation error.

 linmod2

2-371

linmod2 obtains linear models from systems of ordinary differential equations described
as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using
Inport and Outport blocks.

Notes
By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For
Simulink systems, a character vector variable that contains the block name associated
with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the
routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by
replacing the linearization of the blocks with a Pade approximation. For more information,
see “Linearizing Models”.

See Also
dlinmod | linmod | linmodv5

Introduced in R2007a

2 Functions — Alphabetical List

2-372

linmodv5
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmodv5('sys');
argout = linmodv5('sys',x,u);
argout = linmodv5('sys', x, u, para);
argout = linmodv5('sys', x, u, para, xpert, upert);

Arguments
sys Name of the Simulink system from which the linear model is

extracted.
x, u State (x) and the input (u) vectors. If specified, they set the

operating point at which the linear model is extracted. When a
model has model references using the Model block, you must use
the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

 linmodv5

2-373

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that
gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

xpert, upert The perturbation values used to perform the perturbation of all the
states and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you
must use the Simulink structure format to specify xpert. To
extract the xpert structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure
by editing xpert.signals.values.

The perturbation input arguments are only available when invoking
the perturbation algorithm created prior to MATLAB 5.3, either by
calling linmodv5 or specifying the 'v5' input argument to
linmod.

2 Functions — Alphabetical List

2-374

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified state
variables x and the input u. If you omit x and u, the default
values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the linearized
model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names, input
and output names, and information about the operating point.

Description
linmodv5 computes a linear state space model using the full model perturbation
algorithm created prior to MATLAB 5.3.

linmodv5 obtains linear models from systems of ordinary differential equations
described as Simulink models. Inputs and outputs are denoted in Simulink block diagrams
using Inport and Outport blocks.

Notes
By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For
Simulink systems, a character vector variable that contains the block name associated
with each state can be obtained using

 linmodv5

2-375

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the
routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by
replacing the linearization of the blocks with a Pade approximation. For the 'v5'
algorithm, linearization of a model that contains Derivative or Transport Delay blocks can
be troublesome. For more information, see “Linearizing Models”.

See Also
dlinmod | linmod | linmod2

Introduced in R2011b

2 Functions — Alphabetical List

2-376

load_system
Load Simulink model into memory

Syntax
handle = load_system(sys)

Description
handle = load_system(sys) loads the model sys into memory without opening the
model in the Simulink Editor. After you load a model into memory, you can work with it
using Simulink API commands. Save changes to the model using save_system.

Examples

Load Model into Memory

Load the model vdp into memory and return the model handle.

h = load_system("vdp")

h =

 172.0004

Input Arguments
sys — Model to load into memory
character vector | string scalar

Model to load into memory, specified as a character vector or string scalar.
Example: "vdp"

 load_system

2-377

Output Arguments
handle — Handle of loaded model
handle

Handle of loaded model.

See Also
close_system | open_system | save_system

Introduced before R2006a

2 Functions — Alphabetical List

2-378

loadIntoMemory
Load logged data into memory

Syntax
logs = loadIntoMemory(logs)

Description
logs = loadIntoMemory(logs) loads the data in logs into memory. Data is logged to
a repository and brought into memory on an as-needed basis. When you want to work
with all elements of a large set of logged data, use loadIntoMemory to bring all of the
elements into memory at once. Loading all the data at once, rather than element by
element, is much faster.

Examples

Load Logged Data into Memory

This example shows how to load a set of logged data into memory all at once, rather than
element by element.

% Simulate model to generate logged data
sim('sldemo_fuelsys')

The simulation logs all of the instrumented signals in the model to the
Simulink.SimulationData.Dataset object sldemo_fuelsys_output. At the end of
simulation, the signal data remains in the repository until used in the MATLAB
workspace. When you work with small sets of data or only postprocess a subset, leaving
signals in the repository improves performance. But when you have a large set of data
and need to postprocess all of the signals, you should bring them all into memory at once.

% Load all logged signals into memory
loadIntoMemory(sldemo_fuelsys_output);

 loadIntoMemory

2-379

All of the data in sldemo_fuelsys_output is now available for efficient postprocessing.

Input Arguments
logs — Data to load into memory
'Simulink.SimulationData.Dataset' | 'Simulink.SimulationOutput'

Data to load into memory. The loadIntoMemory function can load
Simulink.SimulationData.Dataset and Simulink.SimulationOutput data.
Example: logsout

Output Arguments
logs — Data
'Simulink.SimulationData.Dataset' | 'Simulink.SimulationOutput'

Data loaded into memory.

See Also
Simulink.SimulationData.Dataset | Simulink.SimulationOutput

Introduced in R2017b

2 Functions — Alphabetical List

2-380

model
Execute particular phase of simulation of model

Syntax
[sys,x0,str,ts] = model([],[],[],'sizes');
[sys,x0,str,ts] = model([],[],[],'compile');
outputs = model(t,x,u,'outputs');
derivs = model(t,x,u,'derivs');
dstates = model(t,x,u,'update');
model([],[],[],'term');

Description
The model command executes a specific phase of the simulation of a Simulink model
whose name is model. The command's last argument (flag) specifies the phase of the
simulation to be executed. See “Simulation Phases in Dynamic Systems” for a description
of the steps that Simulink software uses to simulate a model.

This command ignores the effects of state transitions and conditional execution.
Therefore, it is not suitable for models which have such logic. Use this command for
models which can be represented as simple dynamic systems. Such systems should meet
these requirements.

• All states in the model must be built-in non-bus data types. For a discussion on built-in
data types, see “About Data Types in Simulink”.

• If you are using vector format to specify the state, this command can access only non-
complex states of double data type.

• There is minimal amount of state logic (Stateflow, conditionally executed subsystems
etc.)

• The models are not mixed-domain models. That is, most blocks in the model are built-
in Simulink blocks and do not include user-written S-functions or blocks from other
Sim* products.

 model

2-381

For models which do not comply with these requirements, using this command can cause
Simulink to produce results which can only be interpreted by further analyzing and
simplifying the model.

Note The state variable x can be represented in structure as well as vector formats. The
variable follows the limitations of the format in which it is specified.

This command is also not intended to be used to run a model step-by-step, for example, to
debug a model. Use the Simulink debugger if you need to examine intermediate results to
debug a model.

Arguments
sys Vector of model size data:

• sys(1) = number of continuous states
• sys(2) = number of discrete states
• sys(3) = number of outputs
• sys(4) = number of inputs
• sys(5) = reserved
• sys(6) = direct-feedthrough flag (1 = yes, 0 = no)
• sys(7) = number of sample times (= number of rows

in ts)
x0 Vector containing the initial conditions of the system's

states
str Vector of names of the blocks associated with the model's

states. The state names and initial conditions appear in
the same order in str and x0, respectively.

ts An m-by-2 matrix containing the sample time (period,
offset) information

outputs Outputs of the model at time step t.
derivs Derivatives of the continuous states of the model at time

t.

2 Functions — Alphabetical List

2-382

dstates States of the model at time t returned as either a
structure or an array. Simulink returns a structure when
the model has states and x is either empty ([]) or in
structure format. Otherwise, Simulink returns an array.

• If the return type is a vector or array, Simulink returns
real double discrete states only.

• If the return type is a structure, Simulink returns a
structure that contains both continuous and discrete
states of built-in types only. Non-built-in types are
omitted.

t Time step, specified as real double in scalar format.
x State vector, specified as real double in structure or

vector format.
u Inputs, specified as real double in vector format.
flag Specification of the simulation phase to be executed:

• 'sizes' executes the size computation phase of the
simulation. This phase determines the sizes of the
model's inputs, outputs, state vector, etc.

• 'compile' executes the compilation phase of the
simulation. The compilation phase propagates signal
and sample time attributes.

• 'update' computes the next values of the model's
discrete states.

• 'outputs' computes the outputs of the model's
blocks at time t.

• 'derivs'computes the derivatives of the model's
continuous states at time step t.

• 'term' causes Simulink software to terminate
simulation of the model.

Note The output, update, and derivs flags are valid
only for single-tasking models. For more information on
single-tasking and multi-tasking, see “Tasking Modes”
(Simulink Coder).

 model

2-383

Examples
The following command executes the compilation phase of the vdp model that comes with
Simulink software.

vdp([], [], [], 'compile')

The following command terminates the simulation initiated in the previous example.

vdp([], [], [], 'term')

Note Simulink does not let you close a model while it is compiling or simulating. For all
phases except the 'sizes' phase, before closing the model, you must invoke the model
command with the 'term' argument.

See Also
sim

Introduced in R2007a

2 Functions — Alphabetical List

2-384

modeladvisor
Open Model Advisor

Syntax
modeladvisor(model)

Description
modeladvisor(model) opens the Model Advisor for the model or subsystem specified
by model. If the specified model or subsystem is not open, this command opens it.

Examples

Open Model Advisor for model

Open the Model Advisor for vdp example model:

modeladvisor('vdp')

Open Model Advisor for subsystem

Open the Model Advisor for the Aircraft Dynamics Model subsystem of the f14 example
model:

modeladvisor('f14/Aircraft Dynamics Model')

Open Model Advisor for currently selected model

Open the Model Advisor on the currently selected model:

 modeladvisor

2-385

modeladvisor(bdroot)

Open Model Advisor for currently selected subsystem

Open the Model Advisor on the currently selected subsystem:

modeladvisor(gcs)

Input Arguments
model — Model or subsystem name
character vector

Model or subsystem name or handle, specified as a character vector.
Data Types: char

See Also
“Run Model Checks”

Introduced before R2006a

2 Functions — Alphabetical List

2-386

new_system
Create Simulink model or library in memory

Syntax
h = new_system

h = new_system(name)
h = new_system(name,'FromTemplate',template)
h = new_system(name,'FromFile',file)
h = new_system(___ ,'ErrorIfShadowed')

h = new_system(name,'Model')
h = new_system(name,'Model',subsys)
h = new_system(name,'Library')
h = new_system(___ ,'ErrorIfShadowed')

Description
h = new_system creates a model named untitled (and then untitled1, untitled2,
and so on) based on your default model template and returns the new model’s numeric
handle. Select your default model template on the Simulink start page or by using the
Simulink.defaultModelTemplate function.

The new_system function does not open the new model. This function creates the model
in memory. To save the model, use save_system, or open the model with open_system
and then save it using the Simulink Editor.

h = new_system(name) creates a model based on your default model template and
gives the new model the specified name. This function returns the new model’s numeric
handle. Select your default model template on the Simulink start page or by using the
Simulink.defaultModelTemplate function.

If name is empty, the function creates a model named untitled, untitled1,
untitled2, and so on.

 new_system

2-387

The new_system function does not open the new model. This function creates the model
in memory. To save the model, use save_system, or open the model with open_system
and then save it using the Simulink Editor.

h = new_system(name,'FromTemplate',template) creates the model based on the
specified template.

h = new_system(name,'FromFile',file) creates the model based on the specified
model or template.

h = new_system(___ ,'ErrorIfShadowed') creates the model or returns an error if
another model, MATLAB file, or variable with the same name is on the MATLAB path or in
the workspace. It uses any of the input arguments in the previous syntaxes.

h = new_system(name,'Model') creates an empty model based on the Simulink
default model and returns the new model’s numeric handle. The Simulink default model is
also known as the root block diagram and has the numeric handle 0. If name is empty, the
function creates a model or library named untitled, untitled1, untitled2, and so
on.

The new_system function does not open the new model. This function creates the model
in memory. To save the model, use save_system, or open the model with open_system
and then save it using the Simulink Editor.

h = new_system(name,'Model',subsys) creates a model based on the subsystem
subsys in a currently loaded model.

h = new_system(name,'Library') creates an empty library that has the specified
name and returns a numeric handle.

h = new_system(___ ,'ErrorIfShadowed') returns an error if another model,
MATLAB file, or variable with the same name is on the MATLAB path or in the workspace.
This syntax uses any of the input arguments in the previous syntaxes.

Examples

Create a Model Based on Default Template

Create a model in memory called untitled.

2 Functions — Alphabetical List

2-388

h = new_system;

You can use get_param to get the name.

get_param(h,'Name')
open_system(h)
open_system('untitled')
open_system(get_param(h,'Name'))

ans =

untitled

Use the name, the handle, or get_param command as input to open_system. You can
use any of these commands:

Create a Model Based on Named Template

Before you use this syntax, create a template. In the Simulink Editor, create the model
you want to use as the template. Then select File > Export Model to > Template. For
this example, name the template mytemplate.

By default, the template is on the MATLAB path, so if you change location, add the folder
to the MATLAB path.

Create a model named templateModel based on the template mytemplate.

h = new_system('templateModel','FromTemplate','mytemplate');

Invoking template \\myuserdir\Documents\MATLAB\mytemplate.sltx

Create a Model Based on Another Model

Create a model named mynewmodel based on myoldmodel, which is in the current
folder.

h = new_system('mynewmodel','FromFile','myoldmodel.slx');

 new_system

2-389

Create Model from Subsystem

Load the model f14. Create a model based on the Controller subsystem.

load_system('f14');
new_system('mycontroller','Model','f14/Controller');
open_system('mycontroller');

Create a Library

Create a library in memory and then open it.

2 Functions — Alphabetical List

2-390

new_system('mylib','Library')
open_system('mylib')

Ensure Model Name Is Unique

Create a variable with the name myvar.

myvar = 17

Try to create a model that uses the same name as the variable. When you use the
'ErrorIfShadowed' option, the new_system function returns an error.

new_system('myvar2','Model','ErrorIfShadowed')

The model 'myvar2' cannot be created because this name is shadowing another name on the MATLAB
path or in the workspace. Choose another name, or do not use the option 'ErrorIfShadowed'

Input Arguments
name — Name of new model or library
character vector

Name of new model or library, specified as a character vector that:

• Has 63 or fewer characters
• Is not a MATLAB keyword
• Is not 'simulink'
• Is unique among model names, variables, and MATLAB files on the MATLAB path and

in the workspace

Example: 'mymodel', 'mylibrary'

subsys — Subsystem to base new model on
subsystem block path name

Subsystem to base the new model on, specified as the subsystem block path name in a
currently open model.
Example: 'f14/Controller'

 new_system

2-391

template — Name of template to base new model on
character vector

Name of the template to base the new model on, specified as a character vector of the
name of a template on the MATLAB path. Create a template in the Simulink Editor using
File > Export Model to > Template.
Example: 'mytemplate', 'mytemplate.sltx'

file — Path name of model or template to base new model on
character vector

Path name of the model or template to base the new model on, specified as a character
vector. You can use an .mdl, .slx, or ..sltx file. Include the extension and use a full or
relative path.
Example: 'Models/mymodel.slx', 'mytemplate.sltx', 'model.mdl'

See Also
Simulink.defaultModelTemplate | open_system | save_system

Introduced before R2006a

2 Functions — Alphabetical List

2-392

num2fixpt
Convert number to nearest value representable by specified fixed-point data type

Syntax
outValue = num2fixpt(OrigValue, FixPtDataType, FixPtScaling,
 RndMeth, DoSatur)

Description
num2fixpt(OrigValue, FixPtDataType, FixPtScaling, RndMeth, DoSatur)
returns the result of converting OrigValue to the nearest value representable by the
fixed-point data type FixPtDataType. Both OrigValue and outValue are of data type
double. As illustrated in the example that follows, you can use num2fixpt to investigate
quantization error that might result from converting a number to a fixed-point data type.
The arguments of num2fixpt include:

OrigValue Value to be converted to a fixed-point representation. Must be
specified using a double data type.

FixPtDataType The fixed-point data type used to convert OrigValue.
FixPtScaling Scaling of the output in either Slope or [Slope Bias] format. If

FixPtDataType does not specify a generalized fixed-point data
type using the sfix or ufix command, FixPtScaling is
ignored.

RndMeth Rounding technique used if the fixed-point data type lacks the
precision to represent OrigValue. If FixPtDataType specifies
a floating-point data type using the float command, RndMeth is
ignored. Valid values are Zero, Nearest, Ceiling, or Floor
(the default).

 num2fixpt

2-393

DoSatur Indicates whether the output should be saturated to the minimum
or maximum representable value upon underflow or overflow. If
FixPtDataType specifies a floating-point data type using the
float command, DoSatur is ignored. Valid values are on or off
(the default).

Examples
Suppose you wish to investigate the quantization effect associated with representing the
real-world value 9.875 as a signed, 8-bit fixed-point number. The command

num2fixpt(9.875, sfix(8), 2^-1)

ans =

 9.50000000000000

reveals that a slope of 2^-1 results in a quantization error of 0.375. The command

num2fixpt(9.875, sfix(8), 2^-2)

ans =

 9.75000000000000

demonstrates that a slope of 2^-2 reduces the quantization error to 0.125. But a slope of
2^-3, as used in the command

num2fixpt(9.875, sfix(8), 2^-3)

ans =

 9.87500000000000

eliminates the quantization error entirely.

See Also
fixptbestexp | fixptbestprec

2 Functions — Alphabetical List

2-394

Introduced before R2006a

 num2fixpt

2-395

open_system
Open Simulink model, library, subsystem, or block dialog box

Syntax
open_system(obj)

open_system(sys,'loadonly')

open_system(sbsys,'window')
open_system(sbsys,'tab')

open_system(blk,'mask')
open_system(blk,'force')
open_system(blk,'parameter')
open_system(blk,'OpenFcn')

Description
open_system(obj) opens the specified model, library, subsystem, or block. This is
equivalent to double-clicking the model or library in the Current Folder Browser, or the
subsystem or block in the Simulink Editor.

A model or library opens in a new window. For a subsystem or block within a model, the
behavior depends on the type of block and its properties.

• Any OpenFcn callback parameter is evaluated.
• If there is no OpenFcn callback, and a mask is defined, the mask parameter dialog box

opens.
• Without an OpenFcn callback or a mask parameter, Simulink opens the object.

• A referenced model opens in a new window.
• A subsystem opens in a new tab in the same window.
• For blocks, the parameters dialog box for the block opens.

2 Functions — Alphabetical List

2-396

To open a specific subsystem or block, you must load the model or library containing it.
Otherwise Simulink returns an error.

You can override the default behavior by supplying a second input argument.

open_system(sys,'loadonly') loads the specified model or library without opening
the Simulink Editor. This is equivalent to using load_system.

open_system(sbsys,'window') opens the subsystem sbsys in a new Simulink Editor
window. Before opening a specific subsystem or block, load the model or library
containing it. Otherwise Simulink returns an error.

open_system(sbsys,'tab') opens the subsystem in a new Simulink Editor tab in the
same window. Before opening a specific subsystem or block, load the model or library
containing it. Otherwise Simulink returns an error.

open_system(blk,'mask') opens the mask dialog box of the block or subsystem
specified by blk. Load the model or library containing blk before opening it.

open_system(blk,'force') looks under the mask of a masked block or subsystem. It
opens the dialog box of the block under the mask or opens a masked subsystems in a new
Simulink Editor tab. This is equivalent to the Look Under Mask menu item. Before
opening a specific subsystem or block, load the model or library containing it. Otherwise
Simulink returns an error.

open_system(blk,'parameter') opens the block parameter dialog box.

open_system(blk,'OpenFcn') runs the block callback OpenFcn.

Examples

Open a Model

Open the f14 model.

open_system('f14')

 open_system

2-397

Load a Model Without Opening it

Load the f14 model.

open_system('f14','loadonly')

Open a Subsystem

Open the Controller subsystem of the f14 model.

load_system('f14')
open_system('f14/Controller')

Open a Subsystem in New Tab in Existing Window

Open the f14 model and open the Controller subsystem in a new tab.

f14
open_system('f14/Controller','tab')

Open a Subsystem in a Separate Window

Open a subsystem in its own Simulink Editor window.

open_system('f14')
open_system('f14/Controller','window')

Open a Referenced Model

Open the model sldemo_mdlref_counter, which is referenced by the CounterA model
block in sldemo_mdlref_basic.

open_system('sldemo_mdlref_basic')
open_system('sldemo_mdlref_basic/CounterA')

The referenced model opens in its own Simulink Editor window.

2 Functions — Alphabetical List

2-398

Open Block Dialog Box

Open the block parameters dialog box for the first Gain block in the Controller
subsystem.

load_system('f14')
open_system('f14/Controller/Gain')

Run Block Open Callback Function

Define an OpenFcn callback for a block and execute the block callback.

f14
set_param('f14/Pilot','OpenFcn','disp(''Hello World!'')')
open_system('f14/Pilot','OpenFcn')

The words Hello World appear on the MATLAB Command Prompt.

Open Masked Subsystem

Open the contents of the masked subsystem Vehicle in the model sf_car.

open_system('sf_car')
open_system('sf_car/Vehicle', 'force')

Open Multiple Systems with One Command

Create a cell array of two model names, f14 and vdp. Open both models using
open_system with the cell array name.

models = {'f14','vdp'}
open_system(models)

Input Arguments
obj — Model, referenced model, library, subsystem, or block path
character vector

 open_system

2-399

Model, referenced model, library, subsystem, or block path, specified as a character
vector. If the model is not on the MATLAB path, specify the full path to the model file.
Specify the block or subsystem using its full name, e.g., f14/Controller/Gain, on an
opened or loaded model. On UNIX systems, the fully qualified path name of a model can
start with a tilde (~), signifying your home directory.
Data Types: char

sys — Model or library path
character vector

The full name or path of a model or library, specified as a character vector.
Data Types: char

sbsys — Subsystem path
character vector

The full name or path of a subsystem in an open or loaded model, specified as a character
vector.
Data Types: char

blk — Block or subsystem path
character vector

The full name or path of a block or subsystem in an open or loaded model, specified as a
character vector.
Data Types: char

See Also
close_system | load_system | new_system | save_system

Introduced before R2006a

2 Functions — Alphabetical List

2-400

openDialog
Open configuration parameters dialog

Syntax
openDialog(configObj)

Arguments
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description
openDialog opens a configuration parameters dialog box. If configObj is a
configuration set, the dialog box displays the configuration set. If configObj is a
configuration reference, the dialog box displays the referenced configuration set, or
generates an error if the reference does not specify a valid configuration set. If the dialog
box is already open, its window becomes selected.

Examples
The following example opens a configuration parameters dialog box that shows the
current parameters for the current model. The parameter values derive from the active
configuration set or configuration reference (configuration object). The code is the same
in either case; the only difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);
openDialog(myConfigObj);

 openDialog

2-401

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | setActiveConfigSet

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

Introduced in R2006b

2 Functions — Alphabetical List

2-402

parsim
Simulate dynamic system in parallel or serial

Syntax
simOut = parsim(in)
simOut = parsim(in,'ShowSimulationManager','on')
simOut = parsim(in,Name,Value,...NameN,ValueN)

Description
simOut = parsim(in) simulates a model using the inputs specified in the
SimulationInput object, in. The parsim command uses an array of SimulationInput
objects to run multiple simulations.

simOut = parsim(in,'ShowSimulationManager','on') simulates a model in
parallel using the inputs specified in the SimulationInput object and opens the
Simulation Manager UI. For more information, see Simulation Manager.

simOut = parsim(in,Name,Value,...NameN,ValueN) simulates a model in parallel
using the inputs specified in the SimulationInput object and the options specified as
the Name,Value pair.

The parsim command uses the Parallel Computing Toolbox™ license to run the
simulations in parallel. parsim runs the simulations in serial if a parallel pool cannot be
created and in the absence of Parallel Computing Toolbox .

Examples
Simulate Model in Parallel with parsim

Simulate the model, CSTR, in parallel by sweeping over a variable. An array of
SimulationInput objects is used to perform the sweep.

Specify sweep values.

 parsim

2-403

FeedTempSweep = 250:10:300;

Create an array of SimulationInput objects.

for i = length(FeedTempSweep):-1:1;
in(i) = Simulink.SimulationInput('CSTR');
in(i) = in(i).setVariable('FeedTemp0',FeedTempSweep(i));
end

Simulate the model in parallel.

out = parsim(in, 'ShowProgress', 'on')

[08-Jan-2018 14:10:43] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.
[08-Jan-2018 14:11:12] Loading Simulink on parallel workers...
[08-Jan-2018 14:11:40] Configuring simulation cache folder on parallel workers...
[08-Jan-2018 14:11:40] Loading model on parallel workers...
[08-Jan-2018 14:11:48] Running simulations...
[08-Jan-2018 14:12:04] Completed 1 of 6 simulation runs
[08-Jan-2018 14:12:04] Completed 2 of 6 simulation runs
[08-Jan-2018 14:12:04] Completed 3 of 6 simulation runs
[08-Jan-2018 14:12:08] Completed 4 of 6 simulation runs
[08-Jan-2018 14:12:09] Completed 5 of 6 simulation runs
[08-Jan-2018 14:12:09] Completed 6 of 6 simulation runs
[08-Jan-2018 14:12:09] Cleaning up parallel workers...

out =

1x6 Simulink.SimulationOutput array

Parsim with Rapid Accelerator

Simulate the model, vdp, in rapid accelerator mode.

Load the model.

model = 'vdp';
load_system(model)

This step builds the Rapid Accelerator target

Simulink.BlockDiagram.buildRapidAcceleratorTarget(model);

2 Functions — Alphabetical List

2-404

Create a SimulationInput object and use setModelParameter method to set
RapidAcceleratorUpToDateCheck off.

in = in.setModelParameter('SimulationMode', 'rapid-accelerator');
in = in.setModelParameter('RapidAcceleratorUpToDateCheck', 'off');

Simulate the model.

out = parsim(in)

Input Arguments
in — Simulink.SimulationInput object used to simulate the model
object, array

A Simulink.SimulationInput object or an array of Simulink.SimulationInput
objects that is used to specify changes to the model for a simulation.
Example: in = Simulink.SimulationInput('vdp')

Name-Value Pair Arguments

Note All parameters passed to parsim command are unrelated to the parameters that
are used with the sim command. Use the list of following input arguments to pass to the
parsim command.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name and Value must appear
inside single quotes (' '). You can specify several name and value pair arguments in any
order as Name1,Value1,...,NameN,ValueN.
Example: 'ShowProgress', 'on'

ShowProgress — Show the progress of the simulations
'on'(default) | 'off'

When ShowProgress is set to 'on', you can see the progress of the simulations in the
command window. The progress is hidden when set to 'off'.

 parsim

2-405

Note When the progress is shown, a message 'Cleaning up parallel workers..' may be
displayed before the completion of the last few simulations. This message does not
depend on the completion of the simulations. Simulations "complete" when the outputs
are fetched from the future.

RunInBackground — Run simulations in background
'off' (default) | 'on'

When 'RunInBackground' is set to 'on', the simulations run asynchronously, keeping
the MATLAB command prompt available for use.

SetupFcn — Function handle to run once per worker
function handle

You can specify a function handle to 'SetupFcn' to run once per worker before the
start of the simulations .
Example: 'SetupFcn',@()simulinkproject('OCRAex/OCRA_example.prj')

Note When buildRapidAcceleratorTarget is used in the SetupFcn and the model has
external inputs specified, either set 'LoadExternalInput' to 'off' or ensure that the
specified external input is available on the workers to prevent compilation error.

CleanupFcn — Function handle to run once per worker after running simulations
function handle

You can specify a function handle to 'CleanupFcn' to run once per worker after the
simulations are completed.

ManageDependencies — Manage model dependecies
'on' (default) | 'off'

When ManageDependencies is set to on, model dependencies are automatically sent to
the parallel workers if required. If off, explicitly attache model dependecies to the
parallel pool.

UseFastRestart — Use fast restart
false (default) | true

When UseFastRestart is set to true, simulations run on the workers using fast restart.

2 Functions — Alphabetical List

2-406

Note When using parsim, use the UseFastRestart option and NOT the FastRestart
option. See “Factors Affecting Fast Restart” for more information.

TransferBaseWorkspaceVariables — Transfer variables to the parallel workers
false (default) | true

When TransferBaseWorkspaceVariables is set to true, variables used in the model
and defined in the base workspace are transferred to the parallel workers.

Note Use of TransferBaseWorkspaceVariables requires model compilation.

ShowSimulationManager — Starts the Simulation Manager App
'off' (default) | 'on'

When 'ShowSimulationManager' is set to 'on', you can use the Simulation Manager
App to monitor simulations.

Output Arguments
simOut — Simulation object containing logged simulation results
object

Simulink.SimulationOutput is an array of Simulink.SimulationOutput objects
that contains all of the logged simulation results. The size of the array is equal to the size
of the array of Simulink.SimulationInput objects.

All simulation outputs (logged time, states, and signals) are returned in a single
Simulink.SimulationOutput object. You define the model time, states, and output
that is logged using the Data Import/Export pane of the Model Configuration
Parameters dialog box. You can log signals using blocks such as the To Workspace and
Scope blocks. The Signal & Scope Manager can directly log signals.

See Also
ExternalInput | Simulation Manager | Simulink.SimulationInput |
applyToModel | setBlockParameter | setInitialState | setModelParameter |
setPostSimFcn | setPreSimFcn | setVariable | validate

 parsim

2-407

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”
“Run Parallel Simulations”

Introduced in R2017a

2 Functions — Alphabetical List

2-408

performanceadvisor
Open Performance Advisor

Syntax
performanceadvisor(model)

Description
performanceadvisor(model) opens the Performance Advisor on the model or
subsystem specified by model. If the specified model or subsystem is not open, this
command opens it.

Input Arguments
model

A character vector specifying the name or handle to the model or subsystem.

Examples

Open Performance Advisor

Open Performance Advisor on the vdp example model.

performanceadvisor('vdp')

Performance Advisor opens the vdp model and opens Performance Advisor on the model.

• “Improve Simulation Performance Using Performance Advisor”
• “Perform a Quick Scan Diagnosis”

 performanceadvisor

2-409

• “Improve vdp Model Performance”

Alternatives
In the Simulink Editor, select Analysis > Performance Tools > Performance Advisor.

See Also

Topics
“Improve Simulation Performance Using Performance Advisor”
“Perform a Quick Scan Diagnosis”
“Improve vdp Model Performance”
“Performance Advisor Window”

Introduced in R2013a

2 Functions — Alphabetical List

2-410

reload
Reload Simulink Project

Syntax
reload(proj)

Description
reload(proj) reloads the project. Use reload when you want to run the project
startup shortcuts.

Examples

Reload Project

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

When you want to run the startup shortcuts again, reload the project.

reload(proj)

Input Arguments
proj — Project
project object

Project, specified as a project object already created with simulinkproject to
manipulate a Simulink Project at the command line.

 reload

2-411

See Also
Functions
isLoaded | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-412

removeCategory
Remove Simulink Project category of labels

Syntax
removeCategory(proj,categoryName)

Description
removeCategory(proj,categoryName) removes a category of labels, categoryName,
from the Simulink Project specified by proj.

Examples

Remove Category

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Create a new category of labels.

createCategory(proj,'Engineers','char');

Remove the new category of labels.

removeCategory(proj,'Engineers');

 removeCategory

2-413

A message appears warning you that you cannot undo the operation. Click Continue. You
can configure warnings in the Preferences in the Simulink Project Tool.

Input Arguments
proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

categoryName — Name of category
character vector

Name of the category to remove, which exists in the project, specified as a character
vector.

See Also
Functions
createCategory | findCategory | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-414

removeFile
Remove file from Simulink Project

Syntax
removeFile(proj,file)

Description
removeFile(proj,file) removes a file from the project proj.

Examples

Remove File from Project

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Remove a file.

removeFile(proj,'models/AnalogControl.mdl')

Add the file back to the project.

addFile(proj,'models/AnalogControl.mdl')

Input Arguments
proj — Project
project object

 removeFile

2-415

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

file — Path of file
character vector | file object

Path of the file to remove relative to the project root folder, including the file extension,
specified as a character vector or a file object returned by findFile. The file must be in
the project.
Example: 'models/myModelName.slx'

See Also
Functions
addFile | findFile | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-416

removeLabel
Remove label from Simulink Project

Syntax
removeLabel(category,labelName)
removeLabel(file,categoryName,labelName)
removeLabel(file,labelDefinition)

Description
removeLabel(category,labelName) removes the label from the specified category of
labels in the currently loaded project.

removeLabel(file,categoryName,labelName) removes the specified label in the
category categoryName from the file. Use this syntax to specify category and label by
name.

removeLabel(file,labelDefinition) removes the specified label
labelDefinition from the file. Before you can remove the label, you need to get the
label from the file.Label property or by using findLabel.

Examples

Remove a Label

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Examine the first existing category.

cat = proj.Categories(1)

 removeLabel

2-417

cat =

 Category with properties:

 Name: 'Classification'
 DataType: 'none'
 LabelDefinitions: [1x8 slproject.LabelDefinition]

Define a new label in the category.

createLabel(cat,'Future');

Remove the new label.

removeLabel(cat,'Future');

Input Arguments
category — Category of labels
category object

Category of labels, specified as a category object. Get a category object from the
proj.Categories property or by using findCategory.

labelName — Name of label
character vector

Name of the label to remove, specified as a character vector.

file — File to detach label from
file object

File to detach the label from, specified as a file object. You can get the file object by
examining the project’s Files property (proj.Files), or use findFile to find a file by
name. The file must be within the root folder.

categoryName — Name of category that contains label
character vector

Name of the category that contains the label to remove, specified as a character vector.

2 Functions — Alphabetical List

2-418

labelDefinition — Label to detach
label definition object

Name of the label to detach, specified as a label definition object returned by the
file.Label property or findLabel.

See Also
Functions
addLabel | createLabel | findCategory | findLabel | simulinkproject

Introduced in R2013a

 removeLabel

2-419

replace_block
Replace blocks in Simulink model

Syntax
replBlks = replace_block(sys,current,new)
replBlks = replace_block(sys,Name,Value,new)
replBlks = replace_block(___ ,'noprompt')

Description
replBlks = replace_block(sys,current,new) replaces the blocks current in the
model sys with blocks of type new. You can use a block from a Simulink library or from
another model as the replacement block.

Load the model sys before using this function. The function prompts you to select the
blocks you want to replace from a list of blocks that match the current argument.

Tip Save the model before using this command.

replBlks = replace_block(sys,Name,Value,new) replaces the blocks that match
the block parameters specified by the Name,Value pair arguments. You can also use
find_system Name,Value pairs to qualify the search for blocks to replace.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

With the replace_block function, you can use block parameter and value pairs. For a
list of all the block parameters, see “Common Block Properties” on page 6-111 and
“Block-Specific Parameters” on page 6-130.

To specify additional information about the search for blocks to replace, you use
find_system Name,Value pairs before the block parameters. For example, you can use

2 Functions — Alphabetical List

2-420

'CaseSensitive','off' to make the search for blocks case insensitive or
'FollowLinks','on' to follow links into library links. See find_system for that list of
Name,Value pairs.

replBlks = replace_block(___ ,'noprompt') replaces the blocks without
prompting you to select them from a dialog box.

Examples

Replace Blocks in a Model

Replace blocks in the 'vdp' model.

Load the model 'vdp'.

load_system('vdp');

Replace Gain blocks with Integrator blocks.

RepNames = replace_block('vdp','Gain','Integrator');

A dialog box prompts you to select the blocks you want to replace.

With vdp/Mu selected in the dialog box, click OK.

Replace Scope blocks with To Workspace blocks.

RepNames = replace_block('vdp','Scope','simulink/Sinks/To Workspace');

A dialog box prompts you to select the blocks you want to replace.

With vdp/Scope selected in the dialog box, click OK.

Replace Blocks in a Subsystem Using Parameter Values

Replace blocks in the Unlocked subsystem of the sldemo_clutch model. Replace
blocks whose Gain parameter is set to bv.

Load the model sldemo_clutch.

 replace_block

2-421

load_system('sldemo_clutch');

In the 'Unlocked' subsystem, replace blocks whose Gain value is bv with Integrator
blocks.

replace_block('sldemo_clutch/Unlocked','Gain','bv','Integrator');

A dialog box prompts you to select the blocks to replace.

With sldemo_clutch/Unlocked/VehicleDamping selected in the dialog box, click
OK.

Replace Blocks Without Dialog Box

Load the model f14.

load_system('f14')

Replace Gain blocks with Integrator blocks. The command returns the blocks it found to
replace and replaces the blocks.

repl = replace_block('f14','Gain','Integrator','noprompt')

repl = 13x1 cell array
 {'f14/Aircraft...' }
 {'f14/Aircraft...' }
 {'f14/Aircraft...' }
 {'f14/Aircraft...' }
 {'f14/Controller/Gain' }
 {'f14/Controller/Gain2'}
 {'f14/Controller/Gain3'}
 {'f14/Gain' }
 {'f14/Gain1' }
 {'f14/Gain2' }
 {'f14/Gain5' }
 {'f14/Nz pilot...' }
 {'f14/Nz pilot...' }

2 Functions — Alphabetical List

2-422

Use find_system Pairs with replace_block

Select a block that is a library link. Follow the library links and replace Gain blocks with
Integrator blocks within them.

 replace_block(gcb, 'FollowLinks', 'on', 'BlockType', 'Gain', 'Integrator', 'noprompt')

Input Arguments
sys — Model or subsystem whose blocks to replace
character vector

Name of model whose blocks to replace, specified as a character vector. If you specify a
model, the command replaces all blocks that match in the model. If you specify a
subsystem, the command replaces blocks in that subsystem and below.
Example: 'vdp', 'sldemo_fuelsys/fuel_rate_control'

current — Type of block to replace
BlockType value | MaskType value

Type of block to replace, specified as a BlockType or MaskType value. To find out the
block type, select the block and, at the command prompt, enter:

get_param(gcb,'BlockType')

For masked blocks, to find out the mask type, select the block and enter:

get_param(gcb,'MaskType')

new — Block to replace current blocks
BlockType value | MaskType value | library path | block path name from a model

Block to replace the current block, specified in one of these forms:

• BlockType value of the replacement block. Specifying this value uses a library block
as the replacement block.

• MaskType value of the replacement block. Specifying this value uses a library block as
the replacement block.

• Library path of the replacement block, for example, 'simulink/Sinks/To
Workspace'. Hover over the block in the library to see the library path.

 replace_block

2-423

• Block path name of a block from a different model, for example, 'vdp/Mu'. Use this
value to reuse an instance of a block from another model in your model.

Output Arguments
replBlks — Blocks returned by the current argument
cell array of character vectors

Blocks returned by the current argument, returned as a cell array of character vectors.
The function returns the values regardless of whether you complete the replacement.

See Also
find_system | get_param

Topics
“Common Block Properties” on page 6-111
“Block-Specific Parameters” on page 6-130

Introduced before R2006a

2 Functions — Alphabetical List

2-424

save_system
Save Simulink model

Syntax
filename = save_system
filename = save_system(sys)
filename = save_system(sys,newsys)
filename = save_system(sys,newsys,Name,Value)

Description
filename = save_system saves the current top-level model. If the model was not
previously saved, save_system creates a file in the current folder.

To save a subsystem, instead use
Simulink.SubSystem.copyContentsToBlockDiagram to copy the subsystem
contents to a new model. You can then save that model using save_system. See
Simulink.SubSystem.copyContentsToBlockDiagram.

If you set the model UpdateHistory property to UpdateHistoryWhenSave, no dialog
box prompt appears when you use save_system to save the model. If you want to update
the comment, use the 'ModifiedComment' parameter with set_param before saving,
for example:

set_param('mymodel','ModifiedComment','Here is my ccomment.')

filename = save_system(sys) saves the model sys. The model must be open or
loaded.

filename = save_system(sys,newsys) saves the model to a new file newsys. If you
do not specify an extension, then save_system uses the file format specified in your
Simulink preferences.

filename = save_system(sys,newsys,Name,Value) saves the system with
additional options specified by one or more Name,Value pair arguments. To use
Name,Value pairs without saving to a new file, use [] for newsys.

 save_system

2-425

Input Arguments
sys — Name of model to save
character vector | cell array of character vectors | string array | handle | array of handles

Name of model to save, specified as a character, cell array of character vectors, string
array, handle, or array of handles. Do not use a file extension.

newsys — File to save to
character vector | cell array of character vectors | string array | []

File to save to, specified as a character vector, cell array of character vectors, string
array, or, to use Name,Value pairs without changing the file name, []. You can specify a
model name in the current folder or the full path name, with or without an extension.

With no an extension, save_system saves to the file format specified in your Simulink
preferences. Possible model extensions are .slx and .mdl. With the 'ExportToXML'
option, use the extension .xml.

For information on rules for naming models, see “Model Names”.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
save_system('mymodel','newmodel','SaveModelWorkspace',true,'BreakUse
rLinks',true,'OverwriteIfChangedOnDisk',true)

AllowPrompt — Allow dialog box prompts
false (default) | true | 'on' | 'off'

Option to allow dialog box prompts, specified as true, false, 'on', or 'off'. By
default, warnings and error messages appear at the command line.

BreakAllLinks — Replace links to library blocks
false (default) | true | 'on' | 'off'

2 Functions — Alphabetical List

2-426

Option to, in the saved file, replace links to library blocks with copies of the library
blocks, specified as true, false, 'on', or 'off'. This option affects user-defined blocks
and Simulink library blocks.

Caution The 'BreakAllLinks' option can result in compatibility issues when
upgrading to newer versions of Simulink. For example:

• Any masks on top of library links to Simulink S-functions do not upgrade to the new
version of the S-function.

• Any library links to masked subsystems in a Simulink library do not upgrade to the
new subsystem behavior.

• Any broken links prevent the library forwarding mechanism from upgrading the link.

If you saved a model with broken links to built-in libraries, use the Upgrade Advisor to
scan the model for out-of-date blocks. Then upgrade the Simulink blocks to their current
versions.

BreakUserLinks — Replace links to user-defined blocks
false (default) | true | 'on' | 'off'

Option to, in the saved file, replace links to user-defined library blocks with copies of the
library blocks, specified as true, false, 'on', or 'off'.

BreakToolboxLinks — Replace links to built-in library block
false (default) | true | 'on' | 'off'

Option to, in the saved file, replace links to built-in library blocks with copies of the
library blocks, specified as true, false, 'on', or 'off'. This option affects Simulink
library blocks and blocks from libraries supplied with MathWorks toolboxes or blocksets.

ErrorIfShadowed — Return an error if name exists
false (default) | true | 'on' | 'off'

Option to return an error if the new name exists on the MATLAB path or workspace,
specified as true, false, 'on', or 'off'.

ExportToXML — Export model to XML format
false (default) | true | 'on' | 'off'

Option to export the model to a file in a simple XML format, specified as true, false,
'on', or 'off'. Specify the full name of the file, including the .xml extension. The block

 save_system

2-427

diagram in memory does not change and no callbacks execute. Use this option without
any other Name,Value pair arguments. This option warns and will be removed in a future
release.
Example: save_system('mymodel','exportfile.xml','ExportToXML',true)

ExportToVersion — MATLAB release name to export to
character vector | string scalar

MATLAB release name to export to, specified in either of these forms (not case sensitive).
You can export to seven years of previous releases.

• Release name, for example, 'R2012A', 'R2016B'
• Release name, followed by an underscore and then the extension, for example,

'R2016A_SLX', 'R2014A_MDL'. For releases before R2012a, you can specify only
to .mdl files. If you do not specify an extension, you export to the file format specified
in your Simulink preferences.

save_system exports the system such that the specified Simulink version can load it. If
the system contains functionality not supported by the specified Simulink version, the
command removes the functionality in the exported file. It also replaces unsupported
blocks with empty masked subsystem blocks colored yellow. As a result, the exported
system might generate different results.

Alternatively, use Simulink.exportToVersion or, interactively, the Export to Previous
Version dialog box.

OverwriteIfChangedOnDisk — Overwrite file
false (default) | true | 'on' | 'off'

Option to overwrite the file on disk even if it has been modified since the system was
loaded, specified as true, false, 'on', or 'off'. By default, if the file changed on disk
since the model was loaded, save_system displays an error to prevent the changes on
disk from being overwritten.

You can control whether save_system displays an error if the file has changed on disk
using a Simulink preference. In the Model File pane of the Simulink Preferences dialog
box, under Change Notification, select Saving the model. This preference is on by
default.

SaveDirtyReferencedModels — Save referenced models with unsaved changes
false (default) | true | 'on' | 'off'

2 Functions — Alphabetical List

2-428

Option to save referenced models that contain unsaved changes while also saving the
model, specified as true, false, 'on', or 'off'. By default, attempting to save a model
that contains unsaved referenced models return an error.

SaveModelWorkspace — Save model workspace
false (default) | true | 'on' | 'off'

Option to save the contents of the model workspace, specified as true, false, 'on', or
'off'. The model workspace DataSource must be a MAT-file. If the data source is not a
MAT-file, save_system does not save the workspace. See “Specify Source for Data in
Model Workspace”.

Output Arguments
filename — Name of saved file
character vector | cell array of character vectors

Full name of saved file, returned as a character vector or a cell array of character vectors.

Examples

Save Named Model

Create a model.

new_system('newmodel')

Save the model.

save_system('newmodel')

Save Model with Another Name

Open the model vdp. Save it to a model named myvdp in the current folder. Without a file
extension, the function saves the model using the format specified in your Simulink
preferences.

 save_system

2-429

open_system('vdp')
save_system('vdp','myvdp')

After you save the model by another name, the model is no longer open under its original
name. Open vdp again and save it as an .mdl file in the current folder.

open_system('vdp')
save_system('vdp','mynewvdp.mdl')

Return Error If Name Exists

Save a model with a new name and return an error if something with this name exists on
the MATLAB path. In this case, save_system displays an error because max is the name
of a MATLAB function. The model is not saved.

open_system('vdp')
save_system('vdp','max','ErrorIfShadowed',true)

Error using save_system (line 38)
The model 'vdp' cannot be saved with the new name 'max', because this name is
shadowing another name on the MATLAB path or in the workspace. Choose another
name, or do not use the option 'ErrorIfShadowed'

Save Model with Options

Suppose that you have a model named mymodel. Open the model and save it to a model
named newmodel. Also save the model workspace, break links to user-defined library
blocks, and overwrite if the file has changed on disk,
open_system('mymodel')
save_system('mymodel','mynewmodel','SaveModelWorkspace',
true,'BreakUserLinks',true,'OverwriteIfChangedOnDisk',true)

Save Model to Same Name and Use Options

Save the model mymodel, breaking links to user-defined library blocks in the model.

2 Functions — Alphabetical List

2-430

save_system('mymodel',[],'BreakUserLinks',true)

See Also
Simulink.exportToVersion | close_system | new_system | open_system

Topics
“Save a Model”

Introduced before R2006a

 save_system

2-431

set_param
Set system and block parameter values

Syntax
set_param(Object,ParameterName,Value,...ParameterNameN,ValueN)

Description
set_param(Object,ParameterName,Value,...ParameterNameN,ValueN) sets the
parameter to the specified value on the specified model or block object.

When you set multiple parameters on the same model or block, use a single set_param
command with multiple pairs of ParameterName, Value arguments, rather than multiple
set_param commands. This technique is efficient because using a single call requires
evaluating parameters only once. If any parameter names or values are invalid, then the
function doesn’t set any parameters.

Tips:

• If you make multiple calls to set_param for the same block, then specifying the block
using a numeric handle is more efficient than using the full block path. Use
getSimulinkBlockHandle to get a block handle.

• If you use matlab -nodisplay to start a session, you cannot use set_param to run
your simulation. The -nodisplay mode does not support simulation using
set_param. Use the sim command instead.

• After you set parameters in the MATLAB workspace, to see the changes in a model,
update the diagram.

set_param(model,'SimulationCommand','Update')

For parameter names, see:

• “Model Parameters” on page 6-2
• “Block-Specific Parameters” on page 6-130

2 Functions — Alphabetical List

2-432

• “Common Block Properties” on page 6-111

Examples

Set Model Configuration Parameters for a Model

Open vdp and set the Solver and StopTime parameters.

vdp
set_param('vdp','Solver','ode15s','StopTime','3000')

Set Model Configuration Parameters for Current Model

Open a model and set the Solver and StopTime parameters. Use bdroot to get the
current top-level model.

vdp
set_param(bdroot,'Solver','ode15s','StopTime','3000')

Set a Gain Block Parameter Value

Open vdp and set a Gain parameter value in the Mu block.

vdp
set_param('vdp/Mu','Gain','10')

Set Position of Block

Open vdp and set the position of the Fcn block.

vdp
set_param('vdp/Fcn','Position',[50 100 110 120])

 set_param

2-433

Set Position of Block Using a Handle

Set the position of the Fcn block in the vdp model.

Use getSimulinkBlockHandle to load the vdp model if necessary (by specifying true),
and get a handle to the Fcn block. If you make multiple calls to set_param for the same
block, then using the block handle is more efficient than specifying the full block path as a
character vector.

fcnblockhandle = getSimulinkBlockHandle('vdp/Fcn',true);

You can use the block handle in subsequent calls to get_param or set_param. If you
examine the handle, you can see that it contains a double. Do not try to use the number of
a handle alone (e.g., 5.007) because you usually need to specify many more digits than
MATLAB displays. Instead, assign the handle to a variable and use that variable name to
specify a block.

Use the block handle with set_param to set the position.

set_param(fcnblockhandle,'Position',[50 100 110 120])

• “Associating User Data with Blocks”
• “Use MATLAB Commands to Change Workspace Data”
• “Control Simulations Programmatically”

Input Arguments
Object — Name or handle of a model or block
character vector | handle

Handle or name of a model or block, specified as a numeric handle or a character vector.
A numeric handle must be a scalar. You can also set parameters of lines and ports, but you
must use numeric handles to specify them.

Tip If you make multiple calls to set_param for the same block, then specifying a block
using a numeric handle is more efficient than using the full block path with set_param.
Use getSimulinkBlockHandle to get a block handle. Do not try to use the number of a
handle alone (e.g., 5.007) because you usually need to specify many more digits than
MATLAB displays. Assign the handle to a variable and use that variable name to specify a
block.

2 Functions — Alphabetical List

2-434

Example: 'vdp/Fcn'

ParameterName — Model or block parameter name
character vector

Model or block parameter name, specified as the comma-separated pair consisting of the
parameter name, specified as a character vector, and the value, specified in the format
determined by the parameter type. Parameter names and values are case sensitive.
Values are often character vectors, but they can also be numeric, arrays, and other types.
Many block parameter values are specified as character vectors, but two exceptions are
these parameters: Position, specified as a vector, and UserData, which can be any data
type.
Example: 'Solver','ode15s','StopTime','3000'
Example: 'SimulationCommand', 'start'
Example: 'Position',[50 100 110 120]
Data Types: char

See Also
bdroot | gcb | gcs | getSimulinkBlockHandle | get_param | new_system |
open_system

Topics
“Associating User Data with Blocks”
“Use MATLAB Commands to Change Workspace Data”
“Control Simulations Programmatically”
“Model Parameters” on page 6-2
“Block-Specific Parameters” on page 6-130
“Common Block Properties” on page 6-111

Introduced before R2006a

 set_param

2-435

setActiveConfigSet
Specify model's active configuration set or configuration reference

Syntax
setActiveConfigSet(model, configObjName)

Arguments
model

The name of an open model, or gcs to specify the current model
configObjName

The name of a configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description
setActiveConfigSet specifies the active configuration set or configuration reference
(configuration object) of model to be the configuration object specified by
configObjName. If no such configuration object is attached to the model, an error
occurs. The previously active configuration object becomes inactive.

Examples
The following example makes DevConfig the active configuration object of the current
model. The code is the same whether DevConfig is a configuration set or configuration
reference.

setActiveConfigSet(gcs, 'DevConfig');

2 Functions — Alphabetical List

2-436

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | openDialog

Topics
“Manage a Configuration Set”
“Manage a Configuration Reference”

Introduced before R2006a

 setActiveConfigSet

2-437

sfix
Create Simulink.NumericType object describing signed fixed-point data type

Syntax
a = sfix(WordLength)

Description
sfix(WordLength) returns a Simulink.NumericType object that describes a signed
fixed-point number with the specified word length and unspecified scaling.

Note sfix is a legacy function. In new code, use fixdt instead. In existing code,
replace sfix(WordLength) with fixdt(1,WordLength).

Examples
Define a 16-bit signed fixed-point data type.

a = sfix(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Signed'
 WordLength: 16
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

2 Functions — Alphabetical List

2-438

See Also
Simulink.NumericType | fixdt | float | sfrac | sint | ufix | ufrac | uint

Introduced before R2006a

 sfix

2-439

sfrac
Create Simulink.NumericType object describing signed fractional data type

Syntax
a = sfrac(WordLength)
a = sfrac(WordLength, GuardBits)

Description
sfrac(WordLength) returns a Simulink.NumericType object that describes the data
type of a signed fractional data type with a word size given by WordLength.

sfrac(WordLength, GuardBits) returns a Simulink.NumericType object that
describes the data type of a signed fractional number. The total word size is given by
WordLength with GuardBits bits located to the left of the binary point.

The most significant (leftmost) bit is the sign bit. The default binary point for this data
type is assumed to lie immediately to the right of the sign bit. If guard bits are specified,
they lie to the left of the binary point and to right of the sign bit. For example, the
structure for an 8-bit signed fractional data type with 4 guard bits is:

b
7

b
6 b

5
b
4

b
3 b

2
b
0

MSB
sign bit

LSB

binary
point

TotalBits=8

GuardBits=4

b
1

Note sfrac is a legacy function. In new code, use fixdt instead. In existing code,
replace sfrac(WordLength,GuardBits) with fixdt(1,WordLength,
(WordLength-1-GuardBits)) and sfrac(WordLength) with
fixdt(1,WordLength,(WordLength-1)).

2 Functions — Alphabetical List

2-440

Examples
Define an 8-bit signed fractional data type with 4 guard bits. Note that the range of this
data type is -24 = -16 to (1 - 2(1 - 8)).24 = 15.875.

a = sfrac(8,4)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 8
 FractionLength: 3
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

See Also
Simulink.NumericType | fixdt | float | sfix | sint | ufix | ufrac | uint

Introduced before R2006a

 sfrac

2-441

signalbuilder
Create and access Signal Builder blocks

Syntax
[time, data] = signalbuilder(block)
[time, data, signames] = signalbuilder(block)
[time, data, signames, groupnames] = signalbuilder(block)
block = signalbuilder([], 'create', time, data, signames,
groupnames)
block = signalbuilder(path, 'create', time, data, signames,
groupnames)
block = signalbuilder(path,'create', time, data, signames,
groupnames, vis)
block = signalbuilder(path,'create', time, data, signames,
groupnames, vis, pos)
block = signalbuilder(path,'create', time, data, signames,
groupnames, vis, pos,{openui openmodel})
block = signalbuilder(block, 'append', time, data, signames,
groupnames)
block = signalbuilder(block, 'appendgroup', time, data, signames,
groupnames)
signalbuilder(block,'append',ds)
signalbuilder(block,'appendgroup',ds)
signalbuilder(block,'append',[ds ds2])
signalbuilder(block,'appendgroup',[ds ds2])
signalbuilder(block,'appendsignal', time, data, signames)
signalbuilder(block, 'showsignal', signal, group)
signalbuilder(block, 'hidesignal', signal, group)
[time, data] = signalbuilder(block, 'get', signal, group)
ds=signalbuilder(block,'get',group)
[ds1 ds2] =signalbuilder(block,'get',group)
signalbuilder(block, 'set', signal, group, time, data)
signalbuilder(block,'set',groupid,ds)
signalbuilder(block,'set',groupid,[ds1 ds2])
index = signalbuilder(block, 'activegroup')

2 Functions — Alphabetical List

2-442

[index, activeGroupLabel]= signalbuilder(block, 'activegroup')
signalbuilder(block, 'activegroup', index)
signalbuilder(block, 'annotategroup', onoff)
signalbuilder(block, 'print', [])
signalbuilder(block, 'print', config, printArgs)
figh = signalbuilder(block, 'print', config, 'figure')

Description
Use the signalbuilder command to interact programmatically with Signal Builder
blocks.

• “Creating and Accessing Signal Builder Blocks” on page 2-443
• “Adding New Groups” on page 2-445
• “Working with Signals” on page 2-446
• “Using Get/Set Methods for Specific Signals and Groups” on page 2-447
• “Querying, Labelling, and Setting the Active Group” on page 2-448
• “Enabling Current Group Display” on page 2-448
• “Printing Signal Groups” on page 2-448
• “Interpolating Missing Data Values” on page 2-449

Note When you use the signalbuilder command to interact with a Signal Builder
block, the Undo last edit and Redo last edit buttons on the block dialog box are grayed
out. You cannot undo the results of using the signalbuilder command.

Creating and Accessing Signal Builder Blocks
[time, data] = signalbuilder(block) returns the time (x-coordinate) and
amplitude (y-coordinate) data of the Signal Builder block, block.

The output arguments, time and data, take different formats depending on the block
configuration:

 signalbuilder

2-443

Configuration Time/Data Format
1 signal, 1 group Row vector of break points.
>1 signal, 1 group Column cell vector where each element

corresponds to a separate signal and contains a
row vector of points.

1 signal, >1 group Row cell vector where each element corresponds
to a separate group and contains a row vector of
points.

>1 signal, >1 group Cell matrix where each element (i, j) corresponds
to signal i and group j.

[time, data, signames] = signalbuilder(block) returns the signal names,
signames, in a character vector or a cell array of character vectors.

[time, data, signames, groupnames] = signalbuilder(block) returns the
group names, groupnames, in a character vector or a cell array of character vectors.

block = signalbuilder([], 'create', time, data, signames,
groupnames) creates a Signal Builder block in a new Simulink model using the specified
values. The preceding table describes the allowable formats of time and data. If data is
a cell array and time is a vector, the time values are duplicated for each element of
data. Each vector in time and data must be the same length and have at least two
elements. If time is a cell array, all elements in a column must have the same initial and
final value. Signal names, signames, and group names, groupnames, can be omitted to
use default values. The function returns the path to the new block, block. Always provide
time and data when using the create command. These two parameters are always
required.

block = signalbuilder(path, 'create', time, data, signames,
groupnames) creates a new Signal Builder block at path using the specified values. If
path is empty, the function creates a block in a new model, which has a default name. If
data is a cell array and time is a vector, the time values are duplicated for each element
of data. Each vector within time and data must be the same length and have at least
two elements. If time is a cell array, all elements in a column must have the same initial
and final value. Signal names, signames, and group names, groupnames, can be omitted
to use default values. The function returns the path to the new block, block. Always
provide time and data when using the create command. These two parameters are
always required.

2 Functions — Alphabetical List

2-444

block = signalbuilder(path,'create', time, data, signames,
groupnames, vis) creates a new Signal Builder block and sets the visible signals in
each group based on the values of the matrix vis. This matrix must be the same size as
the cell array, data. Always provide time and data when using the create command.
These two parameters are always required. You cannot create Signal Builder blocks in
which all signals are invisible. For example, if you set the vis parameter for all signals to
0, the first signal is still visible.

block = signalbuilder(path,'create', time, data, signames,
groupnames, vis, pos) creates a new Signal Builder block and sets the block position
to pos. Always provide time and data when using the create command. These two
parameters are always required. You cannot create Signal Builder blocks in which all
signals are invisible. For example, if you set the vis parameter for all signals to 0, the
first signal is still visible.

If you create signals that are smaller than the display range or do not start from 0, the
Signal Builder block extrapolates the undefined signal data. It does so by holding the final
value.

block = signalbuilder(path,'create', time, data, signames,
groupnames, vis, pos,{openui openmodel}) creates a new Signal Builder block
and opens or invisibly loads the model and Signal Builder block window.

• Set openui to 1 to open the Signal Builder block window when you create the Signal
Builder block. Set openui to 0 keep this window closed upon block creation.

• Set openmodel to 1 to open the model when you create the Signal Builder block. Set
openmodel to 0 to invisibly load the model upon block creation.

Adding New Groups
block = signalbuilder(block, 'append', time, data, signames,
groupnames) or block = signalbuilder(block, 'appendgroup', time, data,
signames, groupnames) appends new groups to the Signal Builder block, block. The
time and data arguments must have the same number of signals as the existing block.

signalbuilder(block,'append',ds) or
signalbuilder(block,'appendgroup',ds) appends one data set.

signalbuilder(block,'append',[ds ds2]) or
signalbuilder(block,'appendgroup',[ds ds2]) appends N data sets.

 signalbuilder

2-445

Data sets must have the same number of elements as the signals in a signal group. Data
set format limitations for the set, append, and appendgroup functions include:

• Elements must be MATLAB timeseries data.
• Timeseries data and/or time must not be empty.
• Timeseries data must be of type double.
• Timeseries data must be 1-D (scalar value at each time).

Note

• If you specify a value of ' ' or {} for signames, the function uses existing signal
names for the new groups.

• If you do not specify a value for groupnames, the function creates the new signal
groups with the default group name pattern, GROUP #n.

Working with Signals
signalbuilder(block,'appendsignal', time, data, signames) appends new
signals to all signal groups in the Signal Builder block, block. You can append either the
same signals to all groups, or append different signals to different groups. Regardless of
which signals you append, append the same number of signals to all the groups. Append
signals to all the groups in the block; you cannot append signals to a subset of the groups.
Correspondingly, provide time and data arguments for either one group (append the
same information to all groups) or different time and data arguments for different
groups. To use default signal names, omit the signal names argument, signames.

signalbuilder(block, 'showsignal', signal, group) makes signals that are
hidden from the Signal Builder block visible. By default, signals in the current active
group are visible when created. You control the visibility of a signal at creation with the
vis parameter. signal can be a unique signal name, a signal scalar index, or an array of
signal indices. group is the list of one or more signal groups that contains the affected
signals. group can be a unique group name, a scalar index, or an array of indices.

signalbuilder(block, 'hidesignal', signal, group) makes signals, signal,
hidden from the Signal Builder block. By default, all signals are visible when created.
signal can be a unique signal name, a signal scalar index, or an array of signal indices.
group is the list of one or more signal groups that contains the affected signals. group
can be a unique group name, a scalar index, or an array of indices.

2 Functions — Alphabetical List

2-446

Note For the showsignal and hidesignal methods, if you do not specify a value for
the group argument, signalbuilder applies the operation to all the signals and
groups.

Using Get/Set Methods for Specific Signals and Groups
[time, data] = signalbuilder(block, 'get', signal, group) gets the time
and data values for the specified signal(s) and group(s). The signal argument can be the
name of a signal, a scalar index of a signal, or an array of signal indices. The group
argument can be a group name, a scalar index, or an array of indices.

ds=signalbuilder(block,'get',group) gets one data set for one requested signal
Builder group.

[ds1 ds2] =signalbuilder(block,'get',group) gets N data sets for N requested
Signal Builder groups.

signalbuilder(block, 'set', signal, group, time, data) sets the time and
data values for the specified signal(s) and group(s). Use empty values of time and data
to remove groups and signals. To remove a signal group, you must also remove all the
signals in that group in the same command.

signalbuilder(block,'set',groupid,ds) sets one data set for the requested
Signal Builder group. Specifying an empty data set deletes the groups specified in
groupid.

signalbuilder(block,'set',groupid,[ds1 ds2]) sets N data sets for N
requested groups.

Data sets must have the same number of elements as the signals in a signal group. Data
set format limitations for the set, append, and appendgroup functions include:

• Elements must be MATLAB timeseries data.
• Timeseries data and/or time must not be empty.
• Timeseries data must be of type double.
• Timeseries data must be 1-D (scalar value at each time).

Note For the set method, if you do not specify a value for the group argument,
signalbuilder applies the operation to all signals and groups.

 signalbuilder

2-447

When removing signals, you remove all signals from all groups. You cannot select a subset
of groups from which to remove signals, unless you are also going to also remove that
group.

Note The signalbuilder function does not allow you to alter and delete data in the
same invocation. It also does not allow you to delete all the signals and groups from the
application.

If you set signals that are smaller than the display range or do not start from 0, the Signal
Builder block extrapolates the undefined signal data by holding the final value.

Querying, Labelling, and Setting the Active Group
index = signalbuilder(block, 'activegroup') gets the index of the active
group.

[index, activeGroupLabel]= signalbuilder(block, 'activegroup') gets the
label value of the active group.

signalbuilder(block, 'activegroup', index) sets the active group index to
index.

Enabling Current Group Display
signalbuilder(block, 'annotategroup', onoff) controls the display of the
current group name on the mask of the Signal Builder block.

onoff Value Description
'on' Default. Displays the current group name on the block mask.
'off' Does not display the current group name on the block mask.

Printing Signal Groups
signalbuilder(block, 'print', []) prints the currently active signal group.

signalbuilder(block, 'print', config, printArgs) prints the currently active
signal group or the signal group that config specifies. The argument config is a

2 Functions — Alphabetical List

2-448

structure that allows you to customize the printed appearance of a signal group. The
config structure may contain any of the following fields:

Field Description Example Value
groupIndex Scalar specifying index of signal group to

print
2

timeRange Two-element vector specifying the time range
to print (must not exceed the block's time
range)

[3 6]

visibleSignals Vector specifying index of signals to print [1 2]
yLimits Cell array specifying limits for each signal's

y-axis
{[-1 1],
 [0 1]}

extent Two-element vector of the form:

[width, height]

specifying the dimensions (in pixels) of the
area in which to print the signals

[500 300]

showTitle Logical value specifying whether to print a
title; true (1) prints the title

false

Set up the structure with one or more of these fields before you print. For example, if you
want to print just group 2 using a configuration structure, configstruct, set up the
structure as follows. You do not need to specify any other fields.

configstruct.groupIndex=2

The optional argument printArgs allows you to configure print options (see print in
the MATLAB Function Reference).

figh = signalbuilder(block, 'print', config, 'figure') prints the
currently active signal group or the signal group that config specifies to a new hidden
figure handle, figh.

Interpolating Missing Data Values
When specifying a periodic signal such as a Sine Wave, the signalbuilder function
uses linear Lagrangian interpolation to compute data values for time steps that occur
between time steps for which the signalbuilder function supplies data. When

 signalbuilder

2-449

specifying periodic signals, specify them as a time vector that is defined as multiples of
sample time, for example:

t = 0.2*[0:49]';

Examples

Example 1
Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});

Get signal builder data from this block.
[time, data, signames, groupnames] = signalbuilder('untitled/Signal Builder')

time =

 [1x2 double]
 [1x2 double]

data =

 [1x2 double]
 [1x2 double]

signames =

 'Signal 1' 'Signal 2'

groupnames =

 'Group 1'

The Signal Builder block contains two signals in one group. Alter the second signal in the
group:

signalbuilder(block, 'set', 2, 1, [0 5], [2 0])

To make this same change using the signal name and group name:

2 Functions — Alphabetical List

2-450

signalbuilder(block, 'set', 'Signal 2', 'Group 1', [0 5], [2 0])

Delete the first signal from the group:

signalbuilder(block, 'set', 1, 1, [], [])

Append the group with a new signal:
signalbuilder(block, 'append', [0 2.5 5], [0 2 0], 'Signal 2', 'Group 2');

Append another group with a new signal using appendgroup:
signalbuilder(block, 'appendgroup', [0 2.5 5], [0 2 0], 'Signal 2', 'Group 3');

Example 2
Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 2], {[0 1],[1 0]});

The Signal Builder block has two groups, each of which contains a signal. To delete the
second group, also delete its signal:

signalbuilder(block, 'set', 1, 2, [], [])

Example 3
Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 1], ...
 {[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]});

The Signal Builder block has two groups, each of which contains three signals.

Example 4
Create a Signal Builder block in a new model editor window:
block = signalbuilder([],'create',{[0 10],[0 20]},{[6 -6],...
[2 5]});

The Signal Builder block has two groups. Each group contains one signal.

Append a new signal group to the existing block.

 signalbuilder

2-451

block = signalbuilder(block,'append',[0 30],[10 -10]);

Append a new signal, sig3, to all groups.

signalbuilder(block,'appendsignal',[0 30],[0 10],'sig3');

Example 5
Create a Signal Builder block in a new model editor window:

time = [0 1];
data = {[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]};
block = signalbuilder([], 'create', time, data);

The Signal Builder block has two groups. Each group contains three signals.

Delete the second group. To delete a signal group, also delete all the signals in the group.

signalbuilder(block, 'set',[1,2,3],'Group 2',[]);

Example 6
Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});

The Signal Builder block has one group that contains two signals.

Hide the signal, Signal 1.

signalbuilder(block,'hidesignal','Signal 1', 'Group 1')

Signal 1 is no longer visible in the Signal Builder block.

Make Signal 1 visible again.

signalbuilder(block,'showsignal','Signal 1', 'Group 1')

Example 7
Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 5], {[2 2] [0 2]});

2 Functions — Alphabetical List

2-452

The Signal Builder block has two groups, each with one signal.

Create a structure, configstruct, to customize the Signal Builder block that you want
to print.

configstruct.groupIndex = 2;
configstruct.timeRange = [0 2];
configstruct.visibleSignals = 1;
configstruct.yLimits = {[0 1]};
configstruct.extent = [500 300];
configstruct.showTitle = true;

This sequence fills all the fields of the configstruct structure.

Print a view of the Signal Builder block to the default printer. The configstruct
structure defines the view to print.

signalbuilder(block,'print',configstruct)

Print with print options, for example -dps.

signalbuilder(block,'print',configstruct,'-dps')

Print a view of the Signal Builder block as defined by the configstruct structure to a
new hidden figure handle, figH.

figH = signalbuilder(block,'print',configstruct,'figure')
figure(figH)

Example 8
Create two Signal Builder blocks in new model editor windows:

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});
block1 = signalbuilder('untitled/Signal Builder1', 'create', [1 2], {[1 2];[0 10]});

Get a data set for group 1 of block.

ds=signalbuilder(block,'get',1);

Get a data set for group 1 of block1.

ds1=signalbuilder(block1,'get',1);

Set the data set for group 1 of block to ds1.

 signalbuilder

2-453

signalbuilder(block,'set',1,ds1);

Append the original data set for group 1 of block (ds) to block.

signalbuilder(block,'append',ds);

To create a third group in block, append ds1 to the end of the groups in block.

signalbuilder(block,'appendgroup',ds1);

See Also
Signal Builder

Topics
“Signal Groups”

Introduced in R2007a

2 Functions — Alphabetical List

2-454

signalEditor
Start Signal Editor

Syntax
signalEditor
signalEditor(Name,Value)

Description
signalEditor starts Signal Editor without an associated model.

signalEditor(Name,Value) starts signal Editor using additional options specified by
one or more name-value pair arguments.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify the name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

• Model - Model name, specified as a character array, for which Signal Editor is to start.
You can specify one model per call to the signalEditor function.

Note Load the model before starting Signal Editor for it.
• DataSource - Data set name, specified as a character array, to be edited. You can

specify one data set file per call to the signalEditor function.

Note You can start multiple sessions of Signal Editor for the same model. However,
you can associate a data set file with only one Signal Editor at a time. A data set file
cannot have multiple Signal Editor sessions associated with it.

Examples

 signalEditor

2-455

Start Signal Editor for a Model

Start the Signal Editor for the model, slexAutotransRootInportsExample.

Load the slexAutotransRootInportsExample model, then start Signal Editor for it.

open_system('slexAutotransRootInportsExample')
signalEditor('Model', 'slexAutotransRootInportsExample');

Start Signal Editor to Edit a Data Set File

Start Signal Editor to edit myFile.mat.

signalEditor('DataSource','myFile.mat');

Start Signal Editor and Data Set File for a Model

Load the slexAutotransRootInportsExample model, then start Signal Editor for the model,
and edit myFile.mat.

open_system('slexAutotransRootInportsExample')
signalEditor('Model','slexAutotransRootInportsExample','DataSource','myFile.mat');

See Also

Topics
“Create and Edit Signal Data”

Introduced in R2017b

2 Functions — Alphabetical List

2-456

sim
Simulate dynamic system

Syntax
simOut = sim(model,Name,Value)
simOut = sim(model,ParameterStruct)
simOut = sim(model,ConfigSet)
simOut = sim(model)
simOut = sim(model,'ReturnWorkspaceOutputs','on')
simOut = sim(simIn)
simOut = sim(simIn,'ShowProgress',true)

Description
simOut = sim(model,Name,Value) simulates the specified model using parameter
name-value pairs.

simOut = sim(model,ParameterStruct) simulates the specified model using the
parameter values specified in the structure ParameterStruct.

simOut = sim(model,ConfigSet) simulates the specified model using the
configuration settings specified in the model configuration set ConfigSet.

simOut = sim(model) simulates the specified model using existing model configuration
parameters, and returns the result as either a Simulink.SimulationOutput object
(single-output format) or as a time vector compatible with Simulink version R2009a or
earlier.

To return simulation results using the single-output format (simulation object), select
Single simulation output on the Data Import/Export pane of the Configuration
Parameters dialog box. This selection overrides the Dataset format used for signal
logging.

To return simulation results using the backward-compatible format (time vector), see
“Backward-Compatible Syntax” on page 2-465.

 sim

2-457

simOut = sim(model,'ReturnWorkspaceOutputs','on') simulates the specified
model using existing model configuration parameters, and returns the result as a
Simulink.SimulationOutput object (single-output format).

simOut = sim(simIn) simulates a model using the inputs specified in the
SimulationInput object, simIn . The sim command is also used with an array of
SimulationInput objects to run multiple simulations in a series.

simOut = sim(simIn,'ShowProgress',true) simulates a model in a series using an
array of SimulationInput objects and shows the progress of these simulations at the
command line.

Examples
Simulate Model with sim Command-Line Options
Simulate the model, vdp, in Rapid Accelerator mode for an absolute tolerance of 1e-5
and save the states in xoutNew and the output in youtNew.

Specify parameters as name-value pairs to the sim command:

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...
 'StopTime', '30', ...
 'ZeroCross','on', ...
 'SaveTime','on','TimeSaveName','tout', ...
 'SaveState','on','StateSaveName','xoutNew',...
 'SaveOutput','on','OutputSaveName','youtNew',...
 'SignalLogging','on','SignalLoggingName','logsout')

Building the rapid accelerator target for model: vdp
Successfully built the rapid accelerator target for model: vdp

simOut =
 Simulink.SimulationOutput:

 tout: [86x1 double]
 xoutNew: [86x2 double]
 youtNew: [86x2 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

2 Functions — Alphabetical List

2-458

Simulate Model with sim Command-Line Options in Structure
Simulate the model, vdp, in Rapid Accelerator mode for an absolute tolerance of 1e-5
and save the states in xoutNew and the output in youtNew.

Specify parameters using a name-value pairs structure paramNameValStruct for the
sim command:

paramNameValStruct.SimulationMode = 'rapid';
paramNameValStruct.AbsTol = '1e-5';
paramNameValStruct.SaveState = 'on';
paramNameValStruct.StateSaveName = 'xoutNew';
paramNameValStruct.SaveOutput = 'on';
paramNameValStruct.OutputSaveName = 'youtNew';
simOut = sim('vdp',paramNameValStruct)

Building the rapid accelerator target for model: vdp
Successfully built the rapid accelerator target for model: vdp

simOut =
 Simulink.SimulationOutput:

 xoutNew: [65x2 double]
 youtNew: [65x2 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Simulate Model with sim Command-Line Options in
Configuration Set
Simulate the model, vdp, in Rapid Accelerator mode for an absolute tolerance of 1e-5
and save the states in xoutNew and the output in youtNew.

Specify parameters as name-value pairs in configuration set mdl_cs for the sim
command:

mdl = 'vdp';
load_system(mdl)
simMode = get_param(mdl, 'SimulationMode');

 sim

2-459

set_param(mdl, 'SimulationMode', 'rapid')
cs = getActiveConfigSet(mdl);
mdl_cs = cs.copy;
set_param(mdl_cs,'AbsTol','1e-5',...
 'SaveState','on','StateSaveName','xoutNew',...
 'SaveOutput','on','OutputSaveName','youtNew')
simOut = sim(mdl, mdl_cs);

Building the rapid accelerator target for model: vdp
Successfully built the rapid accelerator target for model: vdp

set_param(mdl, 'SimulationMode', simMode)

Simulate Model with Default Parameter Settings
Simulate the model vdp using default model configuration parameters.

simOut = sim('vdp','ReturnWorkspaceOutputs','on')

Input Arguments
model — Model to simulate
character vector

Name of model to simulate, specified as a character vector.
Example: simOut = sim('vdp')

ParameterStruct — Structure containing parameter settings
structure

Structure with fields that are the names of the configuration parameters for the
simulation. The corresponding values are the parameter values.
Example: simOut = sim('vdp',paramNameValStruct)

ConfigSet — Configuration set
object

The set of configuration parameters for a model.
Example: simOut = sim('vdp',mdl_cs)

2 Functions — Alphabetical List

2-460

simIn — SimulationInput object for a model
object

SimulationInput object created by specifying the model name. For more information, see
Simulink.SimulationInput

Example: simIn = Simulink.SimulationInput('CSTR')

Use the SimulationInput object to specify Block Parameters, Model Parameters, Variables
and External Inputs to a model to be simulated.
Example: simIn.setBlockParameter('CSTR/Feed Temperature', 'Value',
'300'); simIn.setModelParameter('StartTime', '1');
simIn.setVariable('FeedTemp0', 320)

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Solver','ode15s','TimeOut',30 specifies that the model is simulated
using the ode15s solver with a maximum simulation time of 30 seconds.

The sim command accepts all simulation parameters as name-value pair arguments. See
“Model Parameters” on page 6-2 for a list of all simulation parameters.

In addition, the sim command accepts the following parameters.

CaptureErrors — Save errors to SimulationMetadata object
off (default) | on

By default, if an error occurs during simulation, the sim command stops and reports the
error in the MATLAB Command Window. If you specify 'CaptureErrors','on', the
sim command does not stop, but instead saves any errors to the ErrorDiagnostic
structure within the SimulationMetadata object. The error message is saved in the
ErrorMessage property of the SimulationOutput object.

This option is useful when running multiple simulations in a loop, so that one simulation
error will not stop a script or function from continuing.

If you specify an array of input objects, the sim commands runs with CaptureErrors
enabled. If an error occurs, the error messages are included in the

 sim

2-461

Simulink.SimulationMetadata object for the simulation, as well as simulation data
up to the point of the failure.

This option is not available for simulation in SIL and PIL modes.
Example: 'CaptureErrors','on'

ConcurrencyResolvingToFileSuffix — Append suffix to model name
character vector

(Rapid Accelerator mode only) Appends this suffix character vector to the filename of a
model (before the file extension) if:

• The model contains a To File block.
• You call the sim command from parfor.

Example: 'ConcurrencyResolvingToFileSuffix','model'

Debug — Run simulation in debug mode
off (default) | on | cmds

Starts the simulation in debug mode (see “Debugger Graphical User Interface” for more
information). The value of this option can be a cell array of commands to be sent to the
debugger after it starts.
Example: 'Debug','on'

LoggingFileName — Specify name of MAT-file to log data
out.mat (default) | character vector

Use when you enable the LoggingToFile name-value pair for logging to persistent
storage. Specify the destination MAT-file for data logging.

Tip Do not use a file name from one locale in a different locale.

Example: 'LoggingFileName','out.mat'

LoggingToFile — Log simulation data to MAT-file
off (default) | on

Store logged data that uses Dataset format to persistent storage (MAT-file).

2 Functions — Alphabetical List

2-462

Use this feature when logging large amounts of data that can cause memory issues. For
details, see “Log Data to Persistent Storage”.

Tip To avoid running out of memory when accessing stored data, you can use a reference
to access the object stored in the MAT-file. Use a
Simulink.SimlationData.DatasetRef object to access stored data by reference.
Using this object loads signal logging and states data into the model workspace
incrementally (signal by signal). Accessing data for other kinds of logging loads all of the
data at once.

Example: 'LoggingToFile','on'

RapidAcceleratorParameterSets — Pass run-time parameters directly to Rapid
Accelerator simulations
structure

(Rapid Accelerator mode only) Returns structure that contains run-time parameters for
running Rapid Accelerator simulations in parfor.
Example: 'RapidAcceleratorParameterSets',parameterSet(idx)

RapidAcceleratorUpToDateCheck — Perform up-to-date check before simulation
on (default) | off

(Rapid Accelerator mode only) Enables/disables up-to-date check. If you set this value to
'off', Simulink does not perform an up-to-date check. It skips the start/stop callbacks in
blocks. If you call the sim command from parfor, set this value to 'off'.

When you set this option to 'off', changes that you make to block parameter values in
the model (for example, by using block dialog boxes, by using the set_param function, or
by changing the values of MATLAB variables) do not affect the simulation. Instead, use
RapidAcceleratorParameterSets to pass new parameter values directly to the
simulation.
Example: 'RapidAcceleratorUpToDateCheck','off'

SrcWorkspace — Workspace in which to evaluate MATLAB expressions
base (default) | current | parent

Specifies the workspace in which to evaluate MATLAB expressions defined in the model.
Setting SrcWorkspace has no effect on a referenced model that executes in Accelerator

 sim

2-463

mode. Setting SrcWorkspace to current within a parfor loop causes a transparency
violation.
Example: 'SrcWorkspace','current'

TimeOut — Maximum simulation run time
positive scalar

Specify the time, in seconds, to allow the simulation to run. If you run your model for a
period longer than the value of TimeOut, the software issues a warning and stops the
simulation. TimeOut refers to the time spent for a simulation.
Example: 'TimeOut',60

Trace — Enables simulation tracing facilities
minstep | siminfo | compile

Enables simulation tracing facilities (specify one or more as a comma-separated list):

• 'minstep' specifies that simulation stops when the solution changes so abruptly that
the variable-step solvers cannot take a step and satisfy the error tolerances.

• 'siminfo' provides a short summary of the simulation parameters in effect at the
start of simulation.

• 'compile' displays the compilation phases of a block diagram model.

By default, Simulink issues a warning message and continues the simulation.
Example: 'Trace','minstep','Trace','siminfo','Trace','compile'

Output Arguments
simOut — Simulation object containing logged simulation results
object

Simulink.SimulationOutput object that contains all of the logged simulation results.

All simulation outputs (logged time, states, and signals) are returned in a single
Simulink.SimulationOutput object. You define the model time, states, and output
that is logged using the Data Import/Export pane of the Model Configuration
Parameters dialog box. You can log signals using blocks such as the To Workspace and
Scope blocks. The Signal & Scope Manager can directly log signals.

2 Functions — Alphabetical List

2-464

Note The output of the sim command always returns to SimOut, the single simulation
output object. The simulation output object in turn, is returned to the workspace.

Definitions

Backward-Compatible Syntax
Starting with R2009b, the sim command was enhanced to provide greater compatibility
with parallel computing. The improved single-output format saves all simulation results to
a single object, simplifying the management of output variables.

For backward compatibility with R2009a or earlier releases, use the backward-compatible
syntax:

[T,X,Y] = sim('model',Timespan, Options, UT)
[T,X,Y1,...,Yn] = sim('model',Timespan, Options, UT)

If you specify only the model argument, Simulink automatically saves the time, state, and
output to the specified output arguments.

If you do not specify any output arguments, Simulink determines what data to log based
on the settings for the Configuration Parameters > Data Import/Export pane.
Simulink stores the simulation output either in the current workspace or in the variable
ans, based on the setting for Save simulation output as a single object parameter.

Argument Description
T The time vector returned.
X The state returned in matrix or structure format. The state matrix

contains continuous states followed by discrete states.
Y The output returned in matrix or structure format. For block

diagram models, this variable contains all root-level blocks.
Y1,...,Yn The outports, which can only be specified for diagram models.

Here, n must be the number of root-level blocks. Each outport will
be returned in the Y1,...,Yn variables.

'model' The name of the model to simulate.

 sim

2-465

Argument Description
Timespan The timespan can be TFinal, [TStart TFinal], or [TStart

OutputTimes TFinal]. Output times are time points returned in
T, but in general, T includes additional time points.

Options Optional simulation parameters created in a structure by the
simset command using name-value pairs.

UT Optional external inputs. For supported expressions, see “Load
Data to Root-Level Input Ports”.

Simulink requires only the model argument. Simulink takes all defaults from the block
diagram, including unspecified options. If you specify any optional arguments, your
specified settings override the settings in the block diagram.

Specifying an input argument of sim as the empty matrix, [], causes Simulink to use
the default for that argument.

This command simulates the Van der Pol equations, using the vdp model. The command
uses all default parameters.

[t,x,y] = sim('vdp')

This command simulates the Van der Pol equations, using the parameter values
associated with the vdp model, but defines a value for the Refine parameter.

[t,x,y] = sim('vdp', [], simset('Refine',2));

This command simulates the Van der Pol equations for 1,000 seconds, saving the last 100
rows of the return variables. The simulation outputs values for t and y only, but saves the
final state vector in a variable called xFinal.

[t,x,y] = sim('vdp', 1000, simset('MaxRows', 100,
 'OutputVariables', 'ty', 'FinalStateName', 'xFinal'));

Tips
• Parameters specified using the sim command override the values defined in the

Model Configuration Parameters dialog box. The software restores the original
configuration values at the end of simulation.

2 Functions — Alphabetical List

2-466

• In the case of a model with a model reference block, the parameter specifications are
applied to the top model.

• When simulating a model with infinite stop time, to stop the simulation, you must
press Ctrl+C. Note that Ctrl+C breaks the simulation and the simulation results are
not saved in workspace.

• To specify the time span for a simulation, you must specify the StartTime and
StopTime parameters.

• To log the model time, states, or outputs, use the Data Import/Export pane of the
Model Configuration Parameters dialog box.

• To log signals, either use a block such as the To Workspace block or the Scope block,
or use the Signal and Scope Manager to log results directly.

• To get a list of simulation parameters for the model vdp, in the MATLAB Command
Window, enter:

configSet = getActiveConfigSet('vdp')
configSetNames = get_param(configSet, 'ObjectParameters')

This command lists several object parameters, including simulation parameters such
as 'StopTime', 'SaveTime', 'SaveState', 'SaveOutput', and
'SignalLogging'.

See Also
Functions
Simulink.ConfigSet | Simulink.SimulationInput |
Simulink.SimulationOutput | parsim | sldebug

Blocks
Scope | To Workspace

Topics
“Run Simulations Programmatically”
“Run Multiple Simulations”
“About Configuration Sets”
“Configuration Parameters Dialog Box Overview”
“Log Data to Persistent Storage”
“Model Parameters” on page 6-2

 sim

2-467

Introduced before R2006a

2 Functions — Alphabetical List

2-468

simplot
Redirects to the Simulation Data Inspector

Note simplot will be removed in a future release. Use the Simulation Data Inspector
instead.

Syntax
simplot

Description
simplot redirects to the Simulation Data Inspector and returns empty handles. This
function is no longer supported and has been replaced by the Simulation Data Inspector.
Use the Simulation Data Inspector button in the Simulink Editor to capture simulation
output in the Simulation Data Inspector. Programmatically, use the function
Simulink.sdi.view instead.

See Also
Simulink.sdi.view

 simplot

2-469

Simulation Manager
Monitor multiple simulations in one window

Description
Simulation Manager allows you to monitor the status of multiple simulations. Using this
app, you can:

• View the progress of the simulations in a high-level grid view or a detailed list view.
• Find the simulations that error out.
• Abort simulations.
• Select a simulation run and open the model in Simulink, with all of the simulation's

settings applied to the model.
• View simulation results in the Simulation Data Inspector.

Open the Simulation Manager App
• sim command – Set the argument ShowSimulationManager to on.
• parsim command – Set the argument ShowSimulationManager to on with Parallel

Computing Toolbox. parsim command uses a SimulationInput object to run
simulations. For more information, see Simulink.SimulationInput.

out = parsim(in, 'ShowSimulationManager', 'on')
• To reopen the Simulation Manager, use the command

openSimulationManager('modelName'). This command lets you reopen the last
running session.

Note You can use this command to reopen the Simulation Manager, if you close the
window unintentionally.

2 Functions — Alphabetical List

2-470

Examples

Open Simulation Manager
Open the model sldemo_suspn_3dof and create a set of sweep values.

mdl = 'sldemo_suspn_3dof';
open_system(mdl);
Cf_sweep = Cf*(0.05:0.1:0.95);
numSims = length(Cf_sweep);

Create an array of Simulink.SimulationInput objects to modify the block parameter
Road-Suspension Interaction with the sweep values.
for i = numSims:-1:1
 in(i) = Simulink.SimulationInput(mdl);
 in(i) = setBlockParameter(in(i), [mdl '/Road-Suspension Interaction'], 'Cf', num2str(Cf_sweep(i)));
end

Run multiple simulations and open the Simulation Manager to monitor them.

out = parsim(in, 'ShowSimulationManager', 'on')

In the absence of Parallel Computing Toolbox, the simulations run in serial.

Using Simulation Manager
Once you run the parsim command, the Simulation Manager UI opens up as follows:

 Simulation Manager

2-471

The progress bar on top right is color coded based on the status of the simulations.

You can view all the multiple simulations in a detailed list view. This view gives you an

option to add or delete columns. Use the button, , to choose which columns to display.
You can also sort the colums based on your preference.

2 Functions — Alphabetical List

2-472

You can view more information about a particular run by clicking on it. When you click on
a run, simulation details appear at the bottom of the window.

 Simulation Manager

2-473

To hide the details of the selected run, click the Simulation Details button, .

2 Functions — Alphabetical List

2-474

Open Selected button, , allows you to open the model with the specifications of the
selected run.

You can view the results of one or more runs in the Simulation Data Inspector by clicking

the Show Results button, . Clicking on Show Results creates a Simulation Data
Inspector run from the Simulin.SimulationOutput object and is displayed in Simulink
Data Inspector. You can also return your results in the Simulin.SimulationOutput
object.

To stop the job at the beginning of your simulations, you can use the Stop Job button,

.

See Also
Functions
Simulink.SimulationInput | applyToModel | parsim | setBlockParameter |
setExternalInput | setInitialState | setModelParameter | setPostSimFcn |
setPreSimFcn | setVariable | sim | validate

Topics
“Parallel Simulations Workflow”
“Run Multiple Simulations”

 Simulation Manager

2-475

simulink
Open Simulink Start Page

Syntax
simulink

Description
simulink opens the Simulink Start Page. Choose a model or project template, or browse
the examples. See “Create and Open Models”.

The behavior of the simulink function changed in R2016a. Formerly it opened the
Simulink Library Browser and loaded the Simulink block library. If you wish to preserve
that behavior, use slLibraryBrowser instead to open the Library Browser, or
load_system simulink to load the Simulink block library.

If you want to start Simulink without opening the Library Browser or Start Page, use the
faster start_simulink instead.

See Also
slLibraryBrowser | start_simulink

Topics
“Create and Open Models”
“Modeling”

Introduced before R2006a

2 Functions — Alphabetical List

2-476

simulinkproject
Open Simulink Project and get project object

Syntax
simulinkproject
simulinkproject(projectPath)

proj = simulinkproject
proj = simulinkproject(projectPath)

Description
simulinkproject opens Simulink Project or brings focus to the tool if it is already open.
After you open the tool, you can create new projects or access recent projects using the
Simulink Project tab.

simulinkproject(projectPath) opens the Simulink project specified by any file or
folder under the project root in projectPath and gives focus to Simulink Project.

proj = simulinkproject returns a project object proj you can use to manipulate the
project at the command line. You need to get a project object before you can use any of
the other project functions.

If you want to avoid giving focus to Simulink Project in your startup script, specify an
output argument.

To avoid your startup script opening windows that take focus away from the MATLAB
Desktop, use start_simulink instead of the simulink function, and use
simulinkproject with an output argument instead of uiopen.

proj = simulinkproject(projectPath) opens the Simulink project specified by
projectPath and returns a project object.

 simulinkproject

2-477

Examples

Open Simulink Project Tool

Open the Simulink Project Tool.

simulinkproject

Open a Simulink Project

Specify either the .prj file path or the folder that contains your .SimulinkProject
folder and .prj file. The project opens and brings focus to Simulink Project.

simulinkproject('C:/projects/project1/')

Open a Simulink Project and Get a Project Object

Open a specified project and get a project object to manipulate the project at the
command line. To avoid your startup script opening windows that take focus away from
the MATLAB Desktop, use start_simulink instead of the simulink function, and use
simulinkproject with an output argument instead of uiopen. If you use
uiopen(myproject.prj) this calls simulinkproject with no output argument and
gives focus to Simulink Project.

start_simulink
proj = simulinkproject('C:/projects/project1/myproject.prj')

Get Airframe Example Project

Open the Airframe project and create a project object to manipulate and explore the
project at the command line.

sldemo_slproject_airframe
proj = simulinkproject

proj =

2 Functions — Alphabetical List

2-478

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Information: [1x1 slproject.Information]
 Dependencies: [1x1 slproject.Dependencies]
 Categories: [1×1 slproject.Category]
 Files: [1×31 slproject.ProjectFile]
 Shortcuts: [1×7 slproject.Shortcut]
 ProjectPath: [1×7 slproject.PathFolder]
ProjectReferences: [1×0 slproject.ProjectReference]
 StartupFiles: [1×0 slproject.StartupFile]
 ShutdownFiles: [1×0 slproject.ShutdownFile]
 RootFolder: 'C:\slexamples\airframe11'

Find Project Commands

Find out what you can do with your project.

methods(proj)

Methods for class slproject.ProjectManager:

addFile
addFolderIncludingChildFiles
addPath
addReference
addShortcut
addShutdownFile
addStartupFile
close
createCategory
export
findCategory
findFile
isLoaded
listModifiedFiles
listRequiredFiles
refreshSourceControl
reload
removeCategory
removeFile
removePath

 simulinkproject

2-479

removeReference
removeShortcut
removeShutdownFile
RemoveStartupFile

Examine Project Properties Programmatically

After you get a project object using the simulinkproject function, you can examine
project properties.

Examine the project files.

files = proj.Files

files =

 1x31 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Use indexing to access files in this list. The following command gets file number 14. Each
file has properties describing its path, attached labels, and source control information.

proj.Files(15)

ans =

 ProjectFile with properties:

 Path: 'C:\slexamples\airframe24\models\DigitalControl.slx'
 Labels: [1x1 slproject.Label]
 Revision: '2'
 SourceControlStatus: Unmodified

Examine the labels of the file.

proj.Files(15).Labels

ans =

2 Functions — Alphabetical List

2-480

 Label with properties:

File: 'C:\slexamples\airframe24\models\DigitalControl.slx'
 DataType: 'none'
 Data: []
 Name: 'Design'
 CategoryName: 'Classification'

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\slexamples\airframe24\models\AnalogControl.mdl'
 Labels: [1×1 slproject.Label]
 Revision: '2'
 SourceControlStatus: Unmodified

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel findLabel removeLabel

Update the file dependencies.

update(proj.Dependencies)

The project runs a dependency analysis to update the known dependencies between
project files.

For more information on working with project files, including modified files and
dependencies, see “Automate Simulink Project Tasks Using Scripts”.

• “Automate Simulink Project Tasks Using Scripts”
• “Create a New Project From a Folder”
• “Open Recent Projects”
• “Retrieve a Working Copy of a Project from Source Control”

 simulinkproject

2-481

Input Arguments
projectPath — Full path to project file or folder
character vector

Full path to project .prj file, or the path to the project root folder, or any subfolder or file
under your project root, specified as a character vector.
Example: 'C:/projects/project1/myProject.prj'
Example: 'C:/projects/project1/'

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently
open Simulink project at the command line.

Properties of proj output argument.

Project Property Description
Categories Categories of project labels
Dependencies Dependencies between project files in a

MATLAB digraph object
Files Paths and names of project files
Information Information about the project such as the

description, source control integration,
repository location, and whether it is a top-
level project

Name Project name
ProjectPath Folders that the project puts on the

MATLAB path
ProjectReferences Folders that contain referenced projects.

Contains read-only project objects for
referenced projects.

2 Functions — Alphabetical List

2-482

Project Property Description
RootFolder Full path to project root folder
Shortcuts An array of the shortcuts in this project
ShutdownFiles An array of the shutdown files in this

project
StartupFiles An array of the startup files in this project

Tips
Alternatively, you can use slproject.loadProject to load a project, and
slproject.getCurrentProjects to get a project object. Use simulinkproject to
open projects and explore projects interactively. Use slproject.getCurrentProjects
and slproject.loadProject for project automation scripts.

See Also
Functions
addFile | addFolderIncludingChildFiles | addLabel | addPath | addReference
| addShortcut | createCategory | findFile | findLabel | listModifiedFiles |
refreshSourceControl | removeFile | slproject.create |
slproject.getCurrentProjects | slproject.loadProject | start_simulink

Topics
“Automate Simulink Project Tasks Using Scripts”
“Create a New Project From a Folder”
“Open Recent Projects”
“Retrieve a Working Copy of a Project from Source Control”
“What Are Simulink Projects?”

Introduced in R2012a

 simulinkproject

2-483

Simulink.allBlockDiagrams
Find loaded Simulink models and libraries

Syntax
bd = Simulink.allBlockDiagrams()
bd = Simulink.allBlockDiagrams(type)

Description
bd = Simulink.allBlockDiagrams() returns all loaded block diagrams, including
models and libraries.

bd = Simulink.allBlockDiagrams(type) returns either models or libraries.

Examples

Find Loaded Models

Find all loaded models in the current Simulink session, excluding libraries. The example
shows a result from a typical session.

Simulink.allBlockDiagrams('model')

ans =

 237.0001
 56.0001
 2.0001

2 Functions — Alphabetical List

2-484

Get Names of Loaded Block Diagrams

Find all loaded models in the current Simulink session and return results as names. Use
Simulink.allBlockDiagrams with get_param to get the names. The example shows a
result from a typical session and includes loaded libraries and models.

get_param(Simulink.allBlockDiagrams(),'Name')

ans =

 5×1 cell array

 {'simulink_extras'}
 {'simulink' }
 {'sldemo_fuelsys' }
 {'f14' }
 {'vdp' }

Get Loaded Block Diagrams Based on Parameter

Find all loaded models in the current Simulink session whose 'Dirty' parameter is
'on'.

bds = Simulink.allBlockDiagrams();
dirtyBds = bds(strcmp(get_param(bds,'Dirty'),'on'));

Input Arguments
type — Type of block diagram whose blocks to return
'model' | 'library'

Type of block diagram whose blocks to return, specified as 'model' or 'library'.

Output Arguments
bd — Loaded block diagrams
array of handles

Loaded block diagrams, returned as an array of handles.

 Simulink.allBlockDiagrams

2-485

See Also
Simulink.FindOptions | Simulink.findBlocks | Simulink.findBlocksOfType

Introduced in R2018a

2 Functions — Alphabetical List

2-486

Simulink.architecture.add
Add tasks or triggers to selected architecture of model

Syntax
Simulink.architecture.add(Type,Object)

Description
Simulink.architecture.add(Type,Object) adds the new task or trigger Object of
the specified Type to a model.

Examples

Add periodic trigger

Add a task, MyTask1, to the software node MulticoreProcessor of the selected
architecture of the slexMulticoreExample model.
slexMulticoreExample;
Simulink.architecture.add('Task','slexMulticoreExample/MulticoreProcessor/Core2/MyTask1');

Input Arguments
Type — Object type
'PeriodicTrigger' | 'AperiodicTrigger' | 'Task'

Object type that identifies the kind of trigger or task to add, , specified as a
'PeriodicTrigger', 'AperiodicTrigger', or 'Task'.

• 'PeriodicTrigger'

Adds a periodic trigger to the architecture. Set the properties of the trigger with the
Simulink.architecture.set_param function.

 Simulink.architecture.add

2-487

• 'AperiodicTrigger'

Adds an aperiodic trigger to the architecture. Set the properties of the trigger with the
Simulink.architecture.set_param function.

• 'Task'

Adds a task to the architecture. Set the properties of the task with the
Simulink.architecture.set_param function.

Object — Trigger or task object identifier
character vector

Trigger or task object identifier to add to architecture, specified as a character vector.
Example: 'slexMulticoreExample/MulticoreProcessor/Core2/MyTask1'
Data Types: char

See Also
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

2 Functions — Alphabetical List

2-488

Simulink.architecture.config
Create or convert configuration for concurrent execution

Syntax
Simulink.architecture.config(model,'Convert')
Simulink.architecture.config(model,'Add')
Simulink.architecture.config(model,'OpenDialog')

Description
Simulink.architecture.config(model,'Convert') converts the active
configuration set in the specified model to one for concurrent execution.

Simulink.architecture.config(model,'Add') adds and activates a new
configuration set for concurrent execution.

Simulink.architecture.config(model,'OpenDialog') opens the Concurrent
Execution dialog box for a model configuration.

Examples

Convert existing configuration set

Convert existing configuration set for concurrent execution in the model vdp.

vdp;
Simulink.architecture.config('vdp','Convert');

Add new configuration set

Add a new configuration set (copied from the existing configuration set) for concurrent
execution in the model vdp.

 Simulink.architecture.config

2-489

vdp;
Simulink.architecture.config('vdp','Add');

Open Concurrent Execution dialog box

Open the Concurrent Execution dialog box in the model slexMulticoreExample.

slexMulticoreExample;
Simulink.architecture.config('slexMulticoreExample','OpenDialog');

Input Arguments
model — Model name
character vector

Model name whose configuration set you want to convert or add to, specified as a
character vector.
Example:
Data Types: char

See Also
Simulink.architecture.add | Simulink.architecture.profile |
Simulink.architecture.set_param

Introduced in R2014a

2 Functions — Alphabetical List

2-490

signalBuilderToSignalEditor
Import signal data and properties from Signal Builder block to Signal Editor block

Syntax
signal_editor = signalBuilderToSignalEditor(signal_builder,Name,
Value)
[signal_editor,sorted_group_index,sorted_group_names] =
signalBuilderToSignalEditor(signal_builder,Name,Value)

Description
signal_editor = signalBuilderToSignalEditor(signal_builder,Name,
Value) imports signal data and properties from Signal Builder block to the Signal Editor
block. This function adds a Signal Editor block to the current model using the signal data
and properties from the Signal Builder block.

During the port, the signalBuilderToSignalEditor function:

• Orders signal groups alphabetically.
• Removes spaces from group names.
• Creates unique group names from existing names following MATLAB conventions.

The signalBuilderToSignalEditor function does not support models that contain
test case parameters. You can successfully port data from the Signal Builder block, but
you cannot initialize parameters with the Signal Editor block in test harnesses generated
by Simulink Design Verifier.

[signal_editor,sorted_group_index,sorted_group_names] =
signalBuilderToSignalEditor(signal_builder,Name,Value) outputs vectors
containing the signal groups and group names.

Examples

 signalBuilderToSignalEditor

2-491

Replace Signal Builder block with Signal Editor block

Replace existing Signal Builder block with Signal Editor block. To store signals from
Signal Builder, use RoadProfiles.mat.

model = 'sldemo_suspn_3dof';
open_system(model);
sbBlockH = [model '/Road Profiles'];
seBlockH = signalBuilderToSignalEditor(sbBlockH,...
'Replace',true,'FileName','RoadProfiles.mat');

Replace Signal Builder block with Signal Editor block and return signal groups
and names

Replace existing Signal Builder block with Signal Editor block and return ordered list of
signal group indices and names. To store signals from Signal Builder, use
RoadProfiles.mat.

model = 'sldemo_suspn_3dof';
open_system(model);
sbBlockH = [model '/Road Profiles'];
[seBlockH, sorted_group, sorted_group_names] = signalBuilderToSignalEditor(sbBlockH,...
'Replace',true,'FileName','RoadProfiles.mat');
>> test1

Input Arguments
signal_builder — Signal Builder block to replace
current model (default) | scalar

Signal Builder block to replace, specified as a scalar.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

2 Functions — Alphabetical List

2-492

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FileName','RoadProfiles.mat'

FileName — MAT-file that stores signals
'dataset.mat' (default) | scalar

MAT-file that stores signals and properties, specified as a scalar. Do not use a file name
from one locale in a different locale. When using the block on multiple platforms, consider
specifying just the MAT-file name and having the MAT-file be on the MATLAB path.
Data Types: char | string

Replace — Replace Signal Builder block with Signal Editor block
false (default) | true

Replace Signal Builder block with Signal Editor block, specified as true or false.
Data Types: logical

Output Arguments
signal_editor — Signal Editor block handle
scalar

Signal Editor block handle, specified as a scalar.

sorted_group_index — List of Signal Builder group indices
vector

List of Signal Builder group indices, specified as a vector and ordered as they will appear
in the Signal Editor.

sorted_group_names — List of Signal Builder group names
cell array

Signal Editor group names, specified as a cell array of vectors, in alphabetical order.

The names are unique valid MATLAB variable names generated from the Signal Builder
group names.

.

 signalBuilderToSignalEditor

2-493

See Also
Signal Editor | Signal Builder | signalEditor | signalbuilder

Introduced in R2018a

2 Functions — Alphabetical List

2-494

Simulink.architecture.delete
Delete triggers and tasks from selected architecture of model

Syntax
Simulink.architecture.delete(Object)

Description
Simulink.architecture.delete(Object) deletes the specified object trigger or
task.

Examples

Delete task Plant

Delete the task Task3 from the Core2 periodic trigger of the MulticoreProcessor software
node of the selected architecture of the slexMulticoreExample model.

slexMulticoreExample
Simulink.architecture.delete('slexMulticoreExample/MulticoreProcessor/Core2/Task3')

Input Arguments
Object — Object to delete, specified as a character vector
character vector

Object to be deleted. Possible objects are:

• Periodic trigger

 Simulink.architecture.delete

2-495

Note You cannot delete the last periodic trigger. The software node must contain at
least one periodic trigger.

• Aperiodic trigger
• Task

Example: [bdroot '/MulticoreProcessor/Core2/Task3']
Data Types: char

See Also
Simulink.architecture.add | Simulink.architecture.find_system |
Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register

Introduced in R2014a

2 Functions — Alphabetical List

2-496

Simulink.architecture.find_system
Find objects under architecture object

Syntax
object = Simulink.architecture.find_system(RootObject)

object = Simulink.architecture.find_system(RootObject,ParamName,
ParamValue)

Description
object = Simulink.architecture.find_system(RootObject) looks for all
objects under RootObject.

object = Simulink.architecture.find_system(RootObject,ParamName,
ParamValue) returns the object in RootObject whose parameter ParamName has the
value ParamValue. Parameter name and value character vectors are case-sensitive.

Examples

Look for all objects

To find all the objects in slexMulticoreExample:

slexMulticoreExample
t = Simulink.architecture.find_system('slexMulticoreExample')

t =

 'slexMulticoreExample'
 'slexMulticoreExample/MulticoreProcessor'
 'slexMulticoreExample/MulticoreProcessor/Core1'
 'slexMulticoreExample/MulticoreProcessor/Core1/Task1'
 'slexMulticoreExample/MulticoreProcessor/Core1/Task2'

 Simulink.architecture.find_system

2-497

 'slexMulticoreExample/MulticoreProcessor/Core2'
 'slexMulticoreExample/MulticoreProcessor/Core2/Task3'
 'slexMulticoreExample/MulticoreProcessor/Core2/Task4'

Look for all tasks

To find all the tasks in slexMulticoreExample:

slexMulticoreExample
t = Simulink.architecture.find_system('slexMulticoreExample','Type','Task')

t =

 'slexMulticoreExample/MulticoreProcessor/Core1/Task1'
 'slexMulticoreExample/MulticoreProcessor/Core1/Task2'
 'slexMulticoreExample/MulticoreProcessor/Core2/Task3'
 'slexMulticoreExample/MulticoreProcessor/Core2/Task4'

Input Arguments
RootObject — Object to search
character vector

Object to search for parameter value, specified as a character vector giving the object full
path name. Possible objects are:

• Model
• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

Example: 'slexMulticoreExample'

ParamName — Name of parameter to find
character vector | scalar | vector

Name of the parameter to find. Possible values are:

2 Functions — Alphabetical List

2-498

• 'Name'
• 'Type'
• 'ClockFrequency'
• 'Color'
• 'Period'
• 'EventHandlerType'
• 'SignalNumber'
• 'EventName'

Example: 'EventName'

ParamValue — Parameter value to find
character vector | scalar | vector

Parameter value to find, specified as a character vector, a scalar, or a vector.
Example: 'ERTDefaultEvent'

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

 Simulink.architecture.find_system

2-499

Simulink.architecture.get_param
Get configuration parameters of architecture objects

Syntax
ParamValue = Simulink.architecture.get_param(Object,ParamName)

Description
ParamValue = Simulink.architecture.get_param(Object,ParamName) returns
the value of the specified parameter for the object, Object. ParamName is case-sensitive.

Examples

Get period

Get the period of task Task3 of trigger Core2 of software node MulticoreProcessor of the
selected architecture for the model slexMulticoreExample.
slexMulticoreExample;
p = Simulink.architecture.get_param('slexMulticoreExample/MulticoreProcessor/Core2/Task3','Period')

p =

0.2

Input Arguments
Object — Object whose parameter value to return
character vector

Object whose parameter value to return, specified as a character vector giving the object
full path name. Possible objects are:

2 Functions — Alphabetical List

2-500

• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

ParamName — Parameter whose value to return
character vector

Name of a parameter for which Simulink.architecture.get_param returns a value.

The following are the possible ParamName values:

For a model:

• 'ArchitectureName'
• 'Type'

For a software node:

• 'Name'
• 'Type'

For a hardware node

• 'Name'
• 'ClockFrequency'
• 'Color'
• 'Type'

For a periodic trigger:

• 'Name'
• 'Period'
• 'Color'
• 'Type'

For an aperiodic trigger:

 Simulink.architecture.get_param

2-501

• 'Name'
• 'Color'
• 'EventHandlerType'
• 'SignalNumber'
• 'EventName'
• 'Type'

For a task:

• 'Name'
• 'Period'
• 'Color'
• 'Type'

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

2 Functions — Alphabetical List

2-502

Simulink.architecture.importAndSelect
Import and select target architecture for concurrent execution environment for model

Syntax
Simulink.architecture.importAndSelect(model,Architecture)

Simulink.architecture.importAndSelect(model,
CustomArchitectureDescriptionFile)

Description
Simulink.architecture.importAndSelect(model,Architecture) imports and
selects the built-in target architecture for the concurrent execution environment for the
model.

Importing and selecting target architectures requires that the associated support
packages or hardware is installed on your computer.

Simulink.architecture.importAndSelect(model,
CustomArchitectureDescriptionFile) imports and selects the architecture from an
XML-based architecture description file.

Importing and selecting target architectures requires that the associated support
packages or hardware is installed on your computer.

Examples

Import and select a different architecture

Import and select the sample architecture to the model slexMulticoreExample.

 Simulink.architecture.importAndSelect

2-503

slexMulticoreExample
Simulink.architecture.importAndSelect('slexMulticoreExample','Sample Architecture')

Import and select a custom architecture

Import and select the custom architecture defined in the XML file custom_arch.xml.
This example requires you to create a custom_arch.xml file first.

slexMulticoreExample
Simulink.architecture.importAndSelect('slexMulticoreExample','custom_arch.xml')

Input Arguments
model — Model
character vector

Model to import architecture to, specified as a character vector.
Data Types: char

Architecture — Target architecture name
character vector

Target architecture name to import into the concurrent execution environment for the
model. Possible target names are:

Property Description
'Multicore' Single CPU with multiple cores
'Sample Architecture' Example architecture consisting of single CPU

with multiple cores and two FPGAs. You can use
this architecture to model for concurrent
execution.

'Simulink Real-Time' Simulink Real-Time™ target
'Xilinx Zynq ZC702 evaluation
kit'

Xilinx® Zynq® ZC702 evaluation kit target

'Xilinx Zynq ZC706 evaluation
kit'

Xilinx Zynq ZC706 evaluation kit target

2 Functions — Alphabetical List

2-504

Property Description
'Xilinx Zynq Zedboard' Xilinx Zynq ZedBoard™ target

Data Types: char

CustomArchitectureDescriptionFile — Custom target architecture file
XML file

Custom target architecture file name, in XML format, that describes a custom target for
the concurrent execution environment for the model, specified as a character vector
giving the XML file name.
Example: custom_arch.xml

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.profile |
Simulink.architecture.register | Simulink.architecture.set_param

Topics
“Define a Custom Architecture File”

Introduced in R2014a

 Simulink.architecture.importAndSelect

2-505

Simulink.architecture.profile
Generate profile report for model configured for concurrent execution

Syntax
Simulink.architecture.profile(model)
Simulink.architecture.profile(model,numSamples)

Description
Simulink.architecture.profile(model) generates a profile report for a model
configured for concurrent execution. Subsequent calls to the command for the same
model name overwrite the existing profile report.

Simulink.architecture.profile(model,numSamples) specifies the number of
samples to generate a profile report.

Examples

Generate profile report

Generate profile report for the model slexMulticoreExample.

slexMulticoreExample;
Simulink.architecture.profile('slexMulticoreExample');

The command creates the file slexMulticoreExample_ProfileReport.html in the
current folder and opens it.

Generate profile report for 120 time steps

Generate profile report for the model slexMulticoreExample with data for 120 time
steps.

2 Functions — Alphabetical List

2-506

slexMulticoreExample;
Simulink.architecture.profile('slexMulticoreExample',120);

The command creates the file slexMulticoreExample_ProfileReport.html in the
current folder.

Input Arguments
model — Model to profile
character vector

Model to profile, specified as a character vector. Specify a model that is configured for
concurrent execution.
Data Types: char

numSamples — Number of time steps
100 (default) | real, positive integer

Number of time steps, specified as a real, positive integer. This value determines the
number of steps to collect data for in the profiled model.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.register
| Simulink.architecture.set_param

Topics
“Profile and Evaluate on a Desktop”

Introduced in R2014a

 Simulink.architecture.profile

2-507

Simulink.architecture.register
Add custom target architecture to concurrent execution target architecture selector

Syntax
Simulink.architecture.register(CustomArchFile)

Description
Simulink.architecture.register(CustomArchFile) adds an XML-format custom
target architecture file CustomArchFile to the concurrent execution target architecture
selector. To access this selector, click the Select button on the Concurrent Execution
pane of the Concurrent Execution dialog box.

Examples

Add custom target architecture

Add custom target architecture defined in the XML file custom_arch.xml to the
concurrent execution target architecture selector. This example requires you to create a
custom_arch.xml first.

slexMulticoreExample
Simulink.architecture.register('custom_arch.xml')

Input Arguments
CustomArchFile — Custom target architecture file
XML file

Custom target architecture file that describes a custom target for concurrent execution,
specified as an XML file.

2 Functions — Alphabetical List

2-508

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.set_param

Introduced in R2014a

 Simulink.architecture.register

2-509

Simulink.architecture.set_param
Set architecture object properties

Syntax
Simulink.architecture.set_param(Object,ParamName,ParamValue)

Description
Simulink.architecture.set_param(Object,ParamName,ParamValue) sets the
specified parameter of Object to the specified value. Parameter name and value
character vectors are case sensitive.

Examples

Set software node name

Set the software node name from MulticoreProcessor to MyCPUNewName.
slexMulticoreExample
Simulink.architecture.set_param([bdroot '/MulticoreProcessor'],'Name','MyCPUNewName');

Change Periodic

Set Core2 trigger period to .01.
slexMulticoreExample
Simulink.architecture.set_param([bdroot '/MyCPUNewName/Core2'],'Period','.01')

Input Arguments
Object — Object whose parameter value to set
character vector

2 Functions — Alphabetical List

2-510

Object whose parameter value to set, specified as a character vector giving the object full
path name. Possible objects are:

• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

ParamName — Name of the parameter to set
character vector

Name of parameter whose value to set.

These are the possible parameters whose values you can set for each of the object types:

For software node:

• 'Name' — Name of the software node.

For hardware node:

• 'Name' — Name of the hardware node.
• 'ClockFrequency' — Frequency of the hardware node clock.
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).

For a periodic trigger:

• 'Name' — Name of the trigger.
• 'Period' — Period of the trigger.
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).

For an aperiodic trigger:

• 'Name' — Name of the trigger.
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).
• 'EventHandlerType' — Trigger source for the interrupt-driven task. Possible

values:

 Simulink.architecture.set_param

2-511

• 'Event (Windows)'
• 'Posix Signal (Linux/VxWorks 6.x)'

• 'SignalNumber' — Signal number for the trigger. You can set this value only if
EventHandlerType is set to Event (Windows).

• 'EventName' — Event name for the trigger. You can set this value only if
EventHandlerType is set to Posix Signal (Linux/VxWorks 6.x).

For task:

• 'Name' — Name of the task.
• 'Period' — Period of the task.
• 'Color' — Color of the task icon, specified as an RGB triplet (vector).

Data Types: char

ParamValue — Value to set the parameter to
character vector | vector

Value to set the parameter to, specified as a character vector, scalar, or vector. The
possible values depend on the parameter.
Example: 'MyCPUNewName'

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register

Introduced in R2014a

2 Functions — Alphabetical List

2-512

Simulink.Block.getSampleTimes
Return sample time information for a block

Syntax
ts = Simulink.Block.getSampleTimes(block)

Input Arguments
block

Full name or handle of a Simulink block

Output Arguments
ts

The command returns ts which is a 1xn array of Simulink.SampleTime objects
associated with the model passed to Simulink.Block.getSampleTimes. Here n is the
number of sample times associated with the block. The format of the returns is:

1xn Simulink.SampleTime
Package: Simulink
value: [1x2 double]
Description: [char string]
ColorRGBValue: [1x3 double]
Annotation: [char string]
OwnerBlock: [char string]
ComponentSampleTimes: [1x2 struct]
Methods

• value — A two-element array of doubles that contains the sample time period and
offset

• Description — A character vector that describes the sample time type
• ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue

(RGB) values of the sample time color

 Simulink.Block.getSampleTimes

2-513

• Annotation — A character vector that represents the annotation of a specific sample
time (e.g., 'D1')

• OwnerBlock — For asynchronous and variable sample times, a character vector
containing the full path to the block that controls the sample time. For all other types
of sample times, an empty character vector.

• ComponentSampleTimes — A structure array of elements of the same type as
Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or
if the sample time is hybrid and the component sample times are available.

Description
ts = Simulink.Block.getSampleTimes(block) performs an update diagram and
then returns the sample times of the block connected to the input argument mdl/signal.
This method performs an update diagram to ensure that the sample time information
returned is up-to-date. If the model is already in the compiled state via a call to the model
API, then an update diagram is not necessary.

Using this method allows you to access all information in the Sample Time Legend
programmatically.

See Also
Simulink.BlockDiagram.getSampleTimes

Introduced in R2009a

2 Functions — Alphabetical List

2-514

Simulink.BlockDiagram.addBusToVector
Convert virtual bus signals into vector signals by adding Bus to Vector blocks

Syntax
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model)
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs)
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly)
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly,
strictOnly)

Description
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model) searches a model, excluding any
library blocks, for bus signals used implicitly as vectors, and returns the results of the
search.

[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs) searches a
model, and if includeLibs is true, includes in the search library blocks for bus signals
used implicitly as vectors.

[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly)
searches a model, and if reportOnly is set to false, then the function inserts a Bus to
Vector block into each bus that is used as a vector in any block that it searches. The
insertion replaces the implicit use of a bus as a vector with an explicit conversion of the
bus to a vector. The source and destination blocks of the signal do not change.

If Simulink.BlockDiagram.addBusToVector adds Bus to Vector blocks to the model
or any library, the function changes the saved copy of the diagram.

 Simulink.BlockDiagram.addBusToVector

2-515

If Simulink.BlockDiagram.addBusToVector changes a library block, the change
affects every instance of that block in every model that uses the library.

[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly,
strictOnly) searches a model, and if strictOnly is true, the function checks for
input bus signals used implicitly as vectors that are fed into one of these blocks. These
blocks cannot take virtual bus signals, but they can accept nonvirtual bus signals.

• Delay
• Selector
• Assignment
• Vector Concatenate
• Reshape
• Permute Dimensions

Examples

Insert Bus to Vector Block to Handle Bus Used as Vector

The ex_bus_to_mux_ng model simulates correctly, but the input to the Gain block is a
bus, while the output is a vector. Therefore, the Gain block uses a bus signal as a vector.

Open the model.

open_system(fullfile(matlabroot,'examples','simulink',...
'ex_bus_to_mux_ng'))

2 Functions — Alphabetical List

2-516

Insert a Bus to Vector block to convert the bus input signal for the Gain block to a vector
signal because the Gain block can accept only non-bus signals.

[blocks,busToVectors] = Simulink.BlockDiagram.addBusToVector(...
'ex_bus_to_mux_ng',true,false)

Processing block diagram 'ex_bus_to_mux_ng'
Number of blocks left that are connected to a bus being used as a vector: 1
Successfully inserted Bus to Vector Blocks in model. Preparing to save model and/or libraries
To eliminate modeling errors in the future, please enable strict bus modeling by setting the 'Bus signal treated as vector' diagnostic in the Configuration parameter dialog, Diagnostic/Connectivity tab to 'error'
Done processing block diagram 'ex_bus_to_mux_ng'

blocks =

 struct with fields:

 BlockPath: 'ex_bus_to_mux_ng/Gain'
 InputPort: 1
 LibPath: ''

busToVectors =

 cell

 'ex_bus_to_mux_ng/Bus to Vector'

The Gain block no longer implicitly converts the bus to a vector. The inserted Bus to
Vector block performs the conversion explicitly. The results of simulation are the same for
both models. The Bus to Vector block is virtual and does not affect simulation results,
code generation, or performance.

 Simulink.BlockDiagram.addBusToVector

2-517

Input Arguments
model — Model name or handle
character vector

Model name or handle, specified as a character vector.

includeLibs — Search library blocks
false (default) | true

Search library blocks, specified as false or true.

• false — Search only the blocks in the model.
• true — Search library blocks for bus signals used implicitly as vectors.

Specify as the second argument.
Data Types: logical

reportOnly — Report results without changing model
true (default) | false

Choice to report results without changing the model, specified as false or true.

• false — Update the model by inserting Bus to Vector blocks for bus signals that are
implicitly used as vectors.

• true — Report search results, but do not change the model.

2 Functions — Alphabetical List

2-518

Specify as the third argument. You must also specify the model and includeLibs
arguments.
Data Types: logical

strictOnly — Check input bus signals used implicitly as vectors that feed blocks
that can accept nonvirtual, but not virtual, bus signals
false (default) | true

Check input bus signals used implicitly as vectors that feed blocks that can accept
nonvirtual, but not virtual, bus signals, specified as false or true. If strictOnly is
true, the function checks for input bus signals used implicitly as vectors that are fed into
one of these blocks. These blocks cannot take virtual bus signals, but they can accept
nonvirtual bus signals.

• Delay
• Selector
• Assignment
• Vector Concatenate
• Reshape
• Permute Dimensions

Specify as the fourth argument. You must also specify the model, includeLibs, and
reportOnly arguments.
Data Types: logical

Output Arguments
destBlocks — Blocks connected to buses but that treat buses as vectors
array of structures

Blocks connected to buses that treat buses as vectors, returned as an array of structures.
Each structure in the array contains these fields:

• BlockPath — Character vector specifying the path to the block to which the bus
connects.

• InputPort — Integer specifying the input port to which the bus connects.

 Simulink.BlockDiagram.addBusToVector

2-519

• LibPath — If the block is a library block instance, and includeLibs is true, the
field value is the path to the source library block. Otherwise, LibPath is empty ([]).

busToVectorBlocks — Bus to Vector blocks added by function
cell array

Bus to Vector blocks added by the function, specified as a cell array. If reportOnly is set
to false, the cell array contains the paths to each Bus to Vector block that the function
added to replace buses used as vectors. Otherwise, busToVectorBlocks is empty ([]).

ignoredBlocks — Cases where function cannot insert Bus to Vector block
array of structures

Cases where function cannot insert Bus to Vector block, specified as an array of
structures. Each structure in the array contains these fields:

• BlockPath — Character vector specifying the path to the block to which the bus
connects.

• InputPort — Integer specifying the input port to which the bus connects.

These cases occur when a Bus to Vector cannot be inserted because the input virtual bus
signal consists of elements with mixed attributes.

Tips
• Before you execute this function:

1 Ensure that the model compiles without error.
2 Save the model.

• Back up the model and any libraries before calling the function with reportOnly set
to false.

• To preview the effects of the change on blocks in all models, call
Simulink.BlockDiagram.addBusToVector with includeLibs set to true and
reportOnly set to true. Then, examine the information returned in the destBlocks
output argument.

See Also
Bus to Vector

2 Functions — Alphabetical List

2-520

Introduced in R2007a

 Simulink.BlockDiagram.addBusToVector

2-521

Simulink.BlockDiagram.buildRapidAccelerato
rTarget
Build Rapid Accelerator target for model and return run-time parameter set

Syntax
rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(mdl)

Description
rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(mdl) builds a
Rapid Accelerator target for model, mdl, and returns run-time parameter set, rtp.

Input Arguments
mdl

Name or handle of a Simulink model

Output Arguments
rtp

Run-time parameter set that contains two elements:

Element Description
modelChecksum 1x4 vector that encodes the structure of the model.
parameters A structure of the tunable parameters in the model. This structure contains

the following fields.
Field Description

2 Functions — Alphabetical List

2-522

Element Description
dataTypeName The data type name, for example, double.
dataTypeId Internal data type identifier for use by Simulink Coder.
complex Complex type or real type specification. Value is 0 if real,

1 if complex.
dtTransIdx Internal data type identifier for use by Simulink Coder.
values All values associated with this entry in the parameters

substructure.
map Mapping structure information that correlates the values

to the model tunable parameters. This structure contains
the following fields.
Field Description
Identifier Tunable parameter name.
ValueIndice
s

Start and end indices into the values field,
[startIdx, endIdx].

Dimensions Dimension of this tunable parameter
(matrices are generally stored in column-
major format).

Examples

Build Rapid Accelerator Target for Model

In the MATLAB Command Window, type:
rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget('f14')

Building the rapid accelerator target for model: f14
Successfully built the rapid accelerator target for model: f14

rtp =

 Simulink.BlockDiagram.buildRapidAcceleratorTarget

2-523

 modelChecksum: [2.6812e+09 2.7198e+09 589261472 4.0180e+09]
 parameters: [1x1 struct]

See Also

Topics
“How Acceleration Modes Work”
“Choosing a Simulation Mode”
“Design Your Model for Effective Acceleration”

Introduced in R2012b

2 Functions — Alphabetical List

2-524

Simulink.BlockDiagram.copyContentsToSubs
ystem
Copy contents of block diagram to empty subsystem

Syntax
Simulink.BlockDiagram.copyContentsToSubsystem(bdiag, subsys)

Description
Simulink.BlockDiagram.copyContentsToSubsystem(bdiag, subsys) copies the
contents of the block diagram bdiag to the subsystem subsys. The block diagram and
subsystem must have already been loaded. The subsystem cannot be part of the block
diagram.

The function affects only blocks, lines, and annotations; it does not affect nongraphical
information such as configuration sets. You can use this function to convert a referenced
model derived from an atomic subsystem into an atomic subsystem that is equivalent to
the original subsystem.

This function cannot be used if the destination subsystem contains any blocks or signals.
Other types of information can exist in the destination subsystem and are not affected by
the function. Use Simulink.SubSystem.deleteContents if necessary to empty the
subsystem before using Simulink.BlockDiagram.copyContentsToSubsystem.

Input Arguments
bdiag

Block diagram name or handle

subsys

Subsystem name or handle

 Simulink.BlockDiagram.copyContentsToSubsystem

2-525

Examples
Copy the contents of vdp to an empty subsystem named vdp_subsystem that is in the
model named new_model_with_vdp:
open_system('vdp');
new_system('new_model_with_vdp')
open_system('new_model_with_vdp');
add_block('built-in/Subsystem', 'new_model_with_vdp/vdp_subsystem')
Simulink.BlockDiagram.copyContentsToSubsystem...
('vdp', 'new_model_with_vdp/vdp_subsystem')

See Also
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram |
Simulink.SubSystem.deleteContents

Topics
“Systems and Subsystems”
“Create a Subsystem”

Introduced in R2007a

2 Functions — Alphabetical List

2-526

Simulink.BlockDiagram.createSubsystem
Create subsystem containing specified set of blocks

Syntax
Simulink.BlockDiagram.createSubsystem(blocks)
Simulink.BlockDiagram.createSubsystem()

Description
Simulink.BlockDiagram.createSubsystem(blocks) creates a new subsystem and
moves the specified blocks into the subsystem. All of the specified blocks must originally
reside at the top level of the model or in the same existing subsystem within the model.

If any of the blocks have unconnected input ports, the command creates input port blocks
for each unconnected input port in the subsystem and connects the input port block to the
unconnected input port. The command similarly creates and connects output port blocks
for unconnected output ports on the specified blocks. If any of the specified blocks is an
input port, the command creates an input port block in the parent system and connects it
to the corresponding input port of the newly created subsystem. The command similarly
creates and connects output port blocks for each of the specified blocks that is an output
port block.

Simulink.BlockDiagram.createSubsystem() creates a new subsystem in the
currently selected model and moves the currently selected blocks in the current model to
the new subsystem.

Input Arguments
blocks

An array of block handles

Default: []

 Simulink.BlockDiagram.createSubsystem

2-527

Examples
This function converts the contents of a model or subsystem into a subsystem.

function convert2subsys(sys)
 blocks = find_system(sys, 'SearchDepth', 1);
 bh = [];
 for i = 2:length(blocks)
 bh = [bh get_param(blocks{i}, 'handle')];
 end
 Simulink.BlockDiagram.createSubsystem(bh);
end

For example, suppose you create this model and save it as initial_model.slx.

Execute this code to convert the model to create a subsystem:

convert2subsys('initial_model');

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.deleteContents |

2 Functions — Alphabetical List

2-528

Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Systems and Subsystems”
“Create a Subsystem”

Introduced in R2009a

 Simulink.BlockDiagram.createSubsystem

2-529

Simulink.BlockDiagram.deleteContents
Delete contents of block diagram

Syntax
Simulink.BlockDiagram.deleteContents(bdiag)

Description
Simulink.BlockDiagram.deleteContents(bdiag) deletes the contents of the block
diagram bdiag. The function affects only blocks, lines, and annotations. The block
diagram must have already been loaded.

Input Arguments
bdiag

Block diagram name or handle

Examples
Delete the graphical content of an open block diagram named f14, including all
subsystems:

Simulink.BlockDiagram.deleteContents('f14');

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram |
Simulink.SubSystem.deleteContents

2 Functions — Alphabetical List

2-530

Topics
“Modeling”
“Create a Subsystem”

Introduced in R2007a

 Simulink.BlockDiagram.deleteContents

2-531

Simulink.BlockDiagram.expandSubsystem
Expand subsystem contents to containing model level

Syntax
Simulink.BlockDiagram.expandSubsystem(block)

Description
Simulink.BlockDiagram.expandSubsystem(block) expands the contents of the
subsystem for the specified Subsystem block. Subsystem expansion involves moving the
contents of a virtual subsystem into the system that contains that subsystem.

You can expand virtual subsystems that are not masked, linked, or commented. For
details, see “Subsystems That You Can Expand”.

Input Arguments
block

A character vector that specifies one of the following:

• The path to a subsystem block in a loaded model.
• The block handle of a subsystem block in a loaded model.
• gcb (the currently selected block)

Examples
The following function expands the Combustion subsystem.

open_system('sldemo_enginewc')
Simulink.BlockDiagram.expandSubsystem('sldemo_enginewc/Combustion')

2 Functions — Alphabetical List

2-532

The blocks and signals that were in the Combustion subsystem become part of the top-level model
that contained the Combustion subsystem, replacing that Subsystem block.

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.createSubsystem |
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Expand Subsystem Contents”
“Systems and Subsystems”

Introduced in R2014a

 Simulink.BlockDiagram.expandSubsystem

2-533

Simulink.BlockDiagram.getChecksum
Return checksum of model

Syntax
[checksum,details] = Simulink.BlockDiagram.getChecksum('model')

Description
[checksum,details] = Simulink.BlockDiagram.getChecksum('model')
returns the checksum of the specified model. Simulink software computes the checksum
based on attributes of the model and the blocks the model contains.

One use of this command is to determine why the Accelerator mode in Simulink software
regenerates code. For an example, see slAccelDemoWhyRebuild.

Note Simulink.BlockDiagram.getChecksum compiles the specified model, if the
model is not already in a compiled state.

This command accepts the argument model, which is the full name or handle of the
model for which you are returning checksum data.

This command returns the following output:

• checksum — Array of four 32-bit integers that represents the model's 128-bit
checksum.

• details — Structure of the form

ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [nx1 struct]
InterfaceChecksumItems: [mx1 struct]

• ContentsChecksum — Structure of the following form that represents a checksum
that provides information about all blocks in the model.

2 Functions — Alphabetical List

2-534

matlab:slAccelDemoWhyRebuild

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the model's 128-bit
checksum.

• MarkedUnique — True if any blocks in the model have a property that prevents
code reuse.

• InterfaceChecksum — Structure of the following form that represents a
checksum that provides information about the model.

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the model's 128-bit
checksum.

• MarkedUnique — Always true. Present for consistency with
ContentsChecksum structure.

• ContentsChecksumItems and InterfaceChecksumItems — Structure arrays of
the following form that contain information that Simulink software uses to compute
the checksum for ContentsChecksum and InterfaceChecksum, respectively:

Handle: [char array]
Identifier: [char array]
Value: [type]

• Handle — Object for which Simulink software added an item to the checksum.
For a block, the handle is a full block path. For a block port, the handle is the
full block path and a character vector that identifies the port.

• Identifier — Descriptor of the item Simulink software added to the
checksum. If the item is a documented parameter, the identifier is the
parameter name.

• Value — Value of the item Simulink software added to the checksum. If the
item is a parameter, Value is the value returned by

get_param(handle, identifier)

Simulink.BlockDiagram.getChecksum returns a checksum that depends on why and
how you compiled the model. This function also compiles the model if it is not in a
compiled state. The model compiles for:

 Simulink.BlockDiagram.getChecksum

2-535

• Simulation— if the simulation mode is Accelerator or you have not installed Simulink
Coder

• Code generation— in all other cases

To compile the model before calling Simulink.BlockDiagram.getChecksum, use this
command:

modelName([],[],[],'compile')

Note The checksum that Simulink.BlockDiagram.getChecksum returns can vary
from the checksum returned if you first compile the model at the command line (using the
model command) before running Simulink.BlockDiagram.getChecksum.

Tip
The structural checksum reflects changes to the model that can affect the simulation
results, including:

• Changing the solver type, for example from Variable-step to Fixed-step
• Adding or deleting blocks or connections between blocks
• Changing the values of nontunable block parameters, for example, the Seed

parameter of the Random Number block
• Changing the number of inputs or outputs of blocks, even if the connectivity is

vectorized
• Changing the number of states or the initial states in the model
• Selecting a different function in the Trigonometric Function block
• Changing signs used in a Sum block
• Adding a Target Language Compiler (TLC) file to inline an S-function

Examples of model changes that do not affect the structural checksum include:

• Changing the position of a block
• Changing the position of a line
• Resizing a block
• Adding, removing, or changing a model annotation

2 Functions — Alphabetical List

2-536

See Also
Simulink.SubSystem.getChecksum | Simulink.getFileChecksum

Introduced in R2006b

 Simulink.BlockDiagram.getChecksum

2-537

Simulink.BlockDiagram.getInitialState
Return initial state data of block diagram

Syntax
x0 = Simulink.BlockDiagram.getInitialState('model')

Description
x0 = Simulink.BlockDiagram.getInitialState('model') returns the initial
state data of the block diagram specified by the input argument model. You can use this
initial state data as the initial state for simulating a model or to provide an initial state
condition to the linearization commands. To specify the initial state for a simulation, use
the LoadInitialState model argument or the Data Import/Export > Initial state
configuration parameter.

To specify the format for the initial state data, use the SaveFormat model argument. The
default format is 'Dataset'. Other formats 'Array', 'Structure', and
'StructureWithTime'. Alternatively, you can set the initial state format using the Data
Import/Export > Format configuration parameter.

• If format is 'Dataset', then the Simulink.BlockDiagram.getInitialState
function returns a Simulink.SimulationData.Dataset object.

• For other format settings, the function returns a structure of the form:

time: 0
signals: [1xn struct]

where n is the number of states contained in the model, including any models
referenced by Model blocks. The signals field is a structure of the form:

values: [1xm double]
dimensions: [1x1 double]
label: [char array]
blockName: [char array]
inReferencedModel: [bool]
sampleTime: [1x2 double]

2 Functions — Alphabetical List

2-538

• values — Numeric array of length m, where m is the number of states in the signal
• dimensions — Length of the values vector
• label — Indication of whether the state is continuous (CSTATE) or discrete. If the

state is discrete:

The name of the discrete state is shown for S-function blocks.

The name of the discrete state is shown for those built-in blocks that assign their
own names to discrete states.

DSTATE is used in all other cases.

• blockName — Full path to block associated with this state
• inReferencedModel — Indication of whether the state originates in a model

referenced by a Model block (1) or in the top model (0)
• sampleTime — Array containing the sample time and offset of the block that owns

the state

Using this function to return the initial state data simplifies specifying initial state values
for models with multiple states. Each state is associated with the full path to its parent
block.

See Also
linmod

Topics
“Initial state”
“Format”

Introduced in R2006b

 Simulink.BlockDiagram.getInitialState

2-539

Simulink.BlockDiagram.getSampleTimes
Return all sample times associated with model

Syntax
ts = Simulink.BlockDiagram.getSampleTimes('model')

Description
ts = Simulink.BlockDiagram.getSampleTimes('model') performs an update
diagram and then returns the sample times associated with the block diagram model. The
update diagram ensures that the sample time information returned is up to date. If the
model is already in the compiled state via a call to the model API, then an update diagram
is not necessary.

Using this method allows you to access all information in the Sample Time Legend
programmatically.

Input Arguments
model

Name or handle of a Simulink model

Output Arguments
ts

The command returns a 1xn array of Simulink.SampleTime objects associated with
the model passed to Simulink.BlockDiagram.getSampleTimes. Here n is the
number of sample times associated with the block diagram. The format of the returns
is as follows:

1xn Simulink.SampleTime
Package: Simulink

2 Functions — Alphabetical List

2-540

value: [1x2 double]
Description: [char string]
ColorRGBValue: [1x3 double]
Annotation: [char string]
OwnerBlock: [char string]
ComponentSampleTimes: [1x2 struct]
Methods

• value — A two-element array of doubles that contains the sample time period and
offset.

• Description — A character vector that describes the sample time type.
• ColorRGBValue — A 1x3 array of doubles that contains the red, green, and blue

(RGB) values of the sample time color.
• Annotation — A character vector that represents the annotation of a specific sample

time (e.g., 'D1').
• OwnerBlock — For asynchronous and variable sample times, a character vector

containing the full path to the block that controls the sample time. For all other types
of sample times, an empty character vector.

• ComponentSampleTimes — A structure array of elements of the same type as
Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or
if the sample time is hybrid and the component sample times are available.

See Also
Simulink.Block.getSampleTimes

Introduced in R2009a

 Simulink.BlockDiagram.getSampleTimes

2-541

Simulink.BlockDiagram.loadActiveConfigSet
Package: Simulink.BlockDiagram

Load, associate, and activate configuration set with model

Syntax
Simulink.BlockDiagram.loadActiveConfigSet(model, filename)

Description
Simulink.BlockDiagram.loadActiveConfigSet(model, filename) loads a
configuration set, associates it with a model, and makes it the active configuration set.
model is the name or handle of a model. filename is the name of the file (.m or .mat)
that creates or contains a configuration set object to load. If you do not provide a file
extension, it defaults to .m. If the file name is the same as a model name on the MATLAB
path, the software cannot determine which file contains the configuration set object and
displays an error message.

Examples
Save the configuration set from the sldemo_counters model to my_config_set.m.
% Open the sldemo_counters model
sldemo_counters
% Save the active configuration set to my_config_set.m
Simulink.BlockDiagram.saveActiveConfigSet('sldemo_counters', 'my_config_set.m')

Load the configuration set from my_config_set.m, associate it with the vdp model, and
make it the active configuration set.
% Open the vdp model
vdp
% Load the configuration set from my_config_set.m, making it the active
% configuration set for vdp.
Simulink.BlockDiagram.loadActiveConfigSet('vdp', 'my_config_set.m')

2 Functions — Alphabetical List

2-542

Tips
• If you load a configuration set with the same name as the active configuration set, the

software overwrites the active configuration set.
• If you load a configuration set with the same name as an inactive configuration set

associated with the model, the software detaches the inactive configuration from the
model.

• If you load a configuration set object that contains an invalid custom target, the
software sets the “System target file” (Simulink Coder) parameter to ert.tlc.

See Also
Simulink.BlockDiagram.saveActiveConfigSet | Simulink.ConfigSet |
attachConfigSet | attachConfigSetCopy | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | setActiveConfigSet

Topics
“Load a Saved Configuration Set”

Introduced in R2010b

 Simulink.BlockDiagram.loadActiveConfigSet

2-543

Simulink.BlockDiagram.propagateConfigSet
Propagate top model configuration reference to referenced models

Syntax
[isPropagated, convertedModels] =
Simulink.BlockDiagram.propagateConfigSet(model)
[isPropagated, convertedModels] =
Simulink.BlockDiagram.propagateConfigSet(model, 'include',
refModels)
[isPropagated, convertedModels] =
Simulink.BlockDiagram.propagateConfigSet(model, 'exclude',
refModels)
handle = Simulink.BlockDiagram.propagateConfigSet(model, 'gui')

Description
[isPropagated, convertedModels] =
Simulink.BlockDiagram.propagateConfigSet(model) propagates the
configuration reference for model to all referenced models. Execute the function from a
writable folder.

[isPropagated, convertedModels] =
Simulink.BlockDiagram.propagateConfigSet(model, 'include',
refModels) propagates the configuration reference for model to the models in the
refModels list. Execute the function from a writable folder.

[isPropagated, convertedModels] =
Simulink.BlockDiagram.propagateConfigSet(model, 'exclude',
refModels) propagates the configuration reference for model to all referenced models
in the hierarchy except for the models in the refModels list. Execute the function from a
writable folder.

handle = Simulink.BlockDiagram.propagateConfigSet(model, 'gui') opens
the Configuration Reference Propagation to Referenced Models dialog box.

2 Functions — Alphabetical List

2-544

Examples

Propagate a Configuration Reference to All Referenced Models

[isPropagated,convertedModels] = ...
Simulink.BlockDiagram.propagateConfigSet('sldemo_mdlref_depgraph')

Propagate a Configuration Reference to Listed Referenced Models

[isPropagated,convertedModels] = ...
Simulink.BlockDiagram.propagateConfigSet(...
'sldemo_mdlref_depgraph','include',...
{'sldemo_mdlref_heater','sldemo_mdlref_house'})

Propagate a Configuration Reference to Referenced Models with Exclusions

[isPropagated,convertedModels] = ...
Simulink.BlockDiagram.propagateConfigSet(...
'sldemo_mdlref_depgraph','exclude',...
{'sldemo_mdlref_heater','sldemo_mdlref_house'})

Open the Configuration Reference Propagation to Referenced Models Dialog Box
for a Model

Simulink.BlockDiagram.propagateConfigSet(...
'sldemo_mdlref_depgraph','gui')

• “Share a Configuration Across Referenced Models”
• “Manage a Configuration Reference”

Input Arguments
model — Top model
character vector

 Simulink.BlockDiagram.propagateConfigSet

2-545

Top model with configuration reference to propagate, specified as a character vector.
Example: ‘mdl’

refModels — Referenced models
cell array of character vectors

List of referenced models to be included or excluded in propagation, specified as a cell
array of character vectors.
Example: {‘mdl1’,’mdl2’,’mdl3’}

Output Arguments
isPropagated — Success of propagation
false (default) | true

Indication of whether configuration reference propagation is successful, specified as a
Boolean.

convertedModels — Converted models
cell array of character vectors

List of converted model names, specified as a cell array of character vectors.

handle — Handle to dialog box
handle

Handle to the Configuration Reference Propagation to Referenced Models dialog
box. Returned when you specify the ‘gui’ argument to the function.

See Also
Simulink.BlockDiagram.restoreConfigSet

Topics
“Share a Configuration Across Referenced Models”
“Manage a Configuration Reference”

2 Functions — Alphabetical List

2-546

Introduced in R2012b

 Simulink.BlockDiagram.propagateConfigSet

2-547

Simulink.BlockDiagram.restoreConfigSet
Restore model configuration for converted models

Syntax
[isRestored, restoredModels] =
Simulink.BlockDiagram.restoreConfigSet(model)

Description
[isRestored, restoredModels] =
Simulink.BlockDiagram.restoreConfigSet(model) restores the model
configuration for all converted models after propagating a configuration reference from a
top model to the referenced models. Execute the function from a writable folder.

Examples

Restore the Model Configuration for Converted Models

[isRestored,restoredModels] = ...
Simulink.BlockDiagram.restoreConfigSet('sldemo_mdlref_depgraph');

• “Share a Configuration Across Referenced Models”
• “Manage a Configuration Reference”

Input Arguments
model — Top model
character vector

Name of top model, specified as a character vector.
Example: ‘mdl’

2 Functions — Alphabetical List

2-548

Output Arguments
isRestored — Success of restoration
false (default) | true

Indication of whether configuration reference propagation is successful, specified as a
Boolean.

restoredModels — Restored models
cell array of character vectors

List of restored model names, specified as a cell array of character vectors.

See Also
Simulink.BlockDiagram.propagateConfigSet

Topics
“Share a Configuration Across Referenced Models”
“Manage a Configuration Reference”

Introduced in R2012b

 Simulink.BlockDiagram.restoreConfigSet

2-549

Simulink.BlockDiagram.saveActiveConfigSet
Package: Simulink.BlockDiagram

Save active configuration set of model

Syntax
Simulink.BlockDiagram.saveActiveConfigSet(model, filename)

Description
Simulink.BlockDiagram.saveActiveConfigSet(model, filename) saves the
active configuration set of a model to a .m or .mat file. model is the name or handle of
the model. filename is the name of the file to save the model configuration set. If you
specify a .m extension, the file contains a function that creates a configuration set object.
If you specify a .mat extension, the file contains a configuration set object. If you do not
provide a file extension, the active configuration set is saved to a file with a .m extension.
Do not specify filename to be the same as a model name; otherwise the software cannot
determine which file contains the configuration set object when loading the file.

Note If you specify a .mat extension when you save the active configuration set, all of
the parameters are preserved. If you specify a .m extension, the .m file does not include
hidden or disabled parameters.

Examples
Save the configuration set from the sldemo_counters model to my_config_set.m.

% Open the sldemo_counters model
sldemo_counters
% Save the active configuration set to my_config_set.m
Simulink.BlockDiagram.saveActiveConfigSet('sldemo_counters', 'my_config_set.m')

2 Functions — Alphabetical List

2-550

See Also
Simulink.BlockDiagram.loadActiveConfigSet | Simulink.ConfigSet |
attachConfigSet | attachConfigSetCopy | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | setActiveConfigSet

Topics
“Save a Configuration Set”

Introduced in R2010b

 Simulink.BlockDiagram.saveActiveConfigSet

2-551

Simulink.Bus.cellToObject
Convert cell array containing bus information to bus objects

Syntax
Simulink.Bus.cellToObject(busCells)

Description
Simulink.Bus.cellToObject(busCells) creates a set of bus objects in the MATLAB
base workspace from a cell array of bus information.

Examples

Create Bus Objects from Cell Array of Bus Information

Create a cell array of cell arrays of bus information, and use that cell array to generate a
bus object in the base workspace.

Create a cell array of bus information.

busCell = { ...
 { ...
 'myBusObj', ...
 'MyHeader.h', ...
 'My description', ...
 'Exported', ...
 '-1', ...
 {{'a',1,'double', [0.2 0],'real','Frame'}; ...
 {'b',1,'double', [0.2 0],'real','Sample'}},...
 }, ...
 };

Generate a bus object in the base workspace from the cell array.

2 Functions — Alphabetical List

2-552

Simulink.Bus.cellToObject(busCell)

• “When to Use Bus Objects”
• “Create Bus Objects Programmatically”
• “Create Bus Objects with the Bus Editor”
• “Save and Import Bus Objects”

Input Arguments
busCells — Bus object information
cell array of cell arrays

Bus object information, specified as a cell array of cell arrays. Each subordinate cell array
contains bus object information, using these data fields:

• Bus name
• Header file
• Description
• Data scope
• Alignment
• Elements

The elements field is an array containing this data for each element:

• Element name
• Dimensions
• Data type
• Sample time
• Complexity
• Sample mode
• Dimensions mode
• Minimum
• Maximum

 Simulink.Bus.cellToObject

2-553

• Units
• Description

Tips
The inverse function is Simulink.Bus.objectToCell.

See Also
Simulink.Bus | Simulink.Bus.objectToCell | Simulink.BusElement

Topics
“When to Use Bus Objects”
“Create Bus Objects Programmatically”
“Create Bus Objects with the Bus Editor”
“Save and Import Bus Objects”

Introduced before R2006a

2 Functions — Alphabetical List

2-554

Simulink.Bus.createMATLABStruct
Create MATLAB structures using same hierarchy and attributes as bus signals

Syntax
structFromBus = Simulink.Bus.createMATLABStruct(busSource)
structFromBus = Simulink.Bus.createMATLABStruct(busSource,
partialValues)
structFromBus = Simulink.Bus.createMATLABStruct(busSource,
partialValues,dims)

structsForBuses = Simulink.Bus.createMATLABStruct(portHandles)
structsForBuses = Simulink.Bus.createMATLABStruct(portHandles,
partialStructures)
structsForBuses = Simulink.Bus.createMATLABStruct(busObjectNames)

Description
structFromBus = Simulink.Bus.createMATLABStruct(busSource) creates a
MATLAB structure that has the same hierarchy and attributes (such as type and
dimension) as the bus specified in busSource. The resulting structure uses the ground
values of the bus signal.

structFromBus = Simulink.Bus.createMATLABStruct(busSource,
partialValues) creates a structure that uses specified values of partialValues
instead of the corresponding ground values of the bus signal.

structFromBus = Simulink.Bus.createMATLABStruct(busSource,
partialValues,dims) creates a structure that has the specified dimensions. To create
a structure for an array of buses, use dims.

structsForBuses = Simulink.Bus.createMATLABStruct(portHandles) creates
a cell array of structures for bus signal ports, specified with port handles. The resulting
cell array of structures uses ground values. Use this syntax to create initialization
structures for multiple bus ports. This syntax improves performance compared to using
separate Simulink.Bus.createMATLABStruct calls to create the structures.

 Simulink.Bus.createMATLABStruct

2-555

structsForBuses = Simulink.Bus.createMATLABStruct(portHandles,
partialStructures) creates a cell array of structures that uses the specified values of
partialStructures instead of the ground values.

structsForBuses = Simulink.Bus.createMATLABStruct(busObjectNames)
creates a cell array of structures based on the specified bus objects.

Examples

MATLAB Structure from Bus Object

Open a Simulink® model and simulate it.

model = fullfile(matlabroot,'examples','simulink','busic_example');
open_system(model);
sim('busic_example')

2 Functions — Alphabetical List

2-556

Create a MATLAB® structure using the bus object Top, which the busic_example
model loads.

mStruct = Simulink.Bus.createMATLABStruct('Top')

mStruct =

 struct with fields:

 A: [1x1 struct]
 B: 0

 Simulink.Bus.createMATLABStruct

2-557

 C: [1x1 struct]

Set a value for the field of the mStruct structure that corresponds to bus element A1 of
bus A.

mStruct.A.A1 = 3;
mStruct.A

ans =

 struct with fields:

 A1: 3
 A2: [5x1 int8]

Simulink sets the other fields in the structure to the ground values of the corresponding
bus elements.

You can use mStruct as the initial condition structure for the Unit Delay block.

Initialize Signal Elements That Use a Data Type Other than double

Create a MATLAB® structure for a bus whose signal elements use a data type other than
double. Use a partial structure to specify initialization values for a subset of the
elements. When you create the partial structure, match the data types of the fields with
the data types of the corresponding elements.

Open a Simulink® model.

model = fullfile(matlabroot,'examples','simulink','busic_example');
open_system(model);
sim('busic_example')

2 Functions — Alphabetical List

2-558

The C1 signal element that the Constant5 block produces uses the data type int16.

Find the port handle for the Bus Creator block port that produces the Top bus signal.

ph = get_param('busic_example/TopBus','PortHandles');

Create a partial structure that specifies values for a subset of the elements in the bus
signal created by the TopBus block. To set the value of the C.C1 field, use a typed
expression. Match the data type in the expression with the data type of the signal element
in the model (int16).

PartialstructForK = struct('B',3,'C',struct('C1',int16(5)));

 Simulink.Bus.createMATLABStruct

2-559

Create a full structure by using the port handle (ph) for the TopBus block. Override the
ground values for the C.C1 and B elements.

outPort = ph.Outport;
mStruct = Simulink.Bus.createMATLABStruct(outPort,PartialstructForK);

The field C.C1 in the output structure continues to use the data type int16.

MATLAB Structure with Specified Dimensions

Open a Simulink® model and simulate it.

model = fullfile(matlabroot,'examples','simulink','busic_example');
open_system(model);
sim('busic_example')

2 Functions — Alphabetical List

2-560

Create a partial structure, which is a MATLAB® structure that specifies values for a
subset of bus elements for the bus signal created by the TopBus block.

PartialStructForK = struct('A',struct('A1',4),'B',3)

PartialStructForK =

 struct with fields:

 A: [1x1 struct]

 Simulink.Bus.createMATLABStruct

2-561

 B: 3

Create a MATLAB structure using the bus object Top (which the busic_example model
loads), a partial structure, and dimensions for the resulting structure.

structFromBus = Simulink.Bus.createMATLABStruct...
 ('Top',PartialStructForK,[2 3])

structFromBus =

 2x3 struct array with fields:

 A
 B
 C

Close the system.

close_system('busic_example')

Cell Array of MATLAB Structures

Open a Simulink model and simulate it.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_two_outports_create_struct')))
sim('ex_two_outports_create_struct')

2 Functions — Alphabetical List

2-562

Find the port handles for the Bus Creator blocks Bus1 and Bus2.

ph_1 = get_param...
 ('ex_two_outports_create_struct/Bus Creator','PortHandles')
ph_2 = get_param...
 ('ex_two_outports_create_struct/Bus Creator1','PortHandles')

Create a MATLAB structure using an array of port handles.

mStruct = Simulink.Bus.createMATLABStruct...
 ([ph_1.Outport ph_2.Outport])

mStruct =

 [1x1 struct]
 [1x1 struct]

Close the system.

close_system('ex_two_outports_create_struct')

 Simulink.Bus.createMATLABStruct

2-563

MATLAB Structure from Bus Port and Partial Structure

Create a MATLAB structure based on a port that connects to a bus signal. Use a partial
structure to specify values for a subset of bus elements of the bus signal that connects to
the port.

Open a Simulink model.

run([docroot '/toolbox/simulink/ug/examples/signals/busic_example.mdl']);
sim('busic_example')

Find the port handle for the Bus Creator block port that produces the Top bus signal. The
Outport handle is the handle that you need.

ph = get_param('busic_example/TopBus','PortHandles')

ph =

2 Functions — Alphabetical List

2-564

 Inport: [143.0013 144.0013 145.0013]
 Outport: 34.0013
 Enable: []
 Trigger: []
 State: []
 LConn: []
 RConn: []
 Ifaction: []

Create a partial structure, which is a MATLAB structure that specifies values for a subset
of bus elements for the bus signal created by the TopBus block.

PartialstructForK = struct('A',struct('A1',4),'B',3)

PartialstructForK =

 A: [1x1 struct]
 B: 3

Bus elements represented by structure fields Top.B and Top.A are at the same nesting
level in the bus. You can use this partial structure to override the ground values for the B
and A bus signal elements.

When you create a structure from a bus object or from a bus port, you can use a partial
structure as an optional argument.

Create a MATLAB structure by using the port handle (ph) for the TopBus block. Override
the ground values for the A.A1 and B bus elements.

outPort = ph.Outport;
mStruct = Simulink.Bus.createMATLABStruct(outPort,PartialstructForK)

mStruct =

 A: [1x1 struct]
 B: 3
 C: [1x1 struct]

Input Arguments
busSource — Source representing a bus signal
a Simulink.Bus object | port handle

 Simulink.Bus.createMATLABStruct

2-565

Source representing a bus signal to use for creating a MATLAB structure, specified as the
name of a bus object or port handle.

• If you use the dims argument, then for busSource, use a bus object.
• For an array of buses signal, you cannot use a port handle.
• If you use a bus object name, then the bus object must be in the MATLAB base

workspace. The data type for the bus object name is char.
• If you use a port handle, then the model must compile successfully before you use the

createMATLABStruct method. The data type for the port handle is a double.

Example:

structFromBus = Simulink.Bus.createMATLABStruct('myBusObject');
structForPortHandle = Simulink.Bus.createMATLABStruct(port_handle_1);

partialValues — Values for a subset of leaf nodes of the resulting structure
partial structure | []

Values for a subset of leaf nodes of the resulting structure, specified as a partial structure
or empty array. Each field that you specify in a partial structure must match the data
attributes of the corresponding bus element exactly. For details, see “Create Partial
Structures for Initialization”.

Use an empty matrix [] when you use the dims argument and want to use ground values
for all of the nodes in the resulting structure.
Data Types: struct

dims — Dimensions of the resulting structure
vector

Dimensions of the resulting structure, specified as a vector.

Each dimension element must be an integer that is greater than or equal to 1. If you
specify partialValues, then each dimension element in dims must be greater than or
equal to its corresponding dimension element in the partial structure.

To use ground values, use an empty matrix ([]) for partialValues .
Data Types: double

portHandles — Handles of bus signal ports
array

2 Functions — Alphabetical List

2-566

Handles of bus signal ports, specified as an array. If you use the partialStructures
argument, then the number of port handles that you specify in portHandles must be the
same as the number of partial structures.
Data Types: double

partialStructures — Partial structures
cell array

Partial structures specified as a cell array. The number of port handles that you specify in
portHandles must be the same as the number of partial structures.
Data Types: cell

busObjectNames — Bus object names
cell array

Bus object names, specified as a cell array.
Data Types: cell

Output Arguments
structFromBus — Bus signal hierarchy and attributes
MATLAB structure

Bus signal hierarchy and attributes, returned as a MATLAB structure.

The dimensions of structFromBus depend on the input arguments:

• If you specify only busSource, then the dimension is 1.
• If you also specify partialValues, then the dimensions match the dimensions of

partialValues.
• If you specify the dims argument, then the dimensions match the dimensions of dims.

structsForBuses — Structures having the same hierarchy and attributes as bus
signals
cell array

Structures having the same hierarchy and attributes as bus signals, returned as a cell
array of structures of data with same hierarchy and attributes as a bus signals that you

 Simulink.Bus.createMATLABStruct

2-567

specify with an array of port handles. The cell array of structures uses ground values of
the bus signals.

The dimensions of StructsForBuses depend on the input arguments:

• If you specify only portHandles, then the dimension is 1.
• If you also specify partialStructures, then the dimensions match the dimensions

of partialStructures.

Tips
• If you use the Simulink.Bus.createMATLABStruct function repeatedly for the

same model (for example, in a loop in a script), you can improve performance by
avoiding multiple model compilations. For improved speed, put the model in compile
before using the function multiple times. For example, to put the vdp model in
compile, use this command:

[sys,x0,str,ts] = vdp([],[],[],'compile')

After you create the MATLAB structure, terminate the compile. For example:

vdp([],[],[],'term')
• You can use the Bus Editor to invoke the Simulink.Bus.createMATLABStruct

function. Use one of these approaches:

• Select the File > Create a MATLAB structure menu item.
• Select the bus object for which you want to create a full MATLAB structure. Then,

in the toolbar, click the Create a MATLAB structure button ().

You can then edit the MATLAB structure in the MATLAB Editor and evaluate the code
to create or update the values in this structure.

• You can use the Simulink.Bus.createMATLABStruct function to specify the initial
value of the output of a referenced model. For details, see the “Referenced Model:
Setting Initial Value for Bus Output” section of the Detailed Workflow for Managing
Data with Model Reference example.

See Also
“Specify Initial Conditions for Bus Signals” | “Composite Signals” | Bus to Vector | Bus
Assignment | Bus Creator | Simulink.Bus | Simulink.Bus.cellToObject |

2 Functions — Alphabetical List

2-568

matlab:sldemo_mdlref_datamngt
matlab:sldemo_mdlref_datamngt

Simulink.Bus.createObject | Simulink.Bus.objectToCell |
Simulink.Bus.save | Simulink.BusElement |
Simulink.SimulationData.createStructOfTimeseries |

Introduced in R2010a

 Simulink.Bus.createMATLABStruct

2-569

Simulink.Bus.createObject
Create bus objects from blocks or MATLAB structures

Syntax
busInfo = Simulink.Bus.createObject(model,blocks)
busInfo = Simulink.Bus.createObject(struct)
busInfo = Simulink.Bus.createObject(___ ,file)
busInfo = Simulink.Bus.createObject(___ ,format)

Description
busInfo = Simulink.Bus.createObject(model,blocks) creates bus objects
(instances of Simulink.Bus class in the MATLAB base workspace) for specified blocks,
and returns information about the objects that it created.

busInfo = Simulink.Bus.createObject(struct) creates bus objects in the
MATLAB workspace from a MATLAB structure of timeseries objects or a numeric
MATLAB structure.

busInfo = Simulink.Bus.createObject(___ ,file) saves the bus objects in a
MATLAB file that contains a cell array of cell arrays. Each subordinate cell array
represents a bus object and contains this data:

• Bus name
• Header file
• Description
• Data scope
• Alignment
• Elements

The elements field is an array containing this data for each element:

• Element name

2 Functions — Alphabetical List

2-570

• Dimensions
• Data type
• Sample time
• Complexity
• Dimensions mode
• Minimum
• Maximum
• Units
• Description

busInfo = Simulink.Bus.createObject(___ ,format) saves the bus objects in a
file that contains either a cell array of bus information, or the bus objects themselves.

Examples

Use Bus Creator Blocks to Create a Bus Object
Create a bus object from the Bus Creator block called Bus Creator2.

open_system('busdemo')
bus2Info = Simulink.Bus.createObject...
('busdemo','busdemo/Bus Creator2')
close_system('busdemo')

Create a bus object from two Bus Creator blocks, using block handles to specify the
blocks. Assign the block handles to variables and use the variables in a vector to specify
the blocks used for creating the bus object.

Open the model.

clear;
open_system('busdemo')

In the Simulink Editor, select the Bus Creator2 block. In MATLAB, assign the block
handle to a variable.

bc2 = gcbh;

 Simulink.Bus.createObject

2-571

In the Simulink Editor, select the Bus Creator block. In MATLAB, assign the block
handle to a variable.

bc1 = gcbh;

Use the block handle variables in a vector to create a bus object.

bus3Info = Simulink.Bus.createObject...
('busdemo', [bc2 bc1], 'busdemo_busobject')
close_system('busdemo')

Create Bus Objects from Cell Array of Bus Information
Create a cell array of cell arrays of bus information, and use that cell array to generate a
bus object in the base workspace.

Create a cell array of bus information.

busCell = { ...
 { ...
 'myBusObj', ...
 'MyHeader.h', ...
 'My description', ...
 'Exported', ...
 '-1', ...
 {{'a',1,'double', [0.2 0],'real','Frame'}; ...
 {'b',1,'double', [0.2 0],'real','Sample'}},...
 }, ...
 };

Generate a bus object in the base workspace from the cell array.

Simulink.Bus.cellToObject(busCell)

Input Arguments
model — Model name or handle
character vector

Model name or handle, specified as a character vector.

2 Functions — Alphabetical List

2-572

blocks — Blocks to create bus objects for
character vector | cell array of block pathnames | vector of block names

Blocks to create bus object for, specified as a character vector, cell array of block
pathnames, or vector of block names.

• For just one block, specify the full path name of the block.
• For multiple blocks, specify either a cell array of block pathnames or a vector of block

names.
• If you specify a Bus Creator block that is at the highest level of a bus hierarchy, the

function creates bus objects for all buses in the hierarchy.

struct — Structure used to create bus objects
structure of MATLAB timeseries objects | numeric structure

Structure used to create bus objects, specified as a structure of MATLAB timeseries
objects or a numeric structure.

file — File to save bus objects in
character vector

File to save bus objects in, specified as a character vector. The file name must be unique.
If you omit this argument, the function saves the created bus objects in a cell array, not in
a file.

format — Format for storing bus objects in file
'cell' (default) | 'object'

Format for storing bus objects in file, specified as either 'cell' or 'object'. The cell
format is more compact, but the cell format is easier to read.

Output Arguments
busInfo — Bus information for specified blocks
structure array

Bus information for specified blocks, returned as a structure array. Each element of the
structure array corresponds to one block and contains these fields:

• block – Handle of the block

 Simulink.Bus.createObject

2-573

• busName – Name of the bus object associated with the block

Tips
If you specify a model name, the model must compile successfully before you use the
Simulink.Bus.createObject command.

See Also
Bus Creator | Simulink.Bus | Simulink.Bus.cellToObject |
Simulink.Bus.createMATLABStruct | Simulink.Bus.objectToCell |
Simulink.BusElement

Topics
“When to Use Bus Objects”
“Create Bus Objects Programmatically”
“Create Bus Objects with the Bus Editor”
“Save and Import Bus Objects”

Introduced before R2006a

2 Functions — Alphabetical List

2-574

Simulink.Bus.objectToCell
Use bus objects to create cell array containing bus information

Syntax
busCells = Simulink.Bus.objectToCell(busNames)

Description
busCells = Simulink.Bus.objectToCell(busNames) inputs a cell array of names
of bus objects that are in the MATLAB base workspace. The function returns a cell array
of cell arrays in which each subordinate cell array contains the bus information defined by
one of the bus objects. The order of the elements in the output cell array corresponds to
the order of the names in the input cell array.

Examples

Create Cell Array Containing Bus Object Information

Use the Simulink.Bus.objectToCell function to create a cell array of information
about bus objects in the base workspace.

Open a model that has two bus objects defined, CONTROL and MAIN.

open_system(fullfile(matlabroot,'examples','simulink',...
 'ex_bus_object_tutorial_using_objects'))

 Simulink.Bus.objectToCell

2-575

Create cell array of information about the CONTROL bus object.

busCells = Simulink.Bus.objectToCell({'CONTROL'});
busCells{1}

ans =

 1x6 cell array

 {'CONTROL'} {0x0 char} {0x0 char} {'Auto'} {'-1'} {2x1 cell}

• “Create Bus Objects Programmatically”
• “When to Use Bus Objects”
• “Create Bus Objects with the Bus Editor”

2 Functions — Alphabetical List

2-576

• “Modify Bus Objects”
• “Save and Import Bus Objects”

Input Arguments
busNames — Bus objects in base workspace for which to create cell arrays of bus
object information
cell array of names of bus objects, specified as character vectors

Bus objects in the base workspace for which to create cell arrays of bus object
information, specified as a cell array of names of bus objects. Specify the bus object
names as character vectors. If busNames is empty, the function converts all bus objects in
the base workspace.

Output Arguments
busCells — Bus object information
cell array of cell arrays

Bus object information, specified as a cell array of cell arrays. Each subordinate cell array
contains bus object information, using these data fields:

• Bus name
• Header file
• Description
• Data scope
• Alignment
• Elements

The elements field is an array containing this data for each element:

• Element name
• Dimensions
• Data type
• Sample time

 Simulink.Bus.objectToCell

2-577

• Complexity
• Dimensions mode
• Minimum
• Maximum
• Units
• Description

Tips
The inverse function is Simulink.Bus.cellToObject.

See Also
Simulink.Bus | Simulink.Bus.cellToObject |
Simulink.Bus.createMATLABStruct | Simulink.Bus.createObject |
Simulink.Bus.save | Simulink.BusElement

Topics
“Create Bus Objects Programmatically”
“When to Use Bus Objects”
“Create Bus Objects with the Bus Editor”
“Modify Bus Objects”
“Save and Import Bus Objects”

Introduced in R2007a

2 Functions — Alphabetical List

2-578

Simulink.Bus.save
Save bus objects in MATLAB file

Syntax
Simulink.Bus.save(fileName)
Simulink.Bus.save(fileName,format)
Simulink.Bus.save(fileName,format,busNames)

Description
Simulink.Bus.save(fileName) saves all bus objects (instances of Simulink.Bus
class) that are in the MATLAB base workspace in a MATLAB file that contains a cell array
of cell arrays. Each subordinate cell array represents a bus object and contains this data:

• Bus name
• Header file
• Description
• Data scope
• Alignment
• Elements

The elements field is an array containing this data for each element:

• Element name
• Dimensions
• Data type
• Sample time
• Complexity
• Dimensions mode
• Minimum

 Simulink.Bus.save

2-579

• Maximum
• Units
• Description

Simulink.Bus.save(fileName,format) saves the bus objects in a MATLAB file that
contains either a cell array of bus information or the bus objects themselves.

Simulink.Bus.save(fileName,format,busNames) saves only those bus objects
whose names appear in busNames.

Examples

Save a Bus Object

Use the Simulink.Bus.save function to save a bus object.

Define a cell array of bus object information.

busCell = { ...
 { ...
 'myBusObj', ...
 'MyHeader.h', ...
 'My description', ...
 'Exported', ...
 '-1', ...
 {{'a',1,'double',[0.2 0],'real','Frame'}; ...
 {'b',1,'double',[0.2 0],'real','Sample'}},...
 }, ...
 };

Create myBusObj bus object from the cell array.

Simulink.Bus.cellToObject(busCell);

Save the bus object in the BusCellFile1 file, in cell format.

fileName = 'BusCellFile1';
Simulink.Bus.save(fileName);

Save the bus object in bus format.

2 Functions — Alphabetical List

2-580

Simulink.Bus.save('BusObjFile','object');

Save myBusObj in cell format in BusCellFile2.m.

Simulink.Bus.save('BusCellFile2','cell',{'myBusObj'});

• “When to Use Bus Objects”
• “Create Bus Objects Programmatically”
• “Create Bus Objects with the Bus Editor”
• “Save and Import Bus Objects”

Input Arguments
fileName — File in which to store bus objects
character vector

File in which to store bus objects, specified as a character vector.

format — Format for storing bus objects in file
'cell' (default) | 'object'

Format for storing bus objects in file, specified as either 'cell' or 'object'. The cell
format is more compact, but the object format is easier to read.

busNames — Bus objects to save
cell array of bus objects

Bus objects to save, specified as a cell array of bus objects. Only the specified bus objects
in the base workspace are saved.

Tips
Executing a MATLAB file created by Simulink.Bus.save in cell array format calls
Simulink.Bus.cellToObject to recreate the bus objects and returns the new bus
objects in the cell array. To suppress the creation of bus objects, specify the optional
argument 'false' when you execute the MATLAB file.

 Simulink.Bus.save

2-581

See Also
Bus Creator | Simulink.Bus | Simulink.Bus.cellToObject |
Simulink.Bus.createMATLABStruct | Simulink.Bus.objectToCell |
Simulink.BusElement

Topics
“When to Use Bus Objects”
“Create Bus Objects Programmatically”
“Create Bus Objects with the Bus Editor”
“Save and Import Bus Objects”

Introduced before R2006a

2 Functions — Alphabetical List

2-582

Simulink.createFromTemplate
Create model or project from template

Syntax
Simulink.createFromTemplate(templatename)
h = Simulink.createFromTemplate(templatename)
h = Simulink.createFromTemplate(templatename,Name,Value)

Description
Simulink.createFromTemplate(templatename) creates a model or a project from
the template file specified by templatename.

h = Simulink.createFromTemplate(templatename) creates a model or a project
from the template file and returns h, either a numeric model handle or a
simulinkproject object.

h = Simulink.createFromTemplate(templatename,Name,Value) specifies
additional options as one or more Name, Value pair arguments.

Examples

Create a Model From a Template

Simulink.createFromTemplate('simple_simulation.sltx')

Create a Project From a Template and Get the Handle

Create a project from a template, specify the name and root folder, and return the handle
to the new project (a simulinkproject object) for manipulating it programmatically.

 Simulink.createFromTemplate

2-583

proj = Simulink.createFromTemplate('code_generation_example.sltx','Name','myProject','Folder','C:\Work\project1')

• “Create and Open Models”
• “Create a Template from a Model”
• “Using Templates to Create Standard Project Settings”

Input Arguments
templatename — Template file name
character vector

Template file name, specified as a character vector. If the template is not on the MATLAB
path, specify the fully-qualified path to the template file and *.sltx extension.
Example:
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

Folder — Project root folder
character vector

Project root folder, if creating a new project, specified as a character vector.
Data Types: char

Name — New model or project name
character vector

New model or project name, specified as a character vector.
Data Types: char

2 Functions — Alphabetical List

2-584

Output Arguments
h — Handle
numeric handle | simulinkproject

Handle to the new model project, returned either as a numeric model handle or a
simulinkproject object.

See Also
Simulink.defaultModelTemplate | Simulink.exportToTemplate |
Simulink.findTemplates

Topics
“Create and Open Models”
“Create a Template from a Model”
“Using Templates to Create Standard Project Settings”

Introduced in R2016a

 Simulink.createFromTemplate

2-585

Simulink.data.assigninGlobal
Modify variable values in context of Simulink model

Syntax
Simulink.data.assigninGlobal(modelName,varName,varValue)

Description
Simulink.data.assigninGlobal(modelName,varName,varValue) assigns the
value varValue to the variable or data dictionary entry varName in the context of the
Simulink model modelName. assigninGlobal creates the variable or data dictionary
entry if it does not already exist. The function operates in the Design Data section of the
data dictionary that is linked to the target model or in the MATLAB base workspace if the
target model is not linked to any data dictionary.

If the target model is linked to a data dictionary that references other dictionaries,
assigninGlobal searches for varName in the entire dictionary hierarchy. If
assigninGlobal does not find a matching entry, the function creates an entry in the
dictionary that is linked to the target model.

Examples

Modify Variable in Model With or Without Data Dictionary

Create a variable myNewVariable with value 237 in the context of the Simulink model
vdp.slx, which is not linked to any data dictionary. myNewVariable appears as a
variable in the MATLAB base workspace.

Simulink.data.assigninGlobal('vdp','myNewVariable',237)

Create a variable myNewEntry with value true in the context of the Simulink model
sldemo_fuelsys_dd_controller.slx, which is linked to the data dictionary

2 Functions — Alphabetical List

2-586

sldemo_fuelsys_dd_controller.sldd. The entry myNewEntry appears in the
Design Data section of the dictionary.

Simulink.data.assigninGlobal('sldemo_fuelsys_dd_controller',...
'myNewEntry',true)

Confirm the addition of myNewEntry to the data dictionary
sldemo_fuelsys_dd_controller.sldd by viewing the dictionary in Model Explorer.

myDictionaryObj = Simulink.data.dictionary.open(...
'sldemo_fuelsys_dd_controller.sldd');
show(myDictionaryObj)

• “Store Data in Dictionary Programmatically”

Input Arguments
modelName — Name of target Simulink model
character vector

Name of target Simulink model, specified as a character vector.
Example: 'myTestModel'
Data Types: char

varName — Name of target variable or data dictionary entry
character vector

Name of target variable or data dictionary entry, specified as a character vector.
Example: 'myTargetVariable'
Data Types: char

varValue — Value to assign to variable or data dictionary entry
MATLAB expression

Value to assign to variable or data dictionary entry, specified as a MATLAB expression
that returns any valid data type or data dictionary content.
Example: 27.5
Example: myBaseWorkspaceVariable

 Simulink.data.assigninGlobal

2-587

Example: Simulink.Parameter

Tips
• assigninGlobal helps you transition Simulink models to using data dictionaries. You

can use the function to assign values to model variables before and after linking a
model to a data dictionary.

See Also
Simulink.data.dictionary.open | Simulink.data.evalinGlobal |
Simulink.data.existsInGlobal

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”
“Considerations before Migrating to Data Dictionary”

Introduced in R2015a

2 Functions — Alphabetical List

2-588

Simulink.data.dictionary.cleanupWorkerCach
e
Restore defaults after parallel simulation with data dictionary

Syntax
Simulink.data.dictionary.cleanupWorkerCache

Description
Simulink.data.dictionary.cleanupWorkerCache restores default settings after
you have finished parallel simulation of a model that is linked to a data dictionary. Use
this function in a spmd block, after you finish parallel simulation using parfor blocks, to
restore default settings that were altered by the
Simulink.data.dictionary.setupWorkerCache function.

During parallel simulation of a model that is linked to a data dictionary, you can allow
each worker to access and modify the data in the dictionary independently of other
workers. The function Simulink.data.dictionary.setupWorkerCache grants each
worker a unique dictionary cache to allow independent access to the data, and the
function Simulink.data.dictionary.cleanupWorkerCache restores cache settings
to their default values.

You must have a Parallel Computing Toolbox license to perform parallel simulation using a
parfor block.

Examples

Sweep Variant Control Using Parallel Simulation
To use parallel simulation to sweep a variant control (a Simulink.Parameter object
whose value influences the variant condition of a Simulink.Variant object) that you

 Simulink.data.dictionary.cleanupWorkerCache

2-589

store in a data dictionary, use this code as a template. Change the names and values of
the model, data dictionary, and variant control to match your application.

To sweep block parameter values or the values of workspace variables that you use to set
block parameters, use Simulink.SimulationInput objects instead of the
programmatic interface to the data dictionary. See “Optimize, Estimate, and Sweep Block
Parameter Values”.

You must have a Parallel Computing Toolbox license to perform parallel simulation.

% For convenience, define names of model and data dictionary
model = 'mySweepMdl';
dd = 'mySweepDD.sldd';

% Define the sweeping values for the variant control
CtrlValues = [1 2 3 4];

% Grant each worker in the parallel pool an independent data dictionary
% so they can use the data without interference
spmd
 Simulink.data.dictionary.setupWorkerCache
end

% Determine the number of times to simulate
numberOfSims = length(CtrlValues);

% Prepare a nondistributed array to contain simulation output
simOut = cell(1,numberOfSims);

parfor index = 1:numberOfSims
 % Create objects to interact with dictionary data
 % You must create these objects for every iteration of the parfor-loop
 dictObj = Simulink.data.dictionary.open(dd);
 sectObj = getSection(dictObj,'Design Data');
 entryObj = getEntry(sectObj,'MODE');
 % Suppose MODE is a Simulink.Parameter object stored in the data dictionary

 % Modify the value of MODE
 temp = getValue(entryObj);
 temp.Value = CtrlValues(index);
 setValue(entryObj,temp);

 % Simulate and store simulation output in the nondistributed array
 simOut{index} = sim(model);

2 Functions — Alphabetical List

2-590

 % Each worker must discard all changes to the data dictionary and
 % close the dictionary when finished with an interation of the parfor-loop
 discardChanges(dictObj);
 close(dictObj);
end

% Restore default settings that were changed by the function
% Simulink.data.dictionary.setupWorkerCache
% Prior to calling cleanupWorkerCache, close the model

spmd
 bdclose(model)
 Simulink.data.dictionary.cleanupWorkerCache
end

Note If data dictionaries are open, you cannot use the command
Simulink.data.dictionary.cleanupWorkerCache. To identify open data
dictionaries, use Simulink.data.dictionary.getOpenDictionaryPaths.

See Also
Simulink.data.dictionary.closeAll |
Simulink.data.dictionary.getOpenDictionaryPaths |
Simulink.data.dictionary.setupWorkerCache | parfor | spmd

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”
“Run Code on Parallel Pools” (Parallel Computing Toolbox)

Introduced in R2015a

 Simulink.data.dictionary.cleanupWorkerCache

2-591

Simulink.data.dictionary.closeAll
Close all connections to all open data dictionaries

Syntax
Simulink.data.dictionary.closeAll
Simulink.data.dictionary.closeAll(dictFileName)
Simulink.data.dictionary.closeAll(___ ,unsavedAction)

Description
Simulink.data.dictionary.closeAll attempts to close all connections to all data
dictionaries that are open. For example, if you create objects, such as
Simulink.data.Dictionary, that refer to a dictionary, that dictionary is open.

Some commands and functions, such as
Simulink.data.dictionary.cleanupWorkerCache, cannot operate when
dictionaries are open. It is a best practice to close each connection individually by using
functions and methods such as the close method of a Simulink.data.Dictionary
object. To find dictionaries that are open, use
Simulink.data.dictionary.getOpenDictionaryPaths. However, you can use this
function to close all connections to all dictionaries.

You can also use this function to close dictionaries in a shutdown script that is part of a
Simulink Project.

Simulink.data.dictionary.closeAll(dictFileName) closes all connections to
the dictionary named dictFileName. If you open multiple dictionaries that use this file
name (for example, if the dictionaries have different file paths), the function closes all
connections to all of the dictionaries.

You cannot specify dictFileName as a full file path such as 'C:\temp\myDict.sldd'.

Simulink.data.dictionary.closeAll(___ ,unsavedAction) closes all
connections to the target dictionaries by discarding or saving unsaved changes. You can
choose whether to save or discard all changes to all of the target dictionaries.

2 Functions — Alphabetical List

2-592

Examples

Close All Connections to All Open Dictionaries

Discard any unsaved changes. All of the entries in the dictionaries revert to the last saved
state.

Simulink.data.dictionary.closeAll('-discard')

Close All Connections to Single Data Dictionary

Open multiple connections to a data dictionary, make a change, and close all of the
connections by discarding the unsaved change.

At the command prompt, open a data dictionary by creating a
Simulink.data.Dictionary object that refers to the dictionary.

dictObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd.sldd');

Display the dictionary in the Model Explorer

show(dictObj)

You now have two connections to this dictionary: The Simulink.data.Dictionary
object and the Model Explorer.

Make a change to the dictionary by adding an entry.

dDataSectObj = getSection(dictObj,'Design Data');
addEntry(dDataSectObj,'myEntry',5.2);

The Simulink.data.dictionary.Section object dDataSectObj is a third
connection to the dictionary.

Close the connections to the dictionary. Discard the unsaved change.

Simulink.data.dictionary.closeAll('sldemo_fuelsys_dd.sldd','-discard')

The dictionary no longer appears as a node in the Model Hierarchy pane of the Model
Explorer. The Simulink.data.Dictionary object dictObj is disconnected from the

 Simulink.data.dictionary.closeAll

2-593

dictionary. You cannot interact with the dictionary by using the
Simulink.data.dictionary.Section object dDataSectObj.

Clear the objects that referred to the dictionary.

clear dictObj dDataSectObj

• “Store Data in Dictionary Programmatically”

Input Arguments
dictFileName — File name of target data dictionary or dictionaries
character vector

File name of target data dictionary or dictionaries, specified as a character vector. Use
the file extension sldd.
Example: 'myDict.sldd'
Data Types: char

unsavedAction — Action for unsaved changes
'-discard' | '-save'

Action for unsaved changes, specified as '-discard' (to discard changes) or '-save'
(to save changes).

Tips
A data dictionary is open if any of these conditions are true:

• The dictionary appears as a node in the Model Hierarchy pane of the Model Explorer.
To close this connection to the dictionary, right-click the node in Model Explorer and
select Close. Alternatively, use the hide method of a Simulink.data.Dictionary
object.

• You created an object of any of these classes that refer to the dictionary:

• Simulink.data.Dictionary
• Simulink.data.dictionary.Section

2 Functions — Alphabetical List

2-594

• Simulink.data.dictionary.Entry

To close these connections to the dictionary, use the close method of the
Simulink.data.Dictionary object or clear the object. Clear the
Simulink.data.dictionary.Section and Simulink.data.dictionary.Entry
objects.

• A model that is linked to the dictionary is open. To close this connection to the
dictionary, close the model.

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.cleanupWorkerCache
| Simulink.data.dictionary.getOpenDictionaryPaths |
Simulink.data.dictionary.setupWorkerCache

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2016a

 Simulink.data.dictionary.closeAll

2-595

Simulink.data.dictionary.create
Create new data dictionary and create Simulink.data.Dictionary object

Syntax
dictionaryObj = Simulink.data.dictionary.create(dictionaryFile)

Description
dictionaryObj = Simulink.data.dictionary.create(dictionaryFile)
creates a data dictionary file in your current working folder or in a file path you can
specify in dictionaryFile. The function returns a Simulink.data.Dictionary
object representing the new data dictionary.

Examples

Create New Data Dictionary and Data Dictionary Object

Create a data dictionary myNewDictionary.sldd in your current working folder and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the
object to the variable myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd')

myDictionaryObj =

 data dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 0
 NumberOfEntries: 0

• “Store Data in Dictionary Programmatically”

2 Functions — Alphabetical List

2-596

Input Arguments
dictionaryFile — Name of new data dictionary
character vector

Name of new data dictionary, specified as a character vector containing the file name and,
optionally, path of the dictionary to create. If you do not specify a path,
Simulink.data.dictionary.create creates the new data dictionary file in your
working MATLAB folder. Simulink.data.dictionary.create also supports file paths
specified relative to your working folder.
Example: 'myDictionary.sldd'
Example: 'C:\Users\jsmith\myDictionary.sldd'
Example: '..\myOtherDictionary.sldd'
Data Types: char

Output Arguments
dictionaryObj — Newly created data dictionary
Simulink.data.Dictionary object

Newly created data dictionary, returned as a Simulink.data.Dictionary object.

Alternatives
You can use the Simulink Editor to create a data dictionary and link it to a model. See
“Migrate Single Model to Use Dictionary” for more information.

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.open

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

 Simulink.data.dictionary.create

2-597

Introduced in R2015a

2 Functions — Alphabetical List

2-598

Simulink.data.dictionary.getOpenDictionaryP
aths
Return file names and paths of open data dictionaries

Syntax
openDDs = Simulink.data.dictionary.getOpenDictionaryPaths
openDDs = Simulink.data.dictionary.getOpenDictionaryPaths(
dictFileName)

Description
openDDs = Simulink.data.dictionary.getOpenDictionaryPaths returns the
file names and paths of all data dictionaries that are open. For example, a data dictionary
is open if you create objects, such as Simulink.data.Dictionary, that refer to the
dictionary. If you open two or more dictionaries that have the same file name but different
file paths, this function returns multiple file paths.

Before executing commands and functions that cannot operate when dictionaries are
open, use this function to identify open dictionaries so that you can close them. For
example, when you run parallel simulations as described in “Sweep Variant Control Using
Parallel Simulation”, this function helps you identify open dictionaries before executing
the command Simulink.data.dictionary.cleanupWorkerCache.

openDDs = Simulink.data.dictionary.getOpenDictionaryPaths(
dictFileName) returns the file paths of data dictionaries that have the file name
dictFileName. If you open two or more dictionaries that have the same file name but
different file paths, you can use this syntax to return all of the file paths.

Examples

 Simulink.data.dictionary.getOpenDictionaryPaths

2-599

Identify and Close All Open Data Dictionaries

Open, identify, and close a data dictionary. After you close the connections to the
dictionary, you can use commands and functions, such as
Simulink.data.dictionary.cleanupWorkerCache, that cannot operate when
dictionaries are open.

At the command prompt, open a data dictionary by creating a
Simulink.data.Dictionary object that refers to the dictionary.

dictObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd.sldd');

Display the dictionary in the Model Explorer

show(dictObj)

Identify all of the dictionaries that are open.

openDDs = Simulink.data.dictionary.getOpenDictionaryPaths;

The file path of the dictionary that you opened, sldemo_fuelsys_dd.sldd, appears in
the cell array of character vectors openDDs.

Close the connection from the Model Explorer to the dictionary.

hide(dictObj)

The dictionary no longer appears as a node in the Model Hierarchy pane of the Model
Explorer.

Close the connection from the Simulink.data.Dictionary object to the dictionary.

close(dictObj)
clear dictObj

• “Store Data in Dictionary Programmatically”

Input Arguments
dictFileName — File name of target data dictionary or dictionaries
character vector

2 Functions — Alphabetical List

2-600

File name of target data dictionary or dictionaries, specified as a character vector. Use
the file extension sldd.
Example: 'myDict.sldd'
Data Types: char

Output Arguments
openDDs — File names and paths of open data dictionaries
cell array of character vectors

File names and paths of open data dictionaries, returned as a cell array of character
vectors.

Tips
A data dictionary is open if any of these conditions are true:

• The dictionary appears as a node in the Model Hierarchy pane of the Model Explorer.
To close this connection to the dictionary, right-click the node in Model Explorer and
select Close. Alternatively, use the hide method of a Simulink.data.Dictionary
object.

• You created an object of any of these classes that refer to the dictionary:

• Simulink.data.Dictionary
• Simulink.data.dictionary.Section
• Simulink.data.dictionary.Entry

To close these connections to the dictionary, use the close method of the
Simulink.data.Dictionary object or clear the object. Clear the
Simulink.data.dictionary.Section and Simulink.data.dictionary.Entry
objects.

• A model that is linked to the dictionary is open. To close this connection to the
dictionary, close the model.

 Simulink.data.dictionary.getOpenDictionaryPaths

2-601

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.cleanupWorkerCache
| Simulink.data.dictionary.closeAll |
Simulink.data.dictionary.setupWorkerCache

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2016a

2 Functions — Alphabetical List

2-602

Simulink.data.dictionary.open
Open data dictionary for editing

Syntax
dictionaryObj = Simulink.data.dictionary.open(dictionaryFile)

Description
dictionaryObj = Simulink.data.dictionary.open(dictionaryFile) opens
the specified data dictionary and returns a Simulink.data.Dictionary object
representing an existing data dictionary identified by its file name and, optionally, file
path with dictionaryFile.

Make sure any dictionaries referenced by the target dictionary are on the MATLAB path.

Examples

Open Existing Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

• “Store Data in Dictionary Programmatically”

 Simulink.data.dictionary.open

2-603

Input Arguments
dictionaryFile — Target data dictionary
character vector

Target data dictionary, specified as a character vector containing the file name and,
optionally, path of the dictionary. If you do not specify a path,
Simulink.data.dictionary.open searches the MATLAB path for the specified file.
Simulink.data.dictionary.open also supports paths specified relative to the
MATLAB working folder.
Example: 'myDictionary_ex_API.sldd'
Example: 'C:\Users\jsmith\myDictionary_ex_API.sldd'
Example: '..\myOtherDictionary.sldd'
Data Types: char

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.create | show

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

2 Functions — Alphabetical List

2-604

Simulink.data.dictionary.setupWorkerCache
Enable parallel simulation with data dictionary

Syntax
Simulink.data.dictionary.setupWorkerCache

Description
Simulink.data.dictionary.setupWorkerCache prepares the workers in a parallel
pool for simulating a model that is linked to a data dictionary. Use this function in a spmd
block, prior to starting a parfor block, to provide the workers in a parallel pool a way to
safely interact with a single data dictionary.

During parallel simulation of a model that is linked to a data dictionary, you can allow
each worker to access and modify the data in the dictionary independently of other
workers. Simulink.data.dictionary.setupWorkerCache temporarily provides each
worker in the pool with its own data dictionary cache, allowing the workers to use the
data in the dictionary without permanently changing it.

You must have a Parallel Computing Toolbox license to perform parallel simulation using a
parfor block.

Examples
Sweep Variant Control Using Parallel Simulation
To use parallel simulation to sweep a variant control (a Simulink.Parameter object
whose value influences the variant condition of a Simulink.Variant object) that you
store in a data dictionary, use this code as a template. Change the names and values of
the model, data dictionary, and variant control to match your application.

To sweep block parameter values or the values of workspace variables that you use to set
block parameters, use Simulink.SimulationInput objects instead of the

 Simulink.data.dictionary.setupWorkerCache

2-605

programmatic interface to the data dictionary. See “Optimize, Estimate, and Sweep Block
Parameter Values”.

You must have a Parallel Computing Toolbox license to perform parallel simulation.

% For convenience, define names of model and data dictionary
model = 'mySweepMdl';
dd = 'mySweepDD.sldd';

% Define the sweeping values for the variant control
CtrlValues = [1 2 3 4];

% Grant each worker in the parallel pool an independent data dictionary
% so they can use the data without interference
spmd
 Simulink.data.dictionary.setupWorkerCache
end

% Determine the number of times to simulate
numberOfSims = length(CtrlValues);

% Prepare a nondistributed array to contain simulation output
simOut = cell(1,numberOfSims);

parfor index = 1:numberOfSims
 % Create objects to interact with dictionary data
 % You must create these objects for every iteration of the parfor-loop
 dictObj = Simulink.data.dictionary.open(dd);
 sectObj = getSection(dictObj,'Design Data');
 entryObj = getEntry(sectObj,'MODE');
 % Suppose MODE is a Simulink.Parameter object stored in the data dictionary

 % Modify the value of MODE
 temp = getValue(entryObj);
 temp.Value = CtrlValues(index);
 setValue(entryObj,temp);

 % Simulate and store simulation output in the nondistributed array
 simOut{index} = sim(model);

 % Each worker must discard all changes to the data dictionary and
 % close the dictionary when finished with an interation of the parfor-loop
 discardChanges(dictObj);
 close(dictObj);

2 Functions — Alphabetical List

2-606

end

% Restore default settings that were changed by the function
% Simulink.data.dictionary.setupWorkerCache
% Prior to calling cleanupWorkerCache, close the model

spmd
 bdclose(model)
 Simulink.data.dictionary.cleanupWorkerCache
end

Note If data dictionaries are open, you cannot use the command
Simulink.data.dictionary.cleanupWorkerCache. To identify open data
dictionaries, use Simulink.data.dictionary.getOpenDictionaryPaths.

See Also
Simulink.data.dictionary.cleanupWorkerCache | parfor | spmd

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”
“Run Code on Parallel Pools” (Parallel Computing Toolbox)

Introduced in R2015a

 Simulink.data.dictionary.setupWorkerCache

2-607

Simulink.data.evalinGlobal
Evaluate MATLAB expression in context of Simulink model

Syntax
returnValue = Simulink.data.evalinGlobal(modelName,expression)

Description
returnValue = Simulink.data.evalinGlobal(modelName,expression)
evaluates the MATLAB expression expression in the context of the Simulink model
modelName and returns the values returned by expression. evalinGlobal evaluates
expression in the Design Data section of the data dictionary that is linked to the target
model or in the MATLAB base workspace if the target model is not linked to any data
dictionary.

Examples

Evaluate MATLAB Expression in Model With or Without Data Dictionary

Evaluate the MATLAB expression myNewVariable = 237; in the context of the model
vdp, which is not linked to any data dictionary. myNewVariable appears as a variable in
the MATLAB base workspace.

Simulink.data.evalinGlobal('vdp','myNewVariable = 237;')

Evaluate the MATLAB expression myNewEntry = true; in the context of the model
sldemo_fuelsys_dd_controller, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd. myNewEntry appears as an entry in the
Design Data section of the dictionary.

Simulink.data.evalinGlobal('sldemo_fuelsys_dd_controller',...
'myNewEntry = true;')

2 Functions — Alphabetical List

2-608

Confirm the creation of the entry myNewEntry in the data dictionary
sldemo_fuelsys_dd_controller.sldd by viewing the dictionary in Model Explorer.

myDictionaryObj = Simulink.data.dictionary.open(...
'sldemo_fuelsys_dd_controller.sldd');
show(myDictionaryObj)

• “Store Data in Dictionary Programmatically”

Input Arguments
modelName — Name of target Simulink model
character vector

Name of target Simulink model, specified as a character vector.
Example: 'myTestModel'
Data Types: char

expression — MATLAB expression to evaluate
character vector

MATLAB expression to evaluate, specified as a character vector.
Example: 'a = 5.3'
Example: 'whos'
Example: 'CurrentSpeed.Value = 290.73'
Data Types: char

Output Arguments
returnValue — Value returned by specified expression
valid entry or variable value

Value returned by the specified MATLAB expression.

 Simulink.data.evalinGlobal

2-609

Tips
• evalinGlobal helps you transition Simulink models to the use of data dictionaries.

You can use the function to manipulate model variables before and after linking a
model to a data dictionary.

See Also
Simulink.data.assigninGlobal | Simulink.data.existsInGlobal | evalin

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

2 Functions — Alphabetical List

2-610

Simulink.data.existsInGlobal
Check existence of variable in context of Simulink model

Syntax
varExists = Simulink.data.existsInGlobal(modelName,varName)

Description
varExists = Simulink.data.existsInGlobal(modelName,varName) returns an
indication of the existence of a variable or data dictionary entry varName in the context of
the Simulink model modelName. Simulink.data.existsInGlobal searches the
Design Data section of the data dictionary that is linked to the target model or the
MATLAB base workspace if the target model is not linked to any data dictionary.

Examples

Determine Existence of Variable in Model With or Without Data Dictionary

Determine the existence of a variable PressVect in the context of the Simulink model
vdp.slx, which is not linked to any data dictionary.

Simulink.data.existsInGlobal('vdp','PressVect')

ans =

 0

Because vdp.slx is not linked to any data dictionary, existsInGlobal searches only in
the MATLAB base workspace for PressVect.

Determine the existence of a variable PressVect in the context of the Simulink model
sldemo_fuelsys_dd_controller.slx, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd.

 Simulink.data.existsInGlobal

2-611

Simulink.data.existsInGlobal('sldemo_fuelsys_dd_controller','PressVect')

ans =

 1

Because sldemo_fuelsys_dd_controller.slx is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd , existsInGlobal searches for PressVect
only in the Design Data section of the dictionary.

• “Store Data in Dictionary Programmatically”

Input Arguments
modelName — Name of target Simulink model
character vector

Name of target Simulink model, specified as a character vector.
Example: 'myTestModel'
Data Types: char

varName — Name of target variable or data dictionary entry
character vector

Name of target variable or data dictionary entry, specified as a character vector.
Example: 'myTargetVariable'
Data Types: char

Output Arguments
varExists — Indication of existence of target variable or data dictionary entry
1 | 0

Indication of existence of target variable or data dictionary entry, returned as 1 to
indicate existence or 0 to indicate absence.

2 Functions — Alphabetical List

2-612

Tips
• existsInGlobal helps you transition Simulink models to the use of data dictionaries.

You can use the function to find model variables before and after linking a model to a
data dictionary.

Alternatives
You can use Model Explorer to search a data dictionary or any workspace for entries or
variables.

See Also
Simulink.data.assigninGlobal | Simulink.data.evalinGlobal | exist

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 Simulink.data.existsInGlobal

2-613

Simulink.data.getEnumTypeInfo
Get information about enumerated data type

Syntax
information = Simulink.data.getEnumTypeInfo(enumTypeName,
infoRequest)

Description
information = Simulink.data.getEnumTypeInfo(enumTypeName,
infoRequest) returns information about an enumerated data type enumTypeName.

Use this function only to return information about an enumerated data type. To customize
an enumerated data type, for example, by specifying a default enumeration member or by
controlling the scope of the type definition in generated code, see “Customize Simulink
Enumeration”.

Examples

Return Default Value of Enumerated Data Type

Get the default enumeration member of an enumerated data type LEDcolor. Suppose
LEDcolor defines two enumeration members, GREEN and RED, and uses GREEN as the
default member.

Simulink.data.getEnumTypeInfo('LEDcolor','DefaultValue')

ans =

 GREEN

2 Functions — Alphabetical List

2-614

Get Scope of Enumerated Data Type Definition in Generated Code

For an enumerated data type LEDcolor, find out if generated code exports or imports the
definition of the type to or from a header file.

Simulink.data.getEnumTypeInfo('LEDcolor','DataScope')
Simulink.data.getEnumTypeInfo('LEDcolor','HeaderFile')

ans =

Auto

ans =

 ''

Because DataScope is 'Auto' and HeaderFile is empty, generated code defines the
enumerated data type LEDcolor in the header file model_types.h where model is the
name of the model used to generate code.

• “Customize Simulink Enumeration”

Input Arguments
enumTypeName — Name of target enumerated data type
character vector

Name of the target enumerated data type, specified as a character vector.
Example: 'myFirstEnumType'
Data Types: char

infoRequest — Information to return
valid character vector

Information to return, specified as one of the character vector options in the table.

 Simulink.data.getEnumTypeInfo

2-615

Specified value Information returned Example return
value

'DefaultValue' The default enumeration member, returned
as an instance of the enumerated data type.

enumMember1

'Description' The custom description of this data type,
returned as a character vector. Returns an
empty character vector if a description was
not specified for the type.

'My first enum
type.'

'HeaderFile' The name of the custom header file that
defines the data type in generated code,
returned as a character vector. Returns an
empty character vector if a header file was
not specified for the type.

'myEnumType.h'

'DataScope' Indication whether generated code imports
or exports the definition of the data type. A
return value of 'Auto' indicates generated
code defines the type in the header file
model_types.h or imports the definition
from the header file identified by
HeaderFile. A return value of 'Exported'
or 'Imported' indicates generated code
exports or imports the definition to or from
the header file identified by HeaderFile.

'Exported'

'StorageType' The integer data type used by generated
code to store the numeric values of the
enumeration members, returned as a
character vector. Returns 'int' if you did
not specify a storage type for the enumerated
type, in which case generated code uses the
native integer type of the hardware target.

'int32'

'AddClassNameToEnumNames
'

Indication whether generated code prefixes
the names of enumeration members with the
name of the data type. Returned as true or
false.

true

2 Functions — Alphabetical List

2-616

See Also
Simulink.defineIntEnumType

Topics
“Customize Simulink Enumeration”
“Simulink Enumerations”

Introduced in R2014b

 Simulink.data.getEnumTypeInfo

2-617

Simulink.defineIntEnumType
Define enumerated data type

Syntax
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues)
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'Description', ClassDesc)
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'DefaultValue', DefValue)
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'DataScope', ScopeSelection)
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'HeaderFile', FileName)
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'AddClassNameToEnumNames', Flag)
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'StorageType', DataType)

Description
Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues) defines
an enumeration named ClassName with enumeration values specified with
CellOfEnums and underlying numeric values specified by IntValues.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'Description', ClassDesc) defines the enumeration with a description (character
vector).

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'DefaultValue', DefValue) defines a default value for the enumeration, which is one
of the character vectors you specify for CellOfEnums.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'DataScope', ScopeSelection) specifies whether the data type definition should be
imported from, or exported to, a header file during code generation.

2 Functions — Alphabetical List

2-618

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'HeaderFile', FileName) specifies the name of a header file containing the
enumeration class definition for use in code generated from a model.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'AddClassNameToEnumNames', Flag) specifies whether the code generator applies
the class name as a prefix to the enumeration values that you specify for CellOfEnums.
For Flag, specify true or false. For example, if you specify true, the code generator
would use BasicColors.Red instead of Red to represent an enumerated value.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,
'StorageType', DataType) specifies the data type used to store the enumerations’
underlying integer values in code generated from a model.

Input Arguments
ClassName

The name of the enumerated data type.

CellOfEnums

A cell array of character vectors that defines the enumerations for the data type.

IntValues

An array of numeric values that correspond to enumerations of the data type.

'Description', ClassDesc

Specifies a character vector that describes the enumeration data type.

'DefaultValue', DefValue

Specifies the default enumeration value.

'HeaderFile', FileName

Specifies a character vector naming the header file that is to contain the data type
definition.

 Simulink.defineIntEnumType

2-619

By default, the generated #include directive uses the preprocessor delimiter " instead
of < and >. To generate the directive #include <myTypes.h>, specify FileName as
'<myTypes.h>'.

'DataScope', 'Auto' | 'Exported' | 'Imported'

Specifies whether the data type definition should be imported from, or exported to, a
header file during code generation.

Value Action
Auto (default) If no value is specified for Headerfile,

export the type definition to
model_types.h, where model is the
model name.

If a value is specified for Headerfile,
import the data type definition from the
specified header file.

Exported Export the data type definition to a header
file.

If no value is specified for Headerfile, the
header file name defaults to type.h, where
type is the data type name.

Imported Import the data type definition from a
header file.

If no value is specified for Headerfile, the
header file name defaults to type.h, where
type is the data type name.

'AddClassNameToEnumNames', Flag

A logical flag that specifies whether code generator applies the class name as a prefix to
the enumerations.

'StorageType', DataType

Specifies a character vector that identifies the data type used to store the enumerations’
underlying integer values in generated code. The following data types are supported:
'int8', 'int16', 'int32', 'uint8', or 'uint16'.

2 Functions — Alphabetical List

2-620

Examples
Assume an external data dictionary includes the following enumeration:

BasicColors.Red(0), BasicColors.Yellow(1), BasicColors.Blue(2)

Import the enumeration class definition into the MATLAB workspace while specifying
int16 as the underlying integer data type for generated code:

Simulink.defineIntEnumType('BasicColors', ...
 {'Red', 'Yellow', 'Blue'}, ...
 [0;1;2], ...
 'Description', 'Basic colors', ...
 'DefaultValue', 'Blue', ...
 'HeaderFile', 'mybasiccolors.h', ...
 'DataScope', 'Exported', ...
 'AddClassNameToEnumNames', true, ...
 'StorageType', 'int16');

See Also
enumeration

Topics
“Import Enumerations Defined Externally to MATLAB”
“Define Simulink Enumerations”

Introduced in R2010b

 Simulink.defineIntEnumType

2-621

Simulink.defaultModelTemplate
Set or get default model template

Syntax
Simulink.defaultModelTemplate(templatename)
templatepath = Simulink.defaultModelTemplate

Description
Simulink.defaultModelTemplate(templatename) sets the template file specified
by templatename as the default model template to use for new models. This setting is
persistent between Simulink sessions.

templatepath = Simulink.defaultModelTemplate gets the full path to the current
default model template.

Examples

Set the default model template

Simulink.defaultModelTemplate('simple_simulation.sltx')

Get the default model template

mydefaulttemplate = Simulink.defaultModelTemplate

Clear and restore the default model template

Use set_param to set a root block diagram parameter. This clears the default template
so that new models will inherit this property of the root block diagram, and warns.

2 Functions — Alphabetical List

2-622

set_param(0,'StopTime','99');

Restore the default template.

Simulink.defaultModelTemplate('$restore');

• “Create and Open Models”
• “Create a Template from a Model”
• “Using Templates to Create Standard Project Settings”

Input Arguments
templatename — Template file name
character vector

Template file name, specified as a character vector. If the template is not on the MATLAB
path, specify the fully-qualified path to the template file and *.sltx extension.
Example: \\Home\username\Documents\MATLAB\template.sltx
Data Types: char

Output Arguments
templatepath — Template path
character vector

Template path, specified as a character vector, showing the full path to the current
default model template.

See Also
Simulink.createFromTemplate | Simulink.exportToTemplate |
Simulink.findTemplates | new_system

Topics
“Create and Open Models”
“Create a Template from a Model”

 Simulink.defaultModelTemplate

2-623

“Using Templates to Create Standard Project Settings”

Introduced in R2016b

2 Functions — Alphabetical List

2-624

Simulink.exportToTemplate
Create template from model or project

Syntax
templatefile = Simulink.exportToTemplate(obj,templatename)
templatefile = Simulink.exportToTemplate(obj,templatename,
Name,Value)

Description
templatefile = Simulink.exportToTemplate(obj,templatename) creates a
template file (templatename.sltx) from a model or project specified by obj.

If you have project templates created in R2014a or earlier (.zip files), use
Simulink.exportToTemplate to upgrade them to .sltx files, then you can use them
in the start page.

templatefile = Simulink.exportToTemplate(obj,templatename,
Name,Value) specifies additional template options as one or more Name, Value pair
arguments.

Examples

Create a Template From a Model

Open the vdp model and create a template from it.

vdp
myvdptemplate = Simulink.exportToTemplate(bdroot,'vdptemplate')

 Simulink.exportToTemplate

2-625

Create a Template From a Model and Specify Description

Open the vdp model and create a template from it, specifying a description.

vdp
myvdptemplate = Simulink.exportToTemplate(bdroot,'vdptemplate','Description','Use this template to create a vdp model')

• “Create and Open Models”
• “Create a Template from a Model”
• “Using Templates to Create Standard Project Settings”

Input Arguments
obj — Model, library, or project
character vector | numeric handle | slproject.ProjectManager

Model, library, or project, specified by name or numeric handle, or a
slproject.ProjectManager object returned by the simulinkproject function.
Data Types: double | char

templatename — Template file name
character vector

Template file name, specified as a character vector that can optionally include the fully-
qualified path to a template file and *.sltx extension.
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Title,'My Project Template'

Group — Group of template
character vector

2 Functions — Alphabetical List

2-626

Group of template, specified as a character vector. On the Start Page, templates are
shown under group headings.
Example: 'Simscape'
Data Types: char

Author — Author of template
character vector

Author of template, specified as a character vector.
Data Types: char

Description — Description of template
character vector

Description of template, specified as a character vector.
Data Types: char

ThumbnailFile — Thumbnail image file name
character vector

Thumbnail image file name, specified as a character vector.
Data Types: char

Title — Title of model or project template
character vector

Title of template, specified as a character vector. On the Start Page, the templates titles
are shown on the tiles. The title can be different from the file name, and you can use any
characters in the title. The default value is the name of the model or project.
Example: 'My Project Template'
Data Types: char

Output Arguments
templatefile — Template file
character vector

 Simulink.exportToTemplate

2-627

Template file, returned as templatename.sltx file.

See Also
Simulink.createFromTemplate | Simulink.defaultModelTemplate |
Simulink.findTemplates

Topics
“Create and Open Models”
“Create a Template from a Model”
“Using Templates to Create Standard Project Settings”

Introduced in R2016a

2 Functions — Alphabetical List

2-628

Simulink.exportToVersion
Export model or library for use in previous version of Simulink

Syntax
exported_file = Simulink.exportToVersion(modelname,target_filename,
version)
exported_file = Simulink.exportToVersion(modelname,target_filename,
version,Name,Value)

Description
exported_file = Simulink.exportToVersion(modelname,target_filename,
version) exports the model or library modelname to a file named target_filename in
a format that the specified previous Simulink version can load.

If the system contains functionality not supported by the specified Simulink software
version, the command removes the functionality and replaces any unsupported blocks
with empty masked subsystem blocks colored yellow. As a result, the converted system
may generate different results.

The save_system ExportToVersion option is a legacy option for this functionality that
is also supported.

exported_file = Simulink.exportToVersion(modelname,target_filename,
version,Name,Value) specifies additional options as one or more Name, Value pair
arguments.

Examples

Export a Model to a Previous Version

Get the current top-level system and export it.

 Simulink.exportToVersion

2-629

 Simulink.exportToVersion(bdroot,'mymodel.slx','R2014b');

Export a Model to a Previous Version and Break Links

Get the current top-level system and export it, replacing links to library blocks with
copies of the library blocks in the saved file.

Simulink.exportToVersion(bdroot,'mymodel.slx','R2014b','BreakUserLinks',true);

• “Save a Model”

Input Arguments
modelname — Model to export
character vector

Model to export, specified as a character vector, without any file extension. The model
must be loaded and unmodified. The target file must not be the same as the model file.
Data Types: char

target_filename — Exported file name
character vector

Exported file name, specified as a character vector. The target file must not be the same
as the model file.
Example: 'mymodel.slx'
Data Types: char

version — MATLAB release name
'R2012A' | 'R2014A_MDL' | 'R2016B_SLX' | ...

MATLAB release name, specified as a character vector, which specifies a previous
Simulink version. Simulink.exportToVersion exports the system to a format that the
specified previous Simulink version can load. You cannot export to your current version.
These version names are not case sensitive.

2 Functions — Alphabetical List

2-630

To export to Release 2012a and later, you can specify model file format as SLX or MDL
using the suffix _MDL or _SLX. If you do not specify a format, you export your default
model file format.

If you use the Export to Previous Version dialog box instead of
Simulink.exportToVersion, then the Save as type list supports 7 years of previous
releases.
Example: 'R2015B'
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

AllowPrompt — Allow prompt or message dialog box
false (default) | true | 'on' | 'off'

Allow prompt or message dialog box, specified by a logical value that indicates whether to
display any output prompt or message in a dialog box or only messages at the command
line. For example, prompts to make files writable, or messages about exported versions. If
you want to allow prompts, then set to true. or on.

BreakUserLinks — Break user-defined links
false (default) | true | 'on' | 'off'

Break user-defined links, specified by a logical value that indicates whether the function
replaces links to user-defined library blocks with copies of the library blocks in the saved
file.

BreakToolboxLinks — Break all toolbox links
false (default) | true | 'on' | 'off'

Break all toolbox links, specified by a logical value that indicates whether the function
replaces links to built-in MathWorks library blocks with copies of the library blocks in the
saved file. The 'BreakToolboxLinks' option affects Simulink library blocks and blocks
from any other libraries supplied with MathWorks toolboxes or blocksets.

 Simulink.exportToVersion

2-631

Note The 'BreakToolboxLinks' option can result in compatibility issues when
upgrading to newer versions of Simulink software. For example:

• Any masks on top of library links to Simulink S-functions will not upgrade to the new
version of the S-function.

• Any library links to masked subsystems in a Simulink library will not upgrade to the
new subsystem behavior.

• Any broken links prevent the automatic library forwarding mechanism from upgrading
the link.

If you have saved a model with broken links to built-in libraries, use the Upgrade
Advisor to scan the model for out-of-date blocks and upgrade the Simulink blocks to
their current versions.

Output Arguments
exported_file — Exported file
character vector

Exported file, returned in the format that the specified previous Simulink version can
load.

See Also
save_system

Topics
“Save a Model”

Introduced in R2016a

2 Functions — Alphabetical List

2-632

Simulink.findBlocks
Find blocks in Simulink models

Syntax
bl = Simulink.findBlocks(sys)
bl = Simulink.findBlocks(sys,options)
bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN)
bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN,
options)

Description
bl = Simulink.findBlocks(sys) returns handles to all blocks in the model or
subsystem sys.

bl = Simulink.findBlocks(sys,options) finds blocks that match the criteria
specified by a Simulink.FindOptions object.

bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN) finds
blocks whose block parameters have the specified values.

bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN,
options) finds blocks whose parameters have the specified values and that match the
criteria specified by a FindOptions object.

Examples

Find Blocks in a Model

Return handles for all blocks in the model vdp.

load_system(vdp);
bl = Simulink.findBlocks('vdp')

 Simulink.findBlocks

2-633

bl =

 5.0001
 83.0001
 86.0001
 6.0001
 7.0001
 8.0001
 9.0001
 10.0001
 11.0001
 12.0001
 13.0001
 14.0001
 15.0001
 16.0001

Return block names.

bl = getfullname(Simulink.findBlocks('vdp'))

bl =

 12×1 cell array

 {'vdp/Fcn' }
 {'vdp/More Info' }
 {'vdp/More Info/Model Info'}
 {'vdp/Mu' }
 {'vdp/Mux' }
 {'vdp/Product' }
 {'vdp/Scope' }
 {'vdp/Sum' }
 {'vdp/x1' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out2' }

Return block handles for the block whose name is Mu.

Simulink.findBlocks('vdp','Name','Mu')

2 Functions — Alphabetical List

2-634

ans =

 8.0001

Input Arguments
sys — Model or subsystem to find blocks in
character vector | string array

Model or subsystem to find blocks in, specified as a character vector or string array.
Example: 'vdp' "f14/Aircraft Dynamics Model"

options — Search constraints
simulink.FindOptions object

Search constraints, specified as a Simulink.FindOptions object.
Example: 'vdp' "f14/Aircraft Dynamics Model"

Output Arguments
bl — Search results
array of handles

Search results, returned as an array of handles.

See Also
Simulink.FindOptions | Simulink.allBlockDiagrams |
Simulink.findBlocksOfType

Topics
“Model Parameters” on page 6-2
“Block-Specific Parameters” on page 6-130

Introduced in R2018a

 Simulink.findBlocks

2-635

Simulink.findBlocksOfType
Find specified type of block in Simulink models

Syntax
bl = Simulink.findBlocksOfType(sys,type)
bl = Simulink.findBlocksOfType(sys,type,options)
bl = Simulink.findBlocksOfType(sys,
type,Param1,Value1,...,ParamN,ValueN)
bl = Simulink.findBlocksofType(sys,
type,Param1,Value1,...,ParamN,ValueN,options)

Description
bl = Simulink.findBlocksOfType(sys,type) returns handles to all blocks of the
specified type in the model or subsystem sys.

bl = Simulink.findBlocksOfType(sys,type,options) matches the criteria
specified by a FindOptions object.

bl = Simulink.findBlocksOfType(sys,
type,Param1,Value1,...,ParamN,ValueN) finds blocks whose parameters have the
specified values.

bl = Simulink.findBlocksofType(sys,
type,Param1,Value1,...,ParamN,ValueN,options) finds blocks whose
parameters have the specified values and that match the criteria specified by a
FindOptions object.

Examples

Find Blocks of a Type in Model

Find all blocks of type Gain in the model vdp.

2 Functions — Alphabetical List

2-636

load_system('vdp');
Simulink.findBlocksOfType('vdp','Gain')

ans =

 7.0001

To return block names instead of handles, use getfullname.

getfullname(Simulink.findBlocksOfType('vdp','Gain'))

ans =

 'vdp/Mu'

Find Blocks of a Type Using Search Options

Load the model sldemo_clutch. Then, create a FindOptions object and use it to
constrain the search of GoTo blocks in the model to the Unlocked system.

load_system('sldemo_clutch');
f = Simulink.FindOptions('SearchDepth',1);
bl = Simulink.findBlocksOfType('sldemo_clutch/Unlocked','Goto',f)

bl =

 166.0001
 167.0001

Input Arguments
sys — Model or subsystem to find blocks in
character vector | string array

Model or subsystem to find blocks in, specified as a character vector or string array.
Example: 'vdp' "f14/Aircraft Dynamics Model"

type — Block type
character vector | string array

 Simulink.findBlocksOfType

2-637

Block type, specified as a character vector or string array. Use get_param with the
'BlockType' parameter to get the block type.

options — Search constraints
simulink.FindOptions object

Search constraints, specified as a Simulink.FindOptions object.
Example: Simulink.FindOptions('SearchDepth',1)

Output Arguments
bl — Search results
array of handles

Search results, returned as an array of handles.

See Also
Simulink.FindOptions | Simulink.allBlockDiagrams | Simulink.findBlocks

Topics
“Model Parameters” on page 6-2
“Block-Specific Parameters” on page 6-130

Introduced in R2018a

2 Functions — Alphabetical List

2-638

Simulink.findTemplates
Find model or project templates with specified properties

Syntax
filename = Simulink.findTemplates(templatename)
filename = Simulink.findTemplates(templatename,Name,Value)
[filename,info] = Simulink.findTemplates(templatename)

Description
filename = Simulink.findTemplates(templatename) returns the names and
TemplateInfo objects for all matching templates that include templatename.

filename = Simulink.findTemplates(templatename,Name,Value) also specifies
additional template properties as one or more Name, Value pair arguments.

[filename,info] = Simulink.findTemplates(templatename) returns the names
and TemplateInfo objects for all matching templates.

Examples

Find a Particular Template

Get the full path to the default model template.

filename = Simulink.findTemplates('factory_default_model');

Find All Templates With Specified Folders or Authors

Get all templates inside folders called work.

filename = Simulink.findTemplates('work/')

 Simulink.findTemplates

2-639

Get all templates for which the Author property includes the character vector Smith.

filename = Simulink.findTemplates('*','Author','Smith')

Find All DSP Templates and Get TemplateInfo Objects

Get the paths to all DSP model templates, and sltemplate.TemplateInfo objects for
each of them.

[filename,info] = Simulink.findTemplates('dsp*','Type','Model');

• “Create and Open Models”
• “Create a Template from a Model”
• “Using Templates to Create Standard Project Settings”

Input Arguments
templatename — Template name
character vector

Template name, specified as a character vector containing a portion of a file name, which
can contain the wildcard asterisk character “*”.
Example:
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can specify regular expressions for any of the Value character vectors, e.g., including
the wildcard asterisk character “*”.
Example: 'Author','*son'

2 Functions — Alphabetical List

2-640

Type — Model, library, or project
'Model' | 'Library' | 'Project'

Model, library, or project template type, specified as a character vector for model, library,
or project.
Example: 'Simscape'
Data Types: char

Title — Title of template
character vector

Title of template, specified as a character vector.
Example: 'Simscape'
Data Types: char

Group — Group of template
character vector

Group of template, specified as a character vector. On the Start Page, templates are
shown under group headings.
Example: 'Simscape'
Data Types: char

Author — Author of template
character vector

Author of template, specified as a character vector.
Data Types: char

Description — Description of template
character vector

Description of template, specified as a character vector.
Data Types: char

 Simulink.findTemplates

2-641

Output Arguments
filename — Template name
character vector | cell array of character vectors

Template names of matching templates, returned as character vectors.

info — Template information
template info objects | array of template info objects

Template information of matching templates, returned as sltemplate.TemplateInfo
objects.

See Also
Simulink.createFromTemplate | Simulink.exportToTemplate

Topics
“Create and Open Models”
“Create a Template from a Model”
“Using Templates to Create Standard Project Settings”

Introduced in R2016a

2 Functions — Alphabetical List

2-642

Simulink.findVars
Analyze relationship between variables and blocks in models

Syntax
[variables] = Simulink.findVars(context)
[variables] = Simulink.findVars(context,variablefilter)
[variables] = Simulink.findVars(___ ,Name,Value)

Description
[variables] = Simulink.findVars(context) finds and returns variables that are
used in the blocks and models specified by context, including subsystems and
referenced models. The function returns an empty vector if context does not use any
variables.

[variables] = Simulink.findVars(context,variablefilter) finds only the
variables or enumerated types that are specified by variablefilter. For example, use
this syntax to determine where a variable is used in a model.

[variables] = Simulink.findVars(___ ,Name,Value) finds variables with
additional options specified by one or more Name,Value pair arguments. For example,
you can search for unused variables. You can also search for enumerated data types that
are used in context, in addition to variables.

Examples

Variables in Use in a Model

Find variables used by MyModel.

variables = Simulink.findVars('MyModel');

 Simulink.findVars

2-643

Specific Variable in Use in a Model

Find all uses of the base workspace variable k by MyModel. Use the cached results to
avoid compiling MyModel.

variables = Simulink.findVars('MyModel','Name','k',
'SearchMethod','cached','SourceType','base workspace');

Regular Expression Matching

Find all uses of a variable whose name matches the regular expression ^trans.

variables = Simulink.findVars('MyModel','Regexp','on',
'Name','^trans');

Variables Common to Two Models

Given two models, find the variables used by the first model, the second, and both

model1Vars = Simulink.findVars('model1');
model2Vars = Simulink.findVars('model2');
commonVars = intersect(model1vars,model2Vars);

Variables Not Used in a Model

Find the variables that are defined in the model workspace of MyModel but that are not
used by the model.

unusedVars = Simulink.findVars('MyModel','FindUsedVars','off',
'SourceType','model workspace');

Specific Variable Not Used in a Model

Determine if the base workspace variable k is not used by MyModel.

2 Functions — Alphabetical List

2-644

varObj = Simulink.VariableUsage('k','base workspace');
unusedVar = Simulink.findVars('MyModel',varObj,
'FindUsedVars','off');

Variables Used by a Block

Find the variables that are used by the block Gain1 in MyModel.

variables = Simulink.findVars('MyModel',
'Users','MyModel/Gain1');

Variables Used in a Model Reference Hierarchy

Find the variables that are used in a model reference hierarchy. Begin the search with the
model MyNestedModel, and search the entire hierarchy below MyNestedModel.
variables = Simulink.findVars('MyNestedModel','SearchReferencedModels','on');

Variables and Enumerated Types Used in a Model

Find variables and enumerated types that are used in MyModel.

varsAndEnumTypes = Simulink.findVars('MyModel','IncludeEnumTypes','on');

• “Search Using Model Explorer”

Input Arguments
context — Models and blocks to search
character vector | cell array of character vectors

Models and blocks to search, specified as a character vector or a cell array of character
vectors. You can specify context in one of the following ways:

• The name of a model. For example, ('vdp') specifies the model vdp.slx.
• The name or path of a block or masked block. For example, ('vdp/Gain1') specifies a

block named Gain1 at the root level of the model vdp.slx.

 Simulink.findVars

2-645

• A cell array of model or block names.

Data Types: char | cell

variablefilter — Specific variables to find
array of Simulink.VariableUsage objects

Specific variables to find, specified as an array of Simulink.VariableUsage objects.
Each Simulink.VariableUsage object identifies a variable to find.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FindUsedVars','off'

FindUsedVars — Find variables that are used or not used
'on' (default) | 'off

Flag to find variables that are explicitly used or not used, specified as the comma-
separated pair consisting of 'FindUsedVars' and 'on' or 'off. If you specify
FindUsedVars as 'off', the function finds variables that are not used in context but
that are defined in the workspace specified by SourceType.
Example: 'FindUsedVars','off'

IncludeEnumTypes — Find enumerated types that are used
'off' (default) | 'on'

Flag to find enumerated data types that are used, specified as the comma-separated pair
consisting of 'IncludeEnumTypes' and 'on' or 'off'. The function finds enumerated
types that are used explicitly in context as well as types that define variables that are
used in context.

If you specify SourceType as 'base workspace', 'model workspace', or 'mask
workspace', the function does not report enumerated types because those sources
cannot define enumerated types.

You cannot find unused enumerated types by specifying FindUsedVars as 'off'.

2 Functions — Alphabetical List

2-646

Example: 'IncludeEnumTypes','on'

RegExp — Enable regular expression matching
'off' (default) | 'on'

Flag to enable regular expression matching for input arguments, specified as the comma-
separated pair consisting of 'RegExp' and 'on'. You can match only input arguments
that have character vector values.
Example: 'RegExp','on'

SearchMethod — Compile status
'compiled' (default) | 'cached'

Compile status, specified as the comma-separated pair consisting of 'SearchMethod'
and one of these values:

• 'compiled' — Return up-to-date results by compiling every model in the search
context before search.

• 'cached' — Return quicker results by using results cached during the previous
compile.

Example: 'SearchMethod','compiled'

SearchReferencedModels — Enable search in referenced models
'off' (default) | 'on'

Flag to enable search in referenced models, specified as the comma-separated pair
consisting of 'SearchReferencedModels' and 'on'.
Example: 'SearchReferencedModels','on'

Name — Name of a variable or enumerated type to search for
character vector

Name of a variable or enumerated data type to search for, specified as the comma-
separated pair consisting of 'Name' and a character vector.
Example: 'Name','trans'
Data Types: char

SourceType — Workspace or source defining the variables or enumerated types
character vector

 Simulink.findVars

2-647

Workspace or source defining the variables, specified as the comma-separated pair of
'SourceType' and one of these options:

• 'base workspace'
• 'model workspace'
• 'mask workspace'
• 'data dictionary'

The function filters results for variables that are defined in the specified source.
Example: 'SourceType','base workspace'

If you search for enumerated data types by specifying 'IncludeEnumTypes' as 'on',
'SourceType' represents the way an enumerated type is defined. You can specify one of
these options:

• 'MATLAB file'
• 'dynamic class'
• 'data dictionary'

The function filters results for enumerated types that are defined in the specified source.
Example: 'SourceType','MATLAB file'

If you do not specify SourceType, the function does not filter results by source.

Users — Name of block to search for variables
character vector

Name of specific block to search for variables, specified as the comma-separated pair
consisting of 'Users' and a character vector.

To search a set of specific blocks, enable regular expression matching by specifying
RegExp as 'on' and use regular expressions in the character vector. For example, you
can specify 'Users','MyModel/Gain* to search all blocks in MyModel whose names
begin with Gain.
Example: 'Users','MyModel/Gain1'
Example: 'Users','MyModel/mySubsystem/Gain2'
Example: 'Users','MyModel/Gain*

2 Functions — Alphabetical List

2-648

Limitations
Simulink.findVars does not work with these constructs:

• MATLAB code in scripts and initialization and callback functions
• Libraries and blocks in libraries
• Variables in MATLAB Function blocks, except for input arguments

However, Simulink.findVars can find enumerated types anywhere they are used in
MATLAB Function blocks.

• Calls directly to MATLAB from the Stateflow action language
• S-functions that use data type variables registered using ssRegisterDataType

To make the variables searchable, use ssRegisterTypeFromNamedObject instead.
• Variables referenced by machine-parented data in Stateflow

Simulink.findVars discovers variable usage in inactive subsystem variants only if you
select Analyze all choices during update diagram and generate preprocessor
conditionals in the Variant Subsystem block dialog box. If you do not select this check
box, the function does not discover variable usage in inactive variants.

See Also
Simulink.VariableUsage | find_system | intersect

Topics
“Search Using Model Explorer”
“Model Exploration”
“Variables”

Introduced in R2010a

 Simulink.findVars

2-649

Simulink.getFileChecksum
Checksum of file

Syntax
checksum = Simulink.getFileChecksum(filename)

Description
checksum = Simulink.getFileChecksum(filename) returns the checksum of the
specified file, using the MD5 checksum algorithm. Use the checksum to see if the file has
changed compared to a previous checksum. You can use checksums as part of an audit
trail.

Use Simulink.getFileChecksum to get a checksum for any file. If the file contents do
not change from one checksum to the next, the checksum from
Simulink.getFileChecksum stays the same. Otherwise, the checksum is different with
each change to the file contents.

For functional information on a model, use Simulink.BlockDiagram.getChecksum
instead. Simulink.BlockDiagram.getChecksum looks at the functional aspect of the
model. If the functional aspect doesn't change, then
Simulink.BlockDiagram.getChecksum returns the same checksum.

For example, if you moved a block, the file contents are different (measured by
Simulink.getFileChecksum) but the function of the model is unchanged (measured by
Simulink.BlockDiagram.getChecksum).

Examples

Get Checksum of a File

Use fullfile to specify a full path to a file and get the checksum.

2 Functions — Alphabetical List

2-650

filechecksum = Simulink.getFileChecksum(fullfile(matlabroot,'toolbox',...
'matlab','demos','gatlin.mat'));

Input Arguments
filename — File name to get checksum for
file of any type

File name to get checksum for, with file extension and optional full path. Use fullfile
to specify a full path to a file, or use the form 'C:\Work\filename.mat'.
Example: 'lengthofline.m'
Data Types: char

Output Arguments
checksum — Checksum value
character vector

Checksum value in a 32-character vector.

See Also
Simulink.BlockDiagram.getChecksum | Simulink.SubSystem.getChecksum

Introduced in R2014b

 Simulink.getFileChecksum

2-651

Simulink.getSuppressedDiagnostics
Return Simulink.SuppressedDiagnostic objects associated with a block, subsystem,
or model

Syntax
suppressed_diagnostics = Simulink.getSuppressedDiagnostics(source)

Description
suppressed_diagnostics = Simulink.getSuppressedDiagnostics(source)
returns an array of Simulink.SuppressedDiagnostic objects that are associated with
the specified source.

Examples

Get All Simulink.SuppressedDiagnostic Objects on a Specific Block

Using the model from “Suppress Diagnostic Messages Programmatically”, get all
suppressed diagnostics associated with a specified block.

Use the Simulink.suppressDiagnostic function to suppress the parameter precision
loss warning thrown by the Constant block, one.

Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

Get the Simulink.SuppressedDiagnostic objects associated with the block.

suppressed_diagnostic = Simulink.getSuppressedDiagnostics('Suppressor_CLI_Demo/one')

suppressed_diagnostic =

 SuppressedDiagnostic with properties:

2 Functions — Alphabetical List

2-652

 Source: 'Suppressor_CLI_Demo/one'
 Id: 'SimulinkFixedPoint:util:fxpParameterPrecis…'
 LastModifiedBy: ''
 Comments: ''
 LastModified: '2016-Jul-04 14:12:24'

• “Suppress Diagnostic Messages Programmatically”

Input Arguments
source — System, block, or model object throwing warning
model | subsystem | block path | block handle

The source of the diagnostic, specified as a model, subsystem, block path, block handle,
cell array of block paths, or cell array of block handles.

To get the block path, use the gcb function.

To get the block handle, use the getSimulinkBlockHandle function.
Data Types: char | cell

Output Arguments
suppressed_diagnostics — Suppressed diagnostics
array

Suppressed diagnostics, returned as an array of Simulink.SuppressedDiagnostic
objects.

See Also
Simulink.SuppressedDiagnostic | Simulink.SuppressedDiagnostic.restore |
Simulink.getSuppressedDiagnostics | Simulink.restoreDiagnostic |
Simulink.suppressDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

 Simulink.getSuppressedDiagnostics

2-653

Introduced in R2016b

2 Functions — Alphabetical List

2-654

Simulink.importExternalCTypes
Generate Simulink representations of custom data types defined by C or C++ code

Syntax
importInfo = Simulink.importExternalCTypes(headerFiles)
importInfo = Simulink.importExternalCTypes(modelName)
importInfo = Simulink.importExternalCTypes(___ ,Name,Value)

Description
importInfo = Simulink.importExternalCTypes(headerFiles) parses the C or C
++ header files (.h or .hpp) identified by headerFiles for typedef, struct, and
enum type definitions, and generates Simulink representations of the types. The output,
importInfo, identifies the successfully and unsuccessfully imported types.

You can use the Simulink representations to:

• Reuse your existing algorithmic C code and, through simulation, test its interaction
with your Simulink control algorithm. For an example that shows how to use the
Legacy Code Tool, see “Integrate C Function Whose Arguments Are Pointers to
Structures”.

• Generate code (Simulink Coder) that reuses the types and data that your existing code
defines. You can then integrate and compile the generated and existing code into a
single application. For an example, see “Exchange Structured and Enumerated Data
Between Generated and External Code” (Embedded Coder).

• Create and organize data (signals, parameters, and states) in a model by using
standard data types that your organization defines in C code.

• To create structures of signals in Simulink, use nonvirtual buses. See “Getting
Started with Buses”.

• To create structures of parameters, use MATLAB structures and
Simulink.Parameter objects. See “Organize Related Block Parameter
Definitions in Structures”.

 Simulink.importExternalCTypes

2-655

• To create enumerated data, see “Use Enumerated Data in Simulink Models”.
• To match a primitive typedef statement, use a Simulink.AliasType object to

set parameter and signal data types in a model.

By default, the function:

• Imports an enumerated type by generating a script file that derives an enumeration
class from Simulink.IntEnumType, as described in “Define Simulink
Enumerations”. If necessary, you can then edit the class definition to customize it (for
example, by implementing the addClassNameToEnumNames method).

• Imports a structure type by generating a Simulink.Bus object in the base
workspace.

• Imports a primitive typedef statement by generating a Simulink.AliasType object
in the base workspace.

• Interprets generic C data types, such as int or short, according to the word lengths
of your host computer. For example, for most modern machines, int has a 32-bit word
length, so the function represents an int structure field as a bus element that uses
the Simulink data type int32.

To override this default behavior, identify your target hardware board by using the
HardwareImplementation pair argument.

For additional information about default behavior, see “Tips” on page 2-675.

importInfo = Simulink.importExternalCTypes(modelName) generates Simulink
representations of custom C data types by analyzing a model that you identify with
modelName. When you use the Simulation Target configuration parameters in a model
to identify header files for inclusion during simulation, use this syntax to import types for
the purpose of simulating the model on your host computer. The function interprets
generic C data types according to the word lengths of your host computer.

When you use this syntax, do not use pair arguments, such as
HardwareImplementation, that can conflict with the configuration parameters of the
target model. When you use such pair arguments with this syntax, the function generates
a warning.

importInfo = Simulink.importExternalCTypes(___ ,Name,Value) specifies
additional options using one or more name-value pair arguments. You can use this syntax
to:

2 Functions — Alphabetical List

2-656

• Specify the names of types to import by using the Names pair argument.
• Control the way that Simulink stores the imported types, for example, by generating

the types in a Simulink data dictionary. Use the MATFile and DataDictionary pair
arguments.

• Control the way that the function interprets generic C data types. Use the
HardwareImplementation pair argument.

• Maintain synchrony between the C-code definitions and the Simulink representations
by attempting to import the updated C-code definitions again. You can choose whether
to overwrite the existing Simulink representations. Use the Overwrite and Verbose
pair arguments.

Examples

Import Simple Structure and Enumerated Types

This example shows how to generate Simulink representations of a C structure type
(struct) and an enumerated (enum) data type from a header file.

1 In your current folder, create the file ex_cc_simpleTypes.h.

typedef enum {
 PWR_LOSS = 0, /* Default value */
 OVERSPD,
 PRESS_LOW,
} fault_T;

typedef struct {
 double coeff;
 double init;
} params_T;

2 Generate Simulink representations of the types by calling
Simulink.importExternalCTypes.

Simulink.importExternalCTypes('ex_cc_simpleTypes.h');

The function creates a Simulink.Bus object, params_T, in the base workspace.
3 To inspect the properties of the object, open the Bus Editor.

buseditor

 Simulink.importExternalCTypes

2-657

Each bus element uses a name and a data type (double) that match the
corresponding structure field in ex_cc_simpleTypes.h.

4 In your current folder, inspect the generated file, fault_T.m, which defines the
enumerated type fault_T as an enumeration class.

You can use the bus object and the eumeration class to set signal and parameter data
types in Simulink models.

Import Structure Type Whose Fields Use Custom Data Types

This example shows how to generate a Simulink representation of a structure type whose
fields use custom data types (typedef).

Create the file ex_integer_aliases.h in your current folder.

typedef int sint_32;

typedef unsigned short uint_16;

Create the file ex_cc_struct_alias.h in your current folder.

#include "ex_integer_aliases.h"

typedef struct {
 sint_32 accum;
 uint_16 index;
} my_ints_T;

Import the structure type into Simulink as a Simulink.Bus object in the base
workspace. Import the typedef statements as Simulink.AliasType objects.

Simulink.importExternalCTypes('ex_cc_struct_alias.h');

Inspect the data types of the bus elements in the bus object. For example, inspect the
DataType property of the first bus element, which corresponds to the structure field
accum.

my_ints_T.Elements(1)

ans =

2 Functions — Alphabetical List

2-658

 BusElement with properties:

 Name: 'accum'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'sint_32'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 SampleTime: -1
 Unit: ''
 Description: ''

The Simulink.importExternalCTypes function uses the generated
Simulink.AliasType objects to set the data types of the bus elements.

Inspect the Simulink.AliasType objects in the base workspace. For example, the
object named sint_32 corresponds to one of the typedef statements in
ex_integer_aliases.h.

sint_32

sint_32 =

 AliasType with properties:

 Description: ''
 DataScope: 'Imported'
 HeaderFile: 'ex_integer_aliases.h'
 BaseType: 'int32'

For most host computers (which the function targets by default), the word length of int
is 32 bits and the word length of unsigned short is 16 bits. The function maps int and
unsigned short to the Simulink types int32 and uint16.

If you have Embedded Coder, the code that you generate from the model can use
sint_32 and uint_16 instead of the standard data type names, int32_T and
uint16_T.

 Simulink.importExternalCTypes

2-659

Store Imported Types in Data Dictionary

This example shows how to store the imported data types in a Simulink data dictionary. A
data dictionary stores data specifications (such as for signals and block parameter
values), data types, and other design data for one or more Simulink models.

In your current folder, create the file ex_cc_simpleTypes.h.

typedef enum {
 PWR_LOSS = 0, /* Default value */
 OVERSPD,
 PRESS_LOW,
} fault_T;

typedef struct {
 double coeff;
 double init;
} params_T;

Create a subfolder called myDictionaries.

mkdir('myDictionaries')

Generate Simulink representations of the types by calling
Simulink.importExternalCTypes. Permanently store the type definitions by creating
a new data dictionary, ex_cc_myTypes.sldd, in the new subfolder.

Simulink.importExternalCTypes('ex_cc_simpleTypes.h',...
 'DataDictionary','ex_cc_myTypes.sldd',...
 'OutputDir','myDictionaries');

To inspect the contents of the dictionary, set your current folder to myDictionaries and
double-click the dictionary file.

To use the Simulink representations in the dictionary, you must link a model or models to
the dictionary. See “Migrate Models to Use Simulink Data Dictionary”.

Import Only Specified Types

This example shows how to generate Simulink representations only for enumerated and
structure data types that you identify by name.

2 Functions — Alphabetical List

2-660

In your current folder, create the file ex_cc_manySimpleTypes.h. The file defines three
structure types: params_T, signals_T, and states_T.

typedef struct {
 double coeff;
 double init;
} params_T;

typedef struct {
 double flow_rate;
 double steam_press;
} signals_T;

typedef struct {
 double accum;
 double error;
} states_T;

Generate Simulink representations only for params_T and signals_T.

Simulink.importExternalCTypes('ex_cc_manySimpleTypes.h',...
 'Names',{'params_T','signals_T'});

The Simulink.Bus objects, params_T and signals_T, appear in the base workspace.

Import Types for 16-Bit Hardware

By default, Simulink.importExternalCTypes represents an enumerated data type by
creating an enumeration class that derives from the built-in class
Simulink.IntEnumType. When you simulate or generate code from a model that uses
the generated class, configuration parameters that you select for the model (for example,
on the Hardware Implementation pane) determine the specific integer length that
Simulink.IntEnumType and the enumeration class employ.

By default, the function interprets generic, primitive C data types, such as short and
int, according to the word lengths of your host computer. For example, to represent an
int structure field, the function typically applies the 32-bit data type int32 to the
corresponding bus element. When you want to simulate and generate code for hardware
other than your host computer, use the HardwareImplementation pair argument to
identify the target hardware and, by extension, the word lengths of the hardware.

 Simulink.importExternalCTypes

2-661

This example shows how to import data types from code that you intend to use on 16-bit
hardware. For this board, int has a 16-bit length, and each item of enumerated data
(enum) consumes 16 bits.

In your current folder, create the file ex_cc_intTypes.h.

typedef enum {
 PWR_LOSS = 0, /* Default value */
 OVERSPD,
 PRESS_LOW,
} fault_T;

typedef struct {
 int coeff;
 int init;
} params_T;

The code defines an enumerated data type and a structure type whose fields use the
generic C data type int.

To generate an accurate Simulink representation of the structure type, first open an
existing model or create a new model. For this example, create a new model named
ex_hdwImpl_16bit.

In the new model, set Configuration Parameters > Hardware Implementation >
Device vendor to Atmel. Set Device type to AVR.

Alternatively, at the command prompt, use these commands to create and configure the
model:

new_system('ex_hdwImpl_16bit','Model');
set_param('ex_hdwImpl_16bit','ProdHWDeviceType','Atmel->AVR')

Generate Simulink representations of the types. To specify the word lengths of the target
16-bit hardware, extract the model configuration parameters (which include the
Hardware Implementation settings) as a Simulink.ConfigSet object.

configSet = getActiveConfigSet('ex_hdwImpl_16bit');
Simulink.importExternalCTypes('ex_cc_intTypes.h','HardwareImplementation',configSet);

The Simulink.Bus object params_T appears in the base workspace. The bus elements,
such as coeff, use the Simulink data type int16.

2 Functions — Alphabetical List

2-662

params_T.Elements(1)

ans =

 BusElement with properties:

 Name: 'coeff'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'int16'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 SampleTime: -1
 Unit: ''
 Description: ''

In your current folder, the file fault_T.m defines the enumeration class fault_T. The
class derives from Simulink.IntEnumType, so you must use model configuration
parameters to identify the target hardware and, by extension, the correct native integer
length.

type('fault_T.m')

classdef fault_T < Simulink.IntEnumType
 % MATLAB enumeration class definition generated from template

 enumeration
 PWR_LOSS(0),
 OVERSPD(1),
 PRESS_LOW(2)
 end

 methods (Static)

 function defaultValue = getDefaultValue()
 % GETDEFAULTVALUE Returns the default enumerated value.
 % If this method is not defined, the first enumeration is used.
 defaultValue = fault_T.PWR_LOSS;
 end

 function dScope = getDataScope()

 Simulink.importExternalCTypes

2-663

 % GETDATASCOPE Specifies whether the data type definition should be imported from,
 % or exported to, a header file during code generation.
 dScope = 'Imported';
 end

 function desc = getDescription()
 % GETDESCRIPTION Returns a description of the enumeration.
 desc = '';
 end

 function headerFile = getHeaderFile()
 % GETHEADERFILE Specifies the name of a header file.
 headerFile = 'ex_cc_intTypes.h';
 end

 function flag = addClassNameToEnumNames()
 % ADDCLASSNAMETOENUMNAMES Indicate whether code generator applies the class name as a prefix
 % to the enumeration.
 flag = false;
 end

 end

end

Import Structure Type Whose Fields Use 16-Bit Fixed-Point Data Types

Create the file ex_cc_fixpt_struct.h in your current folder.

typedef struct {

 int coeff; /* Word length 16,
 binary fraction length 7 */

 int init; /* Word length 16,
 binary fraction length 3 */

} params_T;

The file defines a structure type whose fields use fixed-point data types. For example, the
structure stores the field coeff in a signed, 16-bit integer data type. A binary fraction
length of 7 relates the stored integer value to the real-world value.

2 Functions — Alphabetical List

2-664

Suppose that this code operates on 16-bit hardware (such that the generic C data type
int has a 16-bit word length). To generate a Simulink representation of the type, first
create a coder.HardwareImplementation object that identifies the hardware.

hdw = coder.HardwareImplementation;
hdw.ProdHWDeviceType = 'Atmel->AVR';

Generate a Simulink representation of the structure type.

Simulink.importExternalCTypes('ex_cc_fixpt_struct.h',...
 'HardwareImplementation',hdw);

The Simulink.Bus object, params_T, appears in the base workspace. Each bus element,
such as coeff, uses the data type int16.

params_T.Elements(1)

ans =

 BusElement with properties:

 Name: 'coeff'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'int16'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 SampleTime: -1
 Unit: ''
 Description: ''

Simulink.importExternalCTypes cannot infer the fixed-point scaling (binary fraction
length) from the C code. You must manually specify the data types of the bus elements. To
specify the data types at the command prompt, use the fixdt function.

params_T.Elements(1).DataType = 'fixdt(1,16,7)';
params_T.Elements(2).DataType = 'fixdt(1,16,3)';

To specify the data types interactively (by using the Data Type Assistant), use the Bus
Editor.

 Simulink.importExternalCTypes

2-665

buseditor

Manually Synchronize Simulink Representations with C-Code Definitions

This example shows how to maintain the Simulink representations of C data types whose
definitions you modify during the life of a modeling project.

Import Custom C Types

Create the file ex_cc_myTypes_rec.h in your current folder. The file defines a custom
structure type.

typedef struct {
 double flow;
 double pres;
 double tqe;
} sigStructType;

Generate a Simulink.Bus object that represents the type.

Simulink.importExternalCTypes('ex_cc_myTypes_rec.h');

Modify Type Definition in C Code

In ex_cc_myTypes_rec.h, add a field named spd to sigStructType.

In the same file, create a new structure type, stateStructType.

typedef struct {
 double flow;
 double pres;
 double tqe;
 double spd;
} sigStructType;

typedef struct {
 double err;
 double read;
 double write;
} stateStructType;

2 Functions — Alphabetical List

2-666

Attempt to Import Types Again

Attempt to generate bus objects that represent the types.

importInfo = Simulink.importExternalCTypes('ex_cc_myTypes_rec.h');

The function generates warnings at the command prompt. Instead of relying on the
warnings, you can inspect the output, importInfo, to determine whether the function
failed to import any types.

importInfo.failedToImport.Bus

ans =

 1×1 cell array

 {'sigStructType'}

The function did not import sigStructType. The corresponding bus object in the base
workspace still has only three bus elements. To determine the reason that the function did
not import sigStructType, inspect the report field of importInfo.

Import sigStructType again. This time, overwrite the existing bus object.

importInfo = Simulink.importExternalCTypes('ex_cc_myTypes_rec.h',...
 'Names',importInfo.failedToImport.Bus,'Overwrite','on');

When you overwrite existing Simulink representations, any customizations that you made
to the Simulink representations (such as the application of fixed-point data types to bus
elements) are overwritten.

• “Data Types Supported by Simulink”
• “Data Types for Bus Signals”
• “Use Enumerated Data in Simulink Models”
• “Control Data Type Names in Generated Code” (Embedded Coder)
• “Control Signal Data Types”
• “Exchange Data Between External C/C++ Code and Simulink Model or Generated

Code” (Simulink Coder)

 Simulink.importExternalCTypes

2-667

Input Arguments
headerFiles — Names and paths of header files to parse
character vector | cell array of character vectors | string scalar | string array

Names and paths of header files to parse, specified as a character vector, cell array of
character vectors, string, or string array. Include the .h or .hpp file extension.

If you use a hierarchy of included (#include) header files to define your types, when you
specify HeaderFiles, you need to identify only the entry-point files. The function parses
the included files as well as the identified entry-point files. If the included files are not in
the same folder as the corresponding entry-point file, use the IncludeDirs pair
argument to identify the additional folders.
Example: 'myHeader.h'
Example: {'thisHeader.hpp','thatHeader.hpp'}
Data Types: char | cell | string

modelName — Name of loaded Simulink model for which to import types
character vector | string scalar

Name of a loaded Simulink model for which to import types, specified as a character
vector or string scalar. A model is loaded if, for example, you open the model or use the
load_system function. When you use this argument, the function:

• Searches the model configuration parameters for custom header files and parses those
header files for data types to import. Only the configuration parameters on the
Simulation Target pane affect this search.

For example, if in the model you set Configuration Parameters > Simulation
Target > Insert custom C code in generated > Header file to #include
"myTypes.h", the function parses myTypes.h for types to import.

• Interprets generic C data types such as int or short according to the word lengths of
your host computer. Do not use the HardwareImplementation pair argument to
override this interpretation.

Example: 'myModel'
Data Types: char | string

2 Functions — Alphabetical List

2-668

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
Simulink.importExternalCTypes('myHdr.h','DataDictionary','myDictiona
ry.sldd')

MATFile — Name and path of MAT-file to create for storing generated objects
'' (empty) (default) | character vector | string scalar

Name and, optionally, path of the MAT-file to create for storing generated Simulink.Bus
and Simulink.AliasType objects, specified as a character vector or string. If you do
not use MATFile, by default, the function generates the objects in the base workspace.

The function does not generate enumeration definitions in MAT-files.

If you import some struct types and primitive typedef statements by using MATFile
and later import some of the same types again by using MATFile, the function entirely
replaces the old MAT-file with a new one. The function discards any changes that you
made to the contents of the old MAT-file.

You cannot use the MATFile and DataDictionary pair arguments simultaneously.
Example: 'myMat.mat'
Example: 'myMat'
Example: fullfile('subfolder','myMat')
Data Types: char | string

DataDictionary — Name and path of Simulink data dictionary to use or create
for storing types
'' (default) | character vector | string scalar

Name and, optionally, path of the Simulink data dictionary to use or create for storing
generated enumerations and objects, specified as a character vector or string. When you
use this pair argument, the function imports enumerated types as
Simulink.data.dictionary.EnumTypeDefinition objects, and stores those objects

 Simulink.importExternalCTypes

2-669

(as well as Simulink.Bus objects and Simulink.AliasType objects) in the target
dictionary.

For information about data dictionaries, see “What Is a Data Dictionary?”.

You can optionally specify a .sldd extension.

You cannot use the DataDictionary and MATFile pair arguments simultaneously.
Example: 'myDict.sldd'
Example: 'myDict'
Example: fullfile('subfolder','myDict.sldd')
Data Types: char | string

Names — Names of types to import
'' (default) | character vector | cell array of character vectors | string scalar | string
array

Names of types to import, specified as a character vector, cell array of character vectors,
string, or string array. By default, if you do not use Names, the function attempts to
import all of the custom types that the identified header files define.

To match multiple type names with a single character vector, use an asterisk (*).
Example: 'myEnumType'
Example: {'myEnumType','myStructType'}
Example: 'my*Type'
Data Types: char | cell | string

Defines — Compiler options to define macros that influence type definitions
'' (default) | character vector | string scalar

Compiler options to define macros that influence C type definitions, specified as a
character vector, or string scalar. For example, a macro influences a type definition if you
enclose the definition in an #ifdef block that checks whether the macro is defined.

Use Defines to specify macro definitions that you otherwise define through compiler
options such as -D.
Example: 'SIGSTRUCT=1'

2 Functions — Alphabetical List

2-670

Example: 'SIGSTRUCT=1 ENUM=1'
Data Types: char | string

UnDefines — Compiler options to delete macros that influence type definitions
'' (default) | character vector | string scalar

Compiler options to delete macros that influence C type definitions, specified as a
character vector or string scalar. For example, a macro influences a type definition if you
enclose the definition in an #ifdef block that checks whether the macro is defined.

Use UnDefines to specify macro deletions that you otherwise define through compiler
options such as -U.
Example: 'SIGSTRUCT'
Example: 'SIGSTRUCT ENUM'
Data Types: char | string

IncludeDirs — Folders that contain subordinate, included header files
'' (default) | character vector | cell array of character vectors | string scalar | string
array

Folders that contain subordinate, included (#include) header files, specified as a
character vector, cell array of character vectors, string, or string array. Use this pair
argument to enable the function to locate and parse additional header files on which the
primary header files (which you specify with the headerFiles argument) depend.

If you use the modelName syntax instead of the headerFiles syntax, in the target
model, you can use the Simulation Target configuration parameters to specify include
paths. In that case, you do not need to use the IncludeDirs pair argument.
Example: 'myHeaders'
Example: fullfile('myProject','myHeaders')
Example:
{fullfile('myProject','myHeaders'),fullfile('myProject','myOtherHead
ers')}

Data Types: char | cell | string

OutputDir — Folder for storing generated files
'' (default) | character vector | string scalar

 Simulink.importExternalCTypes

2-671

Folder for storing generated files, specified as a character vector or string. The function
places generated files, such as classdef script files and data dictionary files, in this
folder.

The folder that you specify must exist before you use the function.
Example: 'myDictionaries'
Example: fullfile('myProject','myDictionaries')
Data Types: char | string

HardwareImplementation — Word lengths for interpreting generic, primitive C
data types
'' (default) | Simulink.ConfigSet object | coder.HardwareImplementation object

Word lengths for interpreting generic, primitive C data types, specified as a
Simulink.ConfigSet or coder.HardwareImplementation object.

• To use a Simulink.ConfigSet object, you can extract a configuration set from a
model by using functions such as getConfigSet and getActiveConfigSet. This
technique enables you to use the Configuration Parameters dialog box to identify your
target hardware (through the Hardware Implementation configuration parameters).

• To use a coder.HardwareImplementation object (which you create and configure
programmatically), specify properties of the object, such as ProdHWDeviceType, to
identify your target hardware. The object then sets other properties, such as
ProdBitPerInt, that reflect the native integer size of the hardware.

The function inspects the object to determine which Simulink integer data types to
employ when interpreting generic C data types such as int. For example, if you create a
coder.HardwareImplementation object to identify 16-bit hardware and then use the
function to import a structure type whose fields use the C data type int, the function
generates a bus object whose bus elements use the Simulink data type int16. The
function uses the production hardware settings, not the test hardware settings.

For more information about hardware implementation settings for Simulink models, see
“Configure Run-Time Environment Options” (Simulink Coder).

Overwrite — Specification to overwrite existing Simulink representations
'off' (default) | 'on'

Specification to overwrite existing Simulink representations, specified as 'on' or 'off'.
If an imported type already has a representation in Simulink:

2 Functions — Alphabetical List

2-672

• If you specify 'off' or if you do not specify Overwrite, the function does not import
the type. In the output argument, importInfo, the failedToImport field identifies
the type.

• If you specify 'on', the function overwrites the existing Simulink representation.

If you use the function to import some types into the base workspace or a data dictionary
and later customize the generated Simulink representations, when you use the function
again and set Overwrite to 'on', the function does not preserve your customizations.
These customizations can include:

• In an enumeration class definition, implementing extra methods or modifying the
generated methods such as getDataScope (see “Customize Simulink Enumeration”).

• Modifying the properties of a generated Simulink.Bus or Simulink.AliasType
object (for example, manually setting the data types of bus elements to a fixed-point
data type).

Verbose — Specification to generate messages for successful import operations
'off' (default) | 'on'

Specification to generate messages for successful import operations, specified as 'on' or
'off'.

• If you specify 'off' or if you do not specify Verbose, the function imports types
silently. Messages do not appear in the Command Window unless the function cannot
import a type.

• If you specify 'on', the function generates a message in the Command Window for
each operation during the import process.

Output Arguments
importInfo — Information about types that were imported and not imported
structure

Information about types that were imported and not imported, returned as a structure
with these fields.

report — Descriptions of types that were imported and not imported
character vector

 Simulink.importExternalCTypes

2-673

Descriptions of types that were imported and not imported, returned as a character
vector. Inspect the value of this field to determine the reason that the function could not
import a type.

failedToImport — Types that were not imported
structure

Types that were not imported, returned as a structure with these fields.

Field Name Field Value Purpose
Bus Cell array of character

vectors
Names of structure
(struct) types that were
not imported.

Enum Cell array of character
vectors

Names of enumerated types
(enum) that were not
imported.

AliasType Cell array of character
vectors

Names of primitive
typedef statements that
were not imported.

importedTypes — Types that were successfully imported
structure

Types that were successfully imported, returned as a structure with these fields.

Field Name Field Value Purpose
Bus Cell array of character

vectors
Names of structure
(struct) types that were
imported. The generated
Simulink.Bus objects use
these names.

Enum Cell array of character
vectors

Names of enumerated types
(enum) that were imported.
The generated enumeration
classes or
Simulink.data.diction
ary.EnumTypeDefinitio
n objects use these names.

2 Functions — Alphabetical List

2-674

Field Name Field Value Purpose
AliasType Cell array of character

vectors
Names of primitive
typedef statements that
were imported. The
generated
Simulink.AliasType
objects use these names.

Limitations
• The function does not support:

• C data types that do not correspond to a type that Simulink supports. For example,
Simulink does not recognize an equivalent for long double. For information
about data types that Simulink supports, see “Data Types Supported by Simulink”.

• Pointer types, such as a structure that defines a field whose value is a pointer or a
typedef statement whose base type is a pointer type.

• Structures that define a field whose value has more than one dimension.

If a field value is a 1-D array, the function creates a bus element that represents a
vector, not a matrix.

• Unions.
• If a structure field represents fixed-point data, or if a typedef statement maps to a
fixed-point base type, the function sets the data type of the corresponding bus element
or Simulink.AliasType object to the relevant Simulink integer type (such as
int16). The importer cannot determine the fixed-point scaling by parsing the C code.
After using the function, you must manually specify the data type of the bus element
or the base type of the Simulink.AliasType object by using the fixdt function.

Tips
• If a MATLAB Function block or Stateflow chart in your model uses an imported

enumeration or structure type, configure the model configuration parameters to
include (#include) the type definition from your external header file. See “Control
Imported Bus and Enumeration Type Definitions” (for a MATLAB Function block) and

 Simulink.importExternalCTypes

2-675

“Integrate Custom C/C++ Code for Simulation” (Stateflow) and “Integrate Custom
Structures in Stateflow Charts” (Stateflow) (for a chart).

• By default:

• For an imported enumeration, because the Simulink enumeration class derives
from Simulink.IntEnumType, when you simulate or generate code from a model,
the enumeration uses the integer size that is native to your target hardware. You
specify the characteristics of your target hardware by using model configuration
parameters such as Production device vendor and type and Native word size
in production hardware.

• For an imported structure type:

• The function imports a structure field as numerically complex only if the field
uses one of the corresponding Simulink Coder structure types as the data type.
For example, if a structure field in your external code uses the data type
cint8_T, the function imports the field as a bus element
(Simulink.BusElement object) whose data type is int8 and whose
Complexity property is set to 'complex'.

• For nested structures, the function generates a bus object for each unique
structure type.

• For an imported structure type or enumeration, if your external code uses a
typedef statement to name the type, the name of the generated bus object or
Simulink enumeration class matches the typedef name. If your code does not use
a typedef statement, the name of the object or class is struct_type or
enum_type where type is the tag name of the type. If you do not specify a tag
name or apply a typedef name, Simulink generates an arbitrary name for the
object or class.

• The function configures the generated Simulink representations as imported for
the purposes of simulation and code generation. For example, for bus objects, the
function sets the DataScope property to 'Imported' and the HeaderFile
property to the name of your external header file. To simulate or generate code
from a model that uses one of these Simulink representations, you must make your
header file available to the model.

• When you specify files for Simulink.importExternalCTypes to use or generate,
for example, by using the DataDictionary pair argument:

• If the existing files to use are in your current folder or on the MATLAB path, you do
not need to specify a file path. You can specify the file name by itself.

2 Functions — Alphabetical List

2-676

• To control the folder location of generated files, you can specify paths as well as file
names. You can also use the OutputDir pair argument.

See Also
Simulink.AliasType | Simulink.Bus | enumeration

Topics
“Data Types Supported by Simulink”
“Data Types for Bus Signals”
“Use Enumerated Data in Simulink Models”
“Control Data Type Names in Generated Code” (Embedded Coder)
“Control Signal Data Types”
“Exchange Data Between External C/C++ Code and Simulink Model or Generated Code”
(Simulink Coder)

Introduced in R2017a

 Simulink.importExternalCTypes

2-677

Simulink.ModelDataLogs.convertToDataset
Convert logging data from Simulink.ModelDataLogs format to
Simulink.SimulationData.Dataset format

Syntax
convertedDataset =
sourceModelDataLogsObject.convertToDataset(convertedDatasetName)

Description

Note The ModelDataLogs class is supported for backwards compatibility. Starting in
R2016a, you cannot log data in the ModelDataLogs format. Signal logging uses the
Dataset format. In R2016a or later, when you open a model from an earlier release that
had used ModelDataLogs format, the model simulated in use Dataset format.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

convertedDataset =
sourceModelDataLogsObject.convertToDataset(convertedDatasetName)
converts the sourceModelDataLogsObject to a
Simulink.SimulationData.Dataset object. The name of the converted object is
based on convertedDatasetName.

The resulting Simulink.SimulationData.Dataset object is a flat list. This list has
one element for each Simulink.Timeseries or Simulink.TsArray object in the
Simulink.ModelDataLogs object.

2 Functions — Alphabetical List

2-678

Limitations
Source of Simulink.ModelDataLogs
Logged Data

Conversion Limitation

Referenced model Loads all ancestors of the referenced model
not previously loaded. If any ancestor
model does not appear on the MATLAB
path, the conversion fails.

If the model has changed, or the model
ancestors have changed, after Simulink
logged the data, the conversion can fail. For
example, adding, deleting, or renaming a
block after logging can cause conversion
failure.

Variant model or subsystem The current active variant must be the
same one that was active when Simulink
logged the data. Otherwise, the conversion
fails.

Frame signal The conversion fails.
Mux block The conversion produces a different

Simulink.SimulationData.Dataset
object as the dataset than Simulink creates
when you simulate the model using the
Dataset format for the logged data.

Stateflow chart Not supported.

Input Arguments
sourceModelDataLogsObject

A Simulink.ModelDataLogs object that you want to convert to a
Simulink.SimulationData.Dataset object.

convertedDatasetName

Name of the dataset that the conversion process creates.

 Simulink.ModelDataLogs.convertToDataset

2-679

Output Arguments
convertedDataset

The Simulink.SimulationDataset object that the
Simulink.ModelDataLogs.convertToDataset function creates.

For details about the converted dataset, see Simulink.SimulationData.Dataset.

Example
In releases before R2016a, you could log signals using ModelDataLogs format. If you
have a MAT-file with signal logging data that uses the ModelDataLogs format, here is
how you can convert that data to Dataset format. This example assumes that the model
that generated the logging data had the Configuration Parameters > Data Import/
Export > Signal logging name set to logsout.

1 Load the MAT-file.
2 Convert logsout to a dataset called myModel_dataset. (The elements information

will be different for your data.)

dataset = logsout.convertToDataset('myModel_Dataset')

dataset =
 Simulink.SimulationData.Dataset
 Package: Simulink.SimulationData

 Characteristics:
 Name: 'myModel_Dataset'
 Total Elements: 2

 Elements:
 1: 'x1'
 2: 'x2'

 -Use get or getElement to access elements by index or name.
 -Use addElement or setElement to add or modify elements.

 Methods, Superclasses

2 Functions — Alphabetical List

2-680

See Also
Simulink.ModelDataLogs | Simulink.SimulationData.Dataset |
Simulink.SimulationData.updateDatasetFormatLogging

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”

Introduced in R2011a

 Simulink.ModelDataLogs.convertToDataset

2-681

Simulink.restoreDiagnostic
Restore diagnostic warnings to a specific block, subsystem, or model

Syntax
Simulink.restoreDiagnostic(source)
Simulink.restoreDiagnostic(source, message_id)
Simulink.restoreDiagnostic(diagnostic)
Simulink.restoreDiagnostic(system, 'FindAll', 'on')

Description
Simulink.restoreDiagnostic(source) restores all suppressed diagnostics
associated with the blocks specified by source.

Simulink.restoreDiagnostic(source, message_id) restores all instances of
message_id on the blocks specified by source.

Simulink.restoreDiagnostic(diagnostic) restores the suppressed diagnostics
associated with MSLDiagnostic object diagnostic.

Simulink.restoreDiagnostic(system, 'FindAll', 'on') restores all
suppressed diagnostics associated with the system specified by system.

Examples

Restore All Diagnostics for a Specified Block

Using the model from “Suppress Diagnostic Messages Programmatically”, restore all
suppressed diagnostics on a specified block.

Create a cell array of message identifiers. Use the Simulink.suppressDiagnostic
function to suppress these multiple diagnostics from the Constant block, one.

2 Functions — Alphabetical List

2-682

diags = {'SimulinkFixedPoint:util:fxpParameterPrecisionLoss',...
 'SimulinkFixedPoint:util:fxpParameterUnderflow'};
Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one', diags);

Remove all suppressions and restore diagnostics to the block.

Simulink.restoreDiagnostic('Suppressor_CLI_Demo/one');

Restore a Diagnostic for a Specified Block

Using the model from “Suppress Diagnostic Messages Programmatically”, restore a
suppressed diagnostic on a specified block.

Use the Simulink.suppressDiagnostic function to suppress the parameter precision
loss warning thrown by the Constant block, one.

Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

Remove the suppression and restore diagnostics to the block.

Simulink.restoreDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

Restore All Diagnostics for a Specified System

Using the model from “Suppress Diagnostic Messages Programmatically”, restore all
suppressed diagnostics on the specified subsystem.

To restore all diagnostics from a system, use 'FindAll', 'on' to search within the
system hierarchy. Specify the system or system handle within which to search.

Simulink.restoreDiagnostic('Suppressor_CLI_Demo/Convert',...
 'FindAll', 'On');

• “Suppress Diagnostic Messages Programmatically”

 Simulink.restoreDiagnostic

2-683

Input Arguments
source — Block or model object throwing diagnostic
block path | block handle

The source of the diagnostic, specified as a block path, block handle, cell array of block
paths, or cell array of block handles.

To get the block path, use the gcb function.

To get the block handle, use the getSimulinkBlockHandle function.
Data Types: char | cell

message_id — message identifier of diagnostic
message identifier | cell array of message identifiers

Message identifier of the diagnostic, specified as a character vector or a cell array of
character vectors. You can find the message identifier of warnings and errors thrown
during simulation by accessing the ExecutionInfo property of the
Simulink.SimulationMetadata object associated with a simulation. You can also use
the lastwarn function.
Data Types: char | cell

system — Name of subsystem
character vector

The subsystem name, or handle, specified as a character vector.
Data Types: char

diagnostic — Diagnostic object
MSLDiagnostic object

Diagnostic specified as an MSLDiagnostic object. Access the MSLDiagnostic object
through the ExecutionInfo property of the Simulink.SimulationMetadata object.
Data Types: struct

2 Functions — Alphabetical List

2-684

See Also
Simulink.SuppressedDiagnostic | Simulink.SuppressedDiagnostic.restore |
Simulink.getSuppressedDiagnostics | Simulink.suppressDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

Introduced in R2016b

 Simulink.restoreDiagnostic

2-685

getBlockSimState
Class: Simulink.SimState.ModelSimState
Package: Simulink.SimState

Access SimState of individual Stateflow Chart, MATLAB Function, or S-function block

Syntax
blockSimState = getBlockSimState(x, 'blockpath')

Description
blockSimState = getBlockSimState(x, 'blockpath') returns the SimState of
the block specified as blockpath. blockpath must be either a Stateflow Chart, MATLAB
Function, or S-function block. For other types of blocks, see the loggedStates property
of the Simulink.SimState.ModelSimState class.

Input Arguments
x

The x argument is a Simulink.SimState.ModelSimState object.

blockpath

The path to the block for which you are requesting the SimState values.

Output Arguments
blockSimState

The SimState of the block specified.

2 Functions — Alphabetical List

2-686

Examples
chartState = getBlockSimState(x, 'mymodel/chart')

To get the SimState of a block that is in a referenced model, specify the full path of the
block relative to the root model.

rootModel = 'sldemo_fuelsys_dd';
opt = struct('SaveFinalState','on','SaveCompleteFinalSimState','on','StopTime','1');
simOut = sim(rootModel,opt);
x = simOut.xFinal;
blockPath = 'sldemo_fuelsys_dd/Fuel Rate Controller|sldemo_fuelsys_dd_controller/control_logic';
chartState = getBlockSimState(x,blockPath)

See Also
Simulink.SimState.ModelState.setBlockSimState

 getBlockSimState

2-687

setBlockSimState
Class: Simulink.SimState.ModelSimState
Package: Simulink.SimState

Set SimState of individual Stateflow Chart, MATLAB Function, or S-function block

Syntax
setBlockSimState(x,'blockpath', blockSimState)

Description
setBlockSimState(x,'blockpath', blockSimState) sets the SimState of the
block specified as blockpath. blockpath must be either a Stateflow Chart, MATLAB
Function, or S-function block. For other types of blocks, see the loggedStates property
of the Simulink.SimState.ModelSimState class.

Input Arguments
x

The argument x is a Simulink.SimState.ModelSimState object.

blockpath

The path to the block for which you are setting the SimState values

blockSimState

The SimState of the block specified.

Examples
newObj = setBlockSimState(obj, 'mymodel/chart', newChartState);

2 Functions — Alphabetical List

2-688

See Also
Simulink.SimState.ModelState.getBlockSimState

 setBlockSimState

2-689

Simulink.saveVars
Save workspace variables and their values in MATLAB code format

Syntax

Note Simulink.saveVars is not recommended. Use
matlab.io.saveVariablesToScript instead.

Simulink.saveVars(filename)
Simulink.saveVars(filename, VarNames)
Simulink.saveVars(filename, '-regexp', RegExps)
Simulink.saveVars(filename, Specifications, UpdateOption)
Simulink.saveVars(filename, Specifications, Configuration)
Simulink.saveVars(filename, Specifications, MatlabVer)
[r1, r2] = Simulink.saveVars(filename, Specifications)

Description
Simulink.saveVars(filename) saves all variables in the current workspace for which
MATLAB code can be generated to a MATLAB file named filename.m. If MATLAB code
cannot be generated for a variable, the variable is saved into a companion MAT-file named
filename.mat, and a warning is generated. If either file already exists, it is overwritten.
The filename cannot match the name of any variable in the current workspace, and can
optionally include the suffix .m. Using Simulink.saveVars has no effect on the contents
of any workspace.

Executing the MATLAB file restores the variables saved in the file to the current
workspace. If a companion MAT-file exists, code in the MATLAB file loads the MAT-file,
restoring its variables also. When both a MATLAB file and a MAT-file exist, do not load the
MATLAB file unless the MAT file is available, or an error will occur. Do not load a MAT-file
directly, or incomplete data restoration will result. No warning occurs if loading a file
overwrites any existing variables.

2 Functions — Alphabetical List

2-690

You can edit a MATLAB file that Simulink.saveVars creates. You can insert comments
between or within the MATLAB code sections for saved variables. However, if you later
use Simulink.saveVars to update or append to the file, only comments between
MATLAB code sections will be preserved. Internal comments should therefore be used
only in files that you do not expect to change any further.

You must not edit the header section in the MATLAB file, which comprises the first five
comment lines. Simulink does not check that a manually edited MATLAB file is
syntactically correct. MathWorks recommends not editing any MATLAB code in the file.
You cannot edit a MAT-file and should never attempt to do so.

Simulink.saveVars(filename, VarNames) saves only the variables specified in
VarNames, which is a comma-separated list of variable names. You can use the wildcard
character * to save all variables that match a pattern. The * matches one or more
characters, including non-alphanumeric characters.

Simulink.saveVars(filename, '-regexp', RegExps) saves only variables whose
names match one of the regular expressions in RegExps, which is a comma-separated list
of expressions. See “Regular Expressions” (MATLAB) for more information. A call to the
function can specify both VarNames and -regexps RegExps, in that order and comma-
separated.

Simulink.saveVars(filename, Specifications, UpdateOption) saves the
variables described by Specifications (which represents the variable specifications in
any of the above syntaxes) as directed by UpdateOption, which can be any one of the
following:

• '-create' — Create a new MATLAB file (and MAT-file if needed) as directed by the
Specifications. If either file already exists, it is overwritten. This is the default
behavior.

• '-update' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by changing only variables that match the Specifications and already
exist in any files. The order of the variables in files is preserved. Comments within
MATLAB code sections are not preserved.

• '-append' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by:

• Updating variables that match the Specifications and already exist in the file or
files, preserving the existing order in the file or files. Comments within MATLAB
code sections are not preserved.

 Simulink.saveVars

2-691

• Appending variables that match the Specifications and do not exist in the file
or files by appending the variables to the file or files. These new sections initially
have no comments.

Simulink.saveVars(filename, Specifications, Configuration) saves the
variables described by Specifications (which represents the variable specifications in
any of the above syntaxes) according to the specified Configuration. The
Configuration can contain any or all of the following options, in any order, separated
by commas if more than one appears:

• '-maxnumel' MaxNum — Limits the number of elements saved for an array to
MaxNum, which must be an integer between 1 and 10000. For a character array, the
upper limit is set to twice the value that you specify with MaxNum. If an array is larger
than MaxNum, the whole array appears in the MAT-file rather than the MATLAB file,
generating a warning. Default: 1000

• '-maxlevels' MaxLevels limits the number of levels of hierarchy saved for a
structure or cell array to MaxLevels, which must be an integer between 1 and 200. If
a structure or cell array is deeper than MaxLevels, the whole entity appears in the
MAT-file rather than the MATLAB file, generating a warning. Default: 20

• '-textwidth' TextWidth sets the text wrap width in the MATLAB file to
TextWidth, which must be an integer between 32 and 256. Default: 76

• '-2dslice' — Sets two dimensions for 2-D slices that represent n-D (where n is
greater than 2) char, logic, or numeric array data. Simulink.saveVars uses the first
two dimensions of the n-D array to specify the size of the 2-D slice, unless you supply
two positive integer arguments after the -2dslice option. If you specify two integer
arguments:

• The two integers must be positive.
• The two integers must be less than or equal to the number of dimensions of the n-D

array.
• The second integer must be greater than the first.

Simulink.saveVars(filename, Specifications, MatlabVer) acts as described
by Specifications (which represents the specifications after filename in any of the
above syntaxes) saving any MAT-file that it creates in the format required by the MATLAB
version specified by MatlabVer. Possible values:

• '-v7.3' — 7.3 or later
• '-v7.0' — 7.0 or later

2 Functions — Alphabetical List

2-692

• '-v6' — Version 6 or later
• '-v4' — Any MATLAB version

[r1, r2] = Simulink.saveVars(filename, Specifications) acts as described
by Specifications (which represents the specifications after filename in any of the
above syntaxes) and reports what variables it has saved:

• r1 — A cell array of character vectors. The character vectors name all variables (if
any) that were saved to a MATLAB file.

• r2 — A cell array of character vectors. The character vectors name all variables (if
any) that were saved to a MAT-file.

Input Arguments
filename

The name of the file or names of the files that the function creates or updates. The
filename cannot match the name of any variable in the current workspace. The
filename can have the suffix .m, but the function ignores it.

VarNames

A variable or sequence of comma-separated variables. The function saves only the
specified variables to the output file. You can use the wildcard character * to save all
variables that match a pattern. The * matches one or more characters, including non-
alphanumeric characters.

'-regexp', RegExps

After the keyword, a regular expression or sequence of comma-separated regular
expressions. The function saves to the output file only those variables whose names match
one of the expressions. See “Regular Expressions” (MATLAB) for more information A call
to the function can specify both VarNames and -regexps RegExps, in that order and
comma-separated.

UpdateOption

Any of three keywords that control the action of the function. The possible values are:

• '-create' — Create a new MATLAB file (and MAT-file if needed) as directed by the
Specifications.

 Simulink.saveVars

2-693

• '-update' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by changing only variables that match the Specifications and already
exist in the file or files. The order of the variables in the file or files is preserved.

• '-append' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by:

• Updating variables that match the Specifications and already exist in the file or
files, preserving the existing order in the file or files.

• Appending variables that match the Specifications and do not exist in the file
or files by appending the variables that match the Specifications to the file or
files.

Default: '-create'

Configuration

Any or all of the following options, in any order, separated by commas if more than one
appears:

• '-maxnumel' MaxNum — Limits the number of elements saved for an array to
MaxNum, which must be an integer between 0 and 10000. If an array is larger than
that, the whole array appears in the MAT-file rather than the MATLAB script file,
generating a warning. Default: 1000

• '-maxlevels' MaxLevels — Limits the number of levels saved for a structure or cell
array to MaxLevels, which must be an integer between 0 and 200. If a structure or
cell array is deeper than that, the whole entity appears in the MAT-file rather than the
MATLAB script file, generating a warning. Default: 20

• '-textwidth' TextWidth — Sets the text wrap width in the MATLAB script file to
TextWidth, which must be an integer between 32 and 256. Default: 76

• '-2dslice' — Sets two dimensions for 2-D slices that represent n-D (where n is
greater than 2) arrays of char, logic, or numeric data. Using the '-2dslice' option
produces more readable generated code that is consistent with how MATLAB displays
n-D array data.

Simulink.saveVars uses the first two dimensions of the n-D array to specify the size
of the 2-D slice, unless you supply two positive integer arguments after the -2dslice
option. If you specify two integer arguments:

• The two integers must be positive.

2 Functions — Alphabetical List

2-694

• The two integers must be less than or equal to the number of dimensions of the n-D
array.

• The second integer must be greater than the first.

Note You can use the MATLAB Preferences to change the defaults for the -maxnumel, -
maxlevels, '-2dslice', and -textwidth configuration options. In the Workspace
pane, use the options in the Saving variables as MATLAB script files group.

MatlabVer

Specifies the MATLAB version whose syntax will be used by any MAT-file saved by the
function.

• '-v7.3' — 7.3 or later
• '-v7.0' — 7.0 or later
• '-v6' — Version 6 or later
• '-v4' — Any MATLAB version

Default: '-v7.3'

Output Arguments
r1

A list of the names of all variables (if any) that were saved to a MATLAB file.

r2

A list of the names of all variables (if any) that were saved to a MAT-file.

Examples
Define some base workspace variables, then save them all to a new MATLAB file named
MyVars.m using the default values for all input arguments except the filename.

a = 1;
b = 2.5;

 Simulink.saveVars

2-695

c = 'A string';
d = {a, b, c};
Simulink.saveVars('MyVars');

Define additional base workspace variables, then append them to the existing file
MyVars.m without changing the values previously saved in the file:

K = Simulink.Parameter;
MyType = fixdt (1,16,3);
Simulink.saveVars('MyVars', '-append', 'K', 'MyType');

Update the variables V1 and V2 with their values in a MATLAB file, or for any whose value
cannot be converted to MATLAB code, in a MAT-file. The file must already exist. Any array
with more than 10 elements will be saved to a MAT-file that can be loaded on any version
of MATLAB. The return argument r1 lists the names of any variables saved to a MATLAB
file; r2 lists any saved to a MAT-file.

[r1, r2] = Simulink.saveVars('MyFile', 'V1', 'V2', '-update',
'-maxnumel', 10, '-v4');

Specify a 2-D slice for the output of the my3Dtable 3-D array. Specify that the 2-D slice
expands along the first and third dimensions:

my3DTable = zeros(3, 4, 2, 'single');
Simulink.saveVars('mfile.m', 'my3DTable', '-2dslice', 1, 3);

The generated MATLAB code is:

my3DTable = zeros(3, 4, 2, 'single');
my3DTable (:,1,:) = single (...
 [1 13;
 5 17;
 9 21]);
my3DTable (:,2,:) = single(...
 [2 14;
 6 18;
 10 22]);
my3DTable (:,3,:) = single(...
 [3 15;
 7 19;
 11 23]);
my3DTable (:,4,:) = single(...
 [4 16;
 8 20;
 12 24]);

2 Functions — Alphabetical List

2-696

Limitations
The Simulink.saveVars function:

• Does not preserve shared references.
• Ignores dynamic properties of objects.
• Saves the following to the MAT-file although they could appear in the MATLAB file:

• Simulink.ConfigSet objects with custom target components.
(Use the Simulink.ConfigSet method saveAs instead.)

• Simulink.Timeseries and Simulink.ModelDataLogs objects.

If you save many variables, the generated MATLAB file can contain many lines of code
and take a long time to execute. To avoid the long execution time, consider these
alternatives:

• Permanently store variables in a data dictionary instead of using
Simulink.saveVars. A data dictionary also provides more tools for managing
variables. See “Determine Where to Store Variables and Objects for Simulink Models”.

• Save variables in a MAT-file by using the save function.

Tips
• If you do not need to save variables in an easily-understood form, see the save

function.
• If you need to save only bus objects, use the Simulink.Bus.save function.
• If you need to save only a configuration set, use the Simulink.ConfigSet.saveAs

method.

See Also
Simulink.Bus.save | Simulink.Bus.save | Simulink.ConfigSet |
matlab.io.saveVariablesToScript | save

Introduced in R2010a

 Simulink.saveVars

2-697

Simulink.sdi.addToRun
Package: Simulink.sdi

Add one or more signals to existing run

Syntax
sigIDs = Simulink.sdi.addToRun(runID,'vars',var,var2,...,varn)
sigIDs = Simulink.sdi.addToRun(runID,'namevalue',sourceNames,
dataValues)

Description
sigIDs = Simulink.sdi.addToRun(runID,'vars',var,var2,...,varn) adds
the data in the variables var,var2,...,varn to the run corresponding to the runID
and returns the signal IDs for the signals added to the run.

sigIDs = Simulink.sdi.addToRun(runID,'namevalue',sourceNames,
dataValues) adds the data in the cell array dataValues to the run corresponding to
the runID and returns the signal IDs for the signals added to the run. The sourceNames
argument specifies names to use for the source of the data in dataValues in the signal
metadata.

Examples

Add Workspace Data to Run

This example shows how to use Simulink.sdi.addToRun to add workspace data to a
run in the Simulation Data Inspector.

Generate Workspace Data

Generate workspace data to add to a simulation run in place of measured data, input
data, or any other data that you want to associate with the simulation.

2 Functions — Alphabetical List

2-698

time = linspace(0, 60, 201);
cos_vals = 2*cos(2*pi/6.8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'cosine';

Simulate Model

Simulate the slexAircraftExample model to create a run containing the simulation
outputs.

load_system('slexAircraftExample');
sim('slexAircraftExample','SaveFormat','Dataset');

Add Workspace Data to Simulation Run

Add the workspace data to the run. Then, view the results in the Simulation Data
Inspector.

% Get run ID
count = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(count);

% Add data to run
sigIDs = Simulink.sdi.addToRun(runID,'vars',cos_ts);

Simulink.sdi.view

Add States Data to a Run

The model slexAircraftExample is configured to log outputs, states, and time data.
The output data automatically logs to the Simulation Data Inspector as well as the base
workspace, but the states data does not. To bring the states data into the Simulation Data
Inspector, you can record the data, or you can add it to the run created by simulating the
model. This example shows how to add logged states data to a Simulation Data Inspector
run programmatically.

Simulate the Model and Get States Data

Simulate the model using the sim function with 'ReturnWorkspaceOutputs' set to
'on'. Select the states data, xout, from the simulation outputs.

load_system('slexAircraftExample')

 Simulink.sdi.addToRun

2-699

simOut = sim('slexAircraftExample','ReturnWorkspaceOutputs','on',...
 'SaveFormat','Dataset');

% Get states data from simulation output
states = simOut.xout;

Get the Run ID

Because the outputs data automatically logs to the Simulation Data Inspector, a run is
created upon simulating slexAircraftExample. Get the run ID for the run using the
Simulation Data Inspector programmatic interface.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Add States Data to the Run

Add the states data to the run with the output data.

sigIDs = Simulink.sdi.addToRun(runID,'namevalue',{'States'},{states});

Input Arguments
runID — Run ID to add data to
scalar

Run ID for the signal you want to add data to. The Simulation Data Inspector assigns a
unique run ID when it creates a run. You can get the run ID for your run using
Simulink.sdi.getAllRunIDs and Simulink.sdi.getRunIDByIndex.

var — Data to add to run
variable

Workspace data to add to the run. Simulink.sdi.addToRun supports all loading and
logging data formats, including timeseries and
Simulink.SimulationData.Dataset. Provide one or more var inputs when you
specify 'vars' as the second argument.
Example: myData

sourceNames — Cell array of names for signal metadata
cell array of character vectors

2 Functions — Alphabetical List

2-700

Names to use as the source of the data in the metadata for the added signals. Provide a
sourceNames input when you specify 'namevalue' as the second argument.
Example: {'speed','position'}

dataValues — Cell array of data to add to run
cell array

Cell array of data to add to the run. Provide a dataValues input when you specify
'namevalue' as the second argument.
Example: {sig1,sig2}

Output Arguments
sigIDs — Matrix containing signal IDs for added signals
matrix

Matrix of signal IDs for signals added to the run.

See Also
Simulink.sdi.Run | Simulink.sdi.copyRun | Simulink.sdi.createRun |
Simulink.sdi.createRunOrAddToStreamedRun | add

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

 Simulink.sdi.addToRun

2-701

Simulink.sdi.cleanupWorkerResources
Clean up worker repositories

Syntax
Simulink.sdi.cleanupWorkerResources

Description
Simulink.sdi.cleanupWorkerResources removes redundant data from each parallel
worker repository file used by the Simulation Data Inspector. Call this function while
worker pools are running. The Simulation Data Inspector automatically cleans up
repository files when you close the worker pool.

Examples

Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

2 Functions — Alphabetical List

2-702

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the
Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

 Simulink.sdi.cleanupWorkerResources

2-703

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

2 Functions — Alphabetical List

2-704

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

Simulink.sdi.cleanupWorkerResources

See Also
Simulink.sdi.WorkerRun | Simulink.sdi.isPCTSupportEnabled

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 Simulink.sdi.cleanupWorkerResources

2-705

Simulink.sdi.clear
Package: Simulink.sdi

Clear all data from the Simulation Data Inspector

Syntax
Simulink.sdi.clear

Description
Simulink.sdi.clear clears all data from the Simulation Data Inspector.
Simulink.sdi.clear does not affect preferences or settings you have configured in the
Simulation Data Inspector. Use Simulink.sdi.clearPreferences to reset the
Simulation Data Inspector preferences to their default values.

Examples

Save a Simulation Data Inspector Session

This example shows how to create, save, and load a Simulation Data Inspector session.
The example uses data logging to populate the Simulation Data Inspector with data and
then uses the Simulation Data Inspector's programmatic interface to create plots to
visualize the data. After saving the data and visualization settings in a session, the
Simulation Data Inspector repository is emptied in order to demonstrate how to load the
session.

Create Simulation Data

This example logs the Stick, alpha, rad, and q, rad/sec signals to generate
simulation data using the model slexAircraftExample and creates two runs. The first
uses a sine input, and the second has a square wave input.

% Ensure you start with an empty Simulation Data Inspector repository
Simulink.sdi.clear

2 Functions — Alphabetical List

2-706

% Load system
load_system('slexAircraftExample')

% Configure signals to log
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Change Pilot signal to sine
set_param('slexAircraftExample/Pilot','WaveForm','sine')

% Simulate model
sim('slexAircraftExample')

% Change Pilot signal to square
set_param('slexAircraftExample/Pilot','WaveForm','square')

% Simulate model
sim('slexAircraftExample')

Access Simulation Data

Use the Simulation Data Inspector programmatic interface to access the simulation data
so you can create plots to visualize the signals.

% Get run objects
runIDs = Simulink.sdi.getAllRunIDs;
sineRunID = runIDs(end-1);
squareRunID = runIDs(end);

sineRun = Simulink.sdi.getRun(sineRunID);
squareRun = Simulink.sdi.getRun(squareRunID);

% Get signal objects
sineOut = sineRun.getSignalByIndex(1);
sineIn = sineRun.getSignalByIndex(3);

squareOut = squareRun.getSignalByIndex(1);
squareIn = squareRun.getSignalByIndex(3);

Create Plots in the Simulation Data Inspector

Use the programmatic interface to visualize the signal data from the two simulation runs.
You can set the plot layout and plot signals on specific subplots.

 Simulink.sdi.clear

2-707

% Set subplot layout
Simulink.sdi.setSubPlotLayout(2,1)

% Plot sine data on top plot
sineIn.plotOnSubPlot(1,1,true)
sineOut.plotOnSubPlot(1,1,true)

% Plot square wave data on bottom plot
squareIn.plotOnSubPlot(2,1,true)
squareOut.plotOnSubPlot(2,1,true)

Save a Simulation Data Inspector Session

First, view the plots you just created. Then, save the Simulation Data Inspector session as
an MLDATX-file to recover your data along with your preference selections and plots.

% View the visualized data in the Simulation Data Inspector
Simulink.sdi.view

% Save the Simulation Data Inspector session
Simulink.sdi.save('myData.mldatx')

Load a Simulation Data Inspector Session

First, clear the Simulation Data Inspector repository with Simulink.sdi.clear and
reset visualization settings with Simulink.sdi.clearPreferences. Then, you can
load the session to see how the data and settings are preserved.

% Clear Simulation Data Inspector repository and preferences
Simulink.sdi.clear
Simulink.sdi.clearPreferences

% Load session file to view data
Simulink.sdi.load('myData.mldatx');

See Also
Simulink.sdi.clearPreferences | Simulink.sdi.deleteRun |
Simulink.sdi.deleteSignal

Topics
“Inspect and Compare Data Programmatically”

2 Functions — Alphabetical List

2-708

Introduced in R2011b

 Simulink.sdi.clear

2-709

Simulink.sdi.clearPreferences
Clear Simulation Data Inspector preference changes

Syntax
Simulink.sdi.clearPreferences

Description
Simulink.sdi.clearPreferences reverts all Simulation Data Inspector preferences
to their default values.

Examples

Restore All Simulation Data Inspector Preferences to Default Values

You can restore default values to all Simulation Data Inspector preferences
programmatically with Simulink.sdi.clearPreferences.

Simulink.sdi.clearPreferences

Modify Run Naming Rule Then Restore Default

This example shows how to use the Simulation Data Inspector API to modify the
Simulation Data Inspector run naming rule, check a run's name, restore default
preferences, and check the run naming rule.

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

2 Functions — Alphabetical List

2-710

% Simulate system
sim('sldemo_fuelsys')

% Check run name
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
run = Simulink.sdi.getRun(runID);
run.name

ans =
'sldemo_fuelsys Run 15'

% Clear preferences to reset the run naming rule
Simulink.sdi.clearPreferences

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

• “Inspect and Compare Data Programmatically”
• “Organize Your Simulation Data Inspector Workspace”

See Also
Simulink.sdi.setMarkersOn | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setRunOverwrite | Simulink.sdi.setSubPlotLayout |
Simulink.sdi.setTableGrouping

Topics
“Inspect and Compare Data Programmatically”
“Organize Your Simulation Data Inspector Workspace”

Introduced in R2017a

 Simulink.sdi.clearPreferences

2-711

Simulink.sdi.close
Package: Simulink.sdi

Close the Simulation Data Inspector

Syntax
Simulink.sdi.close
Simulink.sdi.close('filename')

Description
Simulink.sdi.close closes the Simulation Data Inspector.

Simulink.sdi.close('filename') closes the Simulation Data Inspector and saves
the data in the file, filename.

Examples

Close the Simulation Data Inspector from the Command Line

You can close the Simulation Data Inspector from the MATLAB command line when you
have finished inspecting and analyzing your data.

Simulink.sdi.close

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the
Simulation Data Inspector.

2 Functions — Alphabetical List

2-712

Create Data for the Run

This example creates timeseries objects for a sine and a cosine. To visualize your data,
the Simulation Data Inspector requires at least a time vector that corresponds with your
data.

% Generate timeseries data
time = linspace(0, 20, 100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals, time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'Cosine, T=8';

Create a Simulation Data Inspector Run and Add Your Data

To give the Simulation Data Inspector access to your data, use the create method and
create a run. This example modifies some of the run's properties to help identify the data.
You can easily view run and signal properties with the Simulation Data Inspector.

% Create a run
run = Simulink.sdi.Run.create;
run.Name = 'Sinusoids';
run.Description = 'Sine and cosine signals with different frequencies';

% Add timeseries data to run
run.add('vars', sine_ts, cos_ts);

Plot Your Data Using the Simulink.sdi.Signal Object

The getSignalByIndex method returns a Simulink.sdi.Signal object that can be
used to plot the signal in the Simulation Data Inspector. You can also programmatically
control aspects of the plot's appearance, such as the color and style of the line
representing the signal. This example customizes the subplot layout and signal
characteristics.

% Get signal, modify its properties, and change Checked property to true
sine_sig = run.getSignalByIndex(1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';
sine_sig.Checked = true;

 Simulink.sdi.close

2-713

% Add another subplot for the cosine signal
Simulink.sdi.setSubPlotLayout(2, 1);

% Plot the cosine signal and customize its appearance
cos_sig = run.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.plotOnSubPlot(2, 1, true);

% View the signal in the Simulation Data Inspector
Simulink.sdi.view

Close the Simulation Data Inspector and Save Your Data

Simulink.sdi.close('sinusoids.mat')

• “Inspect and Compare Data Programmatically”
• “Save and Share Simulation Data Inspector Data and Views”

See Also
Simulink.sdi.clear | Simulink.sdi.clearPreferences | Simulink.sdi.save |
Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

Introduced in R2013b

2 Functions — Alphabetical List

2-714

Simulink.sdi.compareRuns
Package: Simulink.sdi

Compare the data in two simulation runs

Syntax
diffResult = Simulink.sdi.compareRuns(runID1,runID2)
diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name,Value)

Description
diffResult = Simulink.sdi.compareRuns(runID1,runID2) compares the data in
the runs corresponding to runID1 and runID2, returning the result in the
Simulink.sdi.DiffRunResult object, diffResult.

diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name,Value)
compares the simulation runs corresponding to runID1 and runID2 using the options
specified by one or more Name,Value pair arguments and returns the comparison result
in the Simulink.sdi.DiffRunResult object, diffResult. For more information
about how the Simulation Data Inspector aligns signals for comparison, see “How the
Simulation Data Inspector Compares Data”.

Examples

Compare Simulation Data Inspector Runs Programmatically

This example shows how to compare runs of simulation data and analyze the comparison
results with the Simulation Data Inspector programmatic interface.

Generate Runs of Simulation Data

Simulate the model with different Desired relative slip values to create runs of
simulation data to analyze with the Simulation Data Inspector programmatic interface.

 Simulink.sdi.compareRuns

2-715

% Open model
load_system('ex_sldemo_absbrake')

% Set the desired slip ratio to 0.24 and simulate
set_param('ex_sldemo_absbrake/Desired relative slip','Value','0.24')
sim('ex_sldemo_absbrake');

% Change the desired slip ratio to 0.25 and simulate
set_param('ex_sldemo_absbrake/Desired relative slip','Value','0.25')
sim('ex_sldemo_absbrake');

Compare Runs with a Global Tolerance

Get the run IDs for the runs you just created with the Simulink.sdi.getAllRunIDs
function. Then, compare the runs using a global relative tolerance and a global time
tolerance to analyze whether your data meets specifications.

% Get run IDs for last two runs
runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

% Compare runs
runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Create a Plot of a Comparison Result

Use the Simulink.sdi.DiffRunResult object you created in the previous step with
Simulink.sdi.compareRuns to access the data for the Ww signal result to plot it in a
figure.

% Plot the |Ww| signal difference
signalResult_Ww = runResult.getResultByIndex(1);
figure(1)
plot(signalResult_Ww.Diff)

2 Functions — Alphabetical List

2-716

Analyze Simulation Data with Signal Tolerances

You can change tolerance values on a signal-by-signal basis to evaluate the effect of a
model parameter change. This example uses the slexAircraftExample model and the
Simulation Data Inspector to evaluate the effect of changing the time constant for the
low-pass filter following the control input.

Setup

Load the model, and mark the q, rad/sec and alpha, rad signals for logging. Then,
simulate the model to create the baseline run.

 Simulink.sdi.compareRuns

2-717

% Load example model
load_system('slexAircraftExample')

% Mark the q, rad/sec and alpha, rad signals for logging
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate system
sim('slexAircraftExample')

Modify Model Parameter

Modify the model parameter Ts in the model workspace to change the time constant of
the input low-pass filter.

% Change input filter time constant
modelWorkspace = get_param('slexAircraftExample','modelworkspace');
modelWorkspace.assignin('Ts',1)

% Simulate again
sim('slexAircraftExample')

Compare Runs and Inspect Results

Use the Simulink.sdi.compareRuns function to compare the data from the
simulations. Then, inspect the match property of the signal result to see whether the
signals fell within the default tolerance of 0.

% Get run data
runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

% Compare runs
diffRun1 = Simulink.sdi.compareRuns(runID1,runID2);

% Get signal result
sig1Result1 = diffRun1.getResultByIndex(1);
sig2Result1 = diffRun1.getResultByIndex(2);

% Check whether signals matched
sig1Result1.Match

2 Functions — Alphabetical List

2-718

ans = logical
 0

sig2Result1.Match

ans = logical
 0

Compare Runs with Signal Tolerances

The signals did not match within the default tolerance of 0. To further analyze the effect
of the time constant change, add signal tolerances to the comparison with the baseline
signal properties to determine the tolerance required for a pass. This example uses a
combination of time and absolute tolerances.

% Get signal object for sigID1
run1 = Simulink.sdi.getRun(runID1);
sigID1 = run1.getSignalIDByIndex(1);
sigID2 = run1.getSignalIDByIndex(2);

sig1 = Simulink.sdi.getSignal(sigID1);
sig2 = Simulink.sdi.getSignal(sigID2);

% Set tolerances for q, rad/sec
sig1.AbsTol = 0.1;
sig1.TimeTol = 0.6;

% Set tolerances for alpha, rad
sig2.AbsTol = 0.2;
sig2.TimeTol = 0.8;

% Run the comparison again
diffRun2 = Simulink.sdi.compareRuns(runID1,runID2);
sig1Result2 = diffRun2.getResultByIndex(1);
sig2Result2 = diffRun2.getResultByIndex(2);

% Check the result
sig1Result2.Match

ans = logical
 1

sig2Result2.Match

 Simulink.sdi.compareRuns

2-719

ans = logical
 1

Compare Runs with Alignment Criteria

This example shows how to compare runs using your desired criteria for aligning signals
between runs.

Generate Runs to Compare

This example simulates the slexAircraftExample model with two different values of
Ts to generate two simulation runs for comparison.

% Configure model "slexAircraftExample" for logging and simulate
simOut = sim('slexAircraftExample', 'SaveOutput', 'on', 'SaveFormat', ...
 'Dataset', 'ReturnWorkspaceOutputs', 'on');

% Create a run from the simulation output
runID1 = Simulink.sdi.createRun('My Run', 'namevalue', {'simOut'}, ...
 {simOut});

% Get workspace and change workspace variable Ts
modelWorkspace = get_param('slexAircraftExample', 'modelworkspace');
modelWorkspace.assignin('Ts', 0.2);

% Simulate again
simOut = sim('slexAircraftExample', 'SaveOutput', 'on', 'SaveFormat', ...
 'Dataset', 'ReturnWorkspaceOutputs', 'on');

% Create another run and get signal IDs
runID2 = Simulink.sdi.createRun('New Run', 'namevalue', {'simOut'}, ...
 {simOut});

Define Alignment Criteria for the Comparison

Before running the comparison, define how you want the Simulation Data Inspector to
align the signals between the runs. This example aligns signals by their name, then by
their block path, and then by their Simulink identifier.

% Define the alignment criteria for the comparison to align signals by
% name, then by block path, then by SID
alignMethods = [Simulink.sdi.AlignType.SignalName

2 Functions — Alphabetical List

2-720

 Simulink.sdi.AlignType.BlockPath
 Simulink.sdi.AlignType.SID];

Compare the Runs with the Specified Alignment Criteria

Compare the simulation data in your two runs, with the alignment criteria you specified.

% Compare the runs
diffResults = Simulink.sdi.compareRuns(runID1 ,runID2, alignMethods);

Check the Comparison Results for the Aligned Signals

You can use the getResultByIndex method to access the aligned signals and the results
of the comparison for each signal in the runs you compared.

% Check the number of comparisons in the result
numComparisons = diffResults.count;

% Iterate through each element and display results in command window
for k = 1:numComparisons

 resultAtIdx = diffResults.getResultByIndex(k);

 % Get signal IDs for each comparison result
 sigID1 = resultAtIdx.signalID1;
 sigID2 = resultAtIdx.signalID2;

 sig1 = Simulink.sdi.getSignal(sigID1);
 sig2 = Simulink.sdi.getSignal(sigID2);

 % Display whether signals match
 displayStr = 'Signals with IDs %s and %s %s \n';
 if resultAtIdx.match
 fprintf(displayStr, sig1.Name, sig2.Name, 'match');
 else
 fprintf(displayStr, sig1.Name, sig2.Name, 'do not match');
 end

end

Signals with IDs Actuator Model and Actuator Model do not match
Signals with IDs Integrate qdot and Integrate qdot do not match
Signals with IDs Integrate and Integrate do not match
Signals with IDs Alpha-sensor Low-pass Filter and Alpha-sensor Low-pass Filter do not match
Signals with IDs Pitch Rate Lead Filter and Pitch Rate Lead Filter do not match

 Simulink.sdi.compareRuns

2-721

Signals with IDs Proportional plus integral compensator and Proportional plus integral compensator do not match
Signals with IDs Stick Prefilter and Stick Prefilter do not match
Signals with IDs Q-gust model and Q-gust model do not match
Signals with IDs W-gust model(1) and W-gust model(1) do not match
Signals with IDs W-gust model(2) and W-gust model(2) do not match
Signals with IDs alpha, rad and alpha, rad do not match

• “Inspect and Compare Data Programmatically”
• “Compare Simulation Data”
• “How the Simulation Data Inspector Compares Data”

Input Arguments
runID1 — Baseline run identifier
integer

Numerical identification for the Baseline run in the comparison.

runID2 — Compare to run identifier
integer

Numerical identification for the Compare to run in the comparison.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'abstol',x,'align',alignOpts

align — Signal alignment options
array

Array specifying alignment algorithms to use for pairing signals from the runs for
comparison. The Simulation Data Inspector aligns signals first by the first element in the
array, then by the second element in the array, and so on.

2 Functions — Alphabetical List

2-722

Value Aligns By
Simulink.sdi.AlignType.BlockPath Path to the signal's source block
Simulink.sdi.AlignType.SID Simulink identifier “Locate Diagram Components

Using Simulink Identifiers”
Simulink.sdi.AlignType.SignalName Signal name
Simulink.sdi.AlignType.DataSource Path of the variable in the MATLAB workspace

Example:
[Simulink.sdi.AlignType.SignalName,Simulink.sdi.AlignType.SID]
specifies signal alignment by name and then by SID.

abstol — Absolute tolerance for comparison
0 (default) | scalar

Positive-valued global absolute tolerance used for all signals in the run comparison. For
more information about tolerances in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data”.
Example: 0.5
Data Types: double

reltol — Relative tolerance for comparison
0 (default) | scalar

Positive-valued global relative tolerance used for all signals in the run comparison. The
relative tolerance is expressed as a fractional multiplier. For example, 0.1 specifies a 10
percent tolerance. For more information about how the relative tolerance is applied in the
Simulation Data Inspector, see “How the Simulation Data Inspector Compares Data”.
Example: 0.1
Data Types: double

timetol — Time tolerance for comparison
0 (default) | scalar

Positive-valued global time tolerance used for all signals in the run comparison. Specify
the time tolerance with units of seconds. For more information about tolerances in the
Simulation Data Inspector, see “How the Simulation Data Inspector Compares Data”.
Example: 0.2

 Simulink.sdi.compareRuns

2-723

Data Types: double

Output Arguments
diffResult — Comparison results
'Simulink.sdi.diffRunResult'

Simulink.sdi.DiffRunResult object that provides access to comparison results.

See Also
Simulink.sdi.DiffRunResult |
Simulink.sdi.DiffRunResult.getResultByIndex |
Simulink.sdi.DiffSignalResult | Simulink.sdi.compareSignals |
Simulink.sdi.getRunCount | Simulink.sdi.getRunIDByIndex

Topics
“Inspect and Compare Data Programmatically”
“Compare Simulation Data”
“How the Simulation Data Inspector Compares Data”

Introduced in R2011b

2 Functions — Alphabetical List

2-724

Simulink.sdi.compareSignals
Package: Simulink.sdi

Compare data from two signals

Syntax
diff = Simulink.sdi.compareSignals(sigID1,sigID2)

Description
diff = Simulink.sdi.compareSignals(sigID1,sigID2) compares the signals
corresponding to the signal IDs sigID1 and sigID2 and returns the results in a
Simulink.sdi.DiffSignalResult object. For more information on how the
comparison results are computed, see “How the Simulation Data Inspector Compares
Data”.

Examples

Compare Signals Within a Simulation Run

This example uses the slexAircraftExample model to demonstrate the comparison of
the input and output signals for a control system. The example marks the signals for
streaming then gets the run object for a simulation run. Signal IDs from the run object
specify the signals to be compared.

% Load model slexAircraftExample and mark signals for streaming
load_system('slexAircraftExample')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate model slexAircraftExample
sim('slexAircraftExample')

 Simulink.sdi.compareSignals

2-725

% Get run IDs for most recent run
allIDs = Simulink.sdi.getAllRunIDs;
runID = allIDs(end);

% Get Run object
run = Simulink.sdi.getRun(runID);

% Get signal IDs
signalID1 = run.getSignalIDByIndex(1);
signalID2 = run.getSignalIDByIndex(2);

if (run.isValidSignalID(signalID1))
 % Change signal tolerance
 signal1 = Simulink.sdi.getSignal(signalID1);
 signal1.AbsTol = 0.1;
end

if (run.isValidSignalID(signalID1) && run.isValidSignalID(signalID2))
 % Compare signals
 diff = Simulink.sdi.compareSignals(signalID1,signalID2);

 % Check whether signals match within tolerance
 match = diff.match
end

match = logical
 0

Compare Signals from Different Runs

This example shows how to compare signals from different simulation runs using the
Simulation Data Inspector's Simulink.sdi.compareSignals function. When you only
have one signal of interest to compare, using a signal comparison returns the
Simulink.sdi.diffSignalResult object with the comparison data directly.

Generate Simulation Data

Use the slexAircraftExample model to generate simulation runs. Between the runs,
change the time constant of the input filter.

% Load example model
load_system('slexAircraftExample')

2 Functions — Alphabetical List

2-726

% Mark the alpha, rad signal for streaming
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate system
sim('slexAircraftExample')

% Change input filter time constant
modelWorkspace = get_param('slexAircraftExample','modelworkspace');
modelWorkspace.assignin('Ts',0.2)

% Simulate again
sim('slexAircraftExample')

Get Signal IDs for the Signal Comparison

Create run objects using the run IDs, and then use getSignalIDByIndex to get the
signal IDs to pass to Simulink.sdi.compareSignals.

% Get run data
runIDs = Simulink.sdi.getAllRunIDs;

runID1 = runIDs(end-1);
runID2 = runIDs(end);

run1 = Simulink.sdi.getRun(runID1);
run2 = Simulink.sdi.getRun(runID2);

sigID1 = run1.getSignalIDByIndex(1);
sigID2 = run2.getSignalIDByIndex(1);

Compare Signals

Compare the signals, and open the Simulation Data Inspector to view the results.

diffResult = Simulink.sdi.compareSignals(sigID1,sigID2);

Simulink.sdi.view

Input Arguments
sigID1 — Signal ID of Baseline signal
scalar

 Simulink.sdi.compareSignals

2-727

Signal ID for the Baseline signal. The Simulation Data Inspector assigns signal and run
IDs when you create a run for your data. You can access the signal ID from a
Simulink.sdi.Run object with the getSignalIDByIndex method.

sigID2 — Signal ID of Compare to signal
scalar

Signal ID for the Compare to signal. The Simulation Data Inspector assigns signal and
run IDs when you create a run for your data. You can access the signal ID from a
Simulink.sdi.Run object with the getSignalIDByIndex method.

Output Arguments
diff — Comparison results
'Simulink.sdi.diffSignalResult'

Simulink.sdi.DiffSignalResult object containing the results of the signal
comparison.

See Also
Simulink.sdi.DiffSignalResult | Simulink.sdi.Run |
Simulink.sdi.compareRuns

Topics
“Inspect and Compare Data Programmatically”
“Compare Simulation Data”
“How the Simulation Data Inspector Compares Data”

Introduced in R2011b

2 Functions — Alphabetical List

2-728

Simulink.sdi.copyRun
Copy a Simulation Data Inspector run

Syntax
newRunID = Simulink.sdi.copyRun(runID)
[newRunID,runIndex] = Simulink.sdi.copyRun(runID)
[newRunID,runIndex,signalIDs] = Simulink.sdi.copyRun(runID)

Description
newRunID = Simulink.sdi.copyRun(runID) copies the run corresponding to runID
and returns the run ID for the new run. The new run includes all the simulation data and
metadata from the original run. You can modify the copy of the run by adding or deleting
signals and metadata while still retaining the original run.

[newRunID,runIndex] = Simulink.sdi.copyRun(runID) copies the run
corresponding to runID and returns the run ID and index in the Simulation Data
Inspector repository for the new run. The new run includes all the simulation data and
metadata from the original run.

[newRunID,runIndex,signalIDs] = Simulink.sdi.copyRun(runID) copies the
run corresponding to runID and returns the signal IDs for the signals in the new run
along with its run ID and index in the Simulation Data Inspector repository. The new run
includes all the simulation data and metadata from the original run.

Examples

Compare a Subset of Signals

This example shows how to use Simulink.sdi.copyRun and
Simulink.sdi.deleteSignal to create a copy of a run that contains a subset of the
signals from the original run. You can use the copy to analyze and run comparisons on a

 Simulink.sdi.copyRun

2-729

subset of signals while still holding onto the original run that has all of the signals. For
example, the model sldemo_fuelsys is configured to log ten signals. To compare the
system's responses to different types of failures, you don't need to run the comparison on
all of the logged signals. Deleting signals that do not represent the system's response
before running the comparison saves processing time and simplifies the view of the
results.

Create Runs

Load the model sldemo_fuelsys and run simulations to create runs in the Simulation
Data Inspector. The first run simulates a failure of the throttle angle sensor, and the
second run simulates a failure of the exhaust gas oxygen sensor.

load_system('sldemo_fuelsys')
modelWorkspace = get_param('sldemo_fuelsys','modelworkspace');
modelWorkspace.assignin('throttle_sw',0)
modelWorkspace.assignin('ego_sw',1)
sim('sldemo_fuelsys')

modelWorkspace.assignin('throttle_sw',1)
modelWorkspace.assignin('ego_sw',0)
sim('sldemo_fuelsys')

Copy the Run

Use the Simulation Data Inspector's programmatic interface to get Simulink.sdi.Run
objects for the simulations, and then create copies of the runs.

% Get runs
runIDs = Simulink.sdi.getAllRunIDs;

runID1 = runIDs(end-1);
runID2 = runIDs(end);

run1 = Simulink.sdi.getRun(runID1);
run2 = Simulink.sdi.getRun(runID2);

% Create a copy of each run, truncRun
[truncRun1,runIndex1,signalIDs1] = Simulink.sdi.copyRun(runID1);
[truncRun2,runIndex2,signalIDs2] = Simulink.sdi.copyRun(runID2);

Delete Signals in Run Copy

The sldemo_fuelsys model is configured to log the values of the fault switches along
with several signals representing the system's response. When you compare the system's

2 Functions — Alphabetical List

2-730

response when a throttle angle sensor fails to its response when an exhaust gas oxygen
sensor fails, comparing the fault switch states does not provide new information.
Therefore, delete the switch signals before running the comparison to eliminate
unnecessary computations.

Simulink.sdi.deleteSignal(signalIDs1(1))
Simulink.sdi.deleteSignal(signalIDs1(3))
Simulink.sdi.deleteSignal(signalIDs1(5))
Simulink.sdi.deleteSignal(signalIDs1(8))

Simulink.sdi.deleteSignal(signalIDs2(1))
Simulink.sdi.deleteSignal(signalIDs2(3))
Simulink.sdi.deleteSignal(signalIDs2(5))
Simulink.sdi.deleteSignal(signalIDs2(8))

Compare Truncated Runs

You can use the truncated runs you created with Simulink.sdi.copyRun and
Simulink.sdi.deleteSignal to perform a comparison of the system's response to
different types of failures. Then, open the Simulation Data Inspector to view the
comparison results.

diff = Simulink.sdi.compareRuns(truncRun1,truncRun2);

Simulink.sdi.view

Input Arguments
runID — Numeric run identifier
scalar

Run ID for the run you want to copy. The Simulation Data Inspector assigns run IDs when
it creates runs. You can get the run ID for your run using
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

Output Arguments
newRunID — Run ID for the copy
scalar

Run ID for the copy of the run.

 Simulink.sdi.copyRun

2-731

runIndex — Run index for the copy
scalar

Index of the copy in the Simulation Data Inspector repository.

signalIDs — Numeric identifiers for the signals in the copy
matrix

Matrix containing the signal IDs for the copies of signals created in the copy of the run.

See Also
Simulink.sdi.createRun | Simulink.sdi.deleteRun |
Simulink.sdi.deleteSignal

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

2 Functions — Alphabetical List

2-732

Simulink.sdi.copyRunViewSettings
Copy line style and color for signals from one run to another

Syntax
sigIDs = Simulink.sdi.copyRunViewSettings(run1,run2,plot)

Description
sigIDs = Simulink.sdi.copyRunViewSettings(run1,run2,plot) copies the line
style and color specifications from runID1 to runID2 for matched signals. You can
specify run1 and run2 with their run ID or as a Simulink.sdi.Run object. If plot is
specified as true, Simulink.sdi.copyRunViewSettings also changes signal
parameters in both runs so that aligned signals that are plotted come from the run2. The
function returns an array of signal identifiers for the signals that the Simulation Data
Inspector aligned between the two runs. To learn more about how the Simulation Data
Inspector aligns signals between runs, see “How the Simulation Data Inspector Compares
Data”.

Examples

Copy View Settings to a Run

This example shows how to copy the view settings for aligned signals from one run to
another.

Simulate Your Model and get Run Object

Simulate the vdp model to create a run of data to visualize.

load_system('vdp')
set_param('vdp','SaveFormat','Dataset','SaveOutput','on')
sim('vdp')

 Simulink.sdi.copyRunViewSettings

2-733

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
run = Simulink.sdi.getRun(runID);

Modify View Settings for Signals

Use the Simulink.sdi.Run object to access the signals in the run. Then, modify the
signals' view settings, and plot them in the Simulation Data Inspector. Open the
Simulation Data Inspector and use Simulink.sdi.snapshot to view the results.

sig1 = run.getSignalByIndex(1);
sig2 = run.getSignalByIndex(2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = '-.';

sig2.LineColor = [1 0 0];
sig2.LineDashed = ':';

Capture a Snapshot from the Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the
Simulink.sdi.snapshot function to programmatically capture a snapshot of the
contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
snap.plotOnSubPlot(1,1,sig1,true)
snap.plotOnSubPlot(2,1,sig2,true)

fig = Simulink.sdi.snapshot("from","custom","to","figure","settings",snap);

2 Functions — Alphabetical List

2-734

Copy the View Settings to a New Simulation Run

Simulate the model again, with a different Mu value. Then, visualize the new run by
copying the view settings from the first run. Specify the plot input as true to plot the
signals from the new run.

set_param('vdp/Mu','Gain','5')
sim('vdp')

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,true);

 Simulink.sdi.copyRunViewSettings

2-735

Capture a Snapshot of the New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new
simulation run. First, clear the signals from the subplots. Then, plot the signals from the
new run and capture another snapshot.

snap.clearSignals
snap.YRange = {[-2.25 2.25],[-8 8]};
snap.plotOnSubPlot(1,1,sigIDs(2),true)
snap.plotOnSubPlot(2,1,sigIDs(1),true)

fig = snap.snapshot("to","figure");

2 Functions — Alphabetical List

2-736

Input Arguments
run1 — Simulation Data Inspector run ID for source run
scalar | 'Simulink.sdi.Run' object

Run with the view settings you want to copy specified with its run ID or
Simulink.sdi.Run object. The Simulation Data Inspector assigns run IDs when it
creates runs. You can get the run ID for your run using Simulink.sdi.getAllRunIDs
or Simulink.sdi.getRunIDByIndex.

run2 — Simulation Data Inspector run ID for destination run
scalar | 'Simulink.sdi.Run' object

 Simulink.sdi.copyRunViewSettings

2-737

Run you want to copy the view settings to, specified with its run ID or
Simulink.sdi.Run object. The Simulation Data Inspector assigns run IDs when it
creates runs. You can get the run ID for your run using Simulink.sdi.getAllRunIDs
or Simulink.sdi.getRunIDByIndex.

plot — Specify whether to update plotted signals
true | false

Specifies whether the Simulation Data Inspector changes the plot settings in the runs
corresponding to run1 and run2.

• When plot is true, the Simulation Data Inspector modifies the signal parameters so
that the aligned signals that are plotted come from run2.

• When plot is false, the Simulation Data Inspector does not change which signals
are plotted.

Data Types: logical

Output Arguments
sigIDs — Signal IDs for aligned signals
matrix

Matrix containing the signal IDs for signals in run2 that aligned with signals in run1 and
had view settings modified.

See Also
Simulink.sdi.Run | Simulink.sdi.Signal | Simulink.sdi.copyRun |
Simulink.sdi.setMarkersOn | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2016a

2 Functions — Alphabetical List

2-738

Simulink.sdi.createRun
Package: Simulink.sdi

Create a run in the Simulation Data Inspector

Syntax
runID = Simulink.sdi.createRun
runID = Simulink.sdi.createRun(runName)
runID = Simulink.sdi.createRun(var)

runID = Simulink.sdi.createRun(runName,'vars',var,var2,...,varn)
runID = Simulink.sdi.createRun(runName,'namevalue',sourceNames,
sigValues)
runID = Simulink.sdi.createRun(runName,'file',filename)

[runID,runIndex] = Simulink.sdi.createRun(___)
[runID,runIndex,signalIDs] = Simulink.sdi.createRun(___)

Description
runID = Simulink.sdi.createRun creates an empty, unnamed run in the Simulation
Data Inspector repository and returns the run ID. You can use Simulink.sdi.getRun to
get a Simulink.sdi.Run object for the run, which allows you to add metadata and
signals to the run.

runID = Simulink.sdi.createRun(runName) creates an empty run named
runName.

runID = Simulink.sdi.createRun(var) creates a run named var containing the
data in the workspace variable var.

runID = Simulink.sdi.createRun(runName,'vars',var,var2,...,varn)
creates a run named runName containing data from one or more variables in the base
workspace. The signals in the run take their names from the variable names.

 Simulink.sdi.createRun

2-739

runID = Simulink.sdi.createRun(runName,'namevalue',sourceNames,
sigValues) creates a run named runName with the data in the cell array sigValues.
The cell array of sourceNames specifies names to use as the source for the sigValues
data.

runID = Simulink.sdi.createRun(runName,'file',filename) creates a run
with data from the file specified by filename.

[runID,runIndex] = Simulink.sdi.createRun(___) returns the run ID and run
index for the run created in the Simulation Data Inspector repository.

[runID,runIndex,signalIDs] = Simulink.sdi.createRun(___) returns the
run ID, run index within the Simulation Data Inspector, and the signal IDs for the signals
in the run.

Examples

Create a Run in the Simulation Data Inspector

This example shows several ways to create a run in the Simulation Data Inspector for
your data. You can create a run from simulation outputs, workspace data, and from a file.

Create Data

You can create Simulation Data Inspector runs from workspace data or from a file. The
namevalue syntax for Simulink.sdi.createRun can be useful for hierarchical data.
Create example data to use in each scenario.

% Create timeseries workspace data
time = linspace(0, 20, 101);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

% Create Dataset workspace data

2 Functions — Alphabetical List

2-740

sinusoids_ds = Simulink.SimulationData.Dataset;
sinusoids_ds = sinusoids_ds.add(cos_ts);
sinusoids_ds = sinusoids_ds.add(sine_ts);

doubSine = 2*sine_ts;
doubCos = 2*cos_ts;

doubSinusoids_ds = Simulink.SimulationData.Dataset;
doubSinusoids_ds = doubSinusoids_ds.add(doubSine);
doubSinusoids_ds = doubSinusoids_ds.add(doubCos);

% Save workspace data to a MAT-file
save sinusoids.mat sine_ts cos_ts

Create a Run with a Run Object

You can create a run object using the Simulink.sdi.Run object's create method and
then add data to the run using the add method. The add method supports all loading and
logging data formats.

% Create a run
run = Simulink.sdi.Run.create;
run.Name = 'Sinusoids';
run.Description = 'Sine and cosine signals of different frequencies';

% Add timeseries data to run
run.add('vars', sine_ts, cos_ts);

Create a Run for a Variable

When you have only one signal of interest that you want to inspect and compare in the
Simulation Data Inspector you can use a simple syntax to create the run. The run takes
the same name as the variable.

runID = Simulink.sdi.createRun(sine_ts);

Create a Named Empty Run

With this syntax, you can create an empty run and specify its name. Then, you can use the
returned runID to add data to the run.

runID = Simulink.sdi.createRun('My Waves');
signalID = Simulink.sdi.addToRun(runID,'vars',cos_ts);

 Simulink.sdi.createRun

2-741

Create a Run from Multiple Workspace Variables

When your signals of interest are in multiple variables in your workspace, use the 'vars'
syntax. You can also use this syntax to provide a custom name for a run created from a
single variable.

runID = Simulink.sdi.createRun(' My Sinusoids','vars',sine_ts,cos_ts);

Create a Run and Specify the Source for the Data

Providing a name for the source of the run data can be helpful, particularly with
hierarchical data. Use the 'namevalue' syntax to specify data source names.

runID = Simulink.sdi.createRun('Waves','namevalue',{'Sinusoids',...
 'BigSinusoids'},{sinusoids_ds,doubSinusoids_ds});

Create a Run from Data in a File

You can create a run in the Simulation Data Inspector directly from a file of data using the
'file' syntax.

runID = Simulink.sdi.createRun('Wave Data','file','sinusoids.mat');

View Runs in the Simulation Data Inspector

Look at the runs in the Inspect pane to see the results from each run creation method.
You can select a run or a signal to view its metadata.

Simulink.sdi.view

Create a Simulation Data Inspector Run and Access Signal Data

This example shows how to access signal data when you create a run in the Simulation
Data Inspector.

Generate Data for Run

For this example, create timeseries data for sine and cosine signals.

% Create timeseries workspace data
time = linspace(0, 20, 101);

sine_vals = sin(2*pi/5*time);

2 Functions — Alphabetical List

2-742

sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Return Signal IDs

You can use the Simulink.sdi.createRun syntax with multiple return arguments to
get the signal IDs more directly instead of accessing the signal IDs through a
Simulink.sdi.Run object.

[runID,runIndex,sigIDs] = Simulink.sdi.createRun('Sinusoids','vars',...
 sine_ts,cos_ts);

cosID = sigIDs(2);
cosSig = Simulink.sdi.getSignal(cosID);

Modify Signal Properties and View in the Simulation Data Inspector

You can use the Simulink.sdi.Signal object to view and modify signal properties and
to plot signals in the Simulation Data Inspector.

cosSig.Checked = true;
cosSig.AbsTol = 0.05;
Simulink.sdi.view
cosSig.Name

ans =

 'Cosine, T=8'

Input Arguments
runName — Name for the run
character vector

Name for the run in the Simulation Data Inspector.
Example: 'Baseline Simulation'

 Simulink.sdi.createRun

2-743

var — Variable name
variable

Variable in the base workspace containing the data you want to create a run for in the
Simulation Data Inspector. The Simulation Data Inspector requires an associated time
vector for your data. Simulink.sdi.createRun supports all loading and logging data
formats, including timeseries and Simulink.SimulationData.Dataset.

Provide one var argument when var is the only argument and one or more var
arguments when you specify 'vars' for the second argument.
Example: myData

sourceNames — Cell array of signal names
cell array

Cell array of character vectors in which each element is the name of the source for data
in the run. Provide a sigNames input when you specify 'namevalue' for the second
argument.
Example: {'sig1','sig2'}

sigValues — Signal data
cell array

Cell array of variables containing signal data for the run. Provide a sigValues input
when you specify 'namevalue' for the second argument.
Example: {var1,var2}

filename — Name of file containing data for run
character vector

File name of the file containing your run data. Provide a filename input when you
specify 'file' for the second argument.
Example: 'simulation.mat'

Output Arguments
runID — Run identifier
scalar

2 Functions — Alphabetical List

2-744

Run identifier for the new run.

runIndex — Run index
scalar

Index of the new run in the Simulation Data Inspector repository.

signalIDs — Signal IDs for signals in run
vector

Vector containing the signal IDs for the signals in the run.

See Also
Simulink.sdi.Run | Simulink.sdi.addToRun | Simulink.sdi.copyRun |
Simulink.sdi.createRunOrAddToStreamedRun | Simulink.sdi.deleteRun |
Simulink.sdi.getRun

Topics
“Inspect and Compare Data Programmatically”
“View Data with the Simulation Data Inspector”

Introduced in R2011b

 Simulink.sdi.createRun

2-745

Simulink.sdi.createRunOrAddToStreamedRun
Package: Simulink.sdi

Create a single run for all simulation outputs

Syntax
runID = Simulink.sdi.createRunOrAddToStreamedRun(mdl,runName,
varSources,varValues)

Description
runID = Simulink.sdi.createRunOrAddToStreamedRun(mdl,runName,
varSources,varValues) creates a run with the data varValues if no run exists in the
Simulation Data Inspector repository for the model mdl. If one or more runs for the model
mdl exist in the Simulation Data Inspector repository, the function adds varValues to
the most recent run associated with mdl. The run is named according to runName, and
the sources for the data in varValues are named according to varSources.

Examples

Add Signals to a Run

This example shows how to use Simulink.sdi.createRunOrAddToStreamedRun to
add data to an existing run for a model. In this example, you add logged states data to the
run created through simulation.

Simulate the Model

Simulate the model to generate data. The model slexAircraftExample is configured to
log outputs, so the Simulation Data Inspector automatically creates a run with the logged
outport data. Using this simulation syntax, out contains the outport data (yout) and the
states data (xout).

2 Functions — Alphabetical List

2-746

load_system('slexAircraftExample')
out = sim('slexAircraftExample','ReturnWorkspaceOutputs','on',...
 'SaveFormat','Dataset');

Add Logged States Data to Run

The Simulation Data Inspector automatically created a run for the logged outport data.
Add the logged state data to the existing run using
Simulink.sdi.createRunOrAddToStreamedRun.

Simulink.sdi.createRunOrAddToStreamedRun('slexAircraftExample','Run 1',...
 {'out'},{out});

Open the Simulation Data Inspector to View Results

Using Simulink.sdi.createRunOrAddToStreamedRun avoids redundancy in the data
shown in the Simulation Data Inspector. Using Simulink.sdi.createRun to bring the
states data into the Simulation Data Inspector creates a second run.
Simulink.sdi.addToRun creates a duplicate signal from the outport data. Using
Simulink.sdi.createRunOrAddToStreamedRun, you can include all simulation data
in a single run without duplicating any signals.

Simulink.sdi.view

Input Arguments
mdl — Name of model that created simulation data
character vector

Name of the model the simulation data is from, specified as a character vector.
Example: 'sldemo_absbrake'

runName — Name for the run
character vector

Name for the new or augmented run. If
Simulink.sdi.createRunOrAddToStreamedRun adds data to an existing run, the run
is renamed according to runName.
Example: 'Run 1'

 Simulink.sdi.createRunOrAddToStreamedRun

2-747

varSources — Names to use for the sources of data
cell array of character vectors

Names for the sources of the data in varValues.
Example: {'sig1','sig2'}

varValues — Data to add to run
cell array

Cell array of data to incorporate into the run.
Simulink.sdi.createRunOrAddToStreamedRun supports data in all logging and
loading formats, including timeseries and Simulink.SimulationData.Dataset.
Example: {sig1,sig2}

Output Arguments
runID — Run identifier
scalar

Run identifier for the new or augmented run.

See Also
Simulink.sdi.Run | Simulink.sdi.addToRun | Simulink.sdi.createRun |
Simulink.sdi.getAllRunIDs | Simulink.sdi.getRun |
Simulink.sdi.getRunCount | Simulink.sdi.isValidRunID |
Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“View Data with the Simulation Data Inspector”

Introduced in R2017a

2 Functions — Alphabetical List

2-748

Simulink.sdi.deleteRun
Package: Simulink.sdi

Delete a run from the Simulation Data Inspector repository

Syntax
Simulink.sdi.deleteRun(runID)

Description
Simulink.sdi.deleteRun(runID) deletes the run corresponding to runID. When you
delete a run, the indices of all runs following the deleted run change to account for the
change in the run count. Deleting a run does not change any run IDs.

Examples

Delete a Run

You can delete a run from the Simulation Data Inspector repository to free up memory
space or to declutter your workspace from data you do not need.

% Load and simulate sldemo_fuelsys model
load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

% Get the run ID for the run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

 Simulink.sdi.deleteRun

2-749

% Delete the run
Simulink.sdi.deleteRun(runID)

Input Arguments
runID — Run identifier
scalar

Run ID for the run you want to delete. You can get the run ID for a run using
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

See Also
Simulink.sdi.clear | Simulink.sdi.copyRun | Simulink.sdi.deleteSignal |
Simulink.sdi.getAllRunIDs | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.setRunOverwrite

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

2 Functions — Alphabetical List

2-750

Simulink.sdi.deleteSignal
Package: Simulink.sdi

Delete a signal from the Simulation Data Inspector repository

Syntax
Simulink.sdi.deleteSignal(sigID)

Description
Simulink.sdi.deleteSignal(sigID) deletes the signal corresponding to sigID
from the Simulation Data Inspector repository.

Examples

Compare a Subset of Signals

This example shows how to use Simulink.sdi.copyRun and
Simulink.sdi.deleteSignal to create a copy of a run that contains a subset of the
signals from the original run. You can use the copy to analyze and run comparisons on a
subset of signals while still holding onto the original run that has all of the signals. For
example, the model sldemo_fuelsys is configured to log ten signals. To compare the
system's responses to different types of failures, you don't need to run the comparison on
all of the logged signals. Deleting signals that do not represent the system's response
before running the comparison saves processing time and simplifies the view of the
results.

Create Runs

Load the model sldemo_fuelsys and run simulations to create runs in the Simulation
Data Inspector. The first run simulates a failure of the throttle angle sensor, and the
second run simulates a failure of the exhaust gas oxygen sensor.

 Simulink.sdi.deleteSignal

2-751

load_system('sldemo_fuelsys')
modelWorkspace = get_param('sldemo_fuelsys','modelworkspace');
modelWorkspace.assignin('throttle_sw',0)
modelWorkspace.assignin('ego_sw',1)
sim('sldemo_fuelsys')

modelWorkspace.assignin('throttle_sw',1)
modelWorkspace.assignin('ego_sw',0)
sim('sldemo_fuelsys')

Copy the Run

Use the Simulation Data Inspector's programmatic interface to get Simulink.sdi.Run
objects for the simulations, and then create copies of the runs.

% Get runs
runIDs = Simulink.sdi.getAllRunIDs;

runID1 = runIDs(end-1);
runID2 = runIDs(end);

run1 = Simulink.sdi.getRun(runID1);
run2 = Simulink.sdi.getRun(runID2);

% Create a copy of each run, truncRun
[truncRun1,runIndex1,signalIDs1] = Simulink.sdi.copyRun(runID1);
[truncRun2,runIndex2,signalIDs2] = Simulink.sdi.copyRun(runID2);

Delete Signals in Run Copy

The sldemo_fuelsys model is configured to log the values of the fault switches along
with several signals representing the system's response. When you compare the system's
response when a throttle angle sensor fails to its response when an exhaust gas oxygen
sensor fails, comparing the fault switch states does not provide new information.
Therefore, delete the switch signals before running the comparison to eliminate
unnecessary computations.

Simulink.sdi.deleteSignal(signalIDs1(1))
Simulink.sdi.deleteSignal(signalIDs1(3))
Simulink.sdi.deleteSignal(signalIDs1(5))
Simulink.sdi.deleteSignal(signalIDs1(8))

Simulink.sdi.deleteSignal(signalIDs2(1))
Simulink.sdi.deleteSignal(signalIDs2(3))

2 Functions — Alphabetical List

2-752

Simulink.sdi.deleteSignal(signalIDs2(5))
Simulink.sdi.deleteSignal(signalIDs2(8))

Compare Truncated Runs

You can use the truncated runs you created with Simulink.sdi.copyRun and
Simulink.sdi.deleteSignal to perform a comparison of the system's response to
different types of failures. Then, open the Simulation Data Inspector to view the
comparison results.

diff = Simulink.sdi.compareRuns(truncRun1,truncRun2);

Simulink.sdi.view

Input Arguments
sigID — Signal ID
scalar

Unique number identifying the signal within the Simulation Data Inspector repository. You
can get the signal ID for a signal as a return from Simulink.sdi.createRun or using
the Simulink.sdi.Run object's methods.

See Also
Simulink.sdi.Run | Simulink.sdi.Signal | Simulink.sdi.copyRun |
Simulink.sdi.createRun

Topics
“Inspect and Compare Data Programmatically”
“Organize Your Simulation Data Inspector Workspace”

Introduced in R2016a

 Simulink.sdi.deleteSignal

2-753

Simulink.sdi.enablePCTSupport
Control how the Simulation Data Inspector works with the Parallel Computing Toolbox

Syntax
Simulink.sdi.enablePCTSupport(mode)

Description
Simulink.sdi.enablePCTSupport(mode) enables support for automatic data import
from parallel workers into the Simulation Data Inspector, according to the mode specified
by mode. You can configure the Simulation Data Inspector to import no worker data, only
data from local workers, or data from all workers — local and remote. You can also
configure the parallel worker support as manual, where you manually select runs to
import to the Simulation Data Inspector using the
Simulink.sdi.sendWorkerRunToClient function. By default, the Simulation Data
Inspector automatically imports runs from local workers.

Examples

Enable Parallel Support for All Workers

Configure Simulation Data Inspector parallel worker support to import the output
automatically from both local and remote workers.

Simulink.sdi.enablePCTSupport('all')

Disable Support for Parallel Workers

To prevent the output from any Parallel Computing Toolbox workers from automatically
importing to the Simulation Data Inspector, disable Parallel Computing Toolbox support.

2 Functions — Alphabetical List

2-754

Simulink.sdi.enablePCTSupport('none')

Manually Send Runs from Parallel Workers to the Simulation Data Inspector

This example shows how to use Simulink.sdi.sendWorkerRunToClient to send runs
created using parallel workers manually to the Simulation Data Inspector.

Setup

This example runs several simulations of the vdp model, varying the value of the gain, Mu.
To set up for the parallel simulation, define a vector of Mu values and configure the
Simulation Data Inspector for manual Parallel Computing Toolbox support.

% Enable manual Parallel Computing Toolbox support
Simulink.sdi.enablePCTSupport('manual');

% Choose several Mu values
MuVals = [1 2 3 4];

Initialize Parallel Workers

Use parpool to start a pool of four parallel workers. This example calls parpool inside
an if statement so you only create a parallel pool if you don't already have one. You can
use spmd to run initialization code common to all workers. For example, load the vdp
model and select signals to log to runs that we can send to the Simulation Data Inspector
on the client MATLAB. To avoid data concurrency issues when simulating with sim in
parfor, create a temporary directory on each worker. After the simulations complete,
another spmd block deletes the temporary directories.

p = gcp('nocreate');

if isempty(p)

 parpool(4);

end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 Simulink.sdi.enablePCTSupport

2-755

 % Load system and select signals to log
 load_system('vdp')
 Simulink.sdi.markSignalForStreaming('vdp/x1',1,'on')
 Simulink.sdi.markSignalForStreaming('vdp/x2',1,'on')

 % Create temporary directory for simulation on worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations with parfor

To stream data from parallel workers to the Simulation Data Inspector, you have to run
parallel simulations using parfor. Each worker runs a vdp simulation with a different
value of Mu. Simulink cannot access the contents of the parfor loop, so the variable
MuVal is defined in the worker's workspace, where the vdp model can see it, using
assignin.

parfor (index = 1:4)

 % Set value of Mu in the worker's base workspace
 assignin('base','MuVal',MuVals(index));

 % Modify the value of Mu in the model and simulate
 set_param('vdp/Mu','Gain','MuVal')
 sim('vdp')

Access Data and Send Run to Client MATLAB

You can use the Simulation Data Inspector programmatic interface on the worker the
same way you would in the client MATLAB. This example creates a Simulink.sdi.Run
object and attaches the value of Mu used in the simulation with the Tag property.

 % Attach metadata to the run
 IDs = Simulink.sdi.getAllRunIDs;
 lastIndex = length(IDs);
 runID = Simulink.sdi.getRunIDByIndex(lastIndex);
 run = Simulink.sdi.getRun(runID);

2 Functions — Alphabetical List

2-756

 run.Tag = strcat('Mu = ',num2str(MuVals(index)));

 % Send the run to the Simulation Data Inspector on the client MATLAB
 Simulink.sdi.sendWorkerRunToClient

end

Close Temporary Directories and View Runs in the Simulation Data Inspector

Use another spmd section to delete the temporary directories created on the workers
once the simulations complete. In each simulation,
Simulink.sdi.sendWorkerRunToClient imported runs from all the workers into the
Simulation Data Inspector. You can view the data and check the run properties to see the
value of Mu used during simulation.

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Simulink.sdi.view

Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

 Simulink.sdi.enablePCTSupport

2-757

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the
Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)

2 Functions — Alphabetical List

2-758

 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;

 Simulink.sdi.enablePCTSupport

2-759

end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

Simulink.sdi.cleanupWorkerResources

Input Arguments
mode — Prallel worker support mode
'local' (default) | 'none' | 'all' | 'manual'

Mode of Simulation Data Inspector support for importing runs from parallel workers.

2 Functions — Alphabetical List

2-760

• 'local' — The default behavior configures automatic import for runs generated on
local workers.

• 'none' — Disables parallel worker support. No runs from local or remote workers
import to the Simulation Data Inspector.

• 'all' — Enables automatic import for runs created from local and remote workers.
• 'manual' — Configures support for manual import of runs created by parallel

workers using the Simulink.sdi.sendWorkerRunToClient function.

Data Types: char | string

See Also
Simulink.sdi.WorkerRun | Simulink.sdi.isPCTSupportEnabled |
Simulink.sdi.sendWorkerRunToClient

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 Simulink.sdi.enablePCTSupport

2-761

Simulink.sdi.exportRun
Export run data to a Simulink.SimulationData.Dataset object

Syntax
dataset = Simulink.sdi.exportRun(runID)

Description
dataset = Simulink.sdi.exportRun(runID) creates a
Simulink.SimulationData.Dataset object in the base workspace with the data in
the Simulation Data Inspector run identified by runID.

Examples

Export Run Data

This example shows how to export data from a run in the Simulation Data Inspector to a
Simulink.SimulationData.Dataset object in the base workspace you can use to
further process your data. The method you choose to export your run depends on the
processing you do in your script. If you have a run object for the run, you can use the
export method to create a Simulink.SimulationData.Dataset object with the run's
data in the base workspace. If you do not have a run object, use the
Simulink.sdi.exportRun function to export the run to the workspace.

Export Run Using Simulink.sdi.exportRun

Use the Simulink.sdi.export function when your workflow does not include creating
a run object.

% Load vdp model
load_system('vdp')

% Get handles for signal lines in model

2 Functions — Alphabetical List

2-762

SignalHandles = get_param('vdp', 'Lines');

% Mark signals for streaming
Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

% Simulate vdp model
sim('vdp')

% Get run ID for simulation run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Export run
simDataset = Simulink.sdi.exportRun(runID);

Export Run Using export Method

When you already have a Simulink.sdi.Run object for your run, you can use the
export method to create a Simulink.SimulationData.Dataset object in the base
workspace for further processing of the data.

% Load vdp model
load_system('vdp')

% Get handles for signal lines in model
SignalHandles = get_param('vdp', 'Lines');

% Mark signals for streaming
Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

% Simulate model vdp and get run object
sim('vdp')

% Get run object for simulation run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
run = Simulink.sdi.getRun(runID);

% Get signal ids for signals
sigID1 = run.getSignalIDByIndex(1);
sigID2 = run.getSignalIDByIndex(2);

% Compare signals

 Simulink.sdi.exportRun

2-763

diffResult = Simulink.sdi.compareSignals(sigID1,sigID2);
diffResult.match

ans = logical
 0

% Export run
simDataset = run.export;

Input Arguments
runID — Run identifier
scalar

Run identifier for the run you want to export to a
Simulink.SimulationData.Dataset. The Simulation Data Inspector assigns a unique
run ID when it creates a run. You can get the run ID for your run using
Simulink.sdi.getAllRunIDs and Simulink.sdi.getRunIDByIndex.

Output Arguments
dataset — Dataset containing run data
Simulink.SimulationData.Dataset

Simulink.SimulationData.Dataset object containing the data from the run
identified by runID.

See Also
Simulink.SimulationData.Dataset | Simulink.sdi.Run |
Simulink.sdi.getAllRunIDs | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.save

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

2 Functions — Alphabetical List

2-764

Introduced in R2017a

 Simulink.sdi.exportRun

2-765

Simulink.sdi.getAllRunIDs
Package: Simulink.sdi

Get all Simulation Data Inspector run identifiers

Syntax
runIDs = Simulink.sdi.getAllRunIDs

Description
runIDs = Simulink.sdi.getAllRunIDs returns a matrix of the run identifiers for all
runs in the Simulation Data Inspector repository.

Examples

Get Run ID for a Simulation

Many workflows that use the Simulation Data Inspector programmatic interface start with
obtaining the ID for a simulation run. This example shows two different methods to use
the programmatic interface to get the run ID for a run. You can use the run ID to create a
Simulink.sdi.Run object to access run data and metadata, or you can use the run ID
for a comparison.

Simulate a Model to Create a Run

The model sldemo_fuelsys is already configured for logging. When you simulate the
model, the Simulation Data Inspector automatically creates a run and assigns it a run ID.

% Load and simulate system
load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

2 Functions — Alphabetical List

2-766

Get Run ID Using Simulink.sdi.getAllRunIDs

Simulink.sdi.getAllRunIDs returns an array of all run IDs for runs in the Simulation
Data Inspector repository in order, with the most recently created run at the end.

% Get runID for most recent run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Get Run ID Using Simulink.sdi.getRunIDByIndex

You can also use Simulink.sdi.getRunCount and Simulink.sdi.getRunIDByIndex
to get the run ID for a run. This method is useful if you also want to use count as a
counting variable to index through the runs in the Simulation Data Inspector repository.

count = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(count);

Analyze Simulation Data with Signal Tolerances

You can change tolerance values on a signal-by-signal basis to evaluate the effect of a
model parameter change. This example uses the slexAircraftExample model and the
Simulation Data Inspector to evaluate the effect of changing the time constant for the
low-pass filter following the control input.

Setup

Load the model, and mark the q, rad/sec and alpha, rad signals for logging. Then,
simulate the model to create the baseline run.

% Load example model
load_system('slexAircraftExample')

% Mark the q, rad/sec and alpha, rad signals for logging
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate system
sim('slexAircraftExample')

Modify Model Parameter

Modify the model parameter Ts in the model workspace to change the time constant of
the input low-pass filter.

 Simulink.sdi.getAllRunIDs

2-767

% Change input filter time constant
modelWorkspace = get_param('slexAircraftExample','modelworkspace');
modelWorkspace.assignin('Ts',1)

% Simulate again
sim('slexAircraftExample')

Compare Runs and Inspect Results

Use the Simulink.sdi.compareRuns function to compare the data from the
simulations. Then, inspect the match property of the signal result to see whether the
signals fell within the default tolerance of 0.

% Get run data
runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

% Compare runs
diffRun1 = Simulink.sdi.compareRuns(runID1,runID2);

% Get signal result
sig1Result1 = diffRun1.getResultByIndex(1);
sig2Result1 = diffRun1.getResultByIndex(2);

% Check whether signals matched
sig1Result1.Match

ans = logical
 0

sig2Result1.Match

ans = logical
 0

Compare Runs with Signal Tolerances

The signals did not match within the default tolerance of 0. To further analyze the effect
of the time constant change, add signal tolerances to the comparison with the baseline
signal properties to determine the tolerance required for a pass. This example uses a
combination of time and absolute tolerances.

2 Functions — Alphabetical List

2-768

% Get signal object for sigID1
run1 = Simulink.sdi.getRun(runID1);
sigID1 = run1.getSignalIDByIndex(1);
sigID2 = run1.getSignalIDByIndex(2);

sig1 = Simulink.sdi.getSignal(sigID1);
sig2 = Simulink.sdi.getSignal(sigID2);

% Set tolerances for q, rad/sec
sig1.AbsTol = 0.1;
sig1.TimeTol = 0.6;

% Set tolerances for alpha, rad
sig2.AbsTol = 0.2;
sig2.TimeTol = 0.8;

% Run the comparison again
diffRun2 = Simulink.sdi.compareRuns(runID1,runID2);
sig1Result2 = diffRun2.getResultByIndex(1);
sig2Result2 = diffRun2.getResultByIndex(2);

% Check the result
sig1Result2.Match

ans = logical
 1

sig2Result2.Match

ans = logical
 1

Output Arguments
runIDs — Matrix of Simulation Data Inspector run IDs
matrix

Matrix of run IDs in the Simulation Data Inspector repository.

 Simulink.sdi.getAllRunIDs

2-769

See Also
Simulink.sdi.Run | Simulink.sdi.compareRuns | Simulink.sdi.copyRun |
Simulink.sdi.copyRunViewSettings | Simulink.sdi.deleteRun |
Simulink.sdi.exportRun | Simulink.sdi.getRun | Simulink.sdi.getRunCount
| Simulink.sdi.isValidRunID | Simulink.sdi.setRunOverwrite

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017a

2 Functions — Alphabetical List

2-770

Simulink.sdi.getMarkersOn
Package: Simulink.sdi

Return logical indication of marker property

Syntax
res = Simulink.sdi.getMarkersOn

Description
res = Simulink.sdi.getMarkersOn returns the logical value res indicating whether
data markers are displayed on plots in the Simulation Data Inspector.

Examples

Save Marker State

You can use the Simulink.sdi.getMarkersOn property to save or query part of a
Simulation Data Inspector configuration.

markerState = Simulink.sdi.getMarkersOn

Output Arguments
res — Logical indication of marker state
true | false

Logical indication of whether markers are displayed on plots in the Simulation Data
Inspector.

• true indicates that markers are displayed.

 Simulink.sdi.getMarkersOn

2-771

• false indicates that markers are not displayed.

See Also
Simulink.sdi.clearPreferences | Simulink.sdi.copyRunViewSettings |
Simulink.sdi.getRunNamingRule | Simulink.sdi.resetRunNamingRule |
Simulink.sdi.setMarkersOn | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.setTableGrouping |
Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

2 Functions — Alphabetical List

2-772

Simulink.sdi.getRun
Package: Simulink.sdi

Get a Simulink.sdi.Run object to access data

Syntax
run = Simulink.sdi.getRun(runID)

Description
run = Simulink.sdi.getRun(runID) returns a Simulink.sdi.Run object that
provides access to the data in the run corresponding to the runID. The Simulation Data
Inspector assigns run IDs when it creates a run. You can get the run ID for your run using
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

Examples

Get a Run Object for Simulation Data

Many workflows using the Simulation Data Inspector programmatic interface start with
acquiring a Simulink.sdi.Run object for your simulation data.

% Load and simulate system
load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

% Get runID for most recent run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get run object
run = Simulink.sdi.getRun(runID);

 Simulink.sdi.getRun

2-773

You can use the Simulink.sdi.Run object to access signal data, add data, and inspect
run metadata.

Plot Signals from a Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a run
created by logging signals to the Simulation Data Inspector. From the
Simulink.sdi.Run object you can get Simulink.sdi.Signal objects that you can use
to view data.

% Simulate model sldemo_absbrake to create a run
sim('sldemo_fuelsys')

% Get runID for the run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get run object for the run
run = Simulink.sdi.getRun(runID);

% Check signal count of the run
run.signalCount

ans = int32
 15

% Get signal objects for the signals in the run
signal1 = run.getSignalByIndex(4);
signal2 = run.getSignalByIndex(9);
signal3 = run.getSignalByIndex(10);

% Create subplot layout to display signals
Simulink.sdi.setSubPlotLayout(3, 1)

% Plot signals
signal1.checked = true;
signal2.plotOnSubPlot(2, 1, true);
signal3.plotOnSubPlot(3, 1, true);

% View plots in the Simulation Data Inspector
Simulink.sdi.view

2 Functions — Alphabetical List

2-774

Input Arguments
runID — Numeric run identifier
scalar

Run ID for the run you want a Simulink.sdi.Run object for. The Simulation Data
Inspector assigns run IDs when it creates runs. You can get the run ID for a run using
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

Output Arguments
run — Simulink.sdi.Run object
'Simulink.sdi.Run'

Simulink.sdi.Run object for the run corresponding to the run ID.

See Also
Simulink.sdi.Run | Simulink.sdi.createRun | Simulink.sdi.getAllRunIDs |
Simulink.sdi.getRunIDByIndex

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

 Simulink.sdi.getRun

2-775

Simulink.sdi.getRunCount
Package: Simulink.sdi

Get number of runs in Simulation Data Inspector repository

Syntax
count = Simulink.sdi.getRunCount

Description
count = Simulink.sdi.getRunCount returns the number of runs in the Simulation
Data Inspector repository. You can use the run count to loop over all runs in the
Simulation Data Inspector repository to modify run or signal properties. For example, you
could add an absolute tolerance to a signal in every run.

Examples

Modify Parameter for Several Runs

This example shows how to modify a parameter for all the runs in the Simulation Data
Inspector programmatically.

Generate Runs

Load the vdp model and mark the x1 and x2 signals for logging. Then, run several
simulations.

% Clear all data from the Simulation Data Inspector repository
Simulink.sdi.clear

% Load the model and mark signals of interest for streaming
load_system('vdp')
Simulink.sdi.markSignalForStreaming('vdp/x1',1,'on')

2 Functions — Alphabetical List

2-776

Simulink.sdi.markSignalForStreaming('vdp/x2',1,'on')

% Simulate the model with several Mu values
for gain = 1:5
 gainVal = num2str(gain);
 set_param('vdp/Mu','Gain',gainVal)
 sim('vdp')
end

Use Simulink.sdi.getRunCount to Assign Tolerance to x1 Signals

count = Simulink.sdi.getRunCount;

for a = 1:count
 runID = Simulink.sdi.getRunIDByIndex(a);
 run = Simulink.sdi.getRun(runID);
 sig = run.getSignalByIndex(1);
 sig.AbsTol = 0.1;
end

% Open the Simulation Data Inspector to view your data
Simulink.sdi.view

Output Arguments
count — Number of runs
scalar

Number of runs in the Simulation Data Inspector repository.

See Also
Simulink.sdi.Run | Simulink.sdi.Signal | Simulink.sdi.getAllRunIDs |
Simulink.sdi.getRun | Simulink.sdi.getRunIDByIndex

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

 Simulink.sdi.getRunCount

2-777

Simulink.sdi.getRunIDByIndex
Package: Simulink.sdi

Use Simulation Data Inspector run index to get run ID

Syntax
runID = Simulink.sdi.getRunIDByIndex(index)

Description
runID = Simulink.sdi.getRunIDByIndex(index) returns the run ID for the run
with the specified index in the Simulation Data Inspector repository.

Examples

Get Run ID for a Simulation

Many workflows that use the Simulation Data Inspector programmatic interface start with
obtaining the ID for a simulation run. This example shows two different methods to use
the programmatic interface to get the run ID for a run. You can use the run ID to create a
Simulink.sdi.Run object to access run data and metadata, or you can use the run ID
for a comparison.

Simulate a Model to Create a Run

The model sldemo_fuelsys is already configured for logging. When you simulate the
model, the Simulation Data Inspector automatically creates a run and assigns it a run ID.

% Load and simulate system
load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

2 Functions — Alphabetical List

2-778

Get Run ID Using Simulink.sdi.getAllRunIDs

Simulink.sdi.getAllRunIDs returns an array of all run IDs for runs in the Simulation
Data Inspector repository in order, with the most recently created run at the end.

% Get runID for most recent run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Get Run ID Using Simulink.sdi.getRunIDByIndex

You can also use Simulink.sdi.getRunCount and Simulink.sdi.getRunIDByIndex
to get the run ID for a run. This method is useful if you also want to use count as a
counting variable to index through the runs in the Simulation Data Inspector repository.

count = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(count);

Input Arguments
index — Run index in Simulation Data Inspector
integer

Positive, whole number index of the run in the Simulation Data Inspector repository.
Example: 3

Output Arguments
runID — Numeric run identifier
scalar

Numeric run identification assigned by the Simulation Data Inspector.

See Also
Simulink.sdi.Run | Simulink.sdi.compareRuns | Simulink.sdi.copyRun |
Simulink.sdi.deleteRun | Simulink.sdi.getRun | Simulink.sdi.getRunCount
| Simulink.sdi.isValidRunID

 Simulink.sdi.getRunIDByIndex

2-779

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

2 Functions — Alphabetical List

2-780

Simulink.sdi.getRunNamingRule
Package: Simulink.sdi

Get the Simulation Data Inspector rule for naming runs

Syntax
namingRule = Simulink.sdi.getRunNamingRule

Description
namingRule = Simulink.sdi.getRunNamingRule returns the run naming rule as a
character vector. The run naming rule can contain one or more tokens that update for
each run, for example, <run_index>. The run naming rule applies to runs automatically
created through simulating a model in Simulink.

Examples

Modify Run Naming Rule Then Restore Default

This example shows how to use the Simulation Data Inspector API to modify the
Simulation Data Inspector run naming rule, check a run's name, restore default
preferences, and check the run naming rule.

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

% Simulate system
sim('sldemo_fuelsys')

% Check run name

 Simulink.sdi.getRunNamingRule

2-781

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
run = Simulink.sdi.getRun(runID);
run.name

ans =
'sldemo_fuelsys Run 15'

% Clear preferences to reset the run naming rule
Simulink.sdi.clearPreferences

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

Output Arguments
namingRule — Naming rule for Simulation Data Inspector runs
character vector

Character vector that specifies the naming rule the Simulation Data Inspector uses to
name the runs automatically created through simulating a Simulink model. The run
naming rule can contain any of the following tokens that represent information pulled for
each run:

• <run_index> – Run's index in the Simulation Data Inspector repository.
• <model_name> – Name of the model simulated to create the run.
• <time_stamp> – Start time for the simulation that created the run.
• <sim_mode> – Simulation mode used for the simulation that created the run.

Alternatives
You can view the run naming rule using the Simulation Data Inspector UI. You can find
the New Run options under the Simulation Data Inspector Preferences menu.

2 Functions — Alphabetical List

2-782

See Also
Simulink.sdi.Run | Simulink.sdi.clearPreferences |
Simulink.sdi.resetRunNamingRule | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setRunOverwrite

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2015a

 Simulink.sdi.getRunNamingRule

2-783

Simulink.sdi.getSignal
Package: Simulink.sdi

Get Simulink.sdi.Signal object for a signal

Syntax
signalObj = Simulink.sdi.getSignal(sigID)

Description
signalObj = Simulink.sdi.getSignal(sigID) returns a Simulink.sdi.Signal
object for the signal in the Simulation Data Inspector repository that corresponds to the
signal ID, sigID. The Simulink.sdi.Signal object manages signal data and metadata
and allows you to view and modify signal properties.

Examples

Create a Simulation Data Inspector Run and Access Signal Data

This example shows how to access signal data when you create a run in the Simulation
Data Inspector.

Generate Data for Run

For this example, create timeseries data for sine and cosine signals.

% Create timeseries workspace data
time = linspace(0, 20, 101);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

2 Functions — Alphabetical List

2-784

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Return Signal IDs

You can use the Simulink.sdi.createRun syntax with multiple return arguments to
get the signal IDs more directly instead of accessing the signal IDs through a
Simulink.sdi.Run object.

[runID,runIndex,sigIDs] = Simulink.sdi.createRun('Sinusoids','vars',...
 sine_ts,cos_ts);

cosID = sigIDs(2);
cosSig = Simulink.sdi.getSignal(cosID);

Modify Signal Properties and View in the Simulation Data Inspector

You can use the Simulink.sdi.Signal object to view and modify signal properties and
to plot signals in the Simulation Data Inspector.

cosSig.Checked = true;
cosSig.AbsTol = 0.05;
Simulink.sdi.view
cosSig.Name

ans =

 'Cosine, T=8'

Input Arguments
sigID — Signal ID
scalar

Signal identifier. The Simulation Data Inspector assigns signal IDs to signals when a run
is created. You can get the signal ID for a signal as a return from
Simulink.sdi.createRun or using the Simulink.sdi.Run object's methods.

 Simulink.sdi.getSignal

2-785

Output Arguments
signalObj — Simlink.sdi.Signal object
'Simulink.sdi.Signal' object

Simulink.sdi.Signal object for the signal corresponding to sigID.

See Also
Simulink.sdi.Run | Simulink.sdi.Signal | Simulink.sdi.createRun |
getSignalIDByIndex

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

2 Functions — Alphabetical List

2-786

Simulink.sdi.isPCTSupportEnabled
Determine status and mode for Parallel Computing Toolbox support

Syntax
[enabled,mode] = Simulink.sdi.isPCTSupportEnabled

Description
[enabled,mode] = Simulink.sdi.isPCTSupportEnabled returns enabled, a
logical indication of whether support for the Parallel Computing Toolbox is enabled, and
mode, the mode of support enabled.

Examples

Check Status of Parallel Worker Support

Before running code that depends on whether automatic import of runs created by
parallel workers is enabled, you can use the Simulink.sdi.isPCTSupportEnabled
function to check the support status. The default behavior for the Simulation Data
Inspector enables parallel worker support in local mode. In local mode, only runs
created on local workers automatically import into the Simulation Data Inspector.

[enabled, mode] = Simulink.sdi.isPCTSupportEnabled

enabled =

 logical

 1

mode =

 Simulink.sdi.isPCTSupportEnabled

2-787

 'local'

Output Arguments
enabled — Logical indicator of parallel worker support
logical

Logical indication of parallel worker support.

• 1 indicates that support for parallel workers is enabled.
• 0 indicates that support for parallel workers is not enabled.

mode — Parallel worker support mode
local (default)

Mode of Parallel Computing Toolbox support.

• 'local' — Runs generated on local workers automatically import to the Simulation
Data Inspector.

• 'none' — Parallel worker support is disabled.
• 'all' — Runs created from local and remote workers automatically import to the

Simulation Data Inspector.
• 'manual' — Support for manual import of runs created by parallel workers using the

Simulink.sdi.sendWorkerRunToClient function.

See Also
Simulink.sdi.WorkerRun | Simulink.sdi.enablePCTSupport |
Simulink.sdi.sendWorkerRunToClient

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

2 Functions — Alphabetical List

2-788

Simulink.sdi.isValidRunID
Package: Simulink.sdi

Determine whether a run ID is valid

Syntax
valid = Simulink.sdi.isValidRunID(runID)

Description
valid = Simulink.sdi.isValidRunID(runID) returns true if runID corresponds
to a run in the Simulation Data Inspector repository.

Examples

Check Run ID Validity

This example shows how to check whether a run ID is valid. You can use
Simulink.sdi.isValidRunID to ensure you have valid data throughout your script.

Create a Simulation Run

Simulate the model sldemo_fuelsys to create a run in the Simulation Data Inspector,
and use Simulink.sdi.getAllRunIDs to get its run ID.

% Simulate model
load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

% Get run ID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

 Simulink.sdi.isValidRunID

2-789

Check Run ID Validity

Check to verify that the Simulation Data Inspector has a run corresponding to the run ID.

Simulink.sdi.isValidRunID(runID)

ans = logical
 1

Delete the Run and Check Validity

You can delete runs to clear out memory space or clean up the Simulation Data Inspector
UI. When you delete a run, the run ID for that run becomes invalid.

Simulink.sdi.deleteRun(runID)

Simulink.sdi.isValidRunID(runID)

ans = logical
 0

Input Arguments
runID — Simulation Data Inspector run identifier
scalar

Unique numeric identification for the run. The Simulation Data Inspector assigns run IDs
when it creates runs. You can get the run ID for your run using
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

Output Arguments
valid — Run validity indicator
logical

Run validity indicator. When valid is true, the runID is valid. When valid is false,
the runID is invalid.

2 Functions — Alphabetical List

2-790

See Also
Simulink.sdi.compareRuns | Simulink.sdi.createRun |
Simulink.sdi.deleteRun | Simulink.sdi.getAllRunIDs |
Simulink.sdi.getRunIDByIndex | Simulink.sdi.setRunOverwrite

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2011b

 Simulink.sdi.isValidRunID

2-791

Simulink.sdi.load
Package: Simulink.sdi

Load a Simulation Data Inspector session or view

Syntax
valid = Simulink.sdi.load(fileName)

Description
valid = Simulink.sdi.load(fileName) loads the data in the MLDATX-file or MAT-
file specified by fileName and returns 1 when fileName is a valid file. A return value of
0 indicates that the file specified by fileName is invalid and cannot be loaded into the
Simulation Data Inspector. You can use Simulink.sdi.load to load Simulation Data
Inspector sessions and views. A view includes preferences and visualization options but
does not save data. A session saves data along with preference selections and plot
configurations.

Examples

Save a Simulation Data Inspector Session

This example shows how to create, save, and load a Simulation Data Inspector session.
The example uses data logging to populate the Simulation Data Inspector with data and
then uses the Simulation Data Inspector's programmatic interface to create plots to
visualize the data. After saving the data and visualization settings in a session, the
Simulation Data Inspector repository is emptied in order to demonstrate how to load the
session.

2 Functions — Alphabetical List

2-792

Create Simulation Data

This example logs the Stick, alpha, rad, and q, rad/sec signals to generate
simulation data using the model slexAircraftExample and creates two runs. The first
uses a sine input, and the second has a square wave input.

% Ensure you start with an empty Simulation Data Inspector repository
Simulink.sdi.clear

% Load system
load_system('slexAircraftExample')

% Configure signals to log
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Change Pilot signal to sine
set_param('slexAircraftExample/Pilot','WaveForm','sine')

% Simulate model
sim('slexAircraftExample')

% Change Pilot signal to square
set_param('slexAircraftExample/Pilot','WaveForm','square')

% Simulate model
sim('slexAircraftExample')

Access Simulation Data

Use the Simulation Data Inspector programmatic interface to access the simulation data
so you can create plots to visualize the signals.

% Get run objects
runIDs = Simulink.sdi.getAllRunIDs;
sineRunID = runIDs(end-1);
squareRunID = runIDs(end);

sineRun = Simulink.sdi.getRun(sineRunID);
squareRun = Simulink.sdi.getRun(squareRunID);

% Get signal objects
sineOut = sineRun.getSignalByIndex(1);
sineIn = sineRun.getSignalByIndex(3);

 Simulink.sdi.load

2-793

squareOut = squareRun.getSignalByIndex(1);
squareIn = squareRun.getSignalByIndex(3);

Create Plots in the Simulation Data Inspector

Use the programmatic interface to visualize the signal data from the two simulation runs.
You can set the plot layout and plot signals on specific subplots.

% Set subplot layout
Simulink.sdi.setSubPlotLayout(2,1)

% Plot sine data on top plot
sineIn.plotOnSubPlot(1,1,true)
sineOut.plotOnSubPlot(1,1,true)

% Plot square wave data on bottom plot
squareIn.plotOnSubPlot(2,1,true)
squareOut.plotOnSubPlot(2,1,true)

Save a Simulation Data Inspector Session

First, view the plots you just created. Then, save the Simulation Data Inspector session as
an MLDATX-file to recover your data along with your preference selections and plots.

% View the visualized data in the Simulation Data Inspector
Simulink.sdi.view

% Save the Simulation Data Inspector session
Simulink.sdi.save('myData.mldatx')

Load a Simulation Data Inspector Session

First, clear the Simulation Data Inspector repository with Simulink.sdi.clear and
reset visualization settings with Simulink.sdi.clearPreferences. Then, you can
load the session to see how the data and settings are preserved.

% Clear Simulation Data Inspector repository and preferences
Simulink.sdi.clear
Simulink.sdi.clearPreferences

2 Functions — Alphabetical List

2-794

% Load session file to view data
Simulink.sdi.load('myData.mldatx');

Input Arguments
fileName — Name of file to load
character vector

Name of the file to load with the session or view data.
Example: 'myData.mldatx'
Example: 'myData.mat'

Output Arguments
valid — File validity indicator
logical

Validity indicator for the file. When the file specified by fileName is valid, valid is 1. A
valid value of 0 indicates an invalid file.

See Also
Simulink.sdi.close | Simulink.sdi.createRun | Simulink.sdi.save

Topics
“Inspect and Compare Data Programmatically”
“View Data with the Simulation Data Inspector”

Introduced in R2011b

 Simulink.sdi.load

2-795

Simulink.sdi.markSignalForStreaming
Package: Simulink.sdi

Turn logging on or off for a signal

Syntax
Simulink.sdi.markSignalForStreaming(block,portIndex,log)
Simulink.sdi.markSignalForStreaming(portHandle,log)
Simulink.sdi.markSignalForStreaming(lineHandle,log)

Description
Simulink.sdi.markSignalForStreaming(block,portIndex,log) marks the
signal on the specified portIndex of the specified block for logging when you specify
log as 'on'. To stop logging a signal, specify log as 'off'.

Simulink.sdi.markSignalForStreaming(portHandle,log) marks the signal on
the port specified by portHandle for logging when you specify log as 'on'. To stop
logging a signal, specify log as 'off'.

Simulink.sdi.markSignalForStreaming(lineHandle,log) marks the signal with
the specified lineHandle for logging when you specify log as 'on'. To stop logging a
signal, specify log as 'off'.

Examples

Compare Signals Within a Simulation Run

This example uses the slexAircraftExample model to demonstrate the comparison of
the input and output signals for a control system. The example marks the signals for
streaming then gets the run object for a simulation run. Signal IDs from the run object
specify the signals to be compared.

2 Functions — Alphabetical List

2-796

% Load model slexAircraftExample and mark signals for streaming
load_system('slexAircraftExample')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate model slexAircraftExample
sim('slexAircraftExample')

% Get run IDs for most recent run
allIDs = Simulink.sdi.getAllRunIDs;
runID = allIDs(end);

% Get Run object
run = Simulink.sdi.getRun(runID);

% Get signal IDs
signalID1 = run.getSignalIDByIndex(1);
signalID2 = run.getSignalIDByIndex(2);

if (run.isValidSignalID(signalID1))
 % Change signal tolerance
 signal1 = Simulink.sdi.getSignal(signalID1);
 signal1.AbsTol = 0.1;
end

if (run.isValidSignalID(signalID1) && run.isValidSignalID(signalID2))
 % Compare signals
 diff = Simulink.sdi.compareSignals(signalID1,signalID2);

 % Check whether signals match within tolerance
 match = diff.match
end

match = logical
 0

Mark Signals for Logging with Port Handles

This example shows how to mark signals for logging using port handles.

 Simulink.sdi.markSignalForStreaming

2-797

Load Model and Mark Signals for Streaming

User get_param to get the port handles for the blocks with your signals of interest.
Then, use the handle to mark the desired signals for logging.

load_system('vdp')

% Get port handles
x1_handles = get_param('vdp/x1','PortHandles');
x1 = x1_handles.Outport(1);
x2_handles = get_param('vdp/x2','PortHandles');
x2 = x2_handles.Outport(1);

% Mark signals for streaming
Simulink.sdi.markSignalForStreaming(x1,'on');
Simulink.sdi.markSignalForStreaming(x2,'on');

Simulate Model and View Signals in the Simulation Data Inspector

Simulate the model and then open the Simulation Data Inspector to view the logged
signals.

sim('vdp')

Simulink.sdi.view

Mark Signals for Logging with Line Handles

This example shows how to mark signals for logging using their line handles.

Load System and Mark Signals for Logging

Load a model and use get_param to get handles for the signals in the model. Then, use
the line handles to mark signals of interest for logging.

load_system('slexAircraftExample')

lines = get_param('slexAircraftExample','Lines');

sig1handle = lines(1).Handle;
sig2handle = lines(2).Handle;

2 Functions — Alphabetical List

2-798

Simulink.sdi.markSignalForStreaming(sig1handle,'on')
Simulink.sdi.markSignalForStreaming(sig2handle,'on')

Simulate Model and View Signals

Simulate the model and view the signals marked for logging in the Simulation Data
Inspector.

sim('slexAircraftExample')

Simulink.sdi.view

Input Arguments
block — Source block path or handle
character vector

Block path for the block with the desired signal connected to one of its outports.
Example: 'slexAircraftExample/Pilot'

portIndex — Source block output port index
integer

Index of the port connected to the signal you want to mark for streaming.
Example: 'slexAircraftExample/Pilot'

log — Logging state
'on' | 'off'

Logging state desired for signal.

• 'on' –– Turn logging on for a signal.
• 'off' –– Turn logging off for a signal.

portHandle — Source block output port handle
handle

Port handle for the source block's output port that connects to the signal.
Example: x1_handles.Outport(1)

 Simulink.sdi.markSignalForStreaming

2-799

lineHandle — Signal line handle
handle

Line handle for the signal.
Example: lines(1).Handle

See Also
Simulink.HMI.InstrumentedSignals |
Simulink.sdi.createRunOrAddToStreamedRun | Simulink.sdi.getAllRunIDs |
Simulink.sdi.getRunIDByIndex

Topics
“Inspect and Compare Data Programmatically”
“View Data with the Simulation Data Inspector”

Introduced in R2015b

2 Functions — Alphabetical List

2-800

Simulink.sdi.report
Package: Simulink.sdi

Generate a Simulation Data Inspector report

Syntax
Simulink.sdi.report
Simulink.sdi.report(Name,Value)

Description
Simulink.sdi.report creates a Simulation Data Inspector report of the plotted data in
the Inspect pane of the Simulation Data Inspector.

Simulink.sdi.report(Name,Value) uses additional options specified by one or more
Name,Value pair arguments to generate a report of the specified view in the Simulation
Data Inspector.

Examples

Generate a Simulation Data Inspector Report Programmatically

This example shows how to create reports using the Simulation Data Inspector
programmatic interface. You can create a report for plotted signals in the Inspect pane or
for comparison data in the Compare pane. This example first generates data by simulating
a model, then shows how to create an Inspect Signals report. To run the example
exactly as shown, ensure that the Simulation Data Inspector repository starts empty with
the Simulink.sdi.clear function.

Generate Data

This example generates data using model ex_sldemo_absbrake with two different
desired slip ratios.

 Simulink.sdi.report

2-801

% Ensure Simulation Data Inspector is empty
Simulink.sdi.clear

% Open model
load_system('ex_sldemo_absbrake')

% Set slip ratio and simulate model
set_param('ex_sldemo_absbrake/Desired relative slip','Value','0.24')
sim('ex_sldemo_absbrake')

% Set new slip ratio and simulate model again
set_param('ex_sldemo_absbrake/Desired relative slip','Value','0.25')
sim('ex_sldemo_absbrake')

Plot Signals in the Inspect Pane

The Inspect Signals report includes all signals plotted in the graphical viewing area
of the Inspect pane and all displayed metadata for the plotted signals.

% Get Simulink.sdi.Run objects
runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end-1);
runID2 = runIDs(end);

run1 = Simulink.sdi.getRun(runID1);
run2 = Simulink.sdi.getRun(runID2);

% Get Simulink.sdi.Signal objects for slp signal
run1_slp = run1.getSignalByIndex(4);
run2_slp = run2.getSignalByIndex(4);

% Plot slp signals
run1_slp.plotOnSubPlot(1, 1, true)
run2_slp.plotOnSubPlot(1, 1, true)

Create a Report of Signals Plotted in Inspect Pane

You can include more data in the report by adding more columns using the Simulation
Data Inspector UI, or you can specify the information you want in the report
programmatically with Name-Value pairs and the enumeration class
Simulink.sdi.SignalMetaData. This example shows how to specify the data in the
report programmatically.

% Specify report parameters
reportType = 'Inspect Signals';

2 Functions — Alphabetical List

2-802

reportName = 'Data_Report.html';

signalMetadata = [Simulink.sdi.SignalMetaData.Run, ...
 Simulink.sdi.SignalMetaData.Line, ...
 Simulink.sdi.SignalMetaData.BlockName, ...
 Simulink.sdi.SignalMetaData.SignalName];

Simulink.sdi.report('ReportToCreate', reportType, 'ReportOutputFile', ...
 reportName, 'ColumnsToReport', signalMetadata);

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ReportToCreate','Compare Runs','ShortenBlockPath',true

ReportToCreate — Information to include in the report
'Inspect Signals' (default) | 'Compare Runs'

Simulation Data Inspector pane to capture in the report.

• 'Inspect Signals' –– Create a report of the information on the Inspect pane.
• 'Compare Runs' –– Create a report of the information on the Compare pane.

Example: 'ReportToCreate','Inspect Signals'
Example: 'ReportToCreate','Compare Runs'

ReportOutputFolder — Folder where report is saved
<current working folder>/slprj/sdi (default) | path

Folder where the report is saved. Specify the path to the folder where you want to save
the report as a character vector.
Example: 'ReportOutputFolder','C:\Users\user1\Desktop'

 Simulink.sdi.report

2-803

ReportOutputFile — Report file name
'SDI_report.html' (default) | character vector

File name for report.
Example: 'ReportOutputFile','MyReport.html'

PreventOverwritingFile — Report overwrite prevention
true (default) | false

File overwrite protection for the report. File overwrite protection prevents the Simulation
Data Inspector from overwriting an existing file by appending the file name with a
number that increments for subsequent reports. When you disable file overwrite
protection, the Simulation Data Inspector overwrites the existing report file unless you
specify a unique file name.

• true enables file overwrite protection.
• false disables file overwrite protection.

Example: 'PreventOverwritingFile',true
Example: 'PreventOverwritingFile',false

ColumnsToReport — Signal metadata to include in report
array

Signal metadata to include in report. By default, the Inspect Signals report includes
the block path, name, line style and color, and data source parameters for each plotted
signal. The Compare Runs report includes the signal name, absolute tolerance, relative
tolerance, and maximum difference metadata by default.

Specify metadata to include as an array, using the enumeration class
Simulink.sdi.SignalMetaData. For example, to include the name of the simulation
run and signal name, create an array like signal_metadata:

signal_metadata = [Simulink.sdi.SignalMetaData.Run,...
 Simulink.sdi.SignalMetaData.SignalName];

Then, specify ColumnsToReport as signal_metadata in the name-value pair:

Simulink.sdi.report('ColumnsToReport',signal_metadata)

The table summarizes the metadata available for Inspect Signals report.

2 Functions — Alphabetical List

2-804

Column Value Description
SignalName (default) Signal name
Line (default) Signal line style and color
SID Simulink identifier

For more information about SIDs, see
“Locate Diagram Components Using
Simulink Identifiers”

Units Signal measurement units
SigDataType Signal data type
SigSampleTime Method used to sample the signal
Model Name of the model that generated the signal
BlockName Name of the source block for the signal
BlockPath Path to the source block for the signal
Port Index of the signal on the output port of its

block
Dimensions Dimensions of the matrix containing the

signal
Channel Index of signal within matrix
Run Name of the simulation run containing the

signal
AbsTol Absolute tolerance for the signal
RelTol Relative tolerance for the signal
OverrideGlobalTol Property that specifies whether signal

tolerances take priority over global
tolerances

TimeTol Time tolerance for the signal
InterpMethod Interpolation method
SyncMethod Synchronization method used to coordinate

signals for comparison

 Simulink.sdi.report

2-805

Column Value Description
TimeSeriesRoot Name of the variable associated with the

signal for signals imported from the
MATLAB workspace

TimeSource Name of the array containing the time data
for signals imported from the MATLAB
workspace

DataSource Name of the array containing the signal data
for signals imported from the MATLAB
workspace

The table provides a summary of the metadata available for the Compare Runs report.

Column Value Description
Result (default) Pass/fail result of the signal comparison

between the Baseline and Compare To
runs

Line1 Line style and color for the Baseline signal
Line2 Line style and color for the Compare To

signal
AbsTol (default) Absolute tolerance for the Baseline signal
RelTol (default) Relative tolerance for the Baseline signal
MaxDifference The maximum difference between the

Baseline and Compare To signals
OverrideGlobalTol Property that specifies whether the

Baseline signal tolerances take priority
over global tolerances

TimeTol Time tolerance for the Baseline signal
SignalName1 Signal name from the Baseline run
SignalName2 Signal name from the Compare To run
Units1 Measurement units for the signal in the

Baseline run
Units2 Measurement units for the signal in the

Compare To run

2 Functions — Alphabetical List

2-806

Column Value Description
SigDataType1 The data type for the signal in the Baseline

run
SigDataType2 The data type for the signal in the

Compare To run
SigSampleTime1 Method used to sample the signal in the

Baseline run
SigSampleTime2 Method used to sample the signal in the

Compare To run
Run1 Name of the Baseline run
Run2 Name of the Compare To run
AlignedBy (default) Signal alignment method used to correlate

Baseline and Compare To signals
Model1 Name of the model that generated the

Baseline signals
Model2 Name of the model that generated the

Compare To signals
BlockName1 Name of the source block for the Baseline

signal
BlockName2 Name of the source block for the Compare

To signal
BlockPath1 Path to the source block for the Baseline

signal
BlockPath2 Path to the source block for the Compare

To signal
Port1 Index of the Baseline signal on the output

port of its block
Port2 Index of the Compare To signal on the

output port of its block
Dimensions1 Dimensions of the matrix containing the

Baseline signal
Dimensions2 Dimensions of the matrix containing the

Compare To signal

 Simulink.sdi.report

2-807

Column Value Description
Channel1 Index of the Baseline within its matrix
Channel2 Index of the Compare To within its matrix
InterpMethod Interpolation method for the Baseline

signal
SyncMethod Synchronization method for the Baseline

signal
TimeSeriesRoot1 Name of the variable associated with the

Baseline signal for signals imported from
the MATLAB workspace

TimeSeriesRoot2 Name of the variable associated with the
Compare To signal for signals imported
from the MATLAB workspace

TimeSource1 Name of the array containing the Baseline
time data for signals imported from the
MATLAB workspace

TimeSource2 Name of the array containing the Compare
To time data for signals imported from the
MATLAB workspace

DataSource1 Name of the array containing the Baseline
signal data for signals imported from the
MATLAB workspace

DataSource2 Name of the array containing the Compare
To signal data for signals imported from the
MATLAB workspace

LinkToPlot (default) Link to a plot of each comparison result

Example: 'ColumnsToReport',metadata

ShortenBlockPath — Block path length
true (default) | false

Block path length.

• true –– Report shortened block path length.
• false –– Include the full block path in the report.

2 Functions — Alphabetical List

2-808

Example: 'ShortenBlockPath',false

LaunchReport — Open report when created
true (default) | false

Open report when created.

• true –– Open the report when it is created.
• false –– Do not open the report upon creation.

Example: 'LaunchReport',false

SignalsToReport — Signals to include in a Compare Runs report
'ReportOnlyMismatchedSignals' (default) | 'ReportAllSignals'

Signals to include in a Compare Runs report.

• ReportOnlyMismatchedSignals –– Include only signals that fall out of tolerance.
• ReportAllSignals –– Include all signals.

Example: 'SignalsToReport','ReportAllSignals'

See Also
Simulink.sdi.Signal | Simulink.sdi.compareRuns |
Simulink.sdi.compareSignals | Simulink.sdi.createRun

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”
“Save and Share Simulation Data Inspector Data and Views”

Introduced in R2011b

 Simulink.sdi.report

2-809

Simulink.sdi.resetRunNamingRule
Package: Simulink.sdi

Revert the Simulation Data Inspector run naming rule to default

Syntax
Simulink.sdi.resetRunNamingRule

Description
Simulink.sdi.resetRunNamingRule resets the run naming rule the Simulation Data
Inspector uses to assign a name to runs created through simulating a Simulink model to
its default 'Run <run_index>: <model_name>'.

Examples

Modify then Reset Run Naming Rule

This example shows how to use the Simulation Data Inspector API to modify the
Simulation Data Inspector run naming rule, check a run's name, reset the run naming
rule to its default, and check the run naming rule.

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

% Simulate system
sim('sldemo_fuelsys')

% Check run name
runIDs = Simulink.sdi.getAllRunIDs;

2 Functions — Alphabetical List

2-810

runID = runIDs(end);
run = Simulink.sdi.getRun(runID);
run.name

ans =
'sldemo_fuelsys Run 4'

% Reset the run naming rule
Simulink.sdi.resetRunNamingRule

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

Alternatives
You can reset the run naming rule to its default using the Simulation Data Inspector UI.
Use the Restore Defaults button on the New Run tab under Simulation Data Inspector
Preferences.

Simulink.sdi.clearPreferences restores the run naming rule, along with all other
Simulation Data Inspector preferences.

See Also
Simulink.sdi.clearPreferences | Simulink.sdi.getRunNamingRule |
Simulink.sdi.setRunNamingRule

Topics
“Inspect and Compare Data Programmatically”
“Organize Your Simulation Data Inspector Workspace”

Introduced in R2015a

 Simulink.sdi.resetRunNamingRule

2-811

Simulink.sdi.save
Package: Simulink.sdi

Save Simulation Data Inspector session

Syntax
Simulink.sdi.save(fileName)

Description
Simulink.sdi.save(fileName) saves all runs, signals, and plot settings as a
Simulation Data Inspector session in the file fileName.

Examples

Save a Simulation Data Inspector Session

This example shows how to create, save, and load a Simulation Data Inspector session.
The example uses data logging to populate the Simulation Data Inspector with data and
then uses the Simulation Data Inspector's programmatic interface to create plots to
visualize the data. After saving the data and visualization settings in a session, the
Simulation Data Inspector repository is emptied in order to demonstrate how to load the
session.

Create Simulation Data

This example logs the Stick, alpha, rad, and q, rad/sec signals to generate
simulation data using the model slexAircraftExample and creates two runs. The first
uses a sine input, and the second has a square wave input.

% Ensure you start with an empty Simulation Data Inspector repository
Simulink.sdi.clear

2 Functions — Alphabetical List

2-812

% Load system
load_system('slexAircraftExample')

% Configure signals to log
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Change Pilot signal to sine
set_param('slexAircraftExample/Pilot','WaveForm','sine')

% Simulate model
sim('slexAircraftExample')

% Change Pilot signal to square
set_param('slexAircraftExample/Pilot','WaveForm','square')

% Simulate model
sim('slexAircraftExample')

Access Simulation Data

Use the Simulation Data Inspector programmatic interface to access the simulation data
so you can create plots to visualize the signals.

% Get run objects
runIDs = Simulink.sdi.getAllRunIDs;
sineRunID = runIDs(end-1);
squareRunID = runIDs(end);

sineRun = Simulink.sdi.getRun(sineRunID);
squareRun = Simulink.sdi.getRun(squareRunID);

% Get signal objects
sineOut = sineRun.getSignalByIndex(1);
sineIn = sineRun.getSignalByIndex(3);

squareOut = squareRun.getSignalByIndex(1);
squareIn = squareRun.getSignalByIndex(3);

Create Plots in the Simulation Data Inspector

Use the programmatic interface to visualize the signal data from the two simulation runs.
You can set the plot layout and plot signals on specific subplots.

 Simulink.sdi.save

2-813

% Set subplot layout
Simulink.sdi.setSubPlotLayout(2,1)

% Plot sine data on top plot
sineIn.plotOnSubPlot(1,1,true)
sineOut.plotOnSubPlot(1,1,true)

% Plot square wave data on bottom plot
squareIn.plotOnSubPlot(2,1,true)
squareOut.plotOnSubPlot(2,1,true)

Save a Simulation Data Inspector Session

First, view the plots you just created. Then, save the Simulation Data Inspector session as
an MLDATX-file to recover your data along with your preference selections and plots.

% View the visualized data in the Simulation Data Inspector
Simulink.sdi.view

% Save the Simulation Data Inspector session
Simulink.sdi.save('myData.mldatx')

Load a Simulation Data Inspector Session

First, clear the Simulation Data Inspector repository with Simulink.sdi.clear and
reset visualization settings with Simulink.sdi.clearPreferences. Then, you can
load the session to see how the data and settings are preserved.

% Clear Simulation Data Inspector repository and preferences
Simulink.sdi.clear
Simulink.sdi.clearPreferences

% Load session file to view data
Simulink.sdi.load('myData.mldatx');

Input Arguments
fileName — File name
character vector

Name for the session file.
Example: 'myData.mldatx'

2 Functions — Alphabetical List

2-814

See Also
Simulink.sdi.close | Simulink.sdi.load

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

Introduced in R2011b

 Simulink.sdi.save

2-815

Simulink.sdi.sendWorkerRunToClient
Package: Simulink.sdi

Send run created on parallel workers to the Simulation Data Inspector

Syntax
Simulink.sdi.sendWorkerRunToClient
Simulink.sdi.sendWorkerRunToClient(run)

Description
Simulink.sdi.sendWorkerRunToClient sends the run most recently generated by
the worker to the client MATLAB and imports the run to the Simulation Data Inspector.

Simulink.sdi.sendWorkerRunToClient(run) sends the run corresponding to run to
the client MATLAB and imports the run to the Simulation Data Inspector.

Examples

Manually Send Runs from Parallel Workers to the Simulation Data Inspector

This example shows how to use Simulink.sdi.sendWorkerRunToClient to send runs
created using parallel workers manually to the Simulation Data Inspector.

Setup

This example runs several simulations of the vdp model, varying the value of the gain, Mu.
To set up for the parallel simulation, define a vector of Mu values and configure the
Simulation Data Inspector for manual Parallel Computing Toolbox support.

% Enable manual Parallel Computing Toolbox support
Simulink.sdi.enablePCTSupport('manual');

2 Functions — Alphabetical List

2-816

% Choose several Mu values
MuVals = [1 2 3 4];

Initialize Parallel Workers

Use parpool to start a pool of four parallel workers. This example calls parpool inside
an if statement so you only create a parallel pool if you don't already have one. You can
use spmd to run initialization code common to all workers. For example, load the vdp
model and select signals to log to runs that we can send to the Simulation Data Inspector
on the client MATLAB. To avoid data concurrency issues when simulating with sim in
parfor, create a temporary directory on each worker. After the simulations complete,
another spmd block deletes the temporary directories.

p = gcp('nocreate');

if isempty(p)

 parpool(4);

end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('vdp')
 Simulink.sdi.markSignalForStreaming('vdp/x1',1,'on')
 Simulink.sdi.markSignalForStreaming('vdp/x2',1,'on')

 % Create temporary directory for simulation on worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations with parfor

To stream data from parallel workers to the Simulation Data Inspector, you have to run
parallel simulations using parfor. Each worker runs a vdp simulation with a different

 Simulink.sdi.sendWorkerRunToClient

2-817

value of Mu. Simulink cannot access the contents of the parfor loop, so the variable
MuVal is defined in the worker's workspace, where the vdp model can see it, using
assignin.

parfor (index = 1:4)

 % Set value of Mu in the worker's base workspace
 assignin('base','MuVal',MuVals(index));

 % Modify the value of Mu in the model and simulate
 set_param('vdp/Mu','Gain','MuVal')
 sim('vdp')

Access Data and Send Run to Client MATLAB

You can use the Simulation Data Inspector programmatic interface on the worker the
same way you would in the client MATLAB. This example creates a Simulink.sdi.Run
object and attaches the value of Mu used in the simulation with the Tag property.

 % Attach metadata to the run
 IDs = Simulink.sdi.getAllRunIDs;
 lastIndex = length(IDs);
 runID = Simulink.sdi.getRunIDByIndex(lastIndex);
 run = Simulink.sdi.getRun(runID);
 run.Tag = strcat('Mu = ',num2str(MuVals(index)));

 % Send the run to the Simulation Data Inspector on the client MATLAB
 Simulink.sdi.sendWorkerRunToClient

end

Close Temporary Directories and View Runs in the Simulation Data Inspector

Use another spmd section to delete the temporary directories created on the workers
once the simulations complete. In each simulation,
Simulink.sdi.sendWorkerRunToClient imported runs from all the workers into the
Simulation Data Inspector. You can view the data and check the run properties to see the
value of Mu used during simulation.

spmd

 % Remove temporary directories

2 Functions — Alphabetical List

2-818

 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Simulink.sdi.view

Input Arguments
run — Run ID or Simulink.sdi.Run object
runID | Simulink.sdi.Run object

Run ID or Simulink.sdi.Run object corresponding to the run you want to import into
the Simulation Data Inspector.

See Also
Simulink.sdi.WorkerRun | Simulink.sdi.cleanupWorkerResources |
Simulink.sdi.enablePCTSupport | Simulink.sdi.isPCTSupportEnabled

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2018a

 Simulink.sdi.sendWorkerRunToClient

2-819

Simulink.sdi.setMarkersOn
Package: Simulink.sdi

Control whether markers are shown

Syntax
Simulink.sdi.setMarkersOn(value)

Description
Simulink.sdi.setMarkersOn(value) sets the show markers parameter in the
Simulation Data Inspector according to value.

Examples

Display Markers in the Simulation Data Inspector

Simulink.sdi.setMarkersOn(true);

Input Arguments
value — Logical input
'true' | 'false'

Logical indication of whether markers are shown on plots in the Simulation Data
Inspector.

• True shows markers on plots in the Simulation Data Inspector.
• False does not show markers on plots in the Simulation Data Inspector.

Data Types: logical

2 Functions — Alphabetical List

2-820

See Also
Simulink.sdi.clearPreferences | Simulink.sdi.getMarkersOn |
Simulink.sdi.getRunNamingRule | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.setTableGrouping |
Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 Simulink.sdi.setMarkersOn

2-821

Simulink.sdi.setRunNamingRule
Package: Simulink.sdi

Specify the Simulation Data Inspector run naming rule

Syntax
Simulink.sdi.setRunNamingRule('rule')

Description
Simulink.sdi.setRunNamingRule('rule') sets the Simulation Data Inspector rule
for naming runs created by simulating a Simulink model.

Examples

Modify Run Naming Rule Then Restore Default

This example shows how to use the Simulation Data Inspector API to modify the
Simulation Data Inspector run naming rule, check a run's name, restore default
preferences, and check the run naming rule.

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

% Simulate system
sim('sldemo_fuelsys')

% Check run name
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

2 Functions — Alphabetical List

2-822

run = Simulink.sdi.getRun(runID);
run.name

ans =
'sldemo_fuelsys Run 15'

% Clear preferences to reset the run naming rule
Simulink.sdi.clearPreferences

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

Input Arguments
'rule' — Simulation Data Inspector run naming rule
'Run <run_index>: <model_name> (default) | character vector

Simulation Data Inspector run naming rule for runs created by simulating a Simulink
model. The character vector specifying the run naming rule can include plain text and any
of the following tokens that represent data pulled from each run:

• <run_index> – Run's index in the Simulation Data Inspector repository.
• <model_name> – Name of the model simulated to create the run.
• <time_stamp> – Start time for the simulation that created the run.
• <sim_mode> – Simulation mode used for the simulation that created the run.

Example: '<time_stamp> Simulation <run_index>: <model_name>'
Example: '<model_name> - <run_index>'

Alternatives
You can modify the run naming rule using the Simulation Data Inspector UI in the
Preferences menu. You can rename a run by modifying the Name property of its
Simulink.sdi.Run object.

 Simulink.sdi.setRunNamingRule

2-823

See Also
Simulink.sdi.Run | Simulink.sdi.clearPreferences |
Simulink.sdi.getRunNamingRule | Simulink.sdi.resetRunNamingRule |
Simulink.sdi.setRunOverwrite

Topics
“Inspect and Compare Data Programmatically”
“Organize Your Simulation Data Inspector Workspace”

Introduced in R2011b

2 Functions — Alphabetical List

2-824

Simulink.sdi.setRunOverwrite
Package: Simulink.sdi

Enable and disable run overwrite mode for a Simulation Data Inspector run

Syntax
Simulink.sdi.setRunOverwrite(runID,overwrite)

Description
Simulink.sdi.setRunOverwrite(runID,overwrite) configures run overwrite
mode for the run corresponding to runID, according to the value specified for
overwrite.

Examples

Enable and Disable Run Overwrite for a Run

This example shows how to enable and disable run overwrite mode for a run in the
Simulation Data Inspector. Run overwrite mode can help you avoid creating a large
amount of intermediate data in an iterative design workflow.

Simulate a Model to Create a Run

Load the sldemo_fuelsys model, and then run a simulation to create a run in the
Simulation Data Inspector. Use the Simulation Data Inspector's programmatic interface to
access the run ID for the run.

load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

 Simulink.sdi.setRunOverwrite

2-825

Enable Run Overwrite

Enable run overwrite for the run you created to start your iterative design process. When
run overwrite is enabled for a run, the Simulation Data Inspector replaces that run's data
with new simulation data for every subsequent simulation until you disable run overwrite
mode for that run.

Simulink.sdi.setRunOverwrite(runID,true)

Disable Run Overwrite

When you get to a stopping point or a meaningful intermediate stage and you want to
retain the data for a run, you can disable run overwrite mode for the run.

Simulink.sdi.setRunOverwrite(runID,false)

Input Arguments
runID — Numeric run identifier
scalar

Run ID for the run you want to set run overwrite for. The Simulation Data Inspector
assigns run IDs when it creates runs. You can get the run ID for a run using
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

overwrite — Run overwrite enable/disable
true | false

Logical value for run overwrite mode. Specify overwrite as true to enable run
overwrite mode for a run, and set overwrite to false to disable run overwrite mode for
a run.

Alternatives
You can configure run overwrite mode for a run using the Simulation Data Inspector UI.
See “Iterate Model Design with the Simulation Data Inspector” for more information.

You can also use Simulink.sdi.deleteRun to help programmatically manage your
data in the Simulation Data Inspector.

2 Functions — Alphabetical List

2-826

See Also
Simulink.sdi.Run | Simulink.sdi.clearPreferences |
Simulink.sdi.deleteRun | Simulink.sdi.exportRun |
Simulink.sdi.getAllRunIDs | Simulink.sdi.getRunIDByIndex

Topics
“Inspect and Compare Data Programmatically”
“Iterate Model Design with the Simulation Data Inspector”

Introduced in R2011b

 Simulink.sdi.setRunOverwrite

2-827

Simulink.sdi.setSubPlotLayout
Package: Simulink.sdi

Set subplot layout in the Simulation Data Inspector

Syntax
Simulink.sdi.setSubPlotLayout(r,c)

Description
Simulink.sdi.setSubPlotLayout(r,c) sets the grid layout of plots in the Simulation
Data Inspector using the specified number of rows, r, and columns, c.

Examples

Change Subplot Layout
% Change subplot layout to 4 rows and 2 columns
Simulink.sdi.setSubPlotLayout(4,2);

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the
Simulation Data Inspector.

Create Data for the Run

This example creates timeseries objects for a sine and a cosine. To visualize your data,
the Simulation Data Inspector requires at least a time vector that corresponds with your
data.

% Generate timeseries data
time = linspace(0, 20, 100);

2 Functions — Alphabetical List

2-828

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals, time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'Cosine, T=8';

Create a Simulation Data Inspector Run and Add Your Data

To give the Simulation Data Inspector access to your data, use the create method and
create a run. This example modifies some of the run's properties to help identify the data.
You can easily view run and signal properties with the Simulation Data Inspector.

% Create a run
run = Simulink.sdi.Run.create;
run.Name = 'Sinusoids';
run.Description = 'Sine and cosine signals with different frequencies';

% Add timeseries data to run
run.add('vars', sine_ts, cos_ts);

Plot Your Data Using the Simulink.sdi.Signal Object

The getSignalByIndex method returns a Simulink.sdi.Signal object that can be
used to plot the signal in the Simulation Data Inspector. You can also programmatically
control aspects of the plot's appearance, such as the color and style of the line
representing the signal. This example customizes the subplot layout and signal
characteristics.

% Get signal, modify its properties, and change Checked property to true
sine_sig = run.getSignalByIndex(1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';
sine_sig.Checked = true;

% Add another subplot for the cosine signal
Simulink.sdi.setSubPlotLayout(2, 1);

% Plot the cosine signal and customize its appearance
cos_sig = run.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.plotOnSubPlot(2, 1, true);

 Simulink.sdi.setSubPlotLayout

2-829

% View the signal in the Simulation Data Inspector
Simulink.sdi.view

Close the Simulation Data Inspector and Save Your Data

Simulink.sdi.close('sinusoids.mat')

• “Inspect and Compare Data Programmatically”
• “Create Plots Using the Simulation Data Inspector”

Input Arguments
r — Number of rows
integer

Number of rows in the subplot grid layout, specified as a whole number between 1 and 8,
inclusive.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char

c — Number of columns
integer

Number of columns in the subplot grid layout, specified as a whole number between 1
and 8, inclusive.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char

See Also
Simulink.sdi.Signal | Simulink.sdi.Signal.plotOnSubPlot |
Simulink.sdi.clearPreferences | Simulink.sdi.setMarkersOn |
Simulink.sdi.view

2 Functions — Alphabetical List

2-830

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2016a

 Simulink.sdi.setSubPlotLayout

2-831

Simulink.sdi.setTableGrouping
Package: Simulink.sdi

Change signal grouping hierarchy in Inspect pane

Syntax
Simulink.sdi.setTableGrouping
Simulink.sdi.setTableGrouping('group1')
Simulink.sdi.setTableGrouping('group1', 'group2')
Simulink.sdi.setTableGrouping('group1', 'group2', 'group3')

Description
Simulink.sdi.setTableGrouping groups signals in the Inspect pane of the
Simulation Data Inspector as a flat list.

Simulink.sdi.setTableGrouping('group1') groups signals in the Inspect pane by
the parameter specified by group1.

Simulink.sdi.setTableGrouping('group1', 'group2') groups signals in the
Inspect pane first by the parameter specified by group1 and then by the parameter
specified by group2.

Simulink.sdi.setTableGrouping('group1', 'group2', 'group3') groups
signals in the Inspect pane first by the parameter specified by group1, then by the
parameter specified by group2, and finally by the parameter specified by group3. If you
have a Simscape license, you have three options for table grouping.

Examples

2 Functions — Alphabetical List

2-832

Group Data by Model and Then Data Hierarchy

You can group your data in the navigation pane to visualize subsystem and data hierarchy
relationships among signals clearly.

Simulink.sdi.setTableGrouping('Subsystems','DataHierarchy');

• “Inspect and Compare Data Programmatically”
• “Organize Your Simulation Data Inspector Workspace”

Input Arguments
'group1' — Signal grouping parameter
character vector

Parameter used to group signals in the Inspect pane of the Simulation Data Inspector.
You can specify two grouping parameters, or three if you have a Simscape license.

• DataHierarchy groups signals according to any data hierarchy in the model, for
example grouping signals in a bus together.

• SubSystems groups signals according to the model's subsystem hierarchy.
• PhysmodHierarchy groups signals according to the Simscape block structure. This

parameter is only available with a Simscape license.

Example: 'SubSystems'
Example: 'DataHierarchy'
Data Types: char

See Also
Simulink.sdi.clearPreferences | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“Organize Your Simulation Data Inspector Workspace”

 Simulink.sdi.setTableGrouping

2-833

Introduced in R2016a

2 Functions — Alphabetical List

2-834

Simulink.sdi.snapshot
Package: Simulink.sdi

Capture contents of Simulation Data Inspector plots

Syntax
fig = Simulink.sdi.snapshot
[fig,image] = Simulink.sdi.snapshot
Simulink.sdi.snapshot(Name,Value)
Simulink.sdi.snapshot(Name,Value)
Simulink.sdi.snapshot(Name,Value)

Description
fig = Simulink.sdi.snapshot creates a figure of the plotting area in the open
Simulation Data Inspector session with the figure handle fig.

[fig,image] = Simulink.sdi.snapshot creates a figure of the plotting area in the
open Simulation Data Inspector session with the figure handle fig and returns the image
data in the array, image.

Simulink.sdi.snapshot(Name,Value) captures an image of the Simulation Data
Inspector plots according to the options specified by name-value pairs.

fig = Simulink.sdi.snapshot(Name,Value) captures an image of the Simulation
Data Inspector plots according to the options specified by name-value pairs. This syntax
returns the figure handle, fig, if a figure is created.

[fig, image] = Simulink.sdi.snapshot(Name,Value) captures an image of the
Simulation Data Inspector plots according to the options specified by name-value pairs.
This syntax returns the figure handle, fig, and an array of image data, image, when
appropriate for the specified options.

 Simulink.sdi.snapshot

2-835

Examples

Copy View Settings to a Run

This example shows how to copy the view settings for aligned signals from one run to
another.

Simulate Your Model and get Run Object

Simulate the vdp model to create a run of data to visualize.

load_system('vdp')
set_param('vdp','SaveFormat','Dataset','SaveOutput','on')
sim('vdp')

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
run = Simulink.sdi.getRun(runID);

Modify View Settings for Signals

Use the Simulink.sdi.Run object to access the signals in the run. Then, modify the
signals' view settings, and plot them in the Simulation Data Inspector. Open the
Simulation Data Inspector and use Simulink.sdi.snapshot to view the results.

sig1 = run.getSignalByIndex(1);
sig2 = run.getSignalByIndex(2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = '-.';

sig2.LineColor = [1 0 0];
sig2.LineDashed = ':';

Capture a Snapshot from the Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the
Simulink.sdi.snapshot function to programmatically capture a snapshot of the
contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

snap.Rows = 2;

2 Functions — Alphabetical List

2-836

snap.YRange = {[-2.25 2.25],[-3 3]};
snap.plotOnSubPlot(1,1,sig1,true)
snap.plotOnSubPlot(2,1,sig2,true)

fig = Simulink.sdi.snapshot("from","custom","to","figure","settings",snap);

Copy the View Settings to a New Simulation Run

Simulate the model again, with a different Mu value. Then, visualize the new run by
copying the view settings from the first run. Specify the plot input as true to plot the
signals from the new run.

set_param('vdp/Mu','Gain','5')
sim('vdp')

 Simulink.sdi.snapshot

2-837

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,true);

Capture a Snapshot of the New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new
simulation run. First, clear the signals from the subplots. Then, plot the signals from the
new run and capture another snapshot.

snap.clearSignals
snap.YRange = {[-2.25 2.25],[-8 8]};
snap.plotOnSubPlot(1,1,sigIDs(2),true)
snap.plotOnSubPlot(2,1,sigIDs(1),true)

fig = snap.snapshot("to","figure");

2 Functions — Alphabetical List

2-838

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'to','figure','props',{'Name','My Data'}

 Simulink.sdi.snapshot

2-839

from — Content to include in the snapshot
'opened' (default) | 'active' | 'comparison' | 'custom'

Content to include in the snapshot.

• 'opened' — Include all subplots in the graphical viewing area of the open Simulation
Data Inspector session.

• 'active' — Include only the active (selected) subplot in the open Simulation Data
Inspector session.

• 'comparison' — Include the comparison plots for the selected comparison run or
signal in the open Simulation Data Inspector session.

• 'custom' — Include contents specified by the settings name-value pair
Simulink.sdi.CustomSnapshot object. You can use the 'from','custom' option
to create a snapshot without opening the Simulation Data Inspector or affecting your
open Simulation Data Inspector session. Include a settings name-value pair when
you specify 'from','custom'.

Example: 'from','comparison'
Data Types: char | string

to — Type of snapshot to create
'image' (default) | 'figure' | 'file' | 'clipboard'

Type of snapshot to create.

• 'image' — Create a figure and return the figure handle and an array of image data.
When you specify 'to','image', the fig and image outputs both have value.

• 'figure' — Create a figure and return the figure handle. When you specify
'to','figure' the fig output has value, and the image output is empty.

• 'file' — Save to a PNG file with the name specified by the filename name-value
pair. If you do not specify a filename name-value pair, the file is named plots.png.
When you specify 'to','file', the fig and image outputs are both empty.

• 'clipboard' — Copy the plots to your system clipboard. From the clipboard, you can
paste the image into another program such as Microsoft Word. When you specify
'to','clipboard', the fig and image outputs are both empty.

Example: 'to','file'
Data Types: char | string

2 Functions — Alphabetical List

2-840

filename — Name for image file
'plots.png' (default) | character array | string

Name of the image file to store the snapshot when you specify 'to','file'.
Example: 'filename','MyImage.png'
Data Types: char | string

props — Properties to customize the figure
cell array

Figure properties, specified as a cell array. You can include settings for the figure
properties described in Figure Properties.
Example: 'props',{'Name','MyData','NumberTitle','off'}
Data Types: char | string

settings — Custom snapshot settings
Simulink.sdi.CustomSnapshot

Simulink.sdi.CustomSnapshot object specifying custom snapshot settings. You can
use the settings name-value pair to specify the dimensions of the image in pixels,
subplot layout, and limits for the x- and y-axes.
Example: 'settings',customSnap
Data Types: char | string

Output Arguments
fig — Figure handle
figure handle

Handle for the figure. When a figure is not created with your specified options, the fig
output is empty.

image — Image data
array

Array of image data. The image output has value when you use
Simulink.sdi.snapshot without any input arguments or without a to name-value pair
and when you specify 'to','image'.

 Simulink.sdi.snapshot

2-841

See Also
Simulink.sdi.CustomSnapshot | Simulink.sdi.Signal | Simulink.sdi.clear |
Simulink.sdi.clearPreferences | Simulink.sdi.setMarkersOn |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2018a

2 Functions — Alphabetical List

2-842

Simulink.sdi.view
Package: Simulink.sdi

Open the Simulation Data Inspector

Syntax
Simulink.sdi.view

Description
Simulink.sdi.view opens the Simulation Data Inspector. You can write a script to plot
your data and customize the Simulation Data Inspector properties and then use
Simulink.sdi.view to see the results.

Examples

Open the Simulation Data Inspector from the Command Line

You can open the Simulation Data Inspector from the MATLAB command line to visualize,
inspect, and analyze your data.

Simulink.sdi.view

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the
Simulation Data Inspector.

 Simulink.sdi.view

2-843

Create Data for the Run

This example creates timeseries objects for a sine and a cosine. To visualize your data,
the Simulation Data Inspector requires at least a time vector that corresponds with your
data.

% Generate timeseries data
time = linspace(0, 20, 100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals, time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'Cosine, T=8';

Create a Simulation Data Inspector Run and Add Your Data

To give the Simulation Data Inspector access to your data, use the create method and
create a run. This example modifies some of the run's properties to help identify the data.
You can easily view run and signal properties with the Simulation Data Inspector.

% Create a run
run = Simulink.sdi.Run.create;
run.Name = 'Sinusoids';
run.Description = 'Sine and cosine signals with different frequencies';

% Add timeseries data to run
run.add('vars', sine_ts, cos_ts);

Plot Your Data Using the Simulink.sdi.Signal Object

The getSignalByIndex method returns a Simulink.sdi.Signal object that can be
used to plot the signal in the Simulation Data Inspector. You can also programmatically
control aspects of the plot's appearance, such as the color and style of the line
representing the signal. This example customizes the subplot layout and signal
characteristics.

% Get signal, modify its properties, and change Checked property to true
sine_sig = run.getSignalByIndex(1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';
sine_sig.Checked = true;

2 Functions — Alphabetical List

2-844

% Add another subplot for the cosine signal
Simulink.sdi.setSubPlotLayout(2, 1);

% Plot the cosine signal and customize its appearance
cos_sig = run.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.plotOnSubPlot(2, 1, true);

% View the signal in the Simulation Data Inspector
Simulink.sdi.view

Close the Simulation Data Inspector and Save Your Data

Simulink.sdi.close('sinusoids.mat')

• “Inspect and Compare Data Programmatically”
• “View Data with the Simulation Data Inspector”

Alternatives
You can open the Simulation Data Inspector from the Simulink Editor toolbar with the

Simulation Data Inspector button .

See Also
Simulink.sdi.clear | Simulink.sdi.clearPreferences | Simulink.sdi.close
| Simulink.sdi.setSubPlotLayout

Topics
“Inspect and Compare Data Programmatically”
“View Data with the Simulation Data Inspector”

Introduced in R2011b

 Simulink.sdi.view

2-845

Simulink.SimulationData.createStructOfTime
series
Create a structure with MATLAB timeseries object leaf nodes

Syntax
struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
tsArrayObject)

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
busObj,structOfTimeseries)

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
busObj,cellOfTimeseries)
struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
busObj,cellOfTimeseries,dims)

Description
struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
tsArrayObject) creates a structure of MATLAB timeseries objects from a
Simulink.TsArray object. Use this syntax for signal logging data for a model simulated
in a release earlier than R2016a that used ModelDataLogs signal logging format.

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
busObj,structOfTimeseries) creates a structure that matches the attributes of the
bus object busObj and sets the values of structure leaf nodes using a structure of
MATLAB timeseries objects structOfTimeseries. Use this syntax when using a
partial structure as the basis for creating a full structure to load into a model.

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
busObj,cellOfTimeseries) creates a structure that matches the attributes of the bus
object busObj and sets the values of structure leaf nodes using a cell array of MATLAB
timeseries objects cellOfTimeseries.

2 Functions — Alphabetical List

2-846

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(
busObj,cellOfTimeseries,dims) creates a structure with the dimensions dims. Use
this syntax to create a structure to load into an array of buses.

Examples

Structure Based on Simulink.TsArray

Suppose you had signal logging data from simulating a model in a release earlier than
R2016a, using the ModelDataLogs format. The logged output is logsout.

View the logged data.

logsout

logsout =

Simulink.ModelDataLogs (log_modeldatalogs):
 Name Elements Simulink Class

 bus1 2 TsArray

Convert the logged data to a structure of MATLAB timeseries objects.

struct_of_ts = ...
Simulink.SimulationData.createStructOfTimeseries(logsout.bus1)

struct_of_ts =

 Simulink.SimulationData.createStructOfTimeseries

2-847

 const1-sig: [1x1 timeseries]
 const2_sig: [1x1 timeseries]

Structure Based on Bus Object and a Partial Structure of Timeseries Data

Create a structure of MATLAB timeseries objects based on a Simulink.Bus object
and a partial structure of MATLAB timeseries objects. Use this structure to load into
another model. Open a model and simulate it, producing signal logging data.

Open a model and simulate it, producing signal logging data.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_log_structTimeSeries')))
sim('ex_log_structTimeSeries')

View the logged signal data.

ex_log_structTimeSeries_logsout

Simulink.SimulationData.Dataset 'ex_log_structTimeSeries_logsout' with 2 elements

 Name BlockPath

2 Functions — Alphabetical List

2-848

 ____ ____________________________________
 1 [1x1 Signal] bus1 ex_log_structTimeSeries/Bus Creator
 2 [1x1 Signal] bus2 ex_log_structTimeSeries/Bus Creator1

 - Use braces { } to access, modify, or add elements using index.

Open the model to load the logged signal data into.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_load_structTimeSeries_Bus')))

The ex_load_structTimeSeries_Bus model Configuration Parameters > Data
Import/Export > Input parameter lists the ex_load_structTimeSeries_inputBus
variable. However, you have not yet defined that variable in the MATLAB workspace. Use
Simulink.SimulationData.createStructOfTimeseries to define that variable.

ex_load_structTimeSeries_inputBus = ...
Simulink.SimulationData.createStructOfTimeseries...
('bus', ex_log_structTimeSeries_logsout.get(2).Values)

ex_load_structTimeSeries_inputBus =

 a: [1x1 timeseries]
 b: [1x1 timeseries]

Structure to Use with an Array of Buses

Create a structure of MATLAB timeseries objects to load into an array of buses. Specify
the dimensions of the created structure and a cell array of MATLAB timeseries objects.

Open a model and simulate it, producing signal logging data.

 Simulink.SimulationData.createStructOfTimeseries

2-849

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_log_structTimeSeries')))
sim('ex_log_structTimeSeries')

The simulated ex_log_structTimeseries model looks like this:

View the logged signal data.

ex_log_structTimeSeries_logsout

Simulink.SimulationData.Dataset 'ex_log_structTimeSeries_logsout' with 2 elements

 Name BlockPath
 ____ ____________________________________
 1 [1x1 Signal] bus1 ex_log_structTimeSeries/Bus Creator
 2 [1x1 Signal] bus2 ex_log_structTimeSeries/Bus Creator1

 - Use braces { } to access, modify, or add elements using index.

Open the model to load the logged signal data into.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_load_structTimeSeries_AoB')))

2 Functions — Alphabetical List

2-850

The ex_load_structTimeSeries_AoB model’s Configuration Parameters > Data
Import/Export > Input parameter lists the ex_load_structTimeSeries_inputAoB
variable. However, you have not yet defined that variable in the MATLAB workspace. Use
Simulink.SimulationData.createStructOfTimeseries to define that variable.

ex_load_structTimeSeries_inputAoB = ...
Simulink.SimulationData.createStructOfTimeseries...
('bus',{ex_log_structTimeSeries_logsout.get(1).Values.a,...
ex_log_structTimeSeries_logsout.get(1).Values.b,...
ex_log_structTimeSeries_logsout.get(2).Values.c,...
ex_log_structTimeSeries_logsout.get(2).Values.d},[2, 1])

ex_load_structTimeSeries_inputAoB =

2x1 struct array with fields:
 a
 b

Input Arguments
tsArrayObject — Simulink.TsArray object to convert
Simulink.TsArray object

Simulink.TsArray object to convert to a structure of MATLAB timeseries objects

In releases earlier than R2016a, when you log signals using the ModelDataLogs format,
the logged data is a collection of Simulink.TsArray objects.

 Simulink.SimulationData.createStructOfTimeseries

2-851

busObj — Bus object for creating a structure of MATLAB timeseries objects
Simulink.Bus object

Bus object for creating a structure of MATLAB timeseries objects, specified as the
name of a Simulink.Bus object.
Data Types: char

structOfTimeseries — Structure object for values to override ground values,
specified as a structure of MATLAB timeseries objects.
structure of MATLAB timeseries objects

Structure object for values to override ground values, specified as a structure of MATLAB
timeseries objects. The structure must have the same hierarchy as the bus object.
However, the names of the fields in the structure do not have to match the names of the
corresponding bus object nodes.
Data Types: struct

cellOfTimeseries — Cell array objects for values to override ground values,
specified as a cell array of MATLAB timeseries objects.
cell array of MATLAB timeseries objects

Cell array object for values to override ground values, specified as a cell array of MATLAB
timeseries objects. If you specify a cell array of MATLAB timeseries objects and you
specify a dims argument, then the length of the cell array must be equal to the result of
Simulink.BusObject.getNumLeafBusElements times the product of the specified
dimensions.
Data Types: cell

dims — Dimensions of the structure that this function creates.
vector

Dimensions of the structure that this function creates, specified as a vector. The length of
the cell array is equal to the result of Simulink.BusObject.getNumLeafBusElements
times the product of the specified dimensions.

If you specify a dimension in the form [n], then Simulink interprets the dimension to be
1xn.
Data Types: double

2 Functions — Alphabetical List

2-852

Output Arguments
struct_of_ts — Structure of MATLAB timeseries objects.
MATLAB structure

MATLAB timeseries objects, returned as a structure. The structure has the same
hierarchy and attributes as the Simulink.TsArray object or Simulink.Bus object that
you specify.

The dimensions of structOfTimeseries depend on the input arguments:

• If you specify tsArrayObject, then the dimension is 1.
• If you specify the busObj and a structure of MATLAB timeseries, then the

dimension matches the dimensions of the specified structure.
• If you specify only the busObj and a cell array of MATLAB timeseries, then the

dimension is 1.
• If you specify the busObj argument, a cell array of MATLAB timeseries, and the

dims argument, then the dimensions match the dimensions of dims.

Related Links
Simulink.BusSimulink.TsArray |Simulink.ModelDataLogs |
Simulink.ModelDataLogs.convertToDataset

Introduced in R2013a

 Simulink.SimulationData.createStructOfTimeseries

2-853

getAsDatastore
Class: Simulink.SimulationData.DatasetRef
Package: Simulink.SimulationData

Get matlab.io.datastore.SimulationDatastore representation of element from referenced
Dataset object

Syntax
element =
Simulink.SimulationData.DatasetRef.getAsDatastore(datasetref_element
s)

Description
element =
Simulink.SimulationData.DatasetRef.getAsDatastore(datasetref_element
s) returns a matlab.io.datastore.SimulationDatastore representation of an
element or collection of elements from the referenced dataset, based on index, name, or
block path of the element.

You can represent a Dataset element as a
matlab.io.datastore.SimulationDatastore object if the element was placed into
the MAT-file using either of these approaches:

• Log Dataset format data to persistent storage (MAT-file).
• Place the element into a Simulink.SimulationData.Dataset object and saved the

Dataset object to a v7.3 MAT-file.

The SimulationDatastore representation for a Dataset element creates a
SimulationDatastore object for the Values field of that element. The
SimulationDatastore representation supports streaming of the data for the Values
property of the element into other simulations or into MATLAB.

2 Functions — Alphabetical List

2-854

Note You cannot use create a SimulationDatastore for Dataset elements that
contain these types of data:

• Array

You can use SimulationDatastore objects to:

• Refer to logged simulation data that is stored on disk in a MAT-file.
• Specify signals to stream incrementally from disk to a simulation.
• Provide a basis for big data analysis using MATLAB functions.

Input Arguments
datasetref_element — Element of referenced dataset in MAT-file
index of the element

Element of a referenced dataset in a MAT-file, specified as an index, name (as a character
vector), or block path (as a character vector.

Output Arguments
element — Element accessed using SimulationDatastore object
matlab.io.datastore.SimulationDatastore object |
Simulink.SimulationData.Signal, Simulink.SimulationData.State or similar
object, whose Values data uses a matlab.io.datastore.SimulationDatastore
object

Element accessed using SimulationDatastore object, returned as either a
matlab.io.datastore.SimulationDatastore object or a Simulink.Signal,
Simulink.State, or similar object, whose Values data uses a
matlab.io.datastore.SimulationDatastore object.

Examples

 getAsDatastore

2-855

Use a SimulationDatastore to Reference a Signal’s Data in a DatasetRef

Log signal data to persistent storage (select the Log Dataset data to file configuration
parameter) and simulate a model.

Create a DatasetRef for the signal logging Dataset data (logsout) in the out.mat
MAT-file.

sigLogRef = Simulink.SimulationData.DatasetRef('out.mat','logsout');
firstSig = sigLogRef.getAsDatastore(1)

firstSig =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'x1'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1×1 matlab.io.datastore.SimulationDatastore]

Load the data into another model. This approach streams the values of the signal x1 for
another simulation.

ds = Simulink.SimulationData.Dataset;
ds{1} = sigLogRef{1};
sim('other_model','ExternalInput','ds');

• “Load Big Data for Simulations”

Alternative
To streamline the use of indexing, you can use curly braces ({}) syntax to obtain a
SimulationDatastore object for DatasetRef object signal values. The requirements
and results are the same as using getAsDatastore. For example, if you log signal data
to persistent storage (select the Log Dataset data to file configuration parameter) and
simulate a model.

sigLogRef = Simulink.SimulationData.DatasetRef('out.mat','logsout');
firstSig = sigLogRef{1}

2 Functions — Alphabetical List

2-856

ans =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'x1'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1×1 matlab.io.datastore.SimulationDatastore]

See Also
Simulink.SimulationData.Dataset | Simulink.SimulationData.DatasetRef |
matlab.io.datastore.SimulationDatastore

Topics
“Load Big Data for Simulations”

Introduced in R2017a

 getAsDatastore

2-857

Simulink.SimulationData.DatasetRef.‐
getDatasetVariableNames
List names of Dataset variables in MAT-file

Syntax
varNames =
Simulink.SimulationData.DatasetRef.getDatasetVariableNames(matFile)

Description
varNames =
Simulink.SimulationData.DatasetRef.getDatasetVariableNames(matFile)
lists the names of variables for Dataset data in a MAT-file.

Examples

List Variable Names in MAT-File

Suppose that you simulate a model using the default variable names for signal logging
data and states data. You enable the Configuration Parameters > Data Import/Export
> Log Dataset data to file and use the default MAT-file name of out.mat.

List the variable names in the MAT-file.

varNames = Simulink.SimulationData.DatasetRef.getDatasetVariableNames('out.mat')

varNames =

 'xout' 'logsout'

• “Log Data to Persistent Storage”
• “Load Big Data for Simulations”

2 Functions — Alphabetical List

2-858

Tips
To get the names of Dataset variables in the MAT-file, using the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function
processes faster than using the who, or whos functions.

Input Arguments
matFile — MAT-file that contains Dataset variables
character vector

MAT-file that contains Dataset variables, specified as a character vector. The character
vector specifies the path to the MAT-file.

Output Arguments
varNames — Names of Dataset variables in MAT-file
cell array

Names of Dataset variables in MAT-file, returned as a cell array.

See Also
Simulink.SimulationData.Dataset | Simulink.SimulationData.DatasetRef

Topics
“Log Data to Persistent Storage”
“Load Big Data for Simulations”

Introduced in R2016a

 Simulink.SimulationData.DatasetRef.getDatasetVariableNames

2-859

Simulink.SimulationData.forEachTimeseries
Call function on each timeseries object

Syntax
dataResults = Simulink.SimulationData.forEachTimeseries(
functionHandle,inputData)

Description
dataResults = Simulink.SimulationData.forEachTimeseries(
functionHandle,inputData) runs the specified function handle on all MATLAB
timeseries objects contained in inputData.

Examples

Find Minimum for Logged Bus Signal Data

This example shows how to use the forEachTimeseries function to run the min
function on each timeseries object in the logged data for the COUNTERBUS signal.

Open the model and simulate it.

open_system('sldemo_mdlref_bus')
sim('sldemo_mdlref_bus');

2 Functions — Alphabetical List

2-860

Access the signal logging data. For this model, that data is stored in the topOut variable.

topOut

Simulink.SimulationData.Dataset 'topOut' with 4 elements

 Name BlockPath
 ____________ __
 1 [1x1 Signal] COUNTERBUS sldemo_mdlref_bus/Concatenate
 2 [1x1 Signal] OUTERDATA sldemo_mdlref_bus/CounterA
 3 [1x1 Signal] INCREMENTBUS sldemo_mdlref_bus/IncrementBusCreator
 4 [1x1 Signal] INNERDATA ...erA|sldemo_mdlref_counter_bus/COUNTER

 - Use braces { } to access, modify, or add elements using index.

Find the values for the COUNTERBUS element.

counterbusData = topOut{1}.Values

counterbusData =

 2×1 struct array with fields:

 Simulink.SimulationData.forEachTimeseries

2-861

 data
 limits

Run the min function on the counterbus data.

ret = Simulink.SimulationData.forEachTimeseries(@min,counterbusData)

ret =

2x1 struct array with fields:
 data
limits

Explore the returned data.

ret(1)

ans =

 data: 0
 limits: [1x1 struct]

ret(2).limits

ans =

 upper_saturation_limit: 40
 lower_saturation_limit: 0

Input Arguments
functionHandle — Function to run on MATLAB timeseries objects
function handle

Function to run on timeseries objects, specified as a function handle. For information
about specifying function handles, see “Pass Function to Another Function” (MATLAB).

The function that you use with forEachTimeseries:

• Can be either a built-in function or a user-specified function
• Must return a scalar

If the function that you use with forEachTimeseries takes:

2 Functions — Alphabetical List

2-862

• One argument, specify the function handle and the input data. For example:

ret = Simulink.SimulationData.forEachTimeseries(@min,data);
• More than one argument, specify the function handle as @(x) and then specify the

function, using x as the first argument. For remaining arguments, specify values. For
example, this command runs the resample function on MATLAB timeseries objects
in data, for the time vector [2.5 3].

ret = Simulink.SimulationData.forEachTimeseries(@(x)...
 (resample(x,[2.5 3]),data);

inputData — Data to run specified function on
MATLAB timeseries object | array of timeseries | structure with timeseries at leaf
nodes | array of structures with timeseries at leaf nodes

Data to run specified function on, specified as timeseries data.

Output Arguments
dataResults — Data resulting from running specified function
MATLAB timeseries object | array of timeseries | structure with timeseries at leaf
nodes | array of structures with timeseries at leaf nodes

Data resulting from running specified function, returned using the format and hierarchy
of the input data.

Related Links
MATLAB timeseries“Function Handles”

Introduced in R2016b

 Simulink.SimulationData.forEachTimeseries

2-863

Simulink.SimulationData.signalLoggingSelec
tor
Open Signal Logging Selector

Syntax
Simulink.SimulationData.signalLoggingSelector(modelName)

Description
Simulink.SimulationData.signalLoggingSelector(modelName) opens the
Signal Logging Selector dialog box for the model that you specify with modelName.

Input Arguments
modelName

Character vector that specifies the name of the model for which you want to open the
Signal Logging Selector dialog box.

Example
Open the Signal Logging Selector dialog box for the sldemo_mdlref_bus.mdl.
Simulink.SimulationData.signalLoggingSelector('sldemo_mdlref_bus')

See Also
Simulink.ModelDataLogs | Simulink.SimulationData.Dataset

Topics
“Override Signal Logging Settings”

2 Functions — Alphabetical List

2-864

Introduced in R2011a

 Simulink.SimulationData.signalLoggingSelector

2-865

setName
Class: Simulink.SimulationData.Unit
Package: Simulink.SimulationData

Specify name of logging data units

Syntax
unitObject = setName(unitObj,unitName)

Description
unitObject = setName(unitObj,unitName) sets the name for the
Simulink.SimulationData.Unit object to the name specified in unitName.

Input Arguments
unitObj — Logging data unit object to name
Simulink.SimulationData.Unit object

Logging data unit object to name, specified as a Simulink.SimulationData.Unit
object.

unitName — Name of logging data unit
character vector

Name of logging data unit, specified as a character vector.

Output Arguments
name — Name of logging data units
character vector

Name of logging data units, returned as a character vector.

2 Functions — Alphabetical List

2-866

Examples

Name a Logging Data Unit Object

inchesUnit = Simulink.SimulationData.Unit('in');
inchesUnit = setName(inchesUnit,'inches')

inchesUnit =

 Units with properties:

 Name: 'inches'

• “Log Signal Data That Uses Units”
• “Convert Logged Data to Dataset Format”
• “Prepare Model Inputs and Outputs”

See Also
Simulink.SimulationData.Unit

Topics
“Log Signal Data That Uses Units”
“Convert Logged Data to Dataset Format”
“Prepare Model Inputs and Outputs”

Introduced in R2011a

 setName

2-867

Simulink.SimulationData.updateDatasetFor
matLogging
Convert model and its referenced models to use Dataset format for signal logging

Syntax
Simulink.SimulationData.updateDatasetFormatLogging(top_model)
Simulink.SimulationData.updateDatasetFormatLogging(top_model,
variants)

Description

Note The ModelDataLogs class is supported for backwards compatibility. Starting in
R2016a, you cannot log data in the ModelDataLogs format. Signal logging uses the
Dataset format. In R2016a or later, when you open a model from an earlier release that
had used ModelDataLogs format, the model simulated in use Dataset format. You do
not need to use this command to update the signal logging format for a model that uses
model referencing. Opening the model in R2016a or later uses Dataset format for all
signal logging.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

Simulink.SimulationData.updateDatasetFormatLogging(top_model) converts
the top-level model and all of its referenced models to use the Dataset format for signal
logging instead of the ModelDataLogs format. You can convert signal logging data from
ModelDataLogs to Dataset format. Converting to Dataset format makes it easier to

2 Functions — Alphabetical List

2-868

post-process with other logged data (for example, logged states), which can also use
Dataset format. For more information, see “Convert Logged Data to Dataset Format”.

If a Model block has the Generate preprocessor conditionals option selected, the
function converts all the variants; otherwise, the function converts only the active variant.

Simulink.SimulationData.updateDatasetFormatLogging(top_model,
variants) specifies which variant models to convert to use the Dataset signal logging
format. For details about the variants argument, see “Input Arguments” on page 2-869

Input Arguments
top_model

Character vector that specifies the name of the top-level model.

variants

Character vector that specifies which variant models to update:

• 'ActivePlusCodeVariants' — (Default) Search all variants if any generate
preprocessor conditionals. Otherwise, search only the active variant.

• 'ActiveVariants' — Convert only the active variant.
• 'AllVariants' — Convert all variants.

Definitions

Dataset
The Dataset format causes Simulink to use a Simulink.SimulationData.Dataset
object to store the logged signal data. The Dataset format use MATLAB timeseries
objects to formatting the data.

 Simulink.SimulationData.updateDatasetFormatLogging

2-869

ModelDataLogs
The ModelDataLogs format causes Simulink to use a Simulink.ModelDataLogs object
to store the logged signal data.Simulink.Timeseries and Simulink.TsArray objects
provide the format for the data.

Tips
• The conversion function sets the SignalLoggingSaveFormat parameter value to

Dataset for all the updated models.
• If you want to save the format updates that the conversion function makes, then

ensure that the top-level model, referenced models, and variant models are accessible
and writable.

• If a model has no other unsaved changes, the conversion function saves the format
updates to the model. If the model has unsaved changes, the function updates the
format, but does not save those changes.

• If you use this function for a model that does not include any referenced models, the
function converts the top-level model use the Dataset format.

See Also
Simulink.ModelDataLogs | Simulink.ModelDataLogs.convertToDataset |
Simulink.SimulationData.Dataset

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”

Introduced in R2011a

2 Functions — Alphabetical List

2-870

find
Class: Simulink.SimulationOutput
Package: Simulink

Access and display values of simulation results

Syntax

output = simOut.find('VarName')

Description

output = simOut.find('VarName') accepts one variable name. Specify VarName
inside single quotes.

Input Arguments
VarName

Name of logged variable for which you seek values.

Default:

Output Arguments
Value

Value of the logged variable name specified in input.

 find

2-871

Examples
Simulate vdp and store the values of the variable youtNew in yout.

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...
 'SaveState','on','StateSaveName','xoutNew',...
 'SaveOutput','on','OutputSaveName','youtNew');
yout = simOut.find('youtNew')

Alternatives
A simpler alternative to use dot notation. For example, to access data for the xoutNew
output variable, you can use this command:

simOut.xoutNew

Another alternative is to use Simulink.SimulationOutput.who and then
Simulink.SimulationOutput.get.

See Also
Simulink.SimulationOutput.get | Simulink.SimulationOutput.who

2 Functions — Alphabetical List

2-872

get
Class: Simulink.SimulationOutput
Package: Simulink

Access and display values of simulation results

Syntax

output = simOut.get('VarName')

Description

output = simOut.get('VarName') accepts one variable name. Specify VarName
inside single quotes.

Tip A simpler alternative to using the get function is to use dot notation. For example, to
access data for the xout output variable, you can use this command:

simOut.xout

Input Arguments
VarName

Name of logged variable for which you seek values.

Default:

 get

2-873

Output Arguments
Value

Value of the logged variable name specified in input.

Examples
Simulate vdp and store the values of the variable youtNew in yout.

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...
 'SaveState','on','StateSaveName','xoutNew',...
 'SaveOutput','on','OutputSaveName','youtNew');
yout = simOut.get('youtNew')

Alternatives
A simpler alternative to use dot notation. For example, to access data for the xout output
variable, you can use this command:

simOut.xout

Another alternative is to use Simulink.SimulationOutput.who and then
Simulink.SimulationOutput.find.

See Also
Simulink.SimulationOutput.find | Simulink.SimulationOutput.who

2 Functions — Alphabetical List

2-874

getSimulationMetadata
Class: Simulink.SimulationOutput
Package: Simulink

Return SimulationMetadata object for simulation

Syntax
mData = simout.getSimulationMetadata()

Description
mData = simout.getSimulationMetadata() retrieves metadata information in a
SimulationMetadata object from the simout SimulationOutput object.

Input Arguments
simout — Simulation object to get metadata from
object

Simulation object to get metadata from, specified as a SimulationOutput object.

Output Arguments
mData — SimulationMetadata object stored in the simout SimulationOutput
object
object

SimulationMetadata object stored in the simout SimulationOutput object,
returned as an object.

 getSimulationMetadata

2-875

Examples

Retrieve Metadata From vdp Simulation

Simulate the vdp model and retrieve metadata information from the simulation.

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object in
simout

 open_system('vdp')
 simout = sim(bdroot,'ReturnWorkspaceOutputs','on');

2 Functions — Alphabetical List

2-876

Retrieve metadata information about this simulation using mData.

 mData=simout.getSimulationMetadata()

mData =

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: ''

 getSimulationMetadata

2-877

 UserData: []

Alternatives
A simpler alternative to use dot notation with the SimulationMetadata property. For
example:

simOut.SimulationMetadata.ModelInfo

Another alternative is to display simulation metadata in the Variable Editor using one of
these approaches:

• Select the Show Simulation Metadata check box (which displays the data in a tree
structure).

• Double-click the SimulationMetadata row.
• View the SimulationMetadata object.

See Also
Simulink.SimulationMetadata | Simulink.SimulationOutput.setUserData |
Simulink.SimulationOutput.setUserString

2 Functions — Alphabetical List

2-878

setUserData
Class: Simulink.SimulationOutput
Package: Simulink

Store custom data in SimulationMetadata object that SimulationOutput object
contains

Syntax
simoutNew = simout.setUserData(CustomData)

Description
simoutNew = simout.setUserData(CustomData) assigns a copy of the simout
SimulationOutput object to simoutNew. The copy contains CustomData in its
SimulationMetadata object.

Input Arguments
simout — Simulation object to get metadata from
object

Simulation object to get metadata from, specified as a SimulationOutput object.

CustomData — Data to store in a metadata object
data

Any custom data you want to store in the metadata object.

Output Arguments
simoutNew — Simulation object that stores metadata object with custom data
object

 setUserData

2-879

A copy of the simout SimulationOutput object that contains CustomData in its
SimulationMetadata object, returned as an object.

Examples

Store Data in SimulationMetadata Object of vdp Simulation

Simulate the vdp model. Store custom data in the SimulationMetadata object that the
SimulationOutput object contains.

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object in
simout.

 open_system('vdp')
 simout=sim(bdroot,'ReturnWorkspaceOutputs','on');

2 Functions — Alphabetical List

2-880

Store custom data about the simulation in the SimulationMetadata object that simout
contains.

simout=simout.setUserData(struct('param1','value1','param2','value2','param3','value3'));

Use SimulationOutput.getSimulationMetadata to retrieve the information you
stored.

mData=simout.getSimulationMetadata();
disp(mData.UserData)

 param1: 'value1'
 param2: 'value2'

 setUserData

2-881

 param3: 'value3'

See Also
Simulink.SimulationMetadata |
Simulink.SimulationOutput.getSimulationMetadata |
Simulink.SimulationOutput.setUserString

2 Functions — Alphabetical List

2-882

setUserString
Class: Simulink.SimulationOutput
Package: Simulink

Store custom character vector in SimulationMetadata object that SimulationOutput
object contains

Syntax
simoutNew = simout.setUserString(CustomString)

Description
simoutNew = simout.setUserString(CustomString) assigns a copy of the simout
SimulationOutput object to simoutNew. The copy contains CustomString in its
SimulationMetadata object.

Input Arguments
simout — Simulation object to get metadata from
object

Simulation object to get metadata from, specified as a SimulationOutput object.

CustomString — Character vector to store in a metadata object
character vector

Any custom character vector you want to store in the metadata object.

Output Arguments
simoutNew — Simulation object that stores metadata object with custom
character vector
object

 setUserString

2-883

A copy of the simout SimulationOutput object that contains CustomString in its
SimulationMetadata object, returned as an object.

Examples

Store a Character Vector in SimulationMetadata Object of vdp Simulation

Simulate the vdp model. Store a custom character vector in the SimulationMetadata
object that the SimulationOutput object contains.

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object in
simout.

 open_system('vdp')
 simout=sim(bdroot,'ReturnWorkspaceOutputs','on');

2 Functions — Alphabetical List

2-884

Store a character vector to describe the simulation.

simout=simout.setUserString('First Simulation');

Use SimulationOutput.getSimulationMetadata to retrieve the information you
stored.

mData=simout.getSimulationMetadata();
disp(mData.UserString)

 setUserString

2-885

First Simulation

See Also
Simulink.SimulationMetadata |
Simulink.SimulationOutput.getSimulationMetadata |
Simulink.SimulationOutput.setUserData

2 Functions — Alphabetical List

2-886

who
Class: Simulink.SimulationOutput
Package: Simulink

Access and display output variable names of simulation

Syntax
simOutVar = simOut.who

Description
simOutVar = simOut.who returns the names of all simulation output variables,
including workspace variables.

Output Arguments
simOutVar

Character vector array of output variable names of simulation.

Examples
Simulate vdp and store the character vector values of the output variable names.

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...
 'SaveState','on','StateSaveName','xoutNew',...
 'SaveOutput','on','OutputSaveName','youtNew');
simOutVar = simOut.who

 who

2-887

Alternatives
A simpler alternative to use dot notation. For example, to access data for the xoutNew
output variable, you can use this command:

simOut.xoutNew

See Also
Simulink.SimulationOutput.find | Simulink.SimulationOutput.get

2 Functions — Alphabetical List

2-888

Simulink.SubSystem.convertToModelReferen
ce
Convert subsystem to model reference

Syntax
Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor
',true)

[success,mdlRefBlkHs] = Simulink.SubSystem.convertToModelReference(
subsys,mdlRefs)
[success,mdlRefBlkHs] = Simulink.SubSystem.convertToModelReference(
subsys,mdlRefs,Name,Value)

Description
Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor
',true) opens the Model Reference Conversion Advisor for the currently selected
subsystem block.

[success,mdlRefBlkHs] = Simulink.SubSystem.convertToModelReference(
subsys,mdlRefs) converts the specified subsystems to referenced models using the
mdlRefs value.

For each subsystem that the function converts, it:

• Creates a model
• Copies the contents of the subsystem into the new model
• Updates any root-level Inport, Outport, Trigger, and Enable blocks and the
configuration parameters of the model to match the compiled attributes of the original
subsystem

• Copies the contents of the model workspace of the original model to the new model

Before you use the function, load the model containing the subsystem.

 Simulink.SubSystem.convertToModelReference

2-889

[success,mdlRefBlkHs] = Simulink.SubSystem.convertToModelReference(
subsys,mdlRefs,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Open the Model Reference Conversion Advisor

Open the f14 model.

open_system('f14');

In the f14 model, select the Controller subsystem output signal, click the Simulation

Data Inspector button arrow , and select Log Selected Signals.

In the Simulink Editor, select the Controller subsystem. Then open the Model
Reference Conversion Advisor from the command line.

Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor',true);

Perform the conversion using the advisor.

Convert Subsystem to Referenced Model

Convert the Bus Counter subsystem to a referenced model named
bus_counter_ref_model.

open_system('sldemo_mdlref_conversion');
Simulink.SubSystem.convertToModelReference(...
 'sldemo_mdlref_conversion/Bus Counter', ...
 'bus_counter_ref_model', ...
 'AutoFix',true,...
 'ReplaceSubsystem',true,...
 'CheckSimulationResults',true);

Successfully converted Subsystem to Model reference block

2 Functions — Alphabetical List

2-890

Convert Multiple Subsystems to Referenced Models

Convert the two subsystems with one command.

open_system('f14');
set_param(gcs,'SaveOutput','on','SaveFormat','Dataset');
set_param(gcs,'SignalResolutionControl','UseLocalSettings');
Simulink.SubSystem.convertToModelReference(...
{'f14/Controller','f14/Aircraft Dynamics Model'},...
{'controller_ref_model','aircraft_dynamics_ref_model'},...
'ReplaceSubsystem',true,...

 Simulink.SubSystem.convertToModelReference

2-891

'AutoFix',true,...
'CheckSimulationResults',true)

• sldemo_mdlref_conversion
• “Convert a Subsystem to a Referenced Model”
• “Model Referencing”

Input Arguments
subsys — Subsystems to convert
character vector | subsystem handle | cell array of character vectors | array of subsystem
handles

Subsystems to convert, specified as a character vector, subsystem handle, or cell array of
strings or array of subsystem handles.

For information about which subsystems you can convert, see “Limitations on Subsystems
That You Can Convert”.

Note You cannot convert a parent subsystem a child of that subsystem at the same time.

Data Types: double

mdlRefs — Referenced model names
character vector | cell array of character vectors

Referenced model names, specified as a character vector or cell array of character
vectors. Each model name must be 59 characters or less.

If you specify a cell array of subsystems to convert, specify a cell array of referenced
model names. Each model name corresponds to the specified subsystem, in the same
order.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

2 Functions — Alphabetical List

2-892

matlab:sldemo_mdlref_conversion

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Simulink.SubSystem.convertToModelReference...
(engineSubsys,engineModelRef,'ReplaceSubsystem',true)

AutoFix — Fix all conversion issues that can be fixed automatically
false (default) | true

If you set AutoFix to true, the function fixes all conversion issues that it can fix.

For issues that the function cannot fix, the conversion process generates error messages
that you address by modifying the model.

Note If you set 'Force' to true, then the function does not automatically fix conversion
issues.

Data Types: logical

Force — Complete conversion even with errors
false (default) | true

If you set 'Force' to true, the function returns conversion errors as warnings and
continues with the conversion without fixing the errors. This option allows you to use the
function to do the initial steps of conversion and then complete the conversion process
yourself.

If you set Force to true, then the function does not fix conversion issues, even if you set
'AutoFix' to true. However, the success output argument is true, regardless of
whether any conversion errors occurred.

CheckSimulationResults — Compare simulation results before and after
conversion
false (default) | true

Compare simulation results before and after conversion, specified as true or false.

Before performing the conversion, enable signal logging for the subsystem output signals
of interest in the model.

For the Simulink.SubSystem.convertToModelReference command, set:

 Simulink.SubSystem.convertToModelReference

2-893

• 'CheckSimulationResults' to true
• 'AbsoluteTolerance'
• 'RelativeTolerance'
• 'SimulationModes' to the same as the simulation mode as in the original model

If the difference between simulation results exceeds the tolerance level, the function
displays a message.

AbsoluteTolerance — Absolute signal tolerance for comparison
'1e-06' (default) | double

Absolute signal tolerance for comparison, specified as a double. Use the option only if you
set CheckSimulationResults to true.
Data Types: double

RelativeTolerance — Relative signal tolerance for comparison
'1e-06' (default) | double

Relative signal tolerance for comparison, specified as a double. Use the option only if you
set CheckSimulationResults to true.
Data Types: double

DataFileName — Name of file for storing conversion data
character vector

Name of file for storing conversion data, specified as a character vector. You can specify
an absolute or relative path.

You can save the conversion data in a MAT-file (default) or a MATLAB file. If you use a .m
file extension, the function serializes all variables to a MATLAB file.

By default, the function uses a file name consisting of the model name plus
_conversion_data.mat.

ReplaceSubsystem — Replace content of each subsystem with Model blocks
false (default) | true

Replace subsystem blocks with Model blocks, specified as true or false. The Model
block references the referenced model.

2 Functions — Alphabetical List

2-894

By default, the function displays the referenced models in separate Simulink Editor
windows.

If you set the value to true, consider making a backup of the original model before you
convert the subsystems. If you want to undo the conversion, having a backup makes it
easier to restore the model.

If you set ReplaceSubsystem to true, the conversion action depends on whether you
use the automatic fix options.

• If you use the automatic fixes, then the conversion replaces the Subsystem block with
a Model block unless the automatic fixes change the input or output ports. If the ports
change, then the conversion includes the contents of the subsystem in a Model block
that is inserted in the Subsystem block.

• If you do not use the automatic fixes, then the conversion replaces the Subsystem
block with a Model block.

Data Types: logical

CreateWrapperSubsystem — Insert wrapper subsystem to preserve model layout
false (default) | true

Insert wrapper subsystem to preserve model layout, specified as true or false. When
you convert a subsystem to a referenced model, you can have the conversion process
insert a wrapper subsystem to preserve the layout of a model. The subsystem wrapper
contains the Model block from the conversion.

The conversion creates a wrapper subsystem automatically if the conversion modifies the
Model block interface by adding ports.
Data Types: logical

SimulationModes — Simulation mode for Model blocks
'Normal' (default) | 'Accelerator'

Simulation mode for Model blocks, specified as a 'Normal' or 'Accelerator'. The
simulation mode setting applies to the Model blocks that reference the models that the
conversion creates.

BuildTarget — Model reference targets to generate
'Sim' | 'RTW'

Model reference targets to generate.

 Simulink.SubSystem.convertToModelReference

2-895

• 'Sim' — Model reference simulation target
• 'RTW' — Code generation target

Output Arguments
success — Conversion status
1 | 0

Conversion status. A value of 1 indicates a successful conversion.

If you set 'Force' to true, the function returns a value of 1 if the conversion completes.
However, the simulation results can differ from the simulation results for the model
before conversion.

mdlRefBlkHs — Handles of created Model blocks
handle of Model block | array of handles of Model blocks

Handles of created Model blocks, returned as a double or cell array.
Data Types: double

Tips
• You cannot convert a parent subsystem a child of that subsystem at the same time.
• Specifying multiple subsystems to convert with one command can save time,

compared to converting each subsystem separately. The multiple-subsystem
conversion process compiles the model one time.

• If you specify multiple subsystems to convert, the conversion process attempts to
convert each subsystem. Successfully converted subsystems produce referenced
models, even if the conversions of other subsystems fail.

• If you specify multiple subsystems, consider:

• Specifying these 'Autofix', 'ReplaceSubsystem',
'CheckSimulationResults' name and value pairs, set to true.

• In the model, setting a short simulation time.
• Simulink uses the data dictionary to save the bus objects that it creates as part of the

conversion processing when both these conditions exist:

2 Functions — Alphabetical List

2-896

• The top model uses a data dictionary.
• All changes to the top model are saved.

• After you complete the conversion, update the model as necessary to meet your
modeling requirements. For details, see “Integrate the Referenced Model into the
Parent Model”.

• Converting a masked subsystem can require you to perform additional tasks to
maintain the same general behavior that the masked subsystem provided.

If the subsystem that you convert contains a masked block, consider masking the
Model block in your new referenced model (see “Block Masks”). Configure the
referenced model to support the functionality of the masked subsystem.

Note A referenced model does not support the functionality that you can achieve with
mask initialization code to create masked parameters.

For mask parameters, replace the mask parameters with model arguments (see
“Parameterize Instances of a Reusable Referenced Model”):

1 In the model workspace of the referenced model, create a variable for each mask
parameter.

2 In the Model Explorer, select the Model Workspace node. In the Contents pane,
select the Argument check box to identify the variables as model arguments.

3 In the new Model block, on the Arguments tab, in the Model arguments table,
specify the values for the model arguments.

For masked callbacks, icons, ports, and documentation:

1 In the backup copy, open the Mask Editor on the masked subsystem and copy the
content you want into the masked Model block.

2 In the Mask Editor for the new Model block, paste the masked subsystem content.

See Also
Simulink.BlockDiagram.copyContentsToSubsystem | Simulink.Bus.save |
Simulink.SubSystem.copyContentsToBlockDiagram

 Simulink.SubSystem.convertToModelReference

2-897

Topics
sldemo_mdlref_conversion
“Convert a Subsystem to a Referenced Model”
“Model Referencing”

Introduced in R2006a

2 Functions — Alphabetical List

2-898

matlab:sldemo_mdlref_conversion

Simulink.SubSystem.copyContentsToBlockDi
agram
Copy contents of subsystem to empty block diagram

Syntax
Simulink.SubSystem.copyContentsToBlockDiagram(subsys, bdiag)

Description
Simulink.SubSystem.copyContentsToBlockDiagram(subsys, bdiag) copies the
contents of the subsystem subsys to the block diagram bdiag. The subsystem and block
diagram must have already been loaded. The subsystem cannot be part of the block
diagram. The function affects only blocks, lines, and annotations; it does not affect
nongraphical information such as configuration sets.

This function cannot be used if the destination block diagram contains any blocks or
signals. Other types of information can exist in the destination block diagram and are
unaffected by the function. Use Simulink.BlockDiagram.deleteContents if
necessary to empty the block diagram before using
Simulink.SubSystem.copyContentsToBlockDiagram.

Tip To flatten a model hierarchy by expanding the contents of a subsystem to the system
that contains that subsystem, do not use the
Simulink.SubSystem.copyContentsToBlockDiagram function. Instead, expand the
subsystem, as described in “Expand Subsystem Contents”.

Input Arguments
subsys

Subsystem name or handle

 Simulink.SubSystem.copyContentsToBlockDiagram

2-899

bdiag

Block diagram name or handle

Examples
Copy the graphical contents of f14/Controller, including all nested subsystems, to a
new block diagram:
% open f14
open_system('f14');

% create a new model
newbd = new_system;
open_system(newbd);

% copy the subsystem
Simulink.SubSystem.copyContentsToBlockDiagram('f14/Controller', newbd);

% close f14 and the new model
close_system('f14', 0);
close_system(newbd, 0);

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.deleteContents

Topics
“Model Editing Fundamentals”
“Create a Subsystem”
“Expand Subsystem Contents”

Introduced in R2007a

2 Functions — Alphabetical List

2-900

Simulink.SubSystem.deleteContents
Delete contents of subsystem

Syntax
Simulink.SubSystem.deleteContents(subsys)

Description
Simulink.SubSystem.deleteContents(subsys) deletes the contents of the
subsystem subsys. The function affects only blocks, lines, and annotations. The
subsystem must have already been loaded.

Note This function does not delete library blocks in a subsystem.

Input Arguments
subsys

Subsystem name or handle

Examples
Delete the graphical contents of Controller, including all nested subsystems:

Simulink.SubSystem.deleteContents('f14/Controller');

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.deleteContents |

 Simulink.SubSystem.deleteContents

2-901

Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Model Hierarchy”
“Create a Subsystem”

Introduced in R2007a

2 Functions — Alphabetical List

2-902

Simulink.SubSystem.getChecksum
Return checksum of nonvirtual subsystem

Syntax
[checksum,details] = Simulink.SubSystem.getChecksum(subsys)

Description
[checksum,details] = Simulink.SubSystem.getChecksum(subsys) returns the
checksum of the specified nonvirtual subsystem. Simulink computes the checksum based
on the subsystem parameter settings and the blocks the subsystem contains. Virtual
subsystems do not have checksums.

One use of this command is to determine why code generated for a subsystem is not
being reused.

Note Simulink.SubSystem.getChecksum compiles the model that contains the
specified subsystem, if the model is not already in a compiled state. If you need to get the
checksum for multiple subsystems and want to avoid multiple compiles, use the
command , model([], [], [], 'compile') to place the model in a compiled state
before using Simulink.SubSystem.getChecksum.

This command accepts the argument subsys, which is the full name or handle of the
nonvirtual subsystem block for which you are returning checksum data.

Examples

 Simulink.SubSystem.getChecksum

2-903

Run getChecksum on Model

Run the function Simulink.SubSystem.getChecksum on the model
rtwdemo_ssreuse. In the MATLAB editor window, both output structures are displayed.
In the workspace pane, double-click on either of the structures to view its contents.

Load the model rtwdemo_ssreuse.

rtwdemo_ssreuse

Select subsystem SS1 and execute the follow line of code in the MATLAB editor to get the
full name and path to the subsystem SS1:

path_ss1 = gcb

Run the function getChecksum on the subsystem with the following command:

[chksum1, chksum1_details] = Simulink.SubSystem.getChecksum(path_ss1)

The output structures chksum1 and chksum1_details will store the output of the
getChecksum function call.

chksum1 =

 struct with fields:

 Value: [4×1 uint32]
 MarkedUnique: 0

chksum1_details =

 struct with fields:

 ContentsChecksum: [1×1 struct]
 InterfaceChecksum: [1×1 struct]
 ContentsChecksumItems: [359×1 struct]
 InterfaceChecksumItems: [60×1 struct]

Input Arguments
subsys — Name or handle of nonvirtual subsystem
character vector

2 Functions — Alphabetical List

2-904

Input the full name of the nonvirtual subsystem for which you want to calculate the
checksum.
Data Types: char

Output Arguments
checksum — A structure that stores the value of the checksum and indicates
whether subsys contains unique block or subsystem properties which prevent
generated code reuse
structure

Checksum information, returned as a structure with the fields:

Value — Array of four 32-bit integers that represents the subsystem's 128-bit
checksum
4x1 uint32

MarkedUnique — True if the subsystem or the blocks it contains have properties
that would prevent the code generated for the subsystem from being reused;
otherwise, false
bool

details — A structure that stores checksum data on model contents and the
interface
structure

Checksum information, returned as a structure with the fields:

ContentsChecksum — A structure of the same form as checksum, representing a
checksum that provides information about all blocks in the system
structure

InterfaceChecksum — A structure of the same form aschecksum, representing a
checksum that provides information about the subsystem's block parameters
and connections
structure

ContentsChecksumItems — Structure array that Simulink uses to compute the
checksum for ContentsChecksum
structure

 Simulink.SubSystem.getChecksum

2-905

Structure array returned with the following fields:

Handle — Object for which Simulink added an item to the checksum. For a block,
the handle is a full block path. For a block port, the handle is the full block path
and a character vector that identifies the port
char array

Identifier — Descriptor of the item Simulink added to the checksum. If the
item is a documented parameter, the identifier is the parameter name
char array

Value — Value of the item Simulink added to the checksum. If the item is a
parameter, Value is the value returned by get_param(handle, identifier)
type

InterfaceChecksumItems — Structure array that Simulink uses to compute the
checksum for InterfaceChecksum
structure

Structure array returned with the following fields:

Handle — Object for which Simulink added an item to the checksum. For a block,
the handle is a full block path. For a block port, the handle is the full block path
and a character vector that identifies the port
char array

Identifier — Descriptor of the item Simulink added to the checksum. If the
item is a documented parameter, the identifier is the parameter name
char array

Value — Value of the item Simulink added to the checksum. If the item is a
parameter, Value is the value returned by get_param(handle, identifier)
type

See Also
Simulink.BlockDiagram.getChecksum

Introduced in R2006b

2 Functions — Alphabetical List

2-906

Simulink.suppressDiagnostic
Suppress a diagnostic from a specific block

Syntax
Simulink.suppressDiagnostic(source, message_id)
Simulink.suppressDiagnostic(diagnostic)

Description
Simulink.suppressDiagnostic(source, message_id) suppresses all instances of
diagnostics represented by message_id thrown by the blocks specified by source.

Simulink.suppressDiagnostic(diagnostic) suppresses the diagnostics associated
with MSLDiagnostic object diagnostic.

Examples

Suppress a Warning Thrown By a Block

Using the model from “Suppress Diagnostic Messages Programmatically”, use the
Simulink.suppressDiagnostic function to suppress the parameter precision loss
warning thrown by the Constant block, one.

Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

• “Suppress Diagnostic Messages Programmatically”

Input Arguments
source — Block or model object throwing the diagnostic
block path | block handle

 Simulink.suppressDiagnostic

2-907

The source of the diagnostic, specified as a block path, block handle, cell array of block
paths, or cell array of block handles.

To get the block path, use the gcb function.

To get the block handle, use the getSimulinkBlockHandle function.
Data Types: char | cell

message_id — message identifier of diagnostic
message identifier | cell array of message identifiers

Message identifier of the diagnostic, specified as a character vector or a cell array of
character vectors. You can find the message identifier of diagnostics thrown during
simulation by accessing the ExecutionInfo property of the
Simulink.SimulationMetadata object associated with a simulation. You can also use
the lastwarn function.
Data Types: char | cell

diagnostic — Diagnostic object
MSLDiagnostic object

Diagnostic specified as an MSLDiagnostic object. Access the MSLDiagnostic object
through the ExecutionInfo property of the Simulink.SimulationMetadata object.
Data Types: struct

See Also
Simulink.SuppressedDiagnostic | Simulink.SuppressedDiagnostic.restore |
Simulink.getSuppressedDiagnostics | Simulink.restoreDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

2 Functions — Alphabetical List

2-908

sint
Create Simulink.NumericType object describing signed integer data type

Syntax
a = sint(WordLength)

Description
sint(WordLength) returns a Simulink.NumericType object that describes the data
type of a signed integer with a word size given by WordLength.

Note sint is a legacy function. In new code, use fixdt instead. In existing code,
replace sint(WordLength) with fixdt(1,WordLength,0).

Examples
Define a 16-bit signed integer data type.

a = sint(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 16
 FractionLength: 0
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

 sint

2-909

See Also
Simulink.NumericType | fixdt | float | sfix | sfrac | ufix | ufrac | uint

Introduced before R2006a

2 Functions — Alphabetical List

2-910

slbuild
Build standalone executable or model reference target for model; except where noted,
this function requires a Simulink Coder license

Syntax
slbuild(model,buildSpec,varArgIn)

Description
slbuild(model,buildSpec,varArgIn) builds a standalone Simulink Coder binary
executable file from the model, using the current model configuration settings. If the
model has not been loaded, slbuild loads it before initiating the build process. The
buildSpec and varArgIn arguments are optional.

Do not use rtwbuild, rtwrebuild, or slbuild commands with parallel language
features (Parallel Computing Toolbox) (for example, within a parfor or spmd loop). For
information about parallel builds of referenced models, see “Reduce Build Time for
Referenced Models” (Simulink Coder).

You cannot use slbuild to build subsystems.

Examples

Generate Code and Build Executable Image for Model

Generate C code for model rtwdemo_rtwintro.

slbuild('rtwdemo_rtwintro')
% same operation as ...
% slbuild('rtwdemo_rtwintro','StandaloneRTWTarget')

For the GRT target, the coder generates the following code files and places them in
folders rtwdemo_rtwintro_grt_rtw and slprj/grt/_sharedutils.

 slbuild

2-911

Model Files Shared Files Interface Files Other Files
rtwdemo_rtwintro.c

rtwdemo_rtwintro.h

rtwdemo_rtwintro_private.h

rtwdemo_rtwintrotypes.h

rtwtypes.h

multiword_types.h

builtin_typeid_types.h

rtmodel.h none

If the following model configuration parameters settings apply, the coder generates
additional results.

Parameter Setting Results
Code Generation > Generate code only
pane is cleared

Executable image
rtwdemo_rtwintro.exe

Code Generation > Report > Create
code generation report is selected

Report appears, providing information and
links to generated code files, subsystem and
code interface reports, entry-point
functions, inports, outports, interface
parameters, and data stores

Force Top Model Build

Generate code and build an executable image for rtwdemo_mdlreftop, which refers to
model rtwdemo_mdlrefbot, regardless of model checksums and parameter settings.

slbuild('rtwdemo_mdlreftop','StandaloneRTWTarget', ...
 'ForceTopModelBuild',true)

Clean Top Model Build

Clean the model build area enough to trigger regeneration of the top model code at the
next build.

2 Functions — Alphabetical List

2-912

slbuild('rtwdemo_rtwintro','CleanTopModel')

Input Arguments
model — Specifies model for the build process
handle | character vector

Model for which to build a standalone executable or model reference target, specified as
a handle or a character vector representing the model name.
Example: gcs

buildSpec — Specifies the code generation action for the build process
'StandaloneRTWTarget' (default) | 'ModelReferenceSimTarget' |
'ModelReferenceRTWTarget' | 'ModelReferenceRTWTargetOnly' |
'CleanTopModel'

The buildSpec directs the code generator to perform the selected build action for the
model and the build process:

• Honors the setting of the Rebuild parameter on the Model Referencing pane of the
Configuration Parameters dialog box.

• Requires a Simulink Coder license only if you build a model reference Simulink Coder
target, not if you build only a model reference simulation target.

The buildSpec argument must be one of the following:

buildSpec Build Action
'StandaloneRTWTarget' Builds a standalone Simulink Coder binary executable

file from the model, using the current model
configuration settings. If the model has not been loaded,
slbuild loads it before initiating the build process.

'ModelReferenceSimTarge
t'

Builds a model reference simulation target (does not
require a Simulink Coder license)

'ModelReferenceRTWTarge
t'

Builds a model reference Simulink Coder target and the
corresponding model reference simulation target

'ModelReferenceRTWTarge
tOnly'

Builds only a model reference Simulink Coder target

 slbuild

2-913

buildSpec Build Action
'CleanTopModel' Cleans the model build area enough to trigger

regeneration of the top model code at the next build

Example: 'ModelReferenceSimTarget'

varArgIn — Name-value pair parameters that provide added arguments for the
build process
name-value pairs

slbuild(myModel,'StandaloneRTWTarget','ForceTopModelBuild',true)

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'UpdateThisModelReferenceTarget','Force'

UpdateThisModelReferenceTarget — Specifies a conditional rebuild option for
the model reference build
'Force' | 'IfOutOfDateOrStructuralChange' | 'IfOutOfDate'

The 'UpdateThisModelReferenceTarget' option only applies when the buildSpec
selection is 'ModelReferenceSimTarget', 'ModelReferenceRTWTarget', or
'ModelReferenceRTWTargetOnly'.

The 'UpdateThisModelReferenceTarget' value specifies a conditional rebuild option
for the model reference target build when the Rebuild parameter on the Model
Referencing pane of the Configuration Parameters dialog box is set to Never.

The 'UpdateThisModelReferenceTarget' value applies only to model, not to any
models referenced by model.

The 'UpdateThisModelReferenceTarget' value must be one of the following:

2 Functions — Alphabetical List

2-914

UpdateThisModelReferenceTar
get

Conditional Rebuild Action

'Force' Unconditionally rebuilds the model. This option is
equivalent to the Always rebuild option on the
Model Referencing pane of the Configuration
Parameters dialog box.

'IfOutOfDateOrStructuralCh
ange'

Rebuilds the model if the build process detects any
changes. This option is equivalent to the If any
changes detected rebuild option on the Model
Referencing pane of the Configuration Parameters
dialog box.

'IfOutOfDate' Rebuilds the model if the build process detects any
changes in known dependencies of this model. This
option is equivalent to the If any changes in
known dependencies detected rebuild option on
the Model Referencing pane of the Configuration
Parameters dialog box.

Example: 'UpdateThisModelReferenceTarget','Force'

ForceTopModelBuild — Directs the code generator to generate code and build
an executable image for the top model of the referenced model hierarchy,
regardless of model checksums and parameter settings
false (default) | true

Use 'ForceTopModelBuild' value true to force the top model build.
Example: 'ForceTopModelBuild',true

OpenBuildStatusAutomatically — Display build information in the Build
Process Status Window
false (default) | true

Display build information in the Build Process Status window, specified as true or
false. For more information about using the status window, see “View Build Process
Status” (Simulink Coder).

The Build Process Status window support parallel builds of referenced model
hierarchies. Do not use the Build Process Status window for sequential (non-parallel)
builds.

 slbuild

2-915

Action Specify
Display build information in the Build Process Status Window true
No action false

See Also
rtwbuild | rtwrebuild

Topics
“Model Reference Simulation Targets”
“What Is Acceleration?”
“Perform Acceleration”
“Reuse Simulation Builds for Faster Simulations”

Introduced before R2006a

2 Functions — Alphabetical List

2-916

slCharacterEncoding
Change MATLAB character set encoding

Syntax
currentCharacterEncoding = slCharacterEncoding()
slCharacterEncoding(encoding)

Description
This command allows you to change the current MATLAB character set encoding to be
compatible with the character encoding of a model that you want to open.

currentCharacterEncoding = slCharacterEncoding() returns the current
MATLAB character set encoding.

slCharacterEncoding(encoding) changes the MATLAB character set encoding to the
specified encoding. You should only specify these values:

• 'US-ASCII'
• 'Windows-1252'
• 'ISO-8859-1'
• 'Shift_JIS'
• 'UTF-8'

If you want to use a different character encoding, you need to start MATLAB with the
appropriate locale settings for your operating system. Consult your operating system
manual to change the locale setting. Simulink can support any character encoding that
uses single-byte or double-byte characters.

If you open a model that uses a particular character set encoding in a MATLAB session
that uses a different encoding, a warning appears. For example, suppose that you create a
model in a MATLAB session configured for Shift_JIS and open it in a session
configured for US_ASCII. The warning message shows the encoding of the current
session and the encoding used to create the model. If you encounter any problems with

 slCharacterEncoding

2-917

corrupted characters, for example when using MATLAB files associated with the model,
then try using the slCharacterEncoding function to change the character encoding

1 Close all open models.
2 Use slCharacterEncoding to change the character encoding of the current

MATLAB session to match the model character encoding.
3 Reopen the model.

Note You must close all open models or libraries before changing the MATLAB character
set encoding except when changing from 'US-ASCII' to another encoding.

See Also

Topics
“Open a Model with Different Character Encoding”
“Save Models with Different Character Encodings”

Introduced before R2006a

2 Functions — Alphabetical List

2-918

sldebug
Start simulation in debug mode

Syntax
sldebug('sys')

Description
sldebug('sys') starts a simulation in debug mode. See “Debugger Command-Line
Interface” for information about using the debugger.

Examples
The following command:

sldebug('vdp')

loads the Simulink example model vdp into memory and starts the simulation in debug
mode. Alternatively, you can achieve the same result by using the sim command:

sim('vdp', 'debug', 'on')

See Also
sim

Introduced in R2006a

 sldebug

2-919

sldiagnostics
Display diagnostic information about Simulink system

Syntax
sldiagnostics('sys')
[txtRpt, sRpt] = sldiagnostics('sys')
[txtRpt, sRpt] = sldiagnostics('sys', options)
[txtRpt, sRpt] = sldiagnostics('sys', 'CompileStats')
[txtRpt, sRpt] = sldiagnostics('sys', 'RTWBuildStats')

Description
sldiagnostics('sys') displays the following diagnostic information associated with
the model or subsystem specified by sys:

• Number of each type of block
• Number of each type of Stateflow object
• Number of states, outputs, inputs, and sample times of the root model.
• Names of libraries referenced and instances of the referenced blocks
• Time and additional memory used for each compilation phase of the root model

If the model specified by sys is not loaded, then sldiagnostics loads the model before
performing the analysis.

The command sldiagnostics('sys', options) displays only the diagnostic
information associated with the specific operations listed as options character vectors.
The table below summarizes the options available and their corresponding valid input and
output.

With sldiagnostics, you can input the name of a model or the path to a subsystem. For
some analysis options, sldiagnostics can analyze only a root model. If you provide an
incompatible input for one of these analyses, then sldiagnostics issues a warning.
Finally, if you input a Simulink Library, then sldiagnostics cannot perform options that

2 Functions — Alphabetical List

2-920

require a model compilation (Update Diagram). Instead, sldiagnostics issues a
warning.

During the analysis, sldiagnostics will follow library links but will not follow or
analyze Model References. See find_mdlrefs for more information on finding all Model
blocks and referenced models in a specified model.

Option Valid Inputs Output
CountBlocks root model, library, or

subsystem
Lists all unique blocks in the system and
the number of occurrences of each. This
includes blocks that are nested in
masked subsystems or hidden blocks.

CountSF root model, library, or
subsystem

Lists all unique Stateflow objects in the
system and the number of occurrences
of each.

Sizes root model Lists the number of states, outputs,
inputs, and sample times, as well as a
flag indicating direct feedthrough, used
in the root model.

Libs root model, library, or
subsystem

Lists all unique libraries referenced in
the root model, as well as the names
and numbers of the library blocks.

CompileStats root model Lists the time and additional memory
used for each compilation phase of the
root model. This information helps users
troubleshoot model compilation speed
and memory issues.

RTWBuildStats root model Lists the same information as the
CompileStats diagnostic. When issued
with the second output argument sRpt,
it captures the same statistics included
in CompileStats and also the Simulink
Coder build statistics.

You must explicitly specify this option,
because it is not part of the default
analysis.

 sldiagnostics

2-921

Option Valid Inputs Output
All not applicable Performs all diagnostics.

Note Running the CompileStats diagnostic before simulating a model for the first time
will show greater memory usage. However, subsequent runs of the CompileStats
diagnostic on the model will require less memory usage.

[txtRpt, sRpt] = sldiagnostics('sys') returns the diagnostic information as a
textual report txtRpt and a structure array sRpt, which contains the following fields
that correspond to the diagnostic options:

• blocks
• stateflow
• sizes
• links
• compilestats

[txtRpt, sRpt] = sldiagnostics('sys', options) returns only the specified
options. If your chosen options specify just one type of analysis, then sRpt contains the
results of only that analysis.

[txtRpt, sRpt] = sldiagnostics('sys', 'CompileStats') returns information
on time and memory usage in txtRpt and sRpt.

[txtRpt, sRpt] = sldiagnostics('sys', 'RTWBuildStats') includes Simulink
Coder build statistics in addition to the information reported for CompileStats in the
sRpt output.

• txtRpt contains the formatted textual output of time spent in each of the phases in
Simulink and Simulink Coder (if you specified RTWBuildStats), for example:

Compile Statistics For: rtwdemo_counter
 Cstat1: 0.00 seconds Model compilation pre-start
 Cstat2: 0.00 seconds Stateflow compile pre-start notification
 Cstat3: 0.10 seconds Post pre-comp-start engine event
 Cstat4: 10.00 seconds Stateflow compile start notification
 Cstat5: 0.00 seconds Model compilation startup completed

• sRpt is a MATLAB structure containing time and memory usage for each of the
phases, for example:

2 Functions — Alphabetical List

2-922

sRpt =
Model: 'myModel1'
Statistics: [1x134 struct]

The size of the sRpt.Statistics array indicates the number of compile and build
phases executed during the operation. Examine the Statistics fields:

sRpt.Statistics(1) =
Description: 'Phase1'
CPUTime: 7.2490
WallClockTime 4.0092
ProcessMemUsage: 26.2148
ProcessMemUsagePeak: 28.6680
ProcessVMSize: 15.9531

CPUTime and WallClockTime show the elapsed time for the phase in seconds.
ProcessMemUsage, ProcessMemUsagePeak and ProcessVMSize show the memory
consumption during execution of the phase in MB.

Examine these key metrics to understand the performance:

• WallClockTime—The real-time elapsed in each phase in seconds. Sum the
WallClockTime in each phase to get the total time taken to perform the operation:

ElapsedTime = sum([statRpt.Statistics(:).WallClockTime]);
• ProcessMemUsage—The amount of memory consumed in each phase. Sum the

ProcessMemUsage across all the phases to get the memory consumption during the
entire operation:

TotalMemory = sum([statRpt.Statistics(:).ProcessMemUsage]);
• ProcessMemUsagePeak—The maximum amount of allocated memory in each phase.

Get the maximum of this metric across all the phases to find the peak memory
allocation during the operation:

PeakMemory = max([statRpt.Statistics(:).ProcessMemUsagePeak]);

Note Memory statistics are available only on the Microsoft Windows platform.

 sldiagnostics

2-923

Examples
The following command counts and lists each type of block used in the sldemo_bounce
model that comes with Simulink software.

sldiagnostics('sldemo_bounce', 'CountBlocks')

The following command counts and lists both the unique blocks and Stateflow objects
used in the sf_boiler model that comes with Stateflow software; the textual report
returned is captured as myReport.
myReport = sldiagnostics('sf_boiler', 'CountBlocks', 'CountSF')

The following commands open the f14 model that comes with Simulink software, and
counts the number of blocks used in the Controller subsystem.

sldiagnostics('f14/Controller', 'CountBlocks')

The following command runs the Sizes and CompileStats diagnostics on the f14
model, capturing the results as both a textual report and structure array.
[txtRpt, sRpt] = sldiagnostics('f14', 'Sizes', 'CompileStats')

See Also
find_system | get_param

Introduced in R2006a

2 Functions — Alphabetical List

2-924

sldiagviewer.diary
Log simulation warnings and errors and build information to file

Syntax
sldiagviewer.diary
sldiagviewer.diary(filename)
sldiagviewer.diary(toggle)
sldiagviewer.diary(filename,'UTF-8')

Description
sldiagviewer.diary intercepts build information, warnings, and errors transmitted to
the Command Window or the Diagnostic Viewer and logs them to a text file diary.txt in
the current folder.

sldiagviewer.diary(filename) toggles the logging state of the text file specified by
filename.

sldiagviewer.diary(toggle) turns logging to the log file on or off. The setting
applies to the last file name you specified for logging or to diary.txt if you did not
specify a file name.

sldiagviewer.diary(filename,'UTF-8') specifies the character encoding for the
log file filename.

Examples

Log Build Information and Simulation Warnings and Errors

Start logging build information and simulation warnings and errors to diary.txt.

 sldiagviewer.diary

2-925

sldiagviewer.diary
open_system('vdp')
rtwbuild('vdp')

Open diary.txt to view logs.

Starting build procedure for model: vdp
Build procedure for model: 'vdp' aborted due to an error.
...

Log to Specific File

Set up logging to a file.

sldiagviewer.diary('C:\MyLogs\log1.txt')

Toggle File Logging State

Switch the logging state of a file.

sldiagviewer.diary('C:\MyLogs\log1.txt') % Start logging
open_system('vdp')
rtwbuild('vdp')

sldiagviewer.diary('off') % Switch off logging
open_system('sldemo_fuelsys')
rtwbuild('sldemo_fuelsys')

sldiagviewer.diary('on') % Resume logging

Specify Log File Name and Character Encoding

Set the file name to log to and the character encoding to use.

sldiagviewer.diary('C:\MyLogs\log1.txt','UTF-8')

• “View Diagnostics”
• “Customize Diagnostic Messages”

2 Functions — Alphabetical List

2-926

Input Arguments
toggle — Logging state
'off' | 'on'

Logging state, specified as 'on' or 'off'.
Example: sldiagviewer.diary('on')

filename — Name of file to log data to
character vector

Name of file to log data to, specified as a character vector.
Example: sldiagviewer.diary('C:\Simulations\mySimulationDiary.txt')

See Also

Topics
“View Diagnostics”
“Customize Diagnostic Messages”

Introduced in R2014a

 sldiagviewer.diary

2-927

sldiscmdl
Discretize model that contains continuous blocks

Syntax
sldiscmdl('model_name',sample_time)
sldiscmdl('model_name',sample_time,method)
sldiscmdl('model_name',sample_time,options)
sldiscmdl('model_name',sample_time,method,freq)
sldiscmdl('model_name',sample_time,method,options)
sldiscmdl('model_name',sample_time,method,freq,options)
[old_blks,new_blks] =
sldiscmdl('model_name',sample_time,method,freq,options)

Description
sldiscmdl('model_name',sample_time) discretizes the model named
'model_name' using the specified sample_time. The model does not need to be open,
and the units for sample_time are simulation seconds.

sldiscmdl('model_name',sample_time,method) discretizes the model using
sample_time and the transform method specified by method.

sldiscmdl('model_name',sample_time,options) discretizes the model using
sample_time and criteria specified by the options cell array. This array consists of four
elements: {target, replace_with, put_into, prompt}.

sldiscmdl('model_name',sample_time,method,freq) discretizes the model using
sample_time, method, and the critical frequency specified by freq. The units for freq
are Hz. When you specify freq, method must be 'prewarp'.

sldiscmdl('model_name',sample_time,method,options) discretizes the model
using sample_time, method, and options.

2 Functions — Alphabetical List

2-928

sldiscmdl('model_name',sample_time,method,freq,options) discretizes the
model using sample_time, method, freq, and options. When you specify freq,
method must be 'prewarp'.

[old_blks,new_blks] =
sldiscmdl('model_name',sample_time,method,freq,options) discretizes the
model using sample_time, method, freq, and options. When you specify freq,
method must be 'prewarp'. The function also returns two cell arrays that contain full
path names of the original, continuous blocks and the new, discretized blocks.

Input Arguments
model_name

Name of the model to discretize.

sample_time

Sample-time specification for the model:

Scalar value Sample time with zero offset, such as 1
Two-element vector Sample time with nonzero offset, such as [1

0.1]

method

Method of converting blocks from continuous to discrete mode:

'zoh' (default) Zero-order hold on the inputs
'foh' First-order hold on the inputs
'tustin' Bilinear (Tustin) approximation
'prewarp' Tustin approximation with frequency

prewarping
'matched' Matched pole-zero method

For single-input, single-output (SISO)
systems only

 sldiscmdl

2-929

freq

Critical frequency in Hz. This input applies only when the method input is 'prewarp'.

options

Cell array {target, replace_with, put_into, prompt}, where each element can take
the following values:

target 'all' (default) Discretize all continuous blocks
'selected' Discretize only selected blocks in the

model
'full_blk_path' Discretize specified block

replace_with 'parammask'
(default)

Create discrete blocks whose
parameters derive from the
corresponding continuous blocks

'hardcoded' Create discrete blocks with hard-
coded parameters placed directly into
each block dialog box

put_into 'copy' (default) Create discretization in a copy of the
original model

'configurable' Create discretization candidate in a
configurable subsystem

'current' Apply discretization to the current
model

'untitled' Create discretization in a new
untitled window

prompt 'on' (default) Show discretization information at
the command prompt

'off' Do not show discretization
information at the command prompt

Examples
Discretize all continuous blocks in the slexAircraftExample model using a 1-second
sample time:

2 Functions — Alphabetical List

2-930

sldiscmdl('slexAircraftExample',1);

Discretize the Aircraft Dynamics Model subsystem in the slexAircraftExample
model using a 1-second sample time, a 0.1-second offset, and a first-order hold transform
method:

sldiscmdl('slexAircraftExample',[1 0.1],'foh',...
{'slexAircraftExample/Aircraft Dynamics Model',...
'parammask','copy','on'});

Discretize the Aircraft Dynamics Model subsystem in the slexAircraftExample
model and retrieve the full path name of the second discretized block:

[old_blks,new_blks] = sldiscmdl('slexAircraftExample',[1 0.1],...
'foh',{'slexAircraftExample/Aircraft Dynamics Model','parammask',...
'copy','on'});
% Get full path name of the second discretized block
new_blks{2}

See Also
slmdldiscui

Topics
“Discretize a Model with the sldiscmdl Function”

Introduced before R2006a

 sldiscmdl

2-931

slexpr
Generate expression to use in value of parameter object

Syntax
expressionOut = slexpr(expressionIn)

Description
expressionOut = slexpr(expressionIn) converts the MATLAB-syntax expression
expressionIn to an object, expressionOut, that you can use to set the Value
property of a parameter object (such as Simulink.Parameter). When you use multiple
parameter objects to set block parameter values, you can use the expression to model
mathematical relationships between the objects. For more information, see “Set Variable
Value by Using a Mathematical Expression”.

Examples

Model Relationship Between Mass, Length, and Moment of Inertia of Metronome

In the base workspace, create three Simulink.Parameter objects that represent the
mass, length, and moment of inertia of a pointlike metronome.

m = Simulink.Parameter;
r = Simulink.Parameter;
J = Simulink.Parameter;

Set the mass to 0.1 kg and the length to 1.0 m.

m.Value = 0.1;
r.Value = 1.0;

Set the value of the moment of inertia to the mass times the square of the length.

J.Value = slexpr('m*r^2');

2 Functions — Alphabetical List

2-932

Simulink preserves the expression, m*r^2. If you change the value of the mass or the
length, Simulink recalculates the value of the moment of inertia.

• “Share and Reuse Block Parameter Values by Creating Variables”
• “Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

Input Arguments
expressionIn — Target expression
string | character vector

Target expression, specified as a string or character vector.
Example: "myParam + myOtherParam"
Data Types: char | string

Output Arguments
expressionOut — Simulink representation of expression
Simulink.data.Expression object

Simulink representation of the target expression, returned as a
Simulink.data.Expression object. A Simulink.data.Expression object has no
use outside the Value property of a parameter object.

See Also
Simulink.Parameter

Topics
“Share and Reuse Block Parameter Values by Creating Variables”
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

Introduced in R2018a

 slexpr

2-933

slIsFileChangedOnDisk
Determine whether model has changed since it was loaded

Syntax
Changed = slIsFileChangedOnDisk('sys')

Description
Changed = slIsFileChangedOnDisk('sys') Returns true if the file which contains
block diagram sys was changed on disk since the block diagram was loaded.

Examples
To ensure that code is not generated for a model whose file has changed on disk since it
was loaded, include the following in the 'entry' section of the STF_make_rtw_hook.m
file:

if (slIsFileChangedOnDisk(sys))
 error('File has changed on disk since it was loaded. Aborting code generation.');
end

See Also

Topics
“Customize Build Process with STF_make_rtw_hook File” (Simulink Coder)
“Model File Change Notification”

Introduced in R2007b

2 Functions — Alphabetical List

2-934

slLibraryBrowser
Open Simulink Library Browser

Syntax
slLibraryBrowser
slLibraryBrowser('open')
slLibraryBrowser('noshow')
libraryhandle = slLibraryBrowser
slLibraryBrowser('close')

Description
slLibraryBrowser opens the Simulink Library Browser.

If you want to load the Simulink block library, use load_system simulink instead.

If you want to start Simulink without opening any windows, use the faster
start_simulink instead.

slLibraryBrowser('open') opens the Library Browser.

slLibraryBrowser('noshow') loads the Library Browser in memory without making it
visible. Use this to make future calls to slLibraryBrowser('open') faster.

libraryhandle = slLibraryBrowser returns the handle of the Library Browser
object.

slLibraryBrowser('close') closes the Library Browser.

Examples

 slLibraryBrowser

2-935

Open and Close the Library Browser

slLibraryBrowser
slLibraryBrowser('close')

Load the Library Browser and Get a Handle

libraryhandle = slLibraryBrowser('noshow')

• “Build and Edit a Model in the Simulink Editor”

See Also
simulink | start_simulink

Topics
“Build and Edit a Model in the Simulink Editor”
“Model Editing Environment”

Introduced in R2016a

2 Functions — Alphabetical List

2-936

slmdldiscui
Open Model Discretizer GUI

Syntax
slmdldiscui
slmdldiscui('model')

Description
slmdldiscui opens the Model Discretizer. A model does not need to be open.

slmdldiscui('model') opens the Model Discretizer for the model or library called
'name'.

To use the Model Discretizer, you must have a Control System Toolbox license, version 5.2
or later.

Examples
Open the Model Discretizer for the slexAircraftExample model:

slmdldiscui('slexAircraftExample')

Open the Model Discretizer for the discretizing library:

slmdldiscui('discretizing')

See Also
sldiscmdl

Topics
“Discretize a Model with the Model Discretizer”

 slmdldiscui

2-937

Introduced before R2006a

2 Functions — Alphabetical List

2-938

slprofreport
Regenerate profiler report from data, ProfileData, saved from previous run

Syntax
slprofreport(model_nameProfileData)

Description
When you run a model with the profiler enabled, the simulation generates the data and
saves it in the variable, model_nameProfileData. slprofreport(model_name
ProfileData) generates a profiler report based on the data in
model_nameProfileData, saved from the model run.

Input Arguments
ProfileData

Variable that contains profiler data from a model run. The variable name consists of the
model name and ProfileData, for example, vdpProfileData.

Default: None

Examples

Regenerate Simulink Profiler Results

Regenerate the Profiler report for model vdp

In the MATLAB Command Window, start the vdp model.

In the Simulink editor window, run vdp model with Simulink Profiler enabled.

 slprofreport

2-939

Simulink stores the data to the variable vdpProfileData.

To review the report, in the MATLAB Command Window

slprofreport(vdpProfileData)

The Simulink Profiler Report window is displayed.

• “Save Profiler Results”

See Also

Topics
“Save Profiler Results”
“How Profiler Captures Performance Data”

Introduced in R2012a

2 Functions — Alphabetical List

2-940

slproject.create
Create blank Simulink project

Syntax
proj = slproject.create
proj = slproject.create(path)
proj = slproject.create(name)

Description
proj = slproject.create creates and opens a Simulink project using the blank
project template from the start page, and returns a project object. Use the project object
to manipulate the currently open Simulink project at the command line. The new project
is created in the default project folder. To change the default folder for new Simulink
projects, on the Simulink Project tab, click Preferences, and then set the Default folder.

proj = slproject.create(path) creates the project at the location specified by
path.

proj = slproject.create(name) creates the project in the default folder, with the
name specified by name.

Examples

Create a Blank Project in the Default Folder

slproject.create

You can control the default folder for new projects using the project preferences.

 slproject.create

2-941

Create a Blank Project in a Specified Folder
proj = slproject.create('C:\work\myprojectname');

Create a Named Blank Project in the Default Folder
proj = slproject.create('myprojectname');

• “Creating Simulink Projects Programmatically”
• “Automate Simulink Project Tasks Using Scripts”

Input Arguments
path — Path for the new project location
character vector

Path for the new project location, specified as a character vector. If you do not specify the
path, slproject.create creates the project in the default location. You can change the
default location in the project preferences.
Example: C:\work\projectname
Data Types: char

name — Name for the new project
character vector

Name for the new project, specified as a character vector.
Example: myproject
Data Types: char

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently
open Simulink project at the command line.

2 Functions — Alphabetical List

2-942

Properties of proj output argument.

Project Property Description
Name Project name
Information Information about the project such as the

description, source control integration,
repository location, and whether it is a top-
level project.

Dependencies Dependencies between project files in a
MATLAB digraph object.

Shortcuts Shortcut files in the project.
ProjectPath Folders that the project puts on the

MATLAB path.
ProjectReferences Folders that contain referenced projects.

Contains read-only project objects for
referenced projects.

Categories Categories of project labels.
Files Paths and names of project files.
RootFolder Full path to project root folder.

See Also
Simulink.createFromTemplate | addFile | addFolderIncludingChildFiles |
addPath | addReference | addShortcut | simulinkproject

Topics
“Creating Simulink Projects Programmatically”
“Automate Simulink Project Tasks Using Scripts”

Introduced in R2017a

 slproject.create

2-943

addPath
Add folder to path of Simulink project

Syntax
folderpath = addPath(project, folder)

Description
folderpath = addPath(project, folder) adds a folder in a Simulink project to the
current project path. The folder must be in the project. The project puts the folders on the
MATLAB search path when it loads and removes them from the path when it closes. To
learn more, see “Specify Project Path”.

Examples

Add a Folder to the Project Path

sldemo_slproject_airframe;
project = simulinkproject;

Create a new folder.

 folderpath = fullfile(project.RootFolder,'folder');
 mkdir(filepath);

Add this new folder to the project.

 projectFile = addFile(project,folderpath);

Add this new folder to the project path.

folderpath = addPath(project,folderpath);

• “Specify Project Path”

2 Functions — Alphabetical List

2-944

Input Arguments
project — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink project at the command line.

folder — Path of folder
character vector | string

Path of the folder to add relative to the project root folder, specified as a character vector
or string. The folder must be within the root folder.
Example: models/myfolder

Output Arguments
folderpath — Path folder
path folder object

Path folder object containing the specified folder path. The project puts the folders on the
MATLAB search path when it loads and removes them from the path when it closes.

See Also
addFile | addFolderIncludingChildFiles | removePath | simulinkproject

Topics
“Specify Project Path”

Introduced in R2017a

 addPath

2-945

removePath
Remove folder from Simulink project path

Syntax
removePath(project, folder)

Description
removePath(project, folder) removes a folder in a Simulink project from the
current project path. The folder must be in the project.

Examples

Remove a Folder from the Project Path

sldemo_slproject_airframe;
project = simulinkproject;

Create a new folder.

 folderpath = fullfile(project.RootFolder,'folder');
 mkdir(filepath);

Add this new folder to the project.

 projectFile = addFile(project,folderpath);

Add the new folder to the project path.

folderpath = addPath(project,folderpath);

Remove the new folder from the project path.

2 Functions — Alphabetical List

2-946

removePath(project,folderpath)

Input Arguments
project — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink project at the command line.

folder — Path of folder
character vector

Path of the folder to remove relative to the project root folder, specified as a character
vector. The folder must be within the root folder.
Example: models/myfolder

See Also
addPath | simulinkproject

Introduced in R2017a

 removePath

2-947

addReference
Add referenced project to Simulink project

Syntax
projreference = addReference(project,folder)
projreference = addReference(project,folder,type)

Description
projreference = addReference(project,folder) adds a reference to the
Simulink project specified by folder. The reference is added to the current project,
project.

projreference = addReference(project,folder,type) specifies the type of
reference to create. Specify relative or absolute reference.

Examples

Add a Referenced Project

Create a project and get a project object.

sldemo_slproject_airframe;
project = simulinkproject;

Create a new blank project.

projectToReference = slproject.create();

Reload the first project and add a reference to the new blank project.

reload(project);
addReference(project, projectToReference, 'absolute');

2 Functions — Alphabetical List

2-948

Find out if a project is a top-level project. 1 indicates a top-level project.

project.Information.TopLevel

ans =

 logical

 1

Input Arguments
project — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink project at the command line.

folder — Path of folder
character vector

Path of the folder to add the reference, relative to the project root folder, specified as a
character vector. The folder must be within the root folder.
Example: models/myfolder

type — Type of reference
relative | absolute

Type of reference, relative to the project root folder, specified as a character vector.

Output Arguments
projreference — Project reference
project reference object

Project reference object containing information about the referenced project.

 addReference

2-949

See Also
removeReference | simulinkproject

Introduced in R2017a

2 Functions — Alphabetical List

2-950

removeReference
Add folder to Simulink project path

Syntax
removeReference(project,folder)

Description
removeReference(project,folder) removes the reference to the Simulink project
project from the current project.

Examples

Remove a Referenced Project

Create a project and get a project object.

sldemo_slproject_airframe;
project = simulinkproject;

Create a new blank project.

projectToReference = slproject.create();

Reload the first project and add a reference to the new blank project.

 project.reload();
addReference(project, projectToReference, 'absolute');

Remove the reference to the blank project.

 removeReference

2-951

removeReference(project, projectToReference);

Input Arguments
project — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink project at the command line.

folder — Path of folder
character vector

Path of the folder to the reference to be removed, relative to the project root folder,
specified as a character vector. The folder must be within the root folder.
Example: models/myfolder

See Also
addReference | simulinkproject

Introduced in R2017a

2 Functions — Alphabetical List

2-952

addShortcut
Add shortcut to Simulink project

Syntax
shortcut = addShortcut(project,file)

Description
shortcut = addShortcut(project,file) adds a shortcut to the specified file in the
Simulink project.

To set the shortcut to run at startup or shutdown, use Simulink Project. See “Automate
Startup Tasks”.

Examples

Add a Shortcut

Create a project and get a project object.

sldemo_slproject_airframe;
project = simulinkproject;

Create a new file.

filepath = fullfile(project.RootFolder, 'new_model.slx')
 new_system('new_model');
 save_system('new_model',filepath)

Add this new model to the project.

projectFile = addFile(project,filepath)

Add a new shortcut to the new model.

 addShortcut

2-953

shortcut = addShortcut(project,filepath);

• “Automate Startup Tasks”

Input Arguments
project — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink project at the command line.

file — Path of file
character vector

Path of the file to add a shortcut to, relative to the project root folder, including the file
extension, specified as a character vector. The file must be within the root folder.
Example: ‘models/myModelName.slx’

Output Arguments
shortcut — Shortcut
shortcut object

Shortcut object containing information about the shortcut.

See Also
removeShortcut | simulinkproject

Topics
“Automate Startup Tasks”

Introduced in R2017a

2 Functions — Alphabetical List

2-954

removeShortcut
Remove shortcut from Simulink project

Syntax
removeShortcut(project,file)

Description
removeShortcut(project,file) removes the shortcut to the specified file in the
Simulink project.

Examples

Remove a Shortcut

Create a project and get a project object.

sldemo_slproject_airframe;
project = simulinkproject;

Create a new file.

filepath = fullfile(project.RootFolder, 'new_model.slx')
 new_system('new_model');
 save_system('new_model', filepath)

Add this new model to the project.

projectFile = addFile(project, filepath)

Add a new shortcut to the new model.

shortcut = addShortcut(project, filepath);

Remove the shortcut.

 removeShortcut

2-955

removeShortcut(project, shortcut);

Input Arguments
project — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink project at the command line.

file — Path of file
character vector

Path of the shortcut file, relative to the project root folder, including the file extension,
specified as a character vector. The file must be within the root folder.
Example: ‘models/myModelName.slx’

See Also
addShortcut | simulinkproject

Introduced in R2017a

2 Functions — Alphabetical List

2-956

slproject.getCurrentProject
Manipulate current Simulink Project at command line

Syntax
proj = slproject.getCurrentProject

Description
proj = slproject.getCurrentProject gets the current project open in the
Simulink Project Tool and returns a project object proj that you can use to manipulate
the project programmatically. If no project is open, then you see an error.

Note slproject.getCurrentProject will be removed in a future release. Use
slproject.getCurrentProjects instead.

Examples

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProject to get a project
object to manipulate the project at the command line.

sldemo_slproject_airframe
proj = slproject.getCurrentProject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]

 slproject.getCurrentProject

2-957

 ProjectReferences: [1x0 slproject.ProjectReference]
 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\slexamples\airframe'

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently
open Simulink Project at the command line.

See Also
Functions
simulinkproject | slproject.getCurrentProjects | slproject.loadProject

Introduced in R2013a

2 Functions — Alphabetical List

2-958

slproject.getCurrentProjects
List all top-level Simulink projects

Syntax
projects = slproject.getCurrentProjects

Description
projects = slproject.getCurrentProjects returns a list of all top-level projects
open in Simulink Project. Currently only one or zero top-level projects can be loaded.
Returns an object array of 1 or 0 ProjectManager objects projects that you can use to
manipulate the project programmatically. Use slproject.getCurrentProjects for
project automation scripts.

If you execute slproject.getCurrentProjects inside a project shortcut, it returns
only the project that the shortcut belongs to. If the shortcut belongs to a referenced
project, it returns the referenced project.

Examples

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProjects to get a project
object to manipulate the project at the command line.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'

 slproject.getCurrentProjects

2-959

 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]
 ProjectReferences: [1x0 slproject.ProjectReference]
 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\airframe'

Find Project Commands

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = slproject.getCurrentProject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]
 ProjectReferences: [1x0 slproject.ProjectReference]
 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\airframe'

Find out what you can do with your project.

methods(proj)

Methods for class slproject.ProjectManager:

addFile findCategory
addFolderIncludingChildFiles findFile
close isLoaded
createCategory listModifiedFiles
export refreshSourceControl

reload
removeCategory
removeFile

2 Functions — Alphabetical List

2-960

Examine Project Properties

After you get a project object, you can examine project properties.

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects;

Examine the project files.

files = proj.Files

files =

 1x30 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Examine the labels of the eighth file.

proj.Files(8).Labels

ans =

 Label with properties:

File: 'C:\Work\airframe\data\system_model.sldd'
 Data: []
 DataType: 'none'
 Name: 'Design'
 CategoryName: 'Classification'

Get a particular file.

myfile = findFile(proj, 'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Temp\airframe\models\AnalogControl.mdl'
 Labels: [1x1 slproject.Label]

 slproject.getCurrentProjects

2-961

 Revision: '2'
SourceControlStatus: Unmodified

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel
removeLabel
findLabel

Output Arguments
projects — Projects
object array of 1 or 0 ProjectManager objects

Projects, returned as an object array of 1 or 0 ProjectManager objects. Use the project
object to manipulate the currently open Simulink Project at the command line.

Properties of ProjectManager objects in output argument.

Project Property Description
Name Project name
Categories Categories of project labels
Shortcuts Shortcut files in project
ProjectPath Folders that the project puts on the

MATLAB path
ProjectReferences Folders that contain referenced projects
Files Paths and names of project files
RootFolder Full path to project root folder

Tips
Alternatively, you can use simulinkproject to get a project object, but
simulinkproject also opens and gives focus to the Simulink Project Tool. Use

2 Functions — Alphabetical List

2-962

simulinkproject to open projects and explore projects interactively. Use
slproject.getCurrentProjects for project automation scripts.

See Also
Functions
simulinkproject | slproject.getCurrentProject | slproject.loadProject

Introduced in R2016a

 slproject.getCurrentProjects

2-963

slproject.loadProject
Load Simulink project

Syntax
slproject.loadProject(projectPath);
proj = slproject.loadProject(projectPath)

Description
slproject.loadProject(projectPath); loads the project specified by the .prj file
or folder projectPath in the Simulink Project Tool, and closes any currently open
project.

proj = slproject.loadProject(projectPath) loads the project and returns a
project object proj for manipulating the project. Use slproject.loadProject for
project automation scripts.

Examples

Load Project

Load a project from a folder called 'C:/projects/project1/'. Replace this path with
the location of your project.

proj = slproject.loadProject('C:/projects/project1/')

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProjects to get a project
object to manipulate the project at the command line.

2 Functions — Alphabetical List

2-964

sldemo_slproject_airframe
proj = slproject.getCurrentProjects

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]
 ProjectReferences: [1x0 slproject.ProjectReference]
 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\airframe'

Find Project Commands

Get the Airframe project.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects;

Find project commands.

methods(proj)

Methods for class slproject.ProjectManager:

addFile findCategory
addFolderIncludingChildFiles findFile
close isLoaded
createCategory listModifiedFiles
export refreshSourceControl

reload
removeCategory
removeFile

Examine Project Properties

After you get a project object, you can examine project properties.

 slproject.loadProject

2-965

Get the airframe project.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects;

Examine the project files.

files = proj.Files

files =

 1x30 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Examine the labels of the 13th file.

proj.Files(13).Labels

ans =

 Label with properties:

File: 'C:\Temp\airframe\models\AnalogControl.mdl'
 Data: []
 DataType: 'none'
 Name: 'Design'
 CategoryName: 'Classification'

Get a particular file by name.

myfile = findFile(proj, 'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Temp\airframe\models\AnalogControl.mdl'
 Labels: [1x1 slproject.Label]
 Revision: '2'
SourceControlStatus: Unmodified

Find out what you can do with the file.

2 Functions — Alphabetical List

2-966

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel
removeLabel
findLabel

Input Arguments
projectPath — Full path to project file or folder
character vector

Full path to project .prj file or the path to the project root folder, specified as a
character vector.
Example: 'C:/projects/project1/myProject.prj'
Example: 'C:/projects/project1/'

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate and explore the
Simulink Project at the command line.

Properties of proj output argument.

Project Property Description
Name Project name
Categories Categories of project labels
Shortcuts Shortcut files in project
ProjectPath Folders that the project puts on the

MATLAB path
ProjectReferences Folders that contain referenced projects

 slproject.loadProject

2-967

Project Property Description
Files Paths and names of project files
RootFolder Full path to project root folder

See Also
Functions
simulinkproject | slproject.getCurrentProjects

Topics
“What Are Simulink Projects?”

Introduced in R2013a

2 Functions — Alphabetical List

2-968

listModifiedFiles
List modified files in Simulink project

Syntax
modifiedfiles = listModifiedFiles(proj)

Description
modifiedfiles = listModifiedFiles(proj) returns the list of modified project
files in the project object proj. listModifiedFiles refreshes the source control
statuses in the project and then returns an array of the project files which are listed in the
Modified Files view of the Simulink Project.

Examples

Get a List of Modified Files in the Project

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Modify a project model file by adding an arbitrary block.

open_system('AnalogControl')
add_block('built-in/SubSystem', 'AnalogControl/test')
save_system('AnalogControl')

Get all the modified files in the project.

modifiedfiles = listModifiedFiles(proj)

modifiedfiles =

 listModifiedFiles

2-969

 1x2 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Observe two modified files. Compare with the Modified Files view in Simulink Project,
where you can see a modified model file, and the corresponding .SimulinkProject
definition file.

Get the second modified file.

modifiedfiles(2)

ans =

 ProjectFile with properties:

Path: 'C:\Work\temp\slexamples\airframe2\models\AnalogControl.mdl'
 Labels: [1x1 slproject.Label]
 Revision: '2'
 SourceControlStatus: Modified

Observe the file SourceControlStatus property is Modified. Similarly,
listModifiedFiles returns any files that are added, conflicted, deleted, etc., that show
up in the Modified Files view in Simulink Project.

Get all the project files with a particular source control status. For example, get the files
that are Unmodified.

proj.Files(ismember([proj.Files.SourceControlStatus], matlab.sourcecontrol.Status.Unmodified))

ans =

 1x29 ProjectFile array with properties:

 Path
 Labels

2 Functions — Alphabetical List

2-970

 Revision
 SourceControlStatus

Input Arguments
proj — Project
project

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

Output Arguments
modifiedfiles — Modified files
file object | array

Modified files, returned as an array of file objects.

See Also
Functions
refreshSourceControl | simulinkproject

Introduced in R2016a

 listModifiedFiles

2-971

listRequiredFiles
Get project file dependencies

Syntax
files = listRequiredFiles(proj,file)

Description
files = listRequiredFiles(proj,file) returns the files that the specified file
requires to run.

Examples

Get Required Files

Open the airframe project, create a project object and get a file.

sldemo_slproject_airframe;
proj = simulinkproject;
file = 'models/slproject_f14.slx'

Get the files required by the specified file.

files = listRequiredFiles(project, file);

• “Perform Impact Analysis”

Input Arguments
proj — Project
project object

2 Functions — Alphabetical List

2-972

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

file — Path of file
character vector | project file object

Path of the file relative to the project root folder, including the file extension, specified as
a character vector, an absolute file path or an instance of a project file object. The file
must be within the root folder.
Example: ‘models/myModelName.slx’

Output Arguments
file — Project file
cell array of character vectors

Required files, returned as a cell array of character vectors.

See Also
simulinkproject

Topics
“Perform Impact Analysis”

Introduced in R2017a

 listRequiredFiles

2-973

refreshSourceControl
Update source control status of Simulink project files

Syntax
refreshSourceControl(proj)

Description
refreshSourceControl(proj) updates the source control status for all files in the
Simulink project proj. Use this to get the latest source control information before
querying the SourceControlStatus property on individual files.

If you use listModifiedFiles to find all modified files in the project, you do not need
to call refreshSourceControl first.

Examples

Refresh Source Control Information on Files in the Project

Open the airframe project and create a project object.

sldemo_slproject_airframe;
proj = simulinkproject;

Refresh source control status before querying individual files.

refreshSourceControl(proj)

Input Arguments
proj — Project
project

2 Functions — Alphabetical List

2-974

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

See Also
Functions
listModifiedFiles | simulinkproject

Introduced in R2016a

 refreshSourceControl

2-975

solverprofiler.profileModel
Examine model for performance analysis

Syntax
res = solverprofiler.profileModel(model)
res = solverprofiler.profileModel(model, Name,Value)

Description
res = solverprofiler.profileModel(model) runs the Solver Profiler on the
specified model and stores the results in res

res = solverprofiler.profileModel(model, Name,Value)specifies the Solver
Profiler parameters using one or more Name, Value pair arguments.

Examples

Examine a Model with Default Settings

Examine the model f14 using the default commandline settings.

model = 'f14';
res = solverprofiler.profileModel(model);

You can see a summary of the results by calling res.summary.

res.summary

 struct with fields:

 solver: 'ode45'
 tStart: 0
 tStop: 60
 absTol: 1.0000e-06

2 Functions — Alphabetical List

2-976

 relTol: 1.0000e-04
 hMax: 0.1000
 hAverage: 0.0444
 steps: 1352
 profileTime: 0.9974
 zcNumber: 0
 resetNumber: 600
 jacobianNumber: 0
 exceptionNumber: 195

Open the results in the Solver Profiler dialog to visualize them. This step is equivalent to
enabling OpenSP when calling the function.

solverprofiler.exploreResult(res)

Configure Solver Profiler and Examine a Model

Examine the model ssc_actuator_custom_pneumatic with a fully specified
configuration.

model = 'ssc_actuator_custom_pneumatic';
res = solverprofiler.profileModel(model, ...
 'SaveStates' , 'on', ...
 'SaveSimscapeStates' , 'On', ...
 'SaveJacobian' , 'On', ...
 'StartTime' , 5, ...
 'StopTime' , 50, ...
 'BufferSize', 10000,...
 'TimeOut', 5,...
 'OpenSP', 'On',...
 'DataFullFile', fullfile(pwd, 'ssc_profiling_result.mat'));

Input Arguments
model — Model to examine
character vector (default)

Name of model to be profiled, specified as a character vector.
Example: h = solverprofiler.profileModel('vdp')

 solverprofiler.profileModel

2-977

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'StartTime',0,'StopTime',10,'SaveStates','On'

SaveStates — Save model states to file
off (default) | on

By default, the profiler does not save the states of the model. Enabling this parameter
configures the profiler to save the states to a MAT-file.
Example: 'SaveStates','On'

SaveSimscapeStates — Save Simscape states to file
off (default) | on

Enable this parameter to save Simscape states to a MAT-file.
Example: 'SaveSimscapeStates', 'On'

SaveJacobian — Save model Jacobian
off (default) | on

Option to log the solver Jacobian matrices to memory. This option is useful for simulations
that use implicit solvers. For a comparison of solvers, see “Compare Solvers”.
Example: 'SaveJacobian', 'On'

StartTime — Profiler start time
model start time (default) | scalar

Time, in seconds, of the simulation that the profiler starts analyzing the model. This is not
the same as the start time of the simulation.
Example: 'StartTime',5

StopTime — Profiler stop time
model stop time (default) | scalar

Time, in seconds, of the simulation to which the profiler should profile the model. By
default, the analysis continues until the end of the simulation. Changing this parameter

2 Functions — Alphabetical List

2-978

does not change the stop time of the model which you specify in the Model Configuration
Parameters.

A value less than the configured stop time of the model stops the profiling and simulation
at StopTime.
Example: 'StopTime',30

BufferSize — Memory impact of logging
50000 (default) | positive scalar

Maximum number of events that are logged. If the number of logged events reaches this
value and memory is available, increase BufferSize. If memory is limited, consider
lowering the value.
Example: 'BufferSize',60000

TimeOut — Maximum time to wait for solver to resume
positive scalar

Time, in seconds, to wait before the profiler stops running. This option is useful in
situations where the simulation is unable to proceed. The profiler waits for the specified
time and quits if no progress has been made.
Example: 'TimeOut', 10

OpenSP — Open the Solver Profiler dialog box
off (default) | on

Option to open the Solver Profiler dialog box after profiling has completed.
Example: 'OpenSP','On'

DataFullFile — Path and name of saved results
character vector of full file path

By default, the profiling results are saved in a MAT-file named
model_@_dd_Month_yyyy_hh_mm_ss.mat in the current working folder. You can
specify a different file name by which to save the results in the current working folder. To
save the file in a different location, specify the full path of the file, including the file name.
Example: 'DataFullFile','C:\Users\myusername\Documents\profiled
\vdp_results.mat'

 solverprofiler.profileModel

2-979

Output Arguments
res — High-level summary of profiling results
structure

Profiling results, returned as a structure with the fields:

file — Full path and name of saved results
character vector

Path and name of the MAT-file where the results of the profiling operation are stored as
MAT file. By default, they are stored in the current working folder with a file name having
the pattern: model_@_dd_Month_yyyy_hh_mm_ss.mat. To store them in a different
location or by a different name, specify DataFullFile when calling
solverprofiler.profileModel.

summary — Summary of profiling results
structure

A high-level summary of the results of the profiling operation, returned as a structure.
The summary provides an overview of the performance of the simulation and health of the
model.

The summary structure contains these fields.

Field Purpose Values Description
solver Solver used by

simulation
any of the solvers
supported by
Solver Profiler

Solver used by the simulation as
configured in the Configuration
Parameters for the model. For a list of
all the solvers, see “Solver”. The
Solver Profiler does not support
models without any continuous states.

tStart Start time of
simulation

scalar Start time, in seconds, for the
simulation of the model during the
profiling operation.

2 Functions — Alphabetical List

2-980

Field Purpose Values Description
tStop Stop time of

simulation
scalar Stop time, in seconds, of the

simulation during the profiling
operation. If StopTime is set to be
earlier than the configured Stop Time
of the model, the simulation stops at
StopTime.

absTol Absolute tolerance
of the solver

positive scalar Absolute tolerance of the solver as
specified in the configuration settings
for the model. For more information,
see “Absolute tolerance”

relTol Relative tolerance
of the solver

positive scalar Relative tolerance of the solver as
specified in the configuration settings
of the model. For more information,
see “Relative tolerance”

hMax Maximum step
size

positive scalar Largest time step that the solver can
take. See “Max step size”.

hAvera
ge

Average step size positive scalar Average size of the time step taken by
the solver.

steps Total steps taken positive scalar Total number of time steps taken by
the solver.

profil
eTime

Time to profile positive scalar Time, in seconds, taken by the Solver
Profiler to examine the model.

zcNumb
er

Total number of
zero crossings

nonnegative scalar Number of times zero crossings occur
during the simulation of the model.
The detection of these zero crossings
incurs computational cost and can
slow down the simulation. For
information on zero-crossing
detection, see “Zero-Crossing
Detection”.

resetN
umber

Number of solver
resets

nonnegative scalar Number of times the solver has to
reset its parameters.

 solverprofiler.profileModel

2-981

Field Purpose Values Description
jacobi
anNumb
er

Number of
Jacobian updates

nonnegative scalar Number of times the solver Jacobian
matrix is updated during a simulation.
For more information, see “Explicit
Versus Implicit Continuous Solvers”.

except
ionNum
ber

Number of solver
exceptions

nonnegative scalar Total number of solver exceptions
encountered during a simulation.
These exceptions are events where
the solver is unable to solve the model
states to the specified accuracy. As a
result, the solver runs adjusted trials
which increase computational cost.

Data Types: struct

See Also
“Understand Profiling Results” | “Examine Model Dynamics Using Solver Profiler”

Topics
“Solver Types”
“Choose a Solver”

Introduced in R2017b

2 Functions — Alphabetical List

2-982

start_simulink
Start Simulink without opening any windows

Syntax
start_simulink

Description
start_simulink starts Simulink without opening any models, the Start Page, or the
Simulink Library Browser. Use this in startup scripts to start Simulink without any other
window taking the focus away from the MATLAB Desktop. For example, use
start_simulink in the MATLAB startup.m file, when starting MATLAB with the -r
command line option, or in Simulink project startup scripts. Opening a model for the first
time in a MATLAB session is much quicker after running start_simulink.

If you want to open the Simulink Start Page to create or open models, use the simulink
function instead.

If you want to open the Library Browser, use slLibraryBrowser.

Examples

Start Simulink When Starting MATLAB

Use the -r command line option to start Simulink when starting MATLAB, without
opening any windows.

On Windows, create a desktop shortcut with the following target:

matlabroot\bin\win64\matlab.exe -r start_simulink

On Linux® and Mac, enter:

 start_simulink

2-983

matlab -r start_simulink

• “Automate Startup Tasks”

See Also
simulink | simulinkproject | slLibraryBrowser

Topics
“Automate Startup Tasks”

Introduced in R2015b

2 Functions — Alphabetical List

2-984

slupdate
Replace blocks from previous releases with latest versions

Note slupdate will be removed in a future release. The slupdate command can only
upgrade some parts of your model. Use the Upgrade Advisor instead. See “Model
Upgrades”.

Syntax
slupdate('sys')
slupdate('sys', prompt)
AnalysisResult = slupdate('sys', 'OperatingMode', 'Analyze')

Description
slupdate('sys') replaces blocks in model sys from a previous release of Simulink
software with the latest versions. The slupdate function alone cannot perform all
upgrade checks on your model. Use the Upgrade Advisor to access the slupdate checks
and also advice and fixes for all other upgrade checks. See “Model Upgrades”.

Note Best practice is to first open the model, and press CTRL+D to update the model,
before you call slupdate.

slupdate('sys', prompt) specifies whether to prompt you before replacing a block.
If prompt equals 1, the command prompts you before replacing the block. The prompt
asks whether you want to replace the block. Valid responses are

• y

Replace the block (the default).
• n

 slupdate

2-985

Do not replace the block.
• a

Replace this and all subsequent obsolete blocks without further prompting.

If prompt equals 0, the command replaces all obsolete blocks without prompting you.

In addition to replacing obsolete blocks, slupdate

• Reconnects broken links to masked blocks in libraries provided by MathWorks to
ensure that the model reflects changes made to the blocks in this release. This will
overwrite any custom changes you made to the masks of these blocks.

• Updates obsolete configuration settings for the model.

AnalysisResult = slupdate('sys', 'OperatingMode', 'Analyze') performs
only the analysis portion without updating or changing the model. This command analyzes
referenced models, linked libraries, and S-functions, and then returns a data structure
with the following fields:

• Message — character vector containing a message summarizing the results
• blockList — cell array listing blocks that need to be updated
• blockReasons — cell array listing reasons for updating the corresponding blocks
• modelList — cell array listing referenced models and the parent model
• libraryList — cell array listing non-MathWorks libraries referenced
• configSetList — for internal use
• sfunList — cell array listing S-functions referenced
• sfunOK — logical array representing S-function status, where false indicates that an

S-function needs updating and true indicates otherwise
• sfunType — cell array listing apparent S-function type (e.g., .mex)

See Also
upgradeadvisor

Topics
“Model Upgrades”

2 Functions — Alphabetical List

2-986

Introduced before R2006a

 slupdate

2-987

stringtype
Create string data type

Syntax
string = stringtype(maximum_length)
stringtype(maximum_length)

Description
string = stringtype(maximum_length) creates a Simulink string data type with a
maximum length. Alternatively, you can also create string data types using the String
Constant, String Concatenate, and Compose String blocks.

stringtype(maximum_length) creates a Simulink string data type with a maximum
length that you can type directly on the MATLAB command line or in the Output data
type parameter of the String Constant, String Concatenate, or Compose String block.

Examples

Create a String Data Type of Maximum Length 10

Create a string data type of maximum length 10.

h=stringtype(10)

h =

 StringType with properties:

 MaximumLength: 10
 Description: ''

2 Functions — Alphabetical List

2-988

 DataScope: 'Auto'
 HeaderFile: ''

Input Arguments
maximum_length — Maximum length
scalar

Maximum length of string data type, specified as a scalar, from 1 to 32766. This value can
be an integer, MATLAB variable, or MATLAB expression.
Data Types: double

Output Arguments
string — String data type object
scalar

String object, specified as a scalar.

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String To ASCII | String To Enum | String
to Double | String to Single | Substring | To String

Topics
“Simulink Strings”

Introduced in R2018a

 stringtype

2-989

trim
Find trim point of dynamic system

Syntax
[x,u,y,dx] = trim('sys')
[x,u,y,dx] = trim('sys',x0,u0,y0)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t)

Description
A trim point, also known as an equilibrium point, is a point in the parameter space of a
dynamic system at which the system is in a steady state. For example, a trim point of an
aircraft is a setting of its controls that causes the aircraft to fly straight and level.
Mathematically, a trim point is a point where the system's state derivatives equal zero.
trim starts from an initial point and searches, using a sequential quadratic programming
algorithm, until it finds the nearest trim point. You must supply the initial point implicitly
or explicitly. If trim cannot find a trim point, it returns the point encountered in its
search where the state derivatives are closest to zero in a min-max sense; that is, it
returns the point that minimizes the maximum deviation from zero of the derivatives.
trim can find trim points that meet specific input, output, or state conditions, and it can
find points where a system is changing in a specified manner, that is, points where the
system's state derivatives equal specific nonzero values.

[x,u,y,dx] = trim('sys') finds the equilibrium point of the model 'sys', nearest to
the system's initial state, x0. Specifically, trim finds the equilibrium point that minimizes
the maximum absolute value of [x-x0,u,y]. If trim cannot find an equilibrium point
near the system's initial state, it returns the point at which the system is nearest to
equilibrium. Specifically, it returns the point that minimizes abs(dx) where dx
represents the derivative of the system. You can obtain x0 using this command.

[sizes,x0,xstr] = sys([],[],[],0)

2 Functions — Alphabetical List

2-990

[x,u,y,dx] = trim('sys',x0,u0,y0) finds the trim point nearest to x0, u0, y0, that
is, the point that minimizes the maximum value of

abs([x-x0; u-u0; y-y0])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy) finds the trim point closest to x0,
u0, y0 that satisfies a specified set of state, input, and/or output conditions. The integer
vectors ix, iu, and iy select the values in x0, u0, and y0 that must be satisfied. If trim
cannot find an equilibrium point that satisfies the specified set of conditions exactly, it
returns the nearest point that satisfies the conditions, namely,

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx) finds specific
nonequilibrium points, that is, points at which the system's state derivatives have some
specified nonzero value. Here, dx0 specifies the state derivative values at the search's
starting point and idx selects the values in dx0 that the search must satisfy exactly.

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options)
specifies an array of optimization parameters that trim passes to the optimization
function that it uses to find trim points. The optimization function, in turn, uses this array
to control the optimization process and to return information about the process. trim
returns the options array at the end of the search process. By exposing the underlying
optimization process in this way, trim allows you to monitor and fine-tune the search for
trim points.

The following table describes how each element affects the search for a trim point. Array
elements 1, 2, 3, 4, and 10 are particularly useful for finding trim points.

No. Default Description
1 0 Specifies display options. 0 specifies no display; 1 specifies

tabular output; -1 suppresses warning messages.
2 10–4 Precision the computed trim point must attain to terminate

the search.
3 10–4 Precision the trim search goal function must attain to

terminate the search.
4 10–6 Precision the state derivatives must attain to terminate the

search.
5 N/A Not used.

 trim

2-991

No. Default Description
6 N/A Not used.
7 N/A Used internally.
8 N/A Returns the value of the trim search goal function (λ in goal

attainment).
9 N/A Not used.
10 N/A Returns the number of iterations used to find a trim point.
11 N/A Returns the number of function gradient evaluations.
12 0 Not used.
13 0 Number of equality constraints.
14 100*(Number

of variables)
Maximum number of function evaluations to use to find a
trim point.

15 N/A Not used.
16 10–8 Used internally.
17 0.1 Used internally.
18 N/A Returns the step length.

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t)
sets the time to t if the system is dependent on time.

Note If you fix any of the state, input or output values, trim uses the unspecified free
variables to derive the solution that satisfies these constraints.

Examples
Consider a linear state-space system modeled using a State-Space block

&x Ax Bu

y Cx Du

= +

= +

The A, B, C, and D matrices to enter at the command line or in the block parameters
dialog are:.

2 Functions — Alphabetical List

2-992

A = [-0.09 -0.01; 1 0];
B = [0 -7; 0 -2];
C = [0 2; 1 -5];
D = [-3 0; 1 0];

Example 1
To find an equilibrium point in this model called sys, use:

[x,u,y,dx,options] = trim('sys')
x =
 0
 0
u =
 0
 0
y =
 0
 0
dx =
 0
 0

The number of iterations taken is:

options(10)
ans =
 7

Example 2
To find an equilibrium point near x = [1;1], u = [1;1], enter

x0 = [1;1];
u0 = [1;1];
[x,u,y,dx,options] = trim('sys', x0, u0);
x =
 1.0e-13 *
 -0.5160
 -0.5169
u =
 0.3333
 0.0000

 trim

2-993

y =
 -1.0000
 0.3333
dx =
 1.0e-12 *
 0.1979
 0.0035

The number of iterations taken is

options(10)
ans =
 25

Example 3
To find an equilibrium point with the outputs fixed to 1, use:

y = [1;1];
iy = [1;2];
[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)
x =
 0.0009
 -0.3075
u =
 -0.5383
 0.0004
y =
 1.0000
 1.0000
dx =
 1.0e-15 *
 -0.0170
 0.1483

Example 4
To find an equilibrium point with the outputs fixed to 1 and the derivatives set to 0 and 1,
use

y = [1;1];
iy = [1;2];
dx = [0;1];

2 Functions — Alphabetical List

2-994

idx = [1;2];
[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)
x =
 0.9752
 -0.0827
u =
 -0.3884
 -0.0124
y =
 1.0000
 1.0000
dx =
 0.0000
 1.0000

The number of iterations taken is

options(10)
ans =
 13

Limitations
The trim point found by trim starting from any given initial point is only a local value.
Other, more suitable trim points may exist. Thus, if you want to find the most suitable trim
point for a particular application, it is important to try a number of initial guesses for x, u,
and y.

Algorithms
trim uses a sequential quadratic programming algorithm to find trim points. See
“Sequential Quadratic Programming (SQP)” (Optimization Toolbox) for a description of
this algorithm.

Introduced before R2006a

 trim

2-995

tunablevars2parameterobjects
Create Simulink parameter objects from tunable parameters

Syntax
tunablevars2parameterobjects ('modelName')
tunablevars2parameterobjects ('modelName', class)

Description
tunablevars2parameterobjects ('modelName') creates Simulink.Parameter
objects in the base workspace for the variables listed in the specified model's Tunable
Parameters dialog, then deletes the source information from the dialog. To preserve the
information, save the resulting Simulink parameter objects into a MAT-file.

If a tunable variable is already defined as a numeric variable in the base workspace, the
variable will be replaced by a parameter object and the original variable will be copied to
the object's Value property.

If a tunable variable is already defined as a Simulink parameter object, the object will not
be modified but the information for the variable will still be deleted from the Tunable
Parameters dialog.

If a tunable variable is defined as any other class of variable, the variable will not be
modified and the information for the variable will not be deleted from the Tunable
Parameters dialog.

tunablevars2parameterobjects ('modelName', class) creates objects of the
specified class rather than Simulink.Parameter objects.

Input Arguments
modelName

Model name or handle

2 Functions — Alphabetical List

2-996

class

Parameter class to use for creating objects

Default: Simulink.Parameter

See Also
Simulink.Parameter

Topics
“Tunable Parameters”

Introduced in R2007b

 tunablevars2parameterobjects

2-997

ufix
Create Simulink.NumericType object describing unsigned fixed-point data type

Syntax
a = ufix(WordLength)

Description
ufix(WordLength) returns a Simulink.NumericType object that describes an
unsigned fixed-point data type with the specified word length and unspecified scaling.

Note ufix is a legacy function. In new code, use fixdt instead. In existing code,
replace ufix(WordLength) with fixdt(0,WordLength).

Examples
Define a 16-bit unsigned fixed-point data type.

a = ufix(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Unsigned'
 WordLength: 16
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

2 Functions — Alphabetical List

2-998

See Also
Simulink.NumericType | fixdt | float | sfix | sfrac | sint | ufrac | uint

Introduced before R2006a

 ufix

2-999

ufrac
Create Simulink.NumericType object describing unsigned fractional data type

Syntax
a = ufrac(WordLength)
a = ufrac(WordLength, GuardBits)

Description
ufrac(WordLength) returns a Simulink.NumericType object that describes the data
type of an unsigned fractional data type with a word size given by WordLength.

ufrac(WordLength, GuardBits) returns a Simulink.NumericType object that
describes the data type of an unsigned fractional data type. The total word size is given
by WordLength with GuardBits bits located to the left of the binary point.

Note ufrac is a legacy function. In new coder, use fixdt instead. In existing code,
replace ufrac(WordLength) with fixdt(0,WordLength,WordLength) and
ufrac(WordLength,GuardBits) with fixdt(0,WordLength,(WordLength-
GuardBits)).

Examples
Define an 8-bit unsigned fractional data type with 4 guard bits. Note that the range of this
data type is from 0 to (1 - 2-8).24 = 15.9375.

a = ufrac(8,4)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'

2 Functions — Alphabetical List

2-1000

 WordLength: 8
 FractionLength: 4
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

See Also
Simulink.NumericType | fixdt | float | sfix | sfrac | sint | ufix | uint

Introduced before R2006a

 ufrac

2-1001

uint
Create Simulink.NumericType object describing unsigned integer data type

Syntax
a = uint(WordLength)

Description
uint(WordLength) returns a Simulink.NumericType object that describes the data
type of an unsigned integer with a word size given by WordLength.

Note uint is a legacy function. In new code, use fixdt instead. In existing code,
replace uint(WordLength) with fixdt(0,WordLength,0).

Examples
Define a 16-bit unsigned integer.

a = uint(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 16
 FractionLength: 0
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

2 Functions — Alphabetical List

2-1002

See Also
Simulink.NumericType | fixdt | float | sfix | sfrac | sint | ufix | ufrac

Introduced before R2006a

 uint

2-1003

unpack
Extract signal logging objects from signal logs and write them into MATLAB workspace

Syntax
log.unpack
tsarray.unpack
log.unpack('systems')
log.unpack('all')

Description

Note The ModelDataLogs class is supported for backwards compatibility. Starting in
R2016a, you cannot log data in the ModelDataLogs format. Signal logging uses the
Dataset format. In R2016a or later, when you open a model from an earlier release that
had used ModelDataLogs format, the model simulated in use Dataset format.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

log.unpack or unpack(log) extracts the top level elements of the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named log (e.g.,
logsout).

log.unpack('systems') or unpack(log, 'systems') extracts
Simulink.Timeseries and Simulink.TsArray objects from the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named log . This
command does not extract Simulink.Timeseries objects from Simulink.TsArray

2 Functions — Alphabetical List

2-1004

objects nor does it write intermediate Simulink.ModelDataLogs or
Simulink.SubsysDataLogs objects to the MATLAB workspace.

log.unpack('all') or unpack(log, 'all') extracts all the
Simulink.Timeseries objects contained by the Simulink.ModelDataLogs,
Simulink.TsArray, or Simulink.SubsysDataLogs object named log.

tsarray.unpack extracts the time-series objects of class Simulink.Timeseries from
the Simulink.TsArray object named tsarray.

See Also
Simulink.ModelDataLogs | Simulink.SubsysDataLogs | Simulink.Timeseries |
Simulink.TsArray | who | whos

Topics
“Export Signal Data Using Signal Logging”

Introduced before R2006a

 unpack

2-1005

upgradeadvisor
Open Upgrade Advisor

Syntax
upgradeadvisor('modelname')
upgrader = upgradeadvisor('modelname')

Description
upgradeadvisor('modelname') opens the Upgrade Advisor for the model specified by
modelname. This command loads the model if necessary, but does not open it in the
Simulink Editor. Use the Upgrade Advisor to help you upgrade and improve models with
the current release.

upgrader = upgradeadvisor('modelname') returns an object that you can use to
analyze and upgrade a hierarchy of models programmatically. If you specify an output,
then the Upgrade Advisor does not open. You can use the methods analyze and upgrade
with the upgrader object output of the upgradeadvisor function.

• To programmatically analyze a model for recommended upgrades, create an
upgrader object and use the method analyze.

• To programmatically analyze and upgrade a model, create an upgrader object and
use the method upgrade.

• To configure options before running analyze or upgrade, see “Examples” on page 2-
1007.

Tip For an example showing how to programmatically upgrade a whole project, see
“Upgrade Simulink Models Using a Simulink Project”.

2 Functions — Alphabetical List

2-1006

Input Arguments
modelname

Name or handle to the model, specified as a character vector.

Output Arguments
upgrader

Object for analyzing and upgrading the hierarchy of models programmatically.

Examples

Open Upgrade Advisor on a Model
To open the Upgrade Advisor on the vdp example model:

upgradeadvisor('vdp')

To open the Upgrade Advisor on the currently selected model:

upgradeadvisor(bdroot)

Programmatically Analyze and Upgrade a Model
1 Get an upgrader object. This example uses a writable copy of the vdp model.

load_system('vdp'); save_system('vdp',fullfile(tempdir, 'myvdp'))
upgrader = upgradeadvisor('myvdp')

upgrader =

 Upgrader with properties:

 ChecksToSkip: {}
 SkipLibraries: 0
 SkipBlocksets: 1
 OneLevelOnly: 0

 upgradeadvisor

2-1007

 ShowReport: 1
 RootModel: 'myvdp'
 ReportFile: ''

2 To analyze the model for recommended upgrades, following library links and model
references, run:

analyze(upgrader);

You see a report of issues found.
3 To analyze the model and automatically fix all issues (where automated fixes are

available), run:

upgrade(upgrader);

This command follows library links and model references, and saves any fixes to the
model files.

You see a report of issues found and actions taken.
4 To find the location of the report:

reportLocation = upgrader.ReportFile
5 You can configure options before running analyze or upgrade.

• Specify checks to skip before running analyze or upgrade. Find the ID for a check
in the Upgrade Advisor by right-clicking the check and selecting Send Check ID
to Workspace. Then set the advisor.ChecksToSkip property. For example:

advisor.ChecksToSkip = {'mathworks.design.CSStoVSSConvert'};
upgrade(upgrader);

• Specify running the Upgrade Advisor on only the current model without following
library links or model references:

upgrader.OneLevelOnly = true; % default false

• Specify running the Upgrade Advisor on the current model, following model
references but not library links:

upgrader.SkipLibraries = true; % default false

• Specify running the Upgrade Advisor on the current model, including upgrading
files in blocksets or toolboxes:

upgrader.SkipBlocksets = false; % default true

2 Functions — Alphabetical List

2-1008

By default, the Upgrade Advisor does not upgrade files in blocksets or toolboxes.
The Upgrade Advisor detects blocksets from the output of ver and the existence
of a Contents.m file.

• To turn off showing the report after analyze or upgrade, set:

upgrader.ShowReport = false; % default true

Tip For an example showing how to programmatically upgrade a whole project, see
“Upgrade Simulink Models Using a Simulink Project”.

Tips
• The Upgrade Advisor can identify cases where you can benefit by changing your model

to use new features and settings in Simulink. The Advisor provides advice for
transitioning to new technologies, and upgrading a model hierarchy.

The Upgrade Advisor can also identify cases where a model will not work because
changes and improvements in Simulink require changes to a model.

The Upgrade Advisor offers options to perform recommended actions automatically or
instructions for manual fixes.

Alternatives
You can also open the Upgrade Advisor from the Simulink Editor, by selecting Analysis >
Model Advisor > Upgrade Advisor.

Alternatively, you can open the Upgrade Advisor from the Model Advisor. In the Model
Advisor, under By Task checks, expand the folder Upgrading to the Current
Simulink Version and select the check Open the Upgrade Advisor.

See Also
modeladvisor

Topics
“Consult the Upgrade Advisor”

 upgradeadvisor

2-1009

“Run Model Checks”
“Upgrade Simulink Models Using a Simulink Project”

Introduced in R2012b

2 Functions — Alphabetical List

2-1010

view_mdlrefs
Display graph of model reference dependencies

Syntax
view_mdlrefs('modelName')

Description
view_mdlrefs('modelName') launches the Model Dependency Viewer, which displays
a graph of model reference dependencies for the model specified by modelName. The
nodes in the graph represent Simulink models. The directed lines indicate model
dependencies.

The default display omits library blocks. You could see this same display by opening
modelName and choosing Analysis > Model Dependencies > Model Dependency
Viewer > Models Only from the model menu. Use Analysis > Model Dependencies >
Model Dependency Viewerto see other dependency displays.

The Model Dependency Viewer is the same tool, and provides the same options, whether
you launch it by typing view_mdlrefs('modelName') or by using the Simulink GUI. To
see an example of using the Model Dependency Viewer, type sldemo_mdlref_depgraph
in the MATLAB Command Window.

See Also
Model | find_mdlrefs

Topics
sldemo_mdlref_depgraph
“Model Referencing”
“Model Dependency Viewer”

 view_mdlrefs

2-1011

matlab:sldemo_mdlref_depgraph

Introduced before R2006a

2 Functions — Alphabetical List

2-1012

who
List names of top-level data logging objects in Simulink ModelDataLogs data log

Syntax
log.who

tsarray.who

log.who('systems')

log.who('all')

Description

Note To list names of top-level data logging objects in Dataset format, use
Simulink.SimulationData.Dataset.find.

The ModelDataLogs class is supported for backwards compatibility. Starting in R2016a,
you cannot log data in the ModelDataLogs format. Signal logging uses the Dataset
format. In R2016a or later, when you open a model from an earlier release that had used
ModelDataLogs format, the model simulated in use Dataset format.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

log.who or who(log) lists the names of the top-level signal logging objects contained by
log, where log is the handle of a Simulink.ModelDataLogs object name.

 who

2-1013

tsarray.who or who(tsarray) lists the names of Simulink.TimeSeries objects
contained by the Simulink.TsArray object named tsarray.

log.who('systems') or who(log, 'systems') lists the names of all signal logging
objects contained by log except for Simulink.Timeseries objects stored in
Simulink.TsArray objects contained by log.

log.who('all') or who(log, 'all') lists the names of all the
Simulink.Timeseries objects contained by the Simulink.ModelDataLogs,
Simulink.TsArray, or Simulink.SubsysDataLogs object named log.

For information about other uses of who, execute help who in the MATLAB Command
Window.

Tip To get the names of Dataset variables in the MAT-file, using the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function
processes faster than using the who or whos functions.

See Also
Simulink.ModelDataLogs | Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.DatasetRef.getDatasetVariableNames |
Simulink.SubsysDataLogs | Simulink.Timeseries | Simulink.TsArray | unpack
| whos

Topics
“Load Big Data for Simulations”

Introduced before R2006a

2 Functions — Alphabetical List

2-1014

matlab:help whos

whos
List names and types of top-level data logging objects in Simulink ModelDataLogs data
log

Syntax
log.whos

tsarray.whos

log.whos('systems')

log.whos('all')

Description

Note To list names of top-level data logging objects in Dataset format, use
Simulink.SimulationData.Dataset.find.

The ModelDataLogs class is supported for backwards compatibility. Starting in R2016a,
you cannot log data in the ModelDataLogs format. Signal logging uses the Dataset
format. In R2016a or later, when you open a model from an earlier release that had used
ModelDataLogs format, the model simulated in use Dataset format.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

log.whos or whos(log) lists the names and types of the top-level signal logging objects
contained by log, where log is the handle of a Simulink.ModelDataLogs object name.

 whos

2-1015

tsarray.whos or whos(tsarray) lists the names and types of Simulink.TimeSeries
objects contained by the Simulink.TsArray object named tsarray.

log.whos('systems') or whos(log, 'systems') lists the names and types of all
signal logging objects contained by log except for Simulink.Timeseries objects
stored in Simulink.TsArray objects contained by log.

log.whos('all') or whos(log, 'all') lists the names and types of all the
Simulink.Timeseries objects contained by the Simulink.ModelDataLogs,
Simulink.TsArray or Simulink.SubsysDataLogs object named log.

For information about other uses of whos, execute help whos in the MATLAB Command
Window.

Tip To get the names of Dataset variables in the MAT-file, using the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function
processes faster than using the who or whos functions.

See Also
Simulink.ModelDataLogs | Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.DatasetRef.getDatasetVariableNames |
Simulink.SubsysDataLogs | Simulink.Timeseries | Simulink.TsArray | unpack
| who

Topics
“Load Big Data for Simulations”

Introduced before R2006a

2 Functions — Alphabetical List

2-1016

matlab:help whos

Mask Icon Drawing Commands

color Change drawing color of subsequent mask icon drawing commands
disp Display text on masked subsystem icon
dpoly Display transfer function on masked subsystem icon
droots Display transfer function on masked subsystem icon
fprintf Display variable text centered on masked subsystem icon
image Display RGB image on masked subsystem icon
patch Draw color patch of specified shape on masked subsystem icon
plot Draw graph connecting series of points on masked subsystem icon
port_label Draw port label on masked subsystem icon
text Display text at specific location on masked subsystem icon

Promote a block icon image to the masked Subsystem

3

color
Change drawing color of subsequent mask icon drawing commands

Syntax
color(colorstr)

Here, colorostr must be a character vector.

Description
color(colorstr) sets the drawing color of all subsequent mask drawing commands to
the color specified by the string colorstr.

colorstr must be one of the following supported color strings.

blue
green
red
cyan
magenta
yellow
black

Entering any other string or specifying the color using RGB values results in a warning at
the MATLAB command prompt; Simulink ignores the color change. The specified drawing
color does not influence the color used by the patch or image drawing commands.

Examples
The following commands

color('cyan');
droots([-1], [-2 -3], 4)
color('magenta')

3 Mask Icon Drawing Commands

3-2

port_label('input',1,'in')
port_label('output',1,'out')

draw the following mask icon.

See Also
droots | port_label

Introduced in R2006b

 color

3-3

disp
Display text on masked subsystem icon

Syntax
disp(text)
disp(text, 'texmode', 'on')

Description
disp(text) displays text centered on the block icon. text is any MATLAB expression
that evaluates to a string.

disp(text, 'texmode', 'on') allows you to use TeX formatting commands in text.
The TeX formatting commands in turn allow you to include symbols and Greek letters in
icon text. See “Interpreter” (MATLAB) for information on the TeX formatting commands
supported by Simulink software.

Examples
The following command
disp('{\itEquation:} \alpha^2 + \beta^2 \rightarrow \gamma^2,
\chi, \phi_3 = {\bfcool}', 'texmode','on')

draws the equation that appears on this masked block icon.

3 Mask Icon Drawing Commands

3-4

See Also
fprintf | port_label | text

Introduced in R2007a

 disp

3-5

dpoly
Display transfer function on masked subsystem icon

Syntax
dpoly(num, den)

dpoly(num, den, 'character')

Description
dpoly(num, den) displays the transfer function whose numerator is num and
denominator is den.

dpoly(num, den, 'character') specifies the name of the transfer function
independent variable. The default is s.

When Simulink draws the block icon, the initialization commands execute and the
resulting equation appears on the block icon, as in the following examples:

• To display a continuous transfer function in descending powers of s, enter

dpoly(num, den)

For example, for num = [0 0 1]; and den = [1 2 1] the icon looks like:

• To display a discrete transfer function in descending powers of z, enter

dpoly(num, den, 'z')

For example, for num = [0 0 1]; and den = [1 2 1]; the icon looks like:

3 Mask Icon Drawing Commands

3-6

• To display a discrete transfer function in ascending powers of 1/z, enter

dpoly(num, den, 'z-')

For example, for num and den as defined previously, the icon looks like:

If the parameters are not defined or have no values when you create the icon, Simulink
software displays three question marks (? ? ?) in the icon. When you define parameter
values in the Mask Settings dialog box, Simulink software evaluates the transfer function
and displays the resulting equation in the icon.

See Also
disp | droots | port_label | text

 dpoly

3-7

droots
Display transfer function on masked subsystem icon

Syntax
droots(zero, pole, gain)
droots(zero, pole, gain,'z')
droots(zero, pole, gain,'z-')

Description
droots(zero, pole, gain) displays the transfer function whose zero is zero, pole is
pole, and gain is gain.

droots(zero, pole, gain,'z') and droots(zero, pole, gain,'z-')
expresses the transfer function in terms of z or 1/z.

When Simulink draws the block icon, the initialization commands execute and the
resulting equation appears on the block icon, as in the following examples:

• To display a zero-pole gain transfer function, enter

droots(z, p, k)

For example, the preceding command creates this icon for these values:

z = []; p = [-1 -1]; k = 1;

If the parameters are not defined or have no values when you create the icon, Simulink
software displays three question marks (? ? ?) in the icon. When you define parameter
values in the Mask Settings dialog box, Simulink software evaluates the transfer function
and displays the resulting equation in the icon.

3 Mask Icon Drawing Commands

3-8

See Also
disp | dpoly | port_label | text

Introduced in R2007a

 droots

3-9

fprintf
Display variable text centered on masked subsystem icon

Syntax
fprintf(text)
fprintf(formatSpec, var)

Description
The fprintf command displays formatted text centered on the icon and can display
formatSpec along with the contents of var.

Note While this fprintf function is identical in name to its corresponding MATLAB
function, it provides only the functionality described on this page.

formatSpec can be a character vector in single quotes, or a string scalar.

Formatting Operator

A formatting operator starts with a percent sign, %, and ends with a conversion character.
The conversion character is required. Optionally, you can specify identifier, flags, field
width, precision, and subtype operators between % and the conversion character. (Spaces
are invalid between operators and are shown here only for readability).

% 3$ 0� 12 .5 b u

Conversion characterIdentifier

Flags

PrecisionField width

Subtype

Conversion Character

This table shows conversion characters to format numeric and character data as text.

3 Mask Icon Drawing Commands

3-10

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters

a–f
%X Same as %x, uppercase letters A–F

Floating-point number %f Fixed-point notation (Use a precision
operator to specify the number of digits
after the decimal point.)

%e Exponential notation, such as
3.141593e+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%E Same as %e, but uppercase, such as
3.141593E+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%g The more compact of %e or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

%G The more compact of %E or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

Characters or strings %c Single character
%s Character vector or string array. The

type of the output text is the same as the
type of formatSpec.

Examples
The command

 fprintf

3-11

fprintf('Hello');

displays the text 'Hello' on the icon.

The command

fprintf('Hello = %d',17);

uses the decimal notation format (%d) to display the variable 17.

See Also
disp | port_label | text

Introduced before R2006a

3 Mask Icon Drawing Commands

3-12

image
Display RGB image on masked subsystem icon

Syntax
image(a)
image(a, position)
image(a, position, rotation)

Description
image(a) displays the image a, where a is an m-by-n-by-3 array of RGB values. If
necessary, use the MATLAB commands imread and ind2rgb to read and convert bitmap
files (such as GIF) to the necessary matrix format.

image(a, position) creates the image at the specified position as follows.

Position Description
[x, y, w, h] Position (x, y) and size (w, h) of the image where the

position is relative to the lower-left corner of the mask. The
image scales to fit the specified size.

'center' Center of the mask
'top-left' Top left corner of the mask, unscaled
'bottom-left' Bottom left corner of the mask, unscaled
'top-right' Top right corner of the mask, unscaled
'bottom-right' Bottom right corner of the mask, unscaled

image(a, position, rotation) allows you to specify whether the image rotates
('on') or remains stationary ('off') as the icon rotates. The default is 'off'.

Note Images in formats .cur, .hdf4, .ico, .pcx, .ras, .xwd, .svg (full version)
cannot be used as block mask images.

 image

3-13

Examples
You can use different commands depending on your requirement to add an image. These
commands can be added in the Icon & Ports pane of the Mask Editor dialog box.

Syntax Description
image('icon.jpg') Reads the icon image from a JPEG file named

icon.jpg in the MATLAB path.
[data, map]=image('label.gif');
pic=ind2rgb(data,map);

Reads and converts a GIF file, label.gif, to the
appropriate matrix format.

image(pic) Reads the converted label image.

See Also
patch | plot

Introduced before R2006a

3 Mask Icon Drawing Commands

3-14

patch
Draw color patch of specified shape on masked subsystem icon

Syntax
patch(x, y)
patch(x, y, [r g b])

Description
patch(x, y) creates a solid patch having the shape specified by the coordinate vectors
x and y. The patch's color is the current foreground color.

patch(x, y, [r g b]) creates a solid patch of the color specified by the vector [r g
b], where r is the red component, g the green, and b the blue. For example,

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask's icon.

Examples
The command

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask's icon.

 patch

3-15

See Also
image | plot

Introduced before R2006a

3 Mask Icon Drawing Commands

3-16

plot
Draw graph connecting series of points on masked subsystem icon

Syntax
plot(Y)
plot(X1,Y1,X2,Y2,...)

Description
plot(Y) plots, for a vector Y, each element against its index. If Y is a matrix, it plots each
column of the matrix as though it were a vector.

plot(X1,Y1,X2,Y2,...) plots the vectors Y1 against X1, Y2 against X2, and so on.
Vector pairs must be the same length and the list must consist of an even number of
vectors.

Plot commands can include NaN and inf values. When Simulink software encounters
NaNs or infs, it stops drawing, and then begins redrawing at the next numbers that are
not NaN or inf. The appearance of the plot on the icon depends on the units defined by
the Icon units option in the Mask Editor.

Simulink software displays three question marks (? ? ?) in the block icon and issues
warnings in these situations:

• When you have not defined values for the parameters used in the drawing commands
(for example, when you first create the mask, but have not yet entered values in the
Mask Settings dialog box)

• When you enter a masked block parameter or drawing command incorrectly

Examples
The command

plot([0 1 5], [0 0 4])

 plot

3-17

generates the plot that appears on the icon for the Ramp block, in the Sources library.

See Also
image

Introduced before R2006a

3 Mask Icon Drawing Commands

3-18

port_label
Draw port label on masked subsystem icon

Syntax
port_label('port_type', port_number, 'label')
port_label('port_type', port_number, 'label', 'texmode', 'on')

Description
port_label('port_type', port_number, 'label') draws a label on a port. Valid
values for port_type include the following.

Value Description
input Simulink input port
output Simulink output port
lconn Physical Modeling connection port on the left side of a masked

subsystem
rconn Physical Modeling connection port on the right side of a masked

subsystem
Enable Label for the enable port in a masked Triggered or Enabled and

Triggered subsystem.
trigger Label for the trigger port in a masked Triggered or Enabled and

Triggered subsystem.
action Label for the action port in a masked Switch Case Action

Subsystem.

The input argument port_number is an integer, and label is text specifying the port's
label.

 port_label

3-19

Note Physical Modeling port labels are assigned based on the nominal port location. If
the masked subsystem has been rotated or flipped, for example, a port labeled using
'lconn' as the port_type may not appear on the left side of the block.

port_label('port_type', port_number, 'label', 'texmode', 'on') lets you
use TeX formatting commands in label. The TeX formatting commands allow you to
include symbols and Greek letters in the port label. See “Interpreter” (MATLAB) for
information on the TeX formatting commands that the Simulink software supports.

Examples
The command

port_label('input', 1, 'a')

defines a as the label of input port 1.

The command

port_label('Enable','En')

defines En as the label of Enable port.

The command

port_label('trigger','Tr')

defines Tr as the label of trigger port.

The command

port_label('action','Switch():')

defines Switch(): as the label of action port.

The command

port_label('trigger','$\sqrt m$','interpreter','tex')

defines the label of trigger port with LaTeX interpretation.

The commands

3 Mask Icon Drawing Commands

3-20

disp('Card\nSwapper');
port_label('input',1,'\spadesuit','texmode','on');
port_label('output',1,'\heartsuit','texmode','on');

draw playing card symbols as the labels of the ports on a masked subsystem.

See Also
disp | fprintf | text

Introduced before R2006a

 port_label

3-21

text
Display text at specific location on masked subsystem icon

Syntax
text(x, y, 'text')
text(x, y, 'text', 'horizontalAlignment', 'halign',
 'verticalAlignment', 'valign')
text(x, y, 'text', 'texmode', 'on')

Description
The text command places a character vector at a location specified by the point (x,y)
whose units are defined by the Icon units option in the Mask Editor.

text(x,y, text, 'texmode', 'on') allows you to use TeX formatting commands in
text. The TeX formatting commands in turn allow you to include symbols and Greek
letters in icon text. See “Interpreter” (MATLAB) for information on the TeX formatting
commands supported by Simulink software.

You can optionally specify the horizontal and/or vertical alignment of the text relative to
the point (x, y) in the text command.

The text command offers the following horizontal alignment options.

Option Aligns
'left' The left end of the text at the specified point
'right' The right end of the text at the specified point
'center' The center of the text at the specified point

The text command offers the following vertical alignment options.

Option Aligns
'base' The baseline of the text at the specified point

3 Mask Icon Drawing Commands

3-22

Option Aligns
'bottom' The bottom line of the text at the specified point
'middle' The midline of the text at the specified point
'cap' The capitals line of the text at the specified point
'top' The top of the text at the specified point

Note While this text function is identical in name to its corresponding MATLAB
function, it provides only the functionality described on this page.

Examples

Text Alignment

Center the mask icon text foobar.

text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

Equation in Mask Icon

Draw a left-aligned equation as the mask icon.

In the Icons & Ports dialog of the Mask Editor, set Icon units to Normalized.

In the Icon drawing commands text box, enter the following command.

text(.05,.5,'{\itEquation:} \Sigma \alpha^2 +
\beta^2 \rightarrow \infty, \Pi, \phi_3 = {\bfcool}',
'hor','left','texmode','on')

 text

3-23

See Also
disp | fprintf | port_label

Introduced before R2006a

3 Mask Icon Drawing Commands

3-24

block_icon
Promote a block icon image to the masked Subsystem

Syntax
block_icon(BlockName)

Description
block_icon(BlockName) displays the underneath block icon image on the masked
Subsystem icon. For more information, see slexblockicon.

Input Arguments
BlockName — Name of the underneath block
String

The name of the underneath block whose icon image you want to display on the
Subsystem block that encapsulates the specified block. For more information, see
slexblockicon
Data Types: string

See Also
Simulink.Mask | slexblockicon

Introduced in R2006b

 block_icon

3-25

matlab: open_system([docroot '/toolbox/simulink/examples/slexblockicon'])
matlab: open_system([docroot '/toolbox/simulink/examples/slexblockicon'])
matlab: open_system([docroot '/toolbox/simulink/examples/slexblockicon'])

Simulink Debugger Commands

4

ashow Show algebraic loop
atrace Set algebraic loop trace level
bafter Insert breakpoint after specified method
break Insert breakpoint before specified method
bshow Show specified block
clear Clear breakpoints from model
continue Continue simulation
disp Display block's I/O when simulation stops
ebreak Enable (or disable) breakpoint on solver errors
elist List simulation methods in order in which they are executed during simulation
emode Toggle model execution between accelerated and normal mode
etrace Enable or disable method tracing
help Display help for debugger commands
nanbreak Set or clear nonfinite value break mode
next Advance simulation to start of next method at current level in model's

execution list
probe I/O and state data for blocks
quit Stop simulation debugger
rbreak Break simulation before solver reset
run Run simulation to completion
slist Sorted list of model blocks
states Current state values
status Debugging options in effect
step Advance simulation by one or more methods
stimes Model sample times
stop Stop simulation
strace Set solver trace level
systems List nonvirtual systems of model
tbreak Set or clear time breakpoint
trace Display block's I/O each time block executes
undisp Remove block from debugger's list of display points
untrace Remove block from debugger's list of trace points
where Display current location of simulation in simulation loop
xbreak Break when debugger encounters step-size-limiting state
zcbreak Toggle breaking at nonsampled zero-crossing events
zclist List blocks containing nonsampled zero crossings

4 Simulink Debugger Commands

4-2

ashow
Show algebraic loop

Syntax
ashow <gcb | s:b | s#n | clear>

as <gcb | s:b | s#n | clear>

Arguments
gcb Current block.
s:b The block whose system index is s and block index is b.
s#n The algebraic loop numbered n in system s.
clear Switch that clears loop coloring.

Description
ashow without any arguments lists all of a model's algebraic loops in the MATLAB
Command Window. ashow gcb or ashow s:b highlights the algebraic loop that contains
the specified block. ashow s#n highlights the nth algebraic loop in system s. The
ashow clear command removes algebraic loop highlights from the model diagram.

See Also
atrace | slist

Introduced before R2006a

 ashow

4-3

atrace
Set algebraic loop trace level

Syntax
atrace level

at level

Arguments
level Trace level (0 = none, 4 = everything).

Description
The atrace command sets the algebraic loop trace level for a simulation.

Command Displays for Each Algebraic Loop
atrace 0 No information
atrace 1 The loop variable solution, the number of iterations required to

solve the loop, and the estimated solution error
atrace 2 Same as level 1
atrace 3 Level 2 plus Jacobian matrix used to solve loop
atrace 4 Level 3 plus intermediate solutions of the loop variable

See Also
states | systems

Introduced before R2006a

4 Simulink Debugger Commands

4-4

bafter
Insert breakpoint after specified method

Syntax
bafter

ba

bafter m:mid

bafter <sysIdx:blkIdx | gcb> [mth] [tid:TID]

bafter <s:sysIdx | gcs> [mth] [tid:TID]

bafter model [mth] [tid:TID]

Arguments
mid Method ID
sysIdx:blkId
x

Block ID

gcb Currently selected block
sysIdx System ID
gcs Currently selected system
model Currently selected model
mth A method name, e.g., Outputs.Major
TID Task ID

Description
bafter inserts a breakpoint after the current method.

Instead of bafter, you can use the short form of ba with any of the syntaxes.

 bafter

4-5

bafter m:mid inserts a breakpoint after the method specified by mid (see “Method ID”).

bafter sysIdx:blkIdx inserts a breakpoint after each invocation of the method of the
block specified by sysIdx:blkIdx (see “Block ID”) in major time steps. bafter gcb
inserts a breakpoint after each invocation of a method of the currently selected block (see
gcb) in major times steps.

bafter s:sysIdx inserts a breakpoint after each method of the root system or
nonvirtual subsystem specified by the system ID: sysIdx.

Note The systems command displays the system IDs for all nonvirtual systems in the
currently selected model.

bafter gcs inserts a breakpoint after each method of the currently selected nonvirtual
system.

bafter model inserts a breakpoint after each method of the currently selected model.

The optional mth parameter allow you to set a breakpoint after a particular block, system,
or model method and task. For example, bafter gcb Outputs sets a breakpoint after
the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint after invocation of a method by
a particular task. For example, suppose that the currently selected nonvirtual subsystem
operates on task 2 and 3. Then bafter gcs Outputs tid:2 sets a breakpoint after the
invocation of the subsystem's Outputs method that occurs when task 2 is active.

See Also
break | clear | ebreak | nanbreak | rbreak | slist | systems | tbreak | where |
xbreak | zcbreak

Introduced before R2006a

4 Simulink Debugger Commands

4-6

break
Insert breakpoint before specified method

Syntax
break

b

break m:mid
break <sysIdx:blkIdx | gcb> [mth] [tid:TID]

break <s:sysIdx | gcs> [mth] [tid:TID]

break model [mth] [tid:TID]

Arguments
mid Method ID
sysIdx:blkId
x

Block ID

gcb Currently selected block
sysIdx System ID
gcs Currently selected system
model Currently selected model
mth A method name, e.g., Outputs.Major
TID task ID

Description
break inserts a breakpoint before the current method.

Instead of break, you can use the short form of b with any of the syntaxes.

 break

4-7

break m:mid inserts a breakpoint before the method specified by mid (see “Method
ID”).

break sysIdx:blkIdx inserts a breakpoint before each invocation of the method of the
block specified by sysIdx:blkIdx (see “Block ID”) in major time steps. break gcb
inserts a breakpoint before each invocation of a method of the currently selected block
(see gcb) in major times steps.

break s:sysIdx inserts a breakpoint at each method of the root system or nonvirtual
subsystem specified by the system ID: sysIdx.

Note The systems command displays the system IDs for all nonvirtual systems in the
currently selected model.

break gcs inserts a breakpoint at each method of the currently selected nonvirtual
system.

break model inserts a breakpoint at each method of the currently selected model.

The optional mth parameter allow you to set a breakpoint at a particular block, system, or
model method. For example, break gcb Outputs sets a breakpoint at the Outputs
method of the currently selected block.

The optional TID parameter allows you to set a breakpoint at the invocation of a method
by a particular task. For example, suppose that the currently selected nonvirtual
subsystem operates on task 2 and 3. Then break gcs Outputs tid:2 sets a
breakpoint at the invocation of the subsystem's Outputs method that occurs when task 2
is active.

See Also
bafter | clear | ebreak | nanbreak | rbreak | slist | systems | tbreak | where |
xbreak | zcbreak

Introduced before R2006a

4 Simulink Debugger Commands

4-8

bshow
Show specified block

Syntax
bshow s:b

bs s:b

Arguments
s:b The block whose system index is s and block index is b.

Description
The bshow command opens the model window containing the specified block and selects
the block.

See Also
slist

Introduced before R2006a

 bshow

4-9

clear
Clear breakpoints from model

Syntax
clear

cl

clear m:mid

clear id

clear <sysIdx:blkIdx | gcb>

Arguments
mid Method ID
id Breakpoint ID
sysIdx:blk
Idx

Block ID

gcb Currently selected block

Description
clear clears a breakpoint from the current method.

Instead of clear, you can use the short form of cl with any of the syntaxes.

clear m:mid clears a breakpoint from the method specified by mid.

clear id clears the breakpoint specified by the breakpoint ID id.

clear sysIdx:blkIdx clears any breakpoints set on the methods of the block specified
by sysIdx:blkIdx.

4 Simulink Debugger Commands

4-10

clear gcb clears any breakpoints set on the methods of the currently selected block.

See Also
bafter | break | slist

Introduced before R2006a

 clear

4-11

continue
Continue simulation

Syntax
continue

c

Description
The continue command continues the simulation from the current breakpoint. If
animation mode is not enabled, the simulation continues until it reaches another
breakpoint or its final time step. If animation mode is enabled, the simulation continues in
animation mode to the first method of the next major time step, ignoring breakpoints.

See Also
quit | run | stop

Introduced before R2006a

4 Simulink Debugger Commands

4-12

disp
Display block's I/O when simulation stops

Syntax
disp

d

disp gcb

disp s:b

Arguments
s:b The block whose system index is s and block index is b.
gcb Current block.

Description
The disp command registers a block as a display point. The debugger displays the inputs
and outputs of all display points in the MATLAB Command Window whenever the
simulation halts. Invoking disp without arguments shows a list of display points. Use
undisp to unregister a block.

Instead of disp, you can use the short form of d with any of the syntaxes.

See Also
probe | slist | trace | undisp

Introduced before R2006a

 disp

4-13

ebreak
Enable (or disable) breakpoint on solver errors

Syntax
ebreak

eb

Description
This command causes the simulation to stop if the solver detects a recoverable error in
the model. If you do not set or disable this breakpoint, the solver recovers from the error
and proceeds with the simulation without notifying you.

See Also
bafter | break | clear | nanbreak | rbreak | slist | systems | tbreak | where |
xbreak | zcbreak

Introduced before R2006a

4 Simulink Debugger Commands

4-14

elist
List simulation methods in order in which they are executed during simulation

Syntax
elist

el

elist m:mid [tid:TID]

elist <gcs | s:sysIdx> [mth] [tid:TID]

elist <gcb | sysIdx:blkIdx> [mth] [tid:TID]

Description
Instead of elist, you can use the short form of el with any of the syntaxes.

elist m:mid lists the methods invoked by the system or nonvirtual subsystem method
corresponding to the method id mid (see the where command for information on method
IDs), e.g.,

The method list specifies the calling method followed by the methods that it calls in the
order in which they are invoked. The entry for the calling method includes

 elist

4-15

• The name of the method

The name of the method is prefixed by the type of system that defines the method,
e.g., RootSystem.

• The name of the model or subsystem instance on which the method is invoked
• The ID of the task that invokes the method

The entry for each called method includes

• The ID (sysIdx:blkIdx) of the block instance on which the method is invoked

The block ID is prefixed by a number specifying the system that contains the block
(the sysIdx). This allows Simulink software to assign the same block ID to blocks
residing in different subsystems.

• The name of the method

The method name is prefixed with the type of block that defines the method, e.g.,
Integrator.

• The name of the block instance on which the method is invoked
• The task that invokes the method

The optional task ID parameter (tid:TID) allows you to restrict the displayed lists to
methods invoked for a specified task. You can specify this option only for system or atomic
subsystem methods that invoke Outputs or Update methods.

elist <gcs | s:sysIdx> lists the methods executed for the currently selected system
(specified by the gcs command) or the system or nonvirtual subsystem specified by the
system ID sysIdx, e.g.,

4 Simulink Debugger Commands

4-16

The system ID of a model's root system is 0. You can use the debugger's systems
command to determine the system IDs of a model's subsystems.

Note The elist and where commands use block IDs to identify subsystems in their
output. The block ID for a subsystem is not the same as the system ID displayed by the
systems command. Use the elist sysIdx:blkIdx form of the elist command to
display the methods of a subsystem whose block ID appears in the output of a previous
invocation of the elist or where command.

elist <gcs | s:sysIdx> mth lists methods of type mth to be executed for the
system specified by the gcs command or the system ID sysIdx, e.g.,

 elist

4-17

Use elist gcb to list the methods invoked by the nonvirtual subsystem currently
selected in the model.

See Also
slist | systems | where

Introduced before R2006a

4 Simulink Debugger Commands

4-18

emode
Toggle model execution between accelerated and normal mode

Syntax
emode

em

Description
Toggles the simulation between accelerated and normal mode when using the Accelerator
mode in Simulink software. For more information, see “Run Accelerator Mode with the
Simulink Debugger”.

Introduced before R2006a

 emode

4-19

etrace
Enable or disable method tracing

Syntax
etrace level level-number

et level level-number

Description
This command enables or disables method tracing, depending on the value of level:

Level Description
0 Turn tracing off.
1 Trace model methods.
2 Trace model and system methods.
3 Trace model, system, and block methods.

When method tracing is on, the debugger prints a message at the command line every
time a method of the specified level is entered or exited. The message specifies the
current simulation time, whether the simulation is entering or exiting the method, the
method id and name, and the name of the model, system, or block to which the method
belongs.

See Also
elist | trace | where

Introduced before R2006a

4 Simulink Debugger Commands

4-20

help
Display help for debugger commands

Syntax
help

?

h

Description
The help command displays a list of debugger commands in the command window. The
list includes the syntax and a brief description of each command.

Introduced before R2006a

 help

4-21

nanbreak
Set or clear nonfinite value break mode

Syntax
nanbreak

na

Description
The nanbreak command causes the debugger to break whenever the simulation
encounters a nonfinite (NaN or Inf) value. If nonfinite break mode is set, nanbreak
clears it.

See Also
bafter | break | rbreak | tbreak | xbreak | zcbreak

Topics
ebreak

Introduced before R2006a

4 Simulink Debugger Commands

4-22

next
Advance simulation to start of next method at current level in model's execution list

Syntax
next

n

Description
The next command advances the simulation to the start of the next method at the
current level in the model's method execution list.

Note The next command has the same effect as the step over command. See step for
more information.

See Also
step

Introduced before R2006a

 next

4-23

probe
I/O and state data for blocks

Syntax
probe
probe s:b
probe gcb
probe level level-type
p

Description
probe sets the Simulink debugger to interactive probe mode. In this mode, the debugger
displays the I/O of a selected block. To exit interactive probe mode, enter a debugger
command or press the Enter key.

probe s:b displays the I/O of the block whose system index is s and block index is b.

probe gcb displays the I/O of the currently selected block.

probe level level-type sets the verbosity level for probe, trace, and dis. If
level-type is io, the debugger displays block I/O. If level-type is all (default), the
debugger displays all information for the current state of a block, including inputs and
outputs, states, and zero crossings.

p is the short form of the command.

Examples
Display I/O for the currently selected block Out2 in the model vdp using the Simulink
debugger.

1 In the MATLAB Command Window, enter:

4 Simulink Debugger Commands

4-24

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

probe gcb

The MATLAB Command Window displays:

probe: Data of 0:3 Outport block 'vdp/Out2':
U1 = [0]

See Also
disp | trace

Introduced in R2007a

 probe

4-25

quit
Stop simulation debugger

Syntax
quit
q

Description
quit stops the Simulink debugger and returns to the MATLAB command prompt.

q is the short form of the command.

Examples
Start the Simulink debugger for the model vdp and then stop it.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

quit

See Also
stop

Introduced before R2006a

4 Simulink Debugger Commands

4-26

rbreak
Break simulation before solver reset

Syntax
rbreak
rb

Description
rbreak enables (or disables) a solver reset breakpoint if the breakpoint is disabled (or
enabled). The breakpoint causes the debugger to halt the simulation whenever an event
requires a solver reset. The halt occurs before the solver resets.

rb is the short form of the command.

Examples
Start Simulink debugger for the model vdp and a set breakpoint before a solver reset.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> is replaced with the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

rbreak

The MATLAB Command Window displays:

Break on solver reset request : enabled

 rbreak

4-27

See Also
bafter | break | ebreak | nanbreak | tbreak | xbreak | zcbreak

Introduced before R2006a

4 Simulink Debugger Commands

4-28

run
Run simulation to completion

Syntax
run
r

Description
run starts the simulation from the current breakpoint to its final time step. It ignores
breakpoints and display points.

r is the short form of the command

Examples
Continue the simulation for the model vdp using the Simulink debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

run

See Also
continue | quit | stop

 run

4-29

Introduced before R2006a

4 Simulink Debugger Commands

4-30

slist
Sorted list of model blocks

Syntax
slist
sli

Description
slist displays a list of blocks for the root system and each nonvirtual subsystem sorted
according to data dependencies and other criteria.

For each system (root or nonvirtual), slist displays:

• Title line specifying the name of the system, the number of nonvirtual blocks that the
system contains, and the number of blocks in the system that have direct feedthrough
ports.

• Entry for each block in the order in which the blocks appear in the sorted list.

For each block entry, slist displays the block ID and the name and type of the block.
The block ID consists of a system index and a block index separated by a colon
(sysIdx:blkIdx).

• Block index is the position of the block in the sorted list.
• System index is the order in which the Simulink software generated the system sorted

list. The system index has no special significance. It simply allows blocks that appear
in the same position in different sorted lists to have unique identifiers.

Simulink software uses sorted lists to create block method execution lists (see elist) for
root system and nonvirtual subsystem methods. In general, root system and nonvirtual
subsystem methods invoke the block methods in the same order as the blocks appear in
the sorted list.

Exceptions occur in the execution order of block methods. For example, execution lists for
multicast models group together all blocks operating at the same rate and in the same

 slist

4-31

task. Slower groups appear later than faster groups. The grouping of methods by task can
result in a block method execution order that is different from the block sorted order.
However, within groups, methods execute in the same order as the corresponding blocks
appear in the sorted list.

sli is the short form of the command.

Examples
Display a sorted list of the root system in the vdp model using the Simulink debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

slist

The MATLAB Command Window displays:

---- Sorted list for 'vdp' [9 nonvirtual blocks, directFeed=0]
 0:0 'vdp/x1' (Integrator)
 0:1 'vdp/Out1' (Outport)
 0:2 'vdp/x2' (Integrator)
 0:3 'vdp/Out2' (Outport)
 0:4 'vdp/Scope' (Scope)
 0:5 'vdp/Fcn' (Fcn)
 0:6 'vdp/Product' (Product)
 0:7 'vdp/Mu' (Gain)
 0:8 'vdp/Sum' (Sum)

See Also
elist | systems

Introduced before R2006a

4 Simulink Debugger Commands

4-32

states
Current state values

Syntax
states

Description
states displays a list of the current states of the model. The list includes the index,
current value, system:block:element ID, state vector name, and block name for each state.

Examples
Display information about the states for the vdp model.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

states

The MATLAB Command Window displays:
Continuous States:
Idx Value (system:block:element Name 'BlockName')
 0 0 (0:0:0 CSTATE 'vdp/x1')
 1 0 (0:2:0 CSTATE 'vdp/x2')

Introduced before R2006a

 states

4-33

status
Debugging options in effect

Syntax

Description
Display a list of the debugging options in effect.

Examples

View Debugger Status for vdp

Start the debugger with vdp. The command prompt changes to the Simulink debugger
prompt (sldebug @0): >>.

sldebug 'vdp'

Display the debugging status.

status

%--%
Current simulation time : 0 (MajorTimeStep)
Solver needs reset : no
Solver derivatives cache needs reset : no
Zero crossing signals cache needs reset : no
Default command to execute on return/enter : ""
Break at zero crossing events : disabled
Break on solver error : disabled
Break on failed integration step : disabled
Time break point : disabled
Break on non-finite (NaN,Inf) values : disabled
Break on solver reset request : disabled
Display level for disp, trace, probe : 1 (i/o, states)

4 Simulink Debugger Commands

4-34

Solver trace level : 0
Algebraic loop tracing level : 0
Animation Mode : off
Execution Mode : Normal
Display level for etrace : 0 (disabled)
Break points : none installed
Display points : none installed

Introduced before R2006a

 status

4-35

step
Advance simulation by one or more methods

Syntax
step
step in
step over
step out
step top
step blockmth
s

Description
step or step in advances the simulation to the next method in the current time step.

step over advances the simulation over the next method.

step out advances the simulation the end of the current simulation point hierarchy.

step top advances the simulation to the first method executed in the next time step.

step blockmth advances the simulation to the next method that operates on a block.

s is the short form of the command.

If step advances the simulation to the start of a block method, the debugger points at the
block on which the method operates.

.

4 Simulink Debugger Commands

4-36

Examples
The following diagram illustrates the effect of various forms of the step command for the
model vdp.

See Also
elist | next | where

Introduced in R2007a

 step

4-37

stimes
Model sample times

Syntax
stimes
sti

Description
stimes displays information about the model sample times, including the sample time
period, offset, and task ID.

sti is the short form of the command.

Examples
Display sample times for the model vdp using the Simulink debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

stimes

The MATLAB Command Window displays:

--- Sample times for 'vdp' [Number of sample times = 1]
 1. [0 , 0] tid=0 (continuous sample time)

4 Simulink Debugger Commands

4-38

Introduced before R2006a

 stimes

4-39

stop
Stop simulation

Syntax
stop

Description
stop stops the simulation of the model you are debugging.

Examples
Start and stop a simulation for the model vdp using the Simulink debugger.

1 Start a debugger session. In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Start a simulation of the model. Enter:

run
3 Stop the simulation. Enter:

stop

See Also
continue | quit | run

Introduced before R2006a

4 Simulink Debugger Commands

4-40

strace
Set solver trace level

Syntax
strace level
i

Description
strace level causes the solver to display diagnostic information in the MATLAB
Command Window, depending on the value of level. Values are 0 (no information) or 1
(maximum information about time steps, integration steps, zero crossings, and solver
resets).

i is the short form of the command.

Examples
Display maximum information about a simulation for the model vdp using the Simulink
debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Get information about the notation . Enter:

help time

The MATLAB Command Window displays:
Time is displayed as:
 TM = <time while in MajorTimeStep>

 strace

4-41

 Tm = <time while in MinorTImeStep>
 Tr = <time while in solver reset>
 Tz = <time at or just after zero crossing>
 TzL = <time while in major step just before (at left post of) zero crossing>
 TzR = <time while in major step at or just after (at right post of) zero crossing>
 Ts = <time of successful integration step>
 Tf = <time of failed integration step>
 Tn = <time while in Newton iteration> (when using implicit solvers)
 Tj = <time during Jacobian evaluation> (when using implicit solvers)

Step size is displayed as:
 Hm = <step size at the start of solver phase>
 Hs = <successful integration step size>
 Hf = <failed integration step size>
 Hn = <step size during Newton iteration> (when using implicit solvers)
 Hz = <value of 'TM - TzL' during zero crossing search>
 Iz= <value of 'Tz - TzL' during zero crossing search>

3 Set trace to display all information. Enter:

strace 1

When diagnostic tracing is on, the debugger displays the sizes of major and minor
time steps.
[TM = 13.21072088374186] Start of Major Time Step
[Tm = 13.21072088374186] Start of Minor Time Step

The debugger displays integration information. This information includes the time
step of the integration method, step size of the integration method, outcome of the
integration step, normalized error, and index of the state.
[Tm = 13.21072088374186] [H = 0.2751116230148764] Begin Integration Step
[Tf = 13.48583250675674] [Hf = 0.2751116230148764] Fail [Er = 1.0404e+000]
 [Ix = 1]
[Tm = 13.21072088374186] [H = 0.2183536061326544] Retry
[Ts = 13.42907448987452] [Hs = 0.2183536061326539] Pass [Er = 2.8856e-001]
 [Ix = 1]

For zero crossings, the debugger displays information about the iterative search
algorithm when the zero crossing occurred. This information includes the time step of
the zero crossing, step size of the zero crossing detection algorithm, length of the
time interval bracketing the zero crossing, and a flag denoting the rising or falling
direction of the zero crossing.
[Tz = 3.615333333333301] Detected 1 Zero Crossing Event 0[F]
 Begin iterative search to bracket zero crossing event
[Tz = 3.621111157580072] [Hz = 0.005777824246771424] [Iz = 4.2222e-003] 0[F]
[Tz = 3.621116982080098] [Hz = 0.005783648746797265] [Iz = 4.2164e-003] 0[F]
[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 4.2163e-003] 0[F]
[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 1.1804e-011] 0[F]
[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.8962e-012] 0[F]
[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.1514e-014] 0[F]
 End iterative search to bracket zero crossing event

4 Simulink Debugger Commands

4-42

When a solver resets occur, the debugger displays the time at which the solver was
reset.
[Tr = 6.246905153573676] Process Solver Reset
[Tr = 6.246905153573676] Reset Zero Crossing Cache
[Tr = 6.246905153573676] Reset Derivative Cache

See Also
atrace | etrace | states | trace | zclist

Introduced before R2006a

 strace

4-43

systems
List nonvirtual systems of model

Syntax
systems
sys

Description
systems displays the nonvirtual subsystems for a model in the MATLAB Command
Window.

sys is the short form of the command.

Examples
Display the nonvirtual systems for the model sldemo_enginewc using the Simulink
debugger.

1 In the MATLAB Command Window, enter:

sldebug 'sldemo_enginewc'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

systems

The MATLAB Command Window displays the nonvirtual subsystems.
 0 'sldemo_enginewc'
 2 'sldemo_enginewc/Compression'
 3 'sldemo_enginewc/Controller'
 4 'sldemo_enginewc/Throttle & Manifold/Throttle/TmpAtomicSubsysAtSwitchInport1'
 5 'sldemo_enginewc/valve timing/positive edge to dual edge conversion'

4 Simulink Debugger Commands

4-44

See Also
slist

Introduced before R2006a

 systems

4-45

tbreak
Set or clear time breakpoint

Syntax
tbreak

tb

tbreak t

Description
The tbreak command sets a breakpoint at the specified time step. If a breakpoint already
exists at the specified time, tbreak clears the breakpoint. If you do not specify a time,
tbreak toggles a breakpoint at the current time step.

Instead of tbreak, you can use the short form of tb, with or without t.

See Also
bafter | break | nanbreak | rbreak | xbreak | zcbreak

Topics
ebreak

Introduced before R2006a

4 Simulink Debugger Commands

4-46

trace
Display block's I/O each time block executes

Syntax
trace gcb
trace s:b

tr gcb
trace s:b

Arguments
s:b The block whose system index is s and block index is b.
gcb Current block.

Description
The trace command registers a block as a trace point. The debugger displays the I/O of
each registered block each time the block executes.

See Also
disp | probe | slist | strace | untrace

Introduced before R2006a

 trace

4-47

undisp
Remove block from debugger's list of display points

Syntax
undisp gcb

und gcb

undisp s:b

und s:b

Arguments
s:b The block whose system index is s and block index is b.
gcb Current block.

Description
The undisp command removes the specified block from the debugger's list of display
points.

See Also
disp | slist

Introduced before R2006a

4 Simulink Debugger Commands

4-48

untrace
Remove block from debugger's list of trace points

Syntax
untrace gcb

unt gcb

untrace s:b

unt s:b

Arguments
s:b The block whose system index is s and block index is b.
gcb Current block.

Description
The untrace command removes the specified block from the debugger's list of trace
points.

See Also
slist | trace

Introduced before R2006a

 untrace

4-49

where
Display current location of simulation in simulation loop

Syntax
where [detail]

w [detail]

Description
The where command displays the current location of the simulation in the simulation
loop, for example,

The display consists of a list of simulation nodes with the last entry being the node that is
about to be entered or exited. Each entry contains the following information:

• Method ID

The method ID identifies a specific invocation of a method.
• A symbol specifying its state:

• >> (active)
• >|(about to be entered)
• <|(about to be exited)

4 Simulink Debugger Commands

4-50

• Name of the method invoked (e.g., RootSystem.Start)
• Name of the block or system on which the method is invoked (e.g., Sum)
• System and block ID (sysIdx:blkIdx) of the block on which the method is invoked

For example, 0:8 indicates that the specified method operates on block 8 of system 0.

where detail, where detail is any nonnegative integer, includes inactive nodes in the
display.

See Also
step

Introduced before R2006a

 where

4-51

xbreak
Break when debugger encounters step-size-limiting state

Syntax
xbreak

x

Description
The xbreak command pauses execution of the model when the debugger encounters a
state that limits the size of the steps that the solver takes. If xbreak mode is already on,
xbreak turns the mode off.

See Also
bafter | break | nanbreak | rbreak | tbreak | zcbreak

Topics
ebreak

Introduced before R2006a

4 Simulink Debugger Commands

4-52

zcbreak
Toggle breaking at nonsampled zero-crossing events

Syntax
zcbreak

zcb

Description
The zcbreak command causes the debugger to break when a nonsampled zero-crossing
event occurs. If zero-crossing break mode is already on, zcbreak turns the mode off.

See Also
bafter | break | nanbreak | tbreak | xbreak | zclist

Introduced before R2006a

 zcbreak

4-53

zclist
List blocks containing nonsampled zero crossings

Syntax
zclist

zcl

Description
The zclist command displays a list of blocks in which nonsampled zero crossings can
occur. The command displays the list in the MATLAB Command Window.

See Also
zcbreak

Introduced before R2006a

4 Simulink Debugger Commands

4-54

Simulink Classes

5

eventData Provide information about block method
execution events

Simulink.Annotation Specify properties of model annotation
Simulink.BlockCompDworkData Provide postcompilation information about

block's DWork vector
Simulink.BlockCompInputPortData

Provide postcompilation information about
block input port

Simulink.BlockCompOutputPortData
Provide postcompilation information about
block output port

Simulink.BlockData Provide run-time information about block-
related data, such as block parameters

Simulink.BlockPath Fully specified Simulink block path
Simulink.BlockPortData Describe block input or output port
Simulink.BlockPreCompInputPortData

Provide precompilation information about
block input port

Simulink.BlockPreCompOutputPortData
Provide precompilation information about
block output port

Simulink.ConfigSetRef Link model to configuration set stored
independently of any model

Simulink.GlobalDataTransfer Configure concurrent execution data
transfers

Simulink.MDLInfo Extract model file information without
loading block diagram into memory

getDescription Extract model file description without
loading block diagram into memory

getMetadata Extract model file metadata without loading
block diagram into memory

Simulink.ModelAdvisor Run Model Advisor from MATLAB file
Simulink.ModelDataLogs Container for signal data logs of a model
Simulink.SimState.ModelSimState

Access SimState snapshot data
Simulink.MSFcnRunTimeBlock Get run-time information about Level-2

MATLAB S-function block
Simulink.RunTimeBlock Allow Level-2 MATLAB S-function and other

MATLAB programs to get information about
block while simulation is running

Simulink.SampleTime Object containing sample time information
Simulink.SimulationData.BlockPath

Fully specified Simulink block path
Simulink.SimulationData.DataStoreMemory

Container for data store logging information
Simulink.SimulationData.LoggingInfo

Signal logging override settings
Simulink.SimulationData.ModelLoggingInfo

Signal logging override settings for a model
Simulink.SimulationData.SignalLoggingInfo

Signal logging override settings for signal
Simulink.SimulationData.Signal Container for signal logging information
Simulink.SimulationData.State State logging element
Simulink.SimulationMetadata Access metadata of simulation runs
Simulink.SimulationOutput Access object values of simulation results
Simulink.SubsysDataLogs Container for subsystem signal data logs
Simulink.TimeInfo Provide information about time data in

Simulink.Timeseries object
Simulink.Timeseries Store data for any signal except mux or bus

signal
Simulink.TsArray Store data for mux or bus signal
Simulink.Variant Specify conditions that control variant

selection
Simulink.Mask Control masks programmatically
Simulink.Mask.Constraints Create Mask Constraint
Simulink.MaskParameter Control mask parameters programmatically
Simulink.dialog.Control Create instances of dialog control
Simulink.dialog.Container Create instances of a container dialog

control
Simulink.dialog.Panel Create an instance of a panel dialog control
Simulink.dialog.Group Create an instance of a group dialog control
Simulink.dialog.Tab Create an instance of a tab dialog control
Simulink.dialog.TabContainer Create an instance of a tab container dialog

control
Simulink.dialog.Button Create a button dialog control
Simulink.dialog.Hyperlink Create a hyperlink dialog control
Simulink.dialog.Image Create an image dialog control
Simulink.dialog.Text Create a text dialog control
Simulink.dialog.parameter.Control

Create a parameter dialog control

5 Simulink Classes

5-2

matlab.io.datastore.sdidatastore class
Package: matlab.io.datastore

Datastore for Simulation Data Inspector signals

Description
A matlab.io.datastore.sdidatastore object enables the Simulation Data Inspector
to interact with large sets of data that are too large to fit in memory. An sdidatastore
object references the data for one signal.

Construction
ds_element = dsrObj.getAsDatastore(arg) creates the sdidatastore,
ds_element, for the signal in the Simulink.sdi.Datasetref object selected by the
search criterion arg.

ds_element = matlab.io.datastore.sdidatastore(signalID) creates the
sdidatastore, ds_element for the signal specified by signalID.

Input Arguments
arg — Element selection criterion
character vector | integer

Search criterion used to retrieve the element from the
Simulink.sdi.DatasetRefobject. For name based searches, specify arg as a
character vector. For index based searches, arg is an integer, representing the index of
the desired element.
Example: 'MySignal'
Example: 3

signalID — Numeric signal identifier
integer

 matlab.io.datastore.sdidatastore class

5-3

Unique number identifying a signal.

Properties
Name — Signal name
character vector

Name of the signal specified as a character vector.
Example: 'My Signal'

Signal — Simulink.sdi.Signal object
Simulink.sdi.Signal object

Simulink.sdi.Signal object associated with the sdidatastore.

Methods

Inherited Methods

hasdata Determine if data is available to read
preview Return subset of data from datastore
progress Return percentage of data that you have read from a datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

5 Simulink Classes

5-4

Examples
Create an sdidatastore Object for a Signal

This example shows how to create a sdidatastore object for a signal in a
Simulink.sdi.DatasetRef object.

% Simulate model sldemo_fuelsys to create a run of logged signals
sim('sldemo_fuelsys')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names =

 15x1 cell array

 {'EGO Fault Switch:1' }
 {'air_fuel_ratio' }
 {'Engine Speed Fault Switch:1' }
 {'speed' }
 {'MAP Fault Switch:1' }
 {'map' }
 {'ego' }
 {'Throttle Angle Fault Switch:1'}
 {'throttle' }
 {'fuel' }
 {'ego_sw' }
 {'engine_speed' }
 {'speed_sw' }
 {'map_sw' }
 {'throttle_sw' }

 matlab.io.datastore.sdidatastore class

5-5

% Get sdidatastore object for fuel signal
fuel_ds = run_DSRef.getAsDatastore(10);

See Also
Simulink.sdi.DatasetRef.getAsDatastore |
matlab.io.datastore.SimulationDatastore

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-6

matlab.io.datastore.SimulationDatastore
class
Package: matlab.io.datastore

Datastore for inputs and outputs of Simulink models

Description
A matlab.io.datastore.SimulationDatastore object enables a Simulink model to
interact with big data. You can load big data as simulation input and log big output data
from a simulation. To simulate models with big data, you store the data in a MAT-file and
refer to the data through a SimulationDatastore object. See “Work with Big Data for
Simulations”.

A SimulationDatastore object refers to big simulation data (which a MAT-file stores)
for one signal. If the MAT-file stores simulation data for a bus signal, a
SimulationDatastore object refers to the data for one leaf signal element in the bus.
You can use the datastore object to inspect and access the data and, through a parent
object such as Simulink.SimulationData.Signal, simulate a Simulink model with
the data.

To analyze the datastore data, you can use the methods and properties of the
SimulationDatastore object as well as MATLAB tools such as the tall function. For
more information about the MATLAB tools, see “Getting Started with Datastore”
(MATLAB).

Construction
After you store big simulation data in a Simulink.SimulationData.Dataset object in
a MAT-file, a signal element in the Dataset object points to the big data. To create a
matlab.io.datastore.SimulationDatastore object that refers to the big data:

1 At the command prompt or in a script, create a
Simulink.SimulationData.DatasetRef object that refers to the Dataset object
in the MAT-file.

 matlab.io.datastore.SimulationDatastore class

5-7

2 Use one of these techniques:

• Use one-based, curly-brace indexing (for example, {1}) to return an object that
represents the target signal element, such as
Simulink.SimulationData.Signal or Simulink.SimulationData.State.
For example, for a DatasetRef object named logsout_ref, to create a Signal
object that refers to the second signal element, use this code:

myLoggedSig = logsout_ref{2}

• Use the getAsDatastore method of the DatasetRef object to return an object
that represents the target signal element. For more information, see
Simulink.SimulationData.DatasetRef.getAsDatastore.

The SimulationDatastore object resides in the Values property of the returned
object.

Properties
FileName — Name and path of file that contains big data
character vector

Name and path of the file that contains the big data, returned as a character vector. This
property is read-only.
Data Types: char

NumSamples — Total number of samples (time steps) in the datastore
integer

Total number of samples (time steps) in the datastore, returned as an integer. The
readall method extracts this many samples from the big data. This property is read-only.
Data Types: uint64

ReadSize — Amount of data to read at a time
100 (default) | scalar double

Amount of data to read at a time, in number of samples (time steps), specified as a scalar
double. The read method extracts this many samples from the big data.
Data Types: double

5 Simulink Classes

5-8

Methods
hasdata Determine if data is available to read
preview Return subset of data from datastore
progress Return percentage of data that you have read from a datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Limitations
• SimulationDatastore does not support using a parallel pool with Parallel

Computing Toolbox installed. To analyze data using tall arrays or run MapReduce
algorithms, set the global execution environment to be the local MATLAB session
using mapreducer. Enter this code:

mapreducer(0)

For information about controlling parallel resources, see “Run mapreduce on a Parallel
Pool” (Parallel Computing Toolbox).

• You cannot use a MATLAB tall variable as simulation input data.

Examples

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze
portions of that data by interacting with a
matlab.io.datastore.SimulationDatastore object.

 matlab.io.datastore.SimulationDatastore class

5-9

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged
signals such as fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable
by name, sldemo_fuelsys_output.

5 Simulink Classes

5-10

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element
in DSRef, as a Simulink.SimulationData.Signal object that contains a
SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the
Values property of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

Use the preview method to inspect the first five samples of logged data for the fuel
signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

 matlab.io.datastore.SimulationDatastore class

5-11

Set the ReadSize property of DStore to a number that, considering memory resources,
your computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position
by 200 samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For
example, set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136
 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the
datastore now reads starting from the 606th sample, so you must reset the datastore.
Then, you can read from the first sample up to the 403rd sample.

Use the reset method to reset DStore.

5 Simulink Classes

5-12

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858
 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

DStore.ReadSize = 200;

 matlab.io.datastore.SimulationDatastore class

5-13

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named
targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

5 Simulink Classes

5-14

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in
chunks of 200 samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;
 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

• “Work with Big Data for Simulations”

See Also

Topics
“Work with Big Data for Simulations”

Introduced in R2017a

 matlab.io.datastore.SimulationDatastore class

5-15

hasdata
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Determine if data is available to read

Syntax
tf = hasdata(dst)

Description
tf = hasdata(dst) returns logical 1 (true) if there is data available to read from the
datastore (matlab.io.datastore.SimulationDatastore object) specified by dst.
Otherwise, it returns logical 0 (false).

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object.
To create a SimulationDatastore object, see
matlab.io.datastore.SimulationDatastore.

Examples

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze
portions of that data by interacting with a
matlab.io.datastore.SimulationDatastore object.

5 Simulink Classes

5-16

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged
signals such as fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable
by name, sldemo_fuelsys_output.

 hasdata

5-17

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element
in DSRef, as a Simulink.SimulationData.Signal object that contains a
SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the
Values property of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

Use the preview method to inspect the first five samples of logged data for the fuel
signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

5 Simulink Classes

5-18

Set the ReadSize property of DStore to a number that, considering memory resources,
your computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position
by 200 samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For
example, set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136
 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the
datastore now reads starting from the 606th sample, so you must reset the datastore.
Then, you can read from the first sample up to the 403rd sample.

Use the reset method to reset DStore.

 hasdata

5-19

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858
 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

DStore.ReadSize = 200;

5 Simulink Classes

5-20

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named
targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

 hasdata

5-21

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in
chunks of 200 samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;
 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

• “Work with Big Data for Simulations”

See Also

Topics
“Work with Big Data for Simulations”

Introduced in R2017a

5 Simulink Classes

5-22

preview
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Return subset of data from datastore

Syntax
data = preview(dst)

Description
data = preview(dst) returns a subset of data from datastore
(matlab.io.datastore.SimulationDatastore object) dst without changing its
current read position. preview returns only the first ten samples (time steps) of data in
the datastore. Use this method to quickly inspect and verify that the data appears as you
expect.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object.
To create a SimulationDatastore object, see
matlab.io.datastore.SimulationDatastore.

Output Arguments
data — Subset of data
timetable object

 preview

5-23

Subset of data, returned as a timetable object. For information about timetable, see
“Timetables” (MATLAB).

Examples

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze
portions of that data by interacting with a
matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

5 Simulink Classes

5-24

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged
signals such as fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable
by name, sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element
in DSRef, as a Simulink.SimulationData.Signal object that contains a
SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the
Values property of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

Use the preview method to inspect the first five samples of logged data for the fuel
signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209

 preview

5-25

 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources,
your computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position
by 200 samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For
example, set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136
 5.81 sec 1.6003

5 Simulink Classes

5-26

 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the
datastore now reads starting from the 606th sample, so you must reset the datastore.
Then, you can read from the first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858

 preview

5-27

 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

DStore.ReadSize = 200;

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named
targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913

5 Simulink Classes

5-28

 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in
chunks of 200 samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;
 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

• “Work with Big Data for Simulations”

 preview

5-29

See Also

Topics
“Work with Big Data for Simulations”

Introduced in R2017a

5 Simulink Classes

5-30

progress
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Return percentage of data that you have read from a datastore

Syntax
p = progress(dst)

Description
p = progress(dst) returns the percentage, as a number between 0 and 1, of the data
that you have read from a datastore (matlab.io.datastore.SimulationDatastore
object). For example, a return value of 0.55 means you have read 55% of the data. Use
the progress method and the NumSamples property to determine the current read
position.

You read data from a SimulationDatastore object by using the read method.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object.
To create a SimulationDatastore object, see
matlab.io.datastore.SimulationDatastore.

Output Arguments
p — Percentage of data that you have read from the datastore
scalar double

 progress

5-31

Percentage of data that you have read from the datastore, returned as a scalar double.
Data Types: double

See Also

Topics
“Work with Big Data for Simulations”

Introduced in R2017a

5 Simulink Classes

5-32

read
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Read data in datastore

Syntax
data = read(dst)
[data,info] = read(dst)

Description
data = read(dst) returns data from a datastore
(matlab.io.datastore.SimulationDatastore object). Subsequent calls to the read
function continue reading from the endpoint of the previous call. Use the ReadSize
property of the SimulationDatastore object to specify the amount of data, in samples
(time steps), to read at a time. Use the progress method and the NumSamples property
to determine the current read position.

[data,info] = read(dst) also returns information about the extracted data in info.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object.
To create a SimulationDatastore object, see
matlab.io.datastore.SimulationDatastore.

 read

5-33

Output Arguments
data — Output data
timetable object

Output data, returned as a timetable object. For information about timetable, see
“Timetables” (MATLAB).

info — Information about read data
structure array

Information about read data, returned as a structure. The structure has one field,
FileName, which is a fully resolved path containing the path string, the name of the file,
and the file extension.

Examples

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze
portions of that data by interacting with a
matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

5 Simulink Classes

5-34

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged
signals such as fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable
by name, sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

 read

5-35

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element
in DSRef, as a Simulink.SimulationData.Signal object that contains a
SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the
Values property of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

Use the preview method to inspect the first five samples of logged data for the fuel
signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources,
your computer can tolerate. For example, set ReadSize to 200.

5 Simulink Classes

5-36

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position
by 200 samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For
example, set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136
 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the
datastore now reads starting from the 606th sample, so you must reset the datastore.
Then, you can read from the first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

 read

5-37

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858
 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

DStore.ReadSize = 200;

for i = 1:5

5 Simulink Classes

5-38

 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named
targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

 read

5-39

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in
chunks of 200 samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;
 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

• “Work with Big Data for Simulations”

See Also

Topics
“Work with Big Data for Simulations”

Introduced in R2017a

5 Simulink Classes

5-40

readall
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Read all data in datastore

Syntax
data = readall(dst)

Description
data = readall(dst) returns all the data in the datastore
(matlab.io.datastore.SimulationDatastore object) specified by dst.

If all the data in the datastore does not fit in memory, readall returns an error. To
determine how many samples (time steps) a datastore holds, inspect the NumSamples
property of the SimulationDatastore object.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object.
To create a SimulationDatastore object, see
matlab.io.datastore.SimulationDatastore.

Output Arguments
data — All data in the datastore
timetable object

 readall

5-41

All data in the datastore, returned as a timetable object. For information about
timetable, see “Timetables” (MATLAB).

See Also

Topics
“Work with Big Data for Simulations”

Introduced in R2017a

5 Simulink Classes

5-42

reset
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Reset datastore to initial state

Syntax
reset(dst)

Description
reset(dst) sets the read position of the datastore
(matlab.io.datastore.SimulationDatastore object) specified by dst to the first
sample in the datastore. Use reset to reread data from a datastore. You read from a
datastore by using the read method.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object.
To create a SimulationDatastore object, see
matlab.io.datastore.SimulationDatastore.

Examples

 reset

5-43

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze
portions of that data by interacting with a
matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

5 Simulink Classes

5-44

The MAT-file out.mat appears in your current folder. The file contains data for logged
signals such as fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable
by name, sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element
in DSRef, as a Simulink.SimulationData.Signal object that contains a
SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the
Values property of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

Use the preview method to inspect the first five samples of logged data for the fuel
signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

 reset

5-45

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources,
your computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position
by 200 samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For
example, set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136
 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

5 Simulink Classes

5-46

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the
datastore now reads starting from the 606th sample, so you must reset the datastore.
Then, you can read from the first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858
 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

 reset

5-47

Reset the datastore.

reset(DStore)

Advance to sample 1001.

DStore.ReadSize = 200;

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named
targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595

5 Simulink Classes

5-48

 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in
chunks of 200 samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;
 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

• “Work with Big Data for Simulations”

See Also

Topics
“Work with Big Data for Simulations”

Introduced in R2017a

 reset

5-49

eventData
Provide information about block method execution events

Description
Simulink software creates an instance of this class when a block method execution event
occurs during simulation and passes it to any listeners registered for the event (see
add_exec_event_listener). The instance specifies the type of event that occurred and
the block whose method execution triggered the event. See “Access Block Data During
Simulation” for more information.

Parent
None

Children
None

Property Summary

Name Description
“Type” on page 5-51 Type of method execution event that occurred.
“Source” on page 5-
51

Block that triggered the event.

5 Simulink Classes

5-50

Properties

Type

Type of method execution event that occurred. Possible values are:

event Occurs...
'PreOutputs' Before a block's Outputs method executes.
'PostOutputs' After a block's Outputs method executes.
'PreUpdate' Before a block's Update method executes.
'PostUpdate' After a block's Update method executes.
'PreDerivatives' Before a block's Derivatives method executes.
'PostDerivatives' After a block's Derivatives method executes.

character vector

RO

Source

Block that triggered the event

Simulink.RunTimeBlock

RO

Introduced in R2009b

 eventData

5-51

LibraryBrowser.LibraryBrowser2 class
Package: LibraryBrowser

Simulink Library Browser

Description
Programmatically display, hide, size, and position the Simulink Library Browser.

Construction
lb = LibraryBrowser.LibraryBrowser2

Properties
IsOnTop — Always put library window on top
0 (default) | 1

Always put library window on top of other Simulink Editor windows, specified as 1 for
always on top.
Example: lb.IsOnTop = 1

5 Simulink Classes

5-52

Methods
Method Meaning Example
refresh Update the library browser

display with changes that affect
the library browser. Examples
include adding a library to the
library browser, removing a
library from the library browser,
and changes to your custom
libraries, slblocks function, or
sl_customization.m file. In
general, refresh the library
browser when you have made any
changes that affect libraries on
your MATLAB path that are
registered in the library
browser. .

lb = LibraryBrowser.LibraryBrowser2;
refresh(lb)

show Display the library browser. lb = LibraryBrowser.LibraryBrowser2;
show(lb)

hide Hide the library browser. lb = LibraryBrowser.LibraryBrowser2;
hide(lb)

getPositi
on

Get the position of the library
browser. Returned as four
integers, in pixels: upper-left x
coordinate, upper-left y
coordinate, width, and depth.

lb = LibraryBrowser.LibraryBrowser2;
getPosition(lb)

ans =

 50 279 600 600

setPositi
on

Set the position of the library
browser. Use an array of integers,
in pixels: upper-left x coordinate,
upper-left y coordinate, width,
and depth.

lb = LibraryBrowser.LibraryBrowser2;
setPosition(lb,[70 250 500 500])

 LibraryBrowser.LibraryBrowser2 class

5-53

See Also

Topics
“Customize Library Browser Appearance”
“Registering Customizations”

Introduced in R2016b

5 Simulink Classes

5-54

allowModelReferenceDiscreteSampleTimeInh
eritanceImpl
Model reference sample time inheritance status for discrete sample times

Syntax
flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)

Description
flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)
specifies whether a System object in a reference model is allowed to inherit the sample
time of the parent model. Use this method only for System objects that use discrete
sample time and are intended for inclusion in Simulink via the MATLAB System block.

During model compilation, Simulink sets the model reference sample time inheritance
before the System object setupImpl method is called.

Note You must set Access = protected for this method.

Input Arguments
obj

System object handle

Output Arguments
flag

Flag indicating whether model reference discrete sample time inheritance is allowed for
the MATLAB System block containing the System object, returned as a logical value.

 allowModelReferenceDiscreteSampleTimeInheritanceImpl

5-55

The default value for this argument depends on the number of inputs to the System
object. To use the default value, you do not need to include this method in your System
object class definition file.

Number of
System object
Inputs

Default Value and Override Effects

No inputs Default: false — Model reference discrete sample time
inheritance is not allowed.
If your System object uses discrete sample time in its algorithm,
override the default by returning true from
allowModelReferenceDiscreteSampleTimeInheritanceImpl
.

One or more inputs Default: true — If no other Simulink constraint prevents it, model
reference sample time inheritance is allowed.
If your System object does not use sample time in its algorithm,
override the default by returning false from
allowModelReferenceDiscreteSampleTimeInheritanceImpl
.

Examples

Set Sample Time Inheritance for System Object

For a System object that has one or more inputs, to disallow model reference discrete
sample time inheritance for that object, set the sample time inheritance to false. Include
this code in your class definition file for the object.

methods (Access = protected)
 function flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(~)
 flag = false;
 end
end

• “Set Model Reference Discrete Sample Time Inheritance”
• “Overview of Model Referencing”
• “Inherit Sample Times for Model Referencing”

5 Simulink Classes

5-56

See Also
matlab.System

Topics
“Set Model Reference Discrete Sample Time Inheritance”
“Overview of Model Referencing”
“Inherit Sample Times for Model Referencing”

 allowModelReferenceDiscreteSampleTimeInheritanceImpl

5-57

getInputNamesImpl
Names of MATLAB System block input ports

Syntax
[name1,name2,...] = getInputNamesImpl(obj)

Description
[name1,name2,...] = getInputNamesImpl(obj) specifies the names of the input
ports of the System object on a MATLAB System block. The number of returned input
names matches the number of inputs returned by the getNumInputs method. If you
change a property value that changes the number of inputs, the names of those inputs
also change.

getInputNamesImpl is called by the getInputNames method by the MATLAB System
block.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

Output Arguments
name1,name2,...

Names of the inputs for the specified object, returned as character vectors

Default: empty character vector

5 Simulink Classes

5-58

Examples

Specify Input Port Name

Specify in your class definition file the names of two input ports as 'upper' and
'lower'.

methods (Access = protected)
 function varargout = getInputNamesImpl(obj)
 numInputs = getNumInputs(obj);
 varargout = cell(1,numInputs);
 varargout{1} = 'upper';
 if numInputs > 1
 varargout{2} = 'lower';
 end
 end
end

• “Specify Input and Output Names”

See Also
getNumInputsImpl | getOutputNamesImpl

Topics
“Specify Input and Output Names”

 getInputNamesImpl

5-59

getOutputNamesImpl
Names of MATLAB System block output ports

Syntax
[name1,name2,...] = getOutputNamesImpl(obj)

Description
[name1,name2,...] = getOutputNamesImpl(obj) returns the names of the output
ports from System object, obj implemented in a MATLAB System block. The number of
returned output names matches the number of outputs returned by the getNumOutputs
method. If you change a property value that affects the number of outputs, the names of
those outputs also change.

getOutputNamesImpl is called by the MATLAB System block.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

Output Arguments
name1,name2,...

Names of the outputs for the specified object, returned as character vectors.

Default: empty character vector

5 Simulink Classes

5-60

Examples

Specify Output Port Name

Specify the name of an output port as 'count'.

methods (Access = protected)
 function outputName = getOutputNamesImpl(~)
 outputName = 'count';
 end
end

• “Specify Input and Output Names”

See Also
getInputNamesImpl | getNumOutputsImpl

Topics
“Specify Input and Output Names”

 getOutputNamesImpl

5-61

getPropertyGroupsImpl
Property groups for System object display

Syntax
group = getPropertyGroupsImpl

Description
group = getPropertyGroupsImpl specifies how to group properties for display. You
specify property sections (matlab.system.display.Section) and section groups
(matlab.system.display.SectionGroup) within this method. Sections arrange
properties into groups. Section groups arrange sections and properties into groups. If a
System object, included through the MATLAB System block, has a section, but that
section is not in a section group, its properties appear above the block dialog tab panels.

If you do not include a getPropertyGroupsImpl method in your code, all public
properties are included in the dialog box by default. If you include a
getPropertyGroupsImpl method but do not list a property, that property does not
appear in the dialog box.

When the System object is displayed at the MATLAB command line, the properties are
grouped as defined in getPropertyGroupsImpl. If your getPropertyGroupsImpl
defines multiple section groups, only properties from the first section group are displayed
at the command line. To display properties in other sections, a link is provided at the end
of a System object property display. Group titles are also displayed at the command line.
To omit the "Main" title for the first group of properties, set TitleSource to 'Auto' in
matlab.system.display.SectionGroup.

getPropertyGroupsImpl is called by the MATLAB System block and when displaying
the object at the command line.

Note You must set Access = protected and Static for this method.

5 Simulink Classes

5-62

Output Arguments
group

Property group or groups

Examples

Define Block Dialog Tabs

Define two block dialog tabs, each containing specific properties. For this example, you
use the getPropertyGroupsImpl, matlab.system.display.SectionGroup, and
matlab.system.display.Section methods in your class definition file.

methods (Static, Access = protected)
 function groups = getPropertyGroupsImpl
 valueGroup = matlab.system.display.Section(...
 'Title','Value parameters',...
 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...
 'Title','Threshold parameters',...
 'PropertyList',{'Threshold','UseThreshold'});

 mainGroup = matlab.system.display.SectionGroup(...
 'Title','Main', ...
 'Sections',[valueGroup,thresholdGroup]);

 initGroup = matlab.system.display.SectionGroup(...
 'Title','Initial conditions', ...
 'PropertyList',{'IC1','IC2','IC3'});

 groups = [mainGroup,initGroup];
 end
end

The resulting dialog box appears as follows.

 getPropertyGroupsImpl

5-63

5 Simulink Classes

5-64

• “Add Property Groups to System Object and MATLAB System Block”

See Also
matlab.system.display.Header | matlab.system.display.Section |
matlab.system.display.SectionGroup

Topics
“Add Property Groups to System Object and MATLAB System Block”

 getPropertyGroupsImpl

5-65

getSimulateUsingImpl
Specify value for Simulate using parameter

Syntax
simmode = getSimulateUsingImpl

Description
simmode = getSimulateUsingImpl specifies the simulation mode of the System
object implemented in a MATLAB System block. The simulation mode restricts your
System object to simulation using either code generation or interpreted execution. The
associated showSimulateUsingImpl method controls whether the Simulate using
option is displayed on the dialog box.

getSimulateUsingImpl is called by the MATLAB System block.

Note You must set Access = protected and Static for this method.

Output Arguments
simmode

Simulation mode, returned as the character vector 'Code generation' or
'Interpreted execution'. If you do not include the getSimulateUsingImpl
method in your class definition file, the simulation mode is unrestricted. Depending on the
value returned by the associated showSimulateUsingImpl method, the simulation
mode is displayed as either a dropdown list on the dialog box or not at all.

Examples

5 Simulink Classes

5-66

Specify the Simulation Mode

In the class definition file of your System object, define the simulation mode to display in
the MATLAB System block. To prevent Simulate using from displaying, see
showSimulateUsingImpl.

 methods (Static, Access = protected)
 function simMode = getSimulateUsingImpl
 simMode = "Interpreted execution";
 end
 end

• “Control Simulation Type in MATLAB System Block”

See Also
showSimulateUsingImpl

Topics
“Control Simulation Type in MATLAB System Block”

 getSimulateUsingImpl

5-67

showFiSettingsImpl
Fixed point data type tab visibility for System objects

Syntax
flag = showFiSettingsImpl

Description
flag = showFiSettingsImpl specifies whether the Data Types tab appears on the
MATLAB System block dialog box. The Data Types tab includes parameters to control
processing of fixed point data the MATLAB System block. You cannot specify which
parameters appear on the tab. If you implement showFiSettingsImpl, the simulation
mode is set code generation.

showFiSettingsImpl is called by the MATLAB System block.

The parameters that appear on the Data Types tab, which cannot be customized, are

• Saturate on integer overflow is a check box to control the action to take on integer
overflow for built-in integer types. The default is that the box is checked, which
indicates to saturate. This is also the default for when Same as MATLAB is selected
as the MATLAB System fimath option.

• Treat these inherited Simulink signal types as fi objects is a pull down that
indicates which inherited data types to treat as fi data types. Valid options are Fixed
point and Fixed point & integer. The default value is Fixed point.

• MATLAB System fimath has two radio button options: Same as MATLAB and
Specify Other. The default, Same as MATLAB, uses the current MATLAB fixed-point
math settings. Specify Other enables the edit box for specifying the desired fixed-
point math settings. For information on setting fixed-point math, see fimath, in the
Fixed-Point Designer documentation.

Note If you do not want to display the tab, you do not need to implement this method in
your class definition file.

5 Simulink Classes

5-68

You must set Access = protected and Static for this method.

Output Arguments
flag

Flag indicating whether to display the Data Types tab on the MATLAB System block mask,
returned as a logical scalar value. Returning a true value displays the tab. A false value
does not display the tab.

Default: false

Examples

Show the Data Types Tab

Show the Data Types tab on the MATLAB System block dialog box.

methods (Static, Access = protected)
 function isVisible = showFiSettingsImpl
 isVisible = true;
 end
end

If you set the flag, isVisible, to true, the tab appears as follows when you add the
object to Simulink with the MATLAB System block.

 showFiSettingsImpl

5-69

• “Add Data Types Tab to MATLAB System Block”

5 Simulink Classes

5-70

See Also

Topics
“Add Data Types Tab to MATLAB System Block”

 showFiSettingsImpl

5-71

showSimulateUsingImpl
Visibility of Simulate using parameter

Syntax
flag = showSimulateUsingImpl

Description
flag = showSimulateUsingImpl specifies whether Simulation mode appears on the
MATLAB System block dialog box.

showSimulateUsingImpl is called by the MATLAB System block.

Note You must set Access = protected and Static for this method.

Output Arguments
flag

Flag indicating whether to display the Simulate using parameter and dropdown list on
the MATLAB System block mask, returned as a logical scalar value. A true value displays
the parameter and dropdown list. A false value hides the parameter and dropdown list.

Default: true

Examples

Hide the Simulate using Parameter

Hide the Simulate using parameter on the MATLAB System block dialog box.

5 Simulink Classes

5-72

methods (Static, Access = protected)
 function flag = showSimulateUsingImpl
 flag = false;
 end
end

If you set the flag to true or omit the showSimulateUsingImpl method, which defaults
to true, the dialog appears as follows when you add the object to Simulink with the
MATLAB System block.

If you also specify a single value for getSimulateUsingImpl, the dialog appears as
follows when you add the object to Simulink with the MATLAB System block.

 showSimulateUsingImpl

5-73

• “Control Simulation Type in MATLAB System Block”

See Also
getSimulateUsingImpl

Topics
“Control Simulation Type in MATLAB System Block”

5 Simulink Classes

5-74

getGlobalNamesImpl
Global variable names for MATLAB System block

Syntax
name = getGlobalNamesImpl(obj)

Description
name = getGlobalNamesImpl(obj) specifies the names of global variables that are
declared in a System object for use in a Simulink P-code file. For P-code files, in addition
to declaring your global variables in stepImpl, outputImpl, or updateImpl, you must
include the getGlobalNamesImpl method. You declare global variables in a cell array in
the getGlobalNamesImpl method. System objects that contain these global variables
are included in Simulink using a MATLAB System block. To enable a global variable in
Simulink, your model also must include a Data Store Memory block with a Data Store
Name that matches the global variable name.

getGlobalNamesImpl is called by the MATLAB System block.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

 getGlobalNamesImpl

5-75

Output Arguments
name

Name of the cell array containing the global variable names. The elements of the cell
array are character vectors.

Examples

Specify Global Names

Specify two global names in your class definition file.

methods(Access = protected)
 function glnames = getGlobalNamesImpl(obj)
 glnames = {"FEE","OTHERFEE"};
 end

 function y = stepImpl(obj,u)
 global FEE
 global OTHERFEE
 y = u - FEE * obj.lastData + OTHERFEE;
 obj.lastData = u;
 end
end

• “System Object Global Variables in Simulink”

See Also
outputImpl | stepImpl | updateImpl

Topics
“System Object Global Variables in Simulink”

Introduced in R2016b

5 Simulink Classes

5-76

getHeaderImpl
Header for System object display

Syntax
header = getHeaderImpl

Description
header = getHeaderImpl specifies the dialog header to display on the MATLAB
System block dialog box. If you do not specify the getHeaderImpl method, no title or
text appears for the header in the block dialog box.

getHeaderImpl is called by the MATLAB System block.

Note You must set Access = protected and Static for this method.

Output Arguments
header

Header text

Examples

Define Header for System Block Dialog Box

Define a header in your class definition file for the EnhancedCounter System object.

 methods (Static, Access = protected)
 function header = getHeaderImpl
 header = matlab.system.display.Header('EnhancedCounter',...

 getHeaderImpl

5-77

 'Title','Enhanced Counter');
 end
 end

• “Add Header to MATLAB System Block”

See Also
getPropertyGroupsImpl

Topics
“Add Header to MATLAB System Block”

5 Simulink Classes

5-78

getDiscreteStateImpl
Discrete state property values

Syntax
s = getDiscreteStateImpl(obj)

Description
s = getDiscreteStateImpl(obj) returns a struct s of internal state value
properties, which have the DiscreteState attribute. The field names of the struct are
the object’s DiscreteState property names. To restrict or change the values returned
by getDiscreteState method, you can override this getDiscreteStateImpl method.

getDiscreteStatesImpl is called by the getDiscreteState method, which is called
by the setup method.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

Output Arguments
s

State values, returned as a struct

 getDiscreteStateImpl

5-79

Examples

Get Discrete State Values

Use the getDiscreteStateImpl method in your class definition file to get the discrete
states of the object.

methods (Access = protected)
 function s = getDiscreteStateImpl(obj)
 end
end

See Also
setupImpl

Topics
“Define Property Attributes” (MATLAB)

5 Simulink Classes

5-80

supportsMultipleInstanceImpl
Support System object in Simulink For Each subsystem

Syntax
flag = supportsMultipleInstanceImpl(obj)

Description
flag = supportsMultipleInstanceImpl(obj) specifies whether the System object
can be used in a Simulink For Each subsystem via the MATLAB System block. To enable
For Each support, you must include the supportsMultipleInstanceImpl in your class
definition file and have it return true. Do not enable For Each support if your System
object allocates exclusive resources that may conflict with other System objects, such as
allocating file handles, memory by address, or hardware resources.

During Simulink model compilation and propagation, the MATLAB System block calls the
supportMultipleInstance method, which then calls the
supportsMultipleInstanceImpl method to determine For Each support.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

 supportsMultipleInstanceImpl

5-81

Output Arguments
flag

Boolean value indicating whether the System object can be used in a For Each subsystem.
The default value, if you do not include the supportMultipleInstance method, is
false.

Examples

Enable For-Each Support for System Object

Specify in your class definition file that the System object can be used in a Simulink For
Each subsystem.

methods (Access = protected)
 function flag = supportsMultipleInstanceImpl(obj)
 flag = true;
 end
end

• “Enable For Each Subsystem Support”

See Also
matlab.System

Topics
“Enable For Each Subsystem Support”

5 Simulink Classes

5-82

processTunedPropertiesImpl
Action when tunable properties change

Syntax
processTunedPropertiesImpl(obj)

Description
processTunedPropertiesImpl(obj) specifies the algorithm to perform when one or
more tunable property values change. This method is called as part of the next call to the
System object after a tunable property value changes. A property is tunable only if its
Nontunable attribute is false, which is the default.

processTunedPropertiesImpl is called when you run the System object.

Note You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object

Examples

 processTunedPropertiesImpl

5-83

Specify Action When Tunable Property Changes

Use processTunedPropertiesImpl to recalculate the lookup table if the value of
either the NumNotes or MiddleC property changes before the next call to the System
object. propChange indicates if either property has changed.

methods (Access = protected)
 function processTunedPropertiesImpl(obj)
 propChange = isChangedProperty(obj,'NumNotes') ||...
 isChangedProperty(obj,'MiddleC')
 if propChange
 obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12));
 end
 end
end

• “Validate Property and Input Values” (MATLAB)
• “Define Property Attributes” (MATLAB)

Tips
Use this method when a tunable property affects the value of a different property.

To check if a property has changed since stepImpl was last called, use
isChangedProperty within processTunedPropertiesImpl. See “Specify Action
When Tunable Property Changes” on page 5-83 for an example.

In MATLAB when multiple tunable properties are changed before running the System
object, processTunedPropertiesImpl is called only once for all the changes.
isChangedProperty returns true for all the changed properties.

In Simulink, when a parameter is changed in a MATLAB System block dialog, the next
simulation step calls processTunedPropertiesImpl before calling stepImpl. All
tunable parameters are considered changed and processTunedPropertiesImpl
method is called for each of them. isChangedProperty returns true for all the dialog
properties.

See Also
setProperties | validatePropertiesImpl

5 Simulink Classes

5-84

Topics
“Validate Property and Input Values” (MATLAB)
“Define Property Attributes” (MATLAB)

 processTunedPropertiesImpl

5-85

matlab.system.mixin.CustomIcon class
Package: matlab.system.mixin

Custom icon mixin class

Description
matlab.system.mixin.CustomIcon is a class that specifies the getIcon method. This
method customizes the name of the icon used for the System object implemented through
a MATLAB System block.

To use this method, you must subclass from this class in addition to the matlab.System
base class. Type the following syntax as the first line of your class definition file, where
ObjectName is the name of your object:

classdef ObjectName < matlab.system &...
 matlab.system.mixin.CustomIcon

Methods
getIconImpl Name to display as block icon

See Also
matlab.System | matlab.system.display.Icon

Topics
“Add Text to Block Icon”

5 Simulink Classes

5-86

getIconImpl
Class: matlab.system.mixin.CustomIcon
Package: matlab.system.mixin

Name to display as block icon

Syntax
icon = getIconImpl(obj)

Description
icon = getIconImpl(obj) specifies the text or image to display on the block icon of
the MATLAB System block. If you do not specify the getIconImpl method, the block
displays the class name of the System object as the block icon. For example, if you specify
pkg.MyObject in the MATLAB System block, the default icon is labeled MyObject

getIconImpl is called by the MATLAB System block during Simulink model compilation.

Note You must set Access = protected for this method.

Input Arguments
obj

System object handle

Output Arguments
icon

The text or image to display as the block icon. Each cell is displayed as a separate line.

 getIconImpl

5-87

Examples

Add System Block Icon Name

Specify in your class definition file the name of the block icon as 'Enhanced Counter'
using two lines.

methods (Access = protected)
 function icon = getIconImpl(~)
 icon = {'Enhanced','Counter'};
 end
end

Add Image to MATLAB System Block

Define an image in your class definition file.

 methods(Access = protected)
 function icon = getIconImpl(~)
 % Define icon for System block
 icon = matlab.system.display.Icon('my_icon.png');
 end
 end

The image now appears on the System block icon.

• “Customize System Block Appearance”

See Also
matlab.system.display.Icon | matlab.system.mixin.CustomIcon

5 Simulink Classes

5-88

Topics
“Customize System Block Appearance”

 getIconImpl

5-89

matlab.system.display.Header class
Package: matlab.system.display

Header for System objects properties

Syntax
matlab.system.display.Header(N1,V1,...Nn,Vn)
matlab.system.display.Header(Obj,...)

Description
matlab.system.display.Header(N1,V1,...Nn,Vn) specifies a header for the
System object, with the header properties defined in Name-Value (N,V) pairs. You use
matlab.system.display.Header within the getHeaderImpl method. The available
header properties are

• Title — Header title. The default value is an empty character vector.
• Text — Header description. The default value is an empty character vector.
• ShowSourceLink — Show link to source code for the object.

matlab.system.display.Header(Obj,...) creates a header for the specified
System object (Obj) and sets the following property values:

• Title — Set to the Obj class name.
• Text — Set to help summary for Obj.
• ShowSourceLink — Set to true if Obj is MATLAB code. In this case, the Source

Code link is displayed. If Obj is P-coded and the source code is not available, set this
property to false.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the default
settings.

5 Simulink Classes

5-90

Examples

Define System Block Header

Define a header in your class definition file.

 methods (Static, Access = protected)
 function header = getHeaderImpl
 header = matlab.system.display.Header(mfilename('class'), ...
 'Title','AlternativeTitle',...
 'Text','An alternative class description');
 end
 end

The resulting output appears as follows. In this case, Source code appears because the
ShowSourceLink property was set to true.

• “Creating Classes” (MATLAB)
• “Add Header to MATLAB System Block”

See Also
getHeaderImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup

 matlab.system.display.Header class

5-91

Topics
“Creating Classes” (MATLAB)
“Add Header to MATLAB System Block”

5 Simulink Classes

5-92

matlab.system.display.Section class
Package: matlab.system.display

Property group section for System objects

Syntax
matlab.system.display.Section(N1,V1,...Nn,Vn)
matlab.system.display.Section(Obj,...)

Description
matlab.system.display.Section(N1,V1,...Nn,Vn) creates a property group
section for displaying System object properties, which you define using property Name-
Value pairs (N,V). You use matlab.system.display.Section to define property groups
using the getPropertyGroupsImpl method. The available Section properties are

• Title — Section title. The default value is an empty character vector.
• TitleSource — Source of section title. Valid values are 'Property' and 'Auto'.

The default value is 'Property', which uses the character vector from the Title
property. If the Obj name is given, the default value is Auto, which uses the Obj
name.

• Description — Section description. The default value is an empty character vector.
• PropertyList — Section property list as a cell array of property names. The default

value is an empty array. If the Obj name is given, the default value is all eligible
display properties.

Note Certain properties are not eligible for display either in a dialog box or in the
System object summary on the command-line. Property types that cannot be displayed
are: hidden, abstract, private or protected access, discrete state, and continuous state.
Dependent properties do not display in a dialog box, but do display in the command-
line summary.

 matlab.system.display.Section class

5-93

matlab.system.display.Section(Obj,...) creates a property group section for
the specified System object (Obj) and sets the following property values:

• TitleSource — Set to 'Auto', which uses the Obj name.
• PropertyList — Set to all publicly-available properties in the Obj.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the default
settings.

Methods

Examples

Define Property Groups

Define two property groups in your class definition file by specifying their titles and
property lists.

 methods (Static, Access = protected)
 function groups = getPropertyGroupsImpl
 valueGroup = matlab.system.display.Section(...
 'Title','Value parameters',...
 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...
 'Title','Threshold parameters',...
 'PropertyList',{'Threshold','UseThreshold'});
 groups = [valueGroup,thresholdGroup];
 end
 end

When you specify the System object in the MATLAB System block, the resulting dialog
box appears as follows.

5 Simulink Classes

5-94

• “Add Property Groups to System Object and MATLAB System Block”

See Also
getPropertyGroupsImpl | matlab.system.display.Header |
matlab.system.display.SectionGroup

Topics
“Add Property Groups to System Object and MATLAB System Block”

 matlab.system.display.Section class

5-95

matlab.system.display.Action class
Package: matlab.system.display

Custom button

Syntax
matlab.system.display.Action(action)
matlab.system.display.Action(action,Name,Value)

Description
matlab.system.display.Action(action) specifies a button to display on the
MATLAB System block. This button executes a function by launching a System object
method or invoking any MATLAB function or code.

A typical button function launches a figure. The launched figure is decoupled from the
block dialog box. Changes to the block are not synced to the displayed figure.

You define matlab.system.display.Action within the getPropertyGroupsImpl
method in your class definition file. You can define multiple buttons using separate
instances of matlab.system.display.Action in your class definition file.

matlab.system.display.Action(action,Name,Value) includes Name,Value pair
arguments, which you can use to specify any properties.

Input Arguments
action

Action taken when the user presses the specified button on the MATLAB System block
dialog. The action is defined as a function handle or as a MATLAB command. If you define
the action as a function handle, the function definition must define two inputs. These
inputs are a matlab.system.display.ActionData object and a System object
instance, which can be used to invoke a method.

5 Simulink Classes

5-96

A matlab.system.display.ActionData object is the callback object for a display
action. You use the UserData property of matlab.system.display.ActionData to
store persistent data, such as a figure handle.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
You specify these properties as part of the input using Name,Value pair arguments.
Optionally, you can define them using object.property syntax.

• ActionCalledFcn — Action to take when the button is pressed. You cannot specify
this property using a Name-Value pair argument.

• Label — Text to display on the button. The default value is an empty character vector.
• Description — Text for the button tooltip. The default value is an empty character

vector.
• Placement — Character vector indicating where on a separate row in the property

group to place the button. Valid values are 'first', 'last', or a property name. If
you specify a property name, the button is placed above that property. The default
value is 'last'.

• Alignment — Character vector indicating how to align the button. Valid values are
'left' and 'right'. The default value is 'left'.

Examples

Define Button on MATLAB System Block

Define a Visualize button and its associated function to open a figure that plots a ramp
using the parameter values in the block dialog.

methods(Static,Access = protected)
 function group = getPropertyGroupsImpl

 matlab.system.display.Action class

5-97

 group = matlab.system.display.Section(mfilename('class'));
 group.Actions = matlab.system.display.Action(@(~,obj)...
 visualize(obj),'Label','Visualize');
 end
end

methods
 function obj = PlotRamp(varargin)
 setProperties(obj,nargin,varargin{:});
 end

 function visualize(obj)
 figure;
 d = 1:obj.RampLimit;
 plot(d);
 end
end

When you specify the System object in the MATLAB System block, the resulting block
dialog box appears as follows.

To open the same figure, rather than multiple figures, when the button is pressed more
than once, use this code instead.

5 Simulink Classes

5-98

methods(Static,Access = protected)
 function group = getPropertyGroupsImpl
 group = matlab.system.display.Section(mfilename('class'));
 group.Actions = matlab.system.display.Action(@(actionData,obj)...
 visualize(obj,actionData),'Label','Visualize');
 end
end

methods
 function obj = ActionDemo(varargin)
 setProperties(obj,nargin,varargin{:});
 end

 function visualize(obj,actionData)
 f = actionData.UserData;
 if isempty(f) || ~ishandle(f)
 f = figure;
 actionData.UserData = f;
 else
 figure(f); % Make figure current
 end

 d = 1:obj.RampLimit;
 plot(d);
 end
end

• “Creating Classes” (MATLAB)
• Class Attributes (MATLAB)
• Property Attributes (MATLAB)
• “Add Button to MATLAB System Block”

See Also
matlab.System.getPropertyGroupsImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup

Topics
“Creating Classes” (MATLAB)
Class Attributes (MATLAB)
Property Attributes (MATLAB)

 matlab.system.display.Action class

5-99

“Add Button to MATLAB System Block”

5 Simulink Classes

5-100

matlab.system.display.SectionGroup class
Package: matlab.system.display

Section group for System objects

Syntax
matlab.system.display.SectionGroup(N1,V1,...Nn,Vn)
matlab.system.display.SectionGroup(Obj,...)

Description
matlab.system.display.SectionGroup(N1,V1,...Nn,Vn) creates a group for
displaying System object properties and display sections created with
matlab.system.display.Section. You define such sections or properties using
property Name-Value pairs (N,V). A section group can contain both properties and
sections. You use matlab.system.display.SectionGroup to define section groups
using the getPropertyGroupsImpl method. Section groups display as separate tabs in
the MATLAB System block. The available Section properties are

• Title — Group title. The default value is an empty character vector.
• TitleSource — Source of group title. Valid values are 'Property' and 'Auto'. The

default value is 'Property', which uses the character vector from the Title
property. If the Obj name is given, the default value is Auto, which uses the Obj
name. In the System object property display at the MATLAB command line, you can
omit the default "Main" title for the first group of properties by setting TitleSource
to 'Auto'.

• Description — Group or tab description that appears above any properties or
panels. The default value is an empty character vector.

• PropertyList — Group or tab property list as a cell array of property names. The
default value is an empty array. If the Obj name is given, the default value is all
eligible display properties.

• Sections — Group sections as an array of section objects. If the Obj name is given,
the default value is the default section for the Obj.

 matlab.system.display.SectionGroup class

5-101

matlab.system.display.SectionGroup(Obj,...) creates a section group for the
specified System object (Obj) and sets the following property values:

• TitleSource — Set to 'Auto'.
• Sections — Set to matlab.system.display.Section object for Obj.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the default
settings.

Examples

Define Block Dialog Tabs

Define in your class definition file two tabs, each containing specific properties. For this
example, you use the matlab.system.display.SectionGroup,
matlab.system.display.Section, and getPropertyGroupsImpl methods.

methods (Static, Access = protected)
 function groups = getPropertyGroupsImpl
 valueGroup = matlab.system.display.Section(...
 'Title','Value parameters',...
 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...
 'Title','Threshold parameters',...
 'PropertyList',{'Threshold','UseThreshold'});

 mainGroup = matlab.system.display.SectionGroup(...
 'Title','Main', ...
 'Sections',[valueGroup,thresholdGroup]);

 initGroup = matlab.system.display.SectionGroup(...
 'Title','Initial conditions', ...
 'PropertyList',{'IC1','IC2','IC3'});

 groups = [mainGroup,initGroup];
 end
end

5 Simulink Classes

5-102

The resulting dialog appears as follows when you add the object to Simulink with the
MATLAB System block.

 matlab.system.display.SectionGroup class

5-103

• “Add Property Groups to System Object and MATLAB System Block”

See Also
getPropertyGroupsImpl | matlab.system.display.Header |
matlab.system.display.Section

Topics
“Add Property Groups to System Object and MATLAB System Block”

5 Simulink Classes

5-104

matlab.system.display.Icon class
Package: matlab.system.display

Custom icon image

Syntax
icon = matlab.system.display.Icon(imageFile)

Description
icon = matlab.system.display.Icon(imageFile) sets the imageFile image as
the MATLAB System block icon. To set the icon image, use the icon output argument
from getIconImpl.

Input Arguments
imageFile — Image file
character array

Image file to display on the block icon, specified as a character array. If the image is not
on the path, use the full path to your image file.

The image file must be in a file format supported for block masks. See “Draw Static Icon”.
Example: "image.png"

Examples

Add Image to MATLAB System Block

Define an image in your class definition file.

 matlab.system.display.Icon class

5-105

 methods(Access = protected)
 function icon = getIconImpl(~)
 % Define icon for MATLAB System block
 icon = matlab.system.display.Icon("my_icon.png");
 end
 end

The image now appears on the MATLAB System block icon.

• Class Attributes (MATLAB)
• Property Attributes (MATLAB)
• “Customize System Block Appearance”

See Also
getIconImpl | matlab.system.mixin.CustomIcon

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)
“Customize System Block Appearance”

Introduced in R2017a

5 Simulink Classes

5-106

matlab.system.mixin.Propagates class
Package: matlab.system.mixin

Signal characteristics propagation mixin class

Description
matlab.system.mixin.Propagates specifies the output size, data type, and
complexity of a System object. Use this mixin class and its methods when you will include
your System object in Simulink via the MATLAB System block. This mixin is called by the
MATLAB System block during Simulink model compilation.

Implement the methods of this class when Simulink cannot infer the output specifications
directly from the inputs or when you want bus support. If you do not include this mixin,
Simulink cannot propagate the output or bus data type, an error occurs.

To use this mixin, subclass from this matlab.system.mixin.Propagates in addition to
subclassing from the matlab.System base class. Type the following syntax as the first
line of your class definition file. ObjectName is the name of your System object.

classdef ObjectName < matlab.System &...
 matlab.system.mixin.Propagates

 matlab.system.mixin.Propagates class

5-107

Methods
getDiscreteStateSpecificationImpl

Discrete state size, data type, and complexity
getOutputDataTypeImpl Data types of output ports
getOutputSizeImpl Sizes of output ports
isOutputComplexImpl Complexity of output ports
isOutputFixedSizeImpl Fixed- or variable-size output ports
propagatedInputComplexity Complexity of input during Simulink propagation
propagatedInputDataType Data type of input during Simulink propagation
propagatedInputFixedSize Fixed-size status of input during Simulink

propagation
propagatedInputSize Size of input during Simulink propagation

Note If your System object has exactly one input and one output and no discrete
property states, or if you do not need bus support, you do not have to implement any of
these methods. The matlab.system.mixin.Propagates provides default values in
these cases.

See Also
matlab.System

Topics
“Set Output Data Type”
“Set Output Size”
“Set Output Complexity”
“Set Fixed- or Variable-Size Output”
“Set Discrete State Output Specification”

5 Simulink Classes

5-108

getDiscreteStateSpecificationImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Discrete state size, data type, and complexity

Syntax
[sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,propertyname)

Description
[sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,propertyname)
returns the size, data type, and complexity of the discrete state property. This property
must be a discrete state property. You must define this method if your System object has
discrete state properties and is used in the MATLAB System block.

You always set the getDiscreteStateSpecificationImpl method access to
protected because it is an internal method that users do not directly call or run.

getDiscreteStateSpecificationImpl is called by the MATLAB System block during
Simulink model compilation.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

 getDiscreteStateSpecificationImpl

5-109

propertyname

Name of discrete state property of the System object

Output Arguments
sz

Vector containing the length of each dimension of the property.

Default: [1 1]

dt

Data type of the property. For built-in data types, dt is a character vector. For fixed-point
data types, dt is a numerictype object.

Default: double

cp

Complexity of the property as a scalar, logical value:

• true = complex
• false = real

Default: false

Examples

Specify Discrete State Property Size, Data Type, and Complexity

Specify in your class definition file the size, data type, and complexity of a discrete state
property.

methods (Access = protected)
 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
 sz = [1 1];
 dt = "double";

5 Simulink Classes

5-110

 cp = false;
 end
end

• “Set Discrete State Output Specification”

See Also
matlab.system.mixin.Propagates

Topics
“Set Discrete State Output Specification”

 getDiscreteStateSpecificationImpl

5-111

getOutputDataTypeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Data types of output ports

Syntax
[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj)

Description
[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj) returns the data type of
each output port as a character vector for built-in data types or as a numeric object for
fixed-point data types. The number of outputs must match the value returned from the
getNumOutputs method or the number of output arguments listed in the stepImpl
method.

For System objects with one input and one output and where you want the input and
output data types to be the same, you do not need to implement this method. In this case,
getOutputDataTypeImpl assumes the input and output data types are the same and
returns the data type of the input.

If your System object has more than one input or output, and you subclass from
matlab.system.mixin.Propagates, you must set the output data types in the
getOutputDataTypeImpl method. For Simulink, if the input and output data types are
different, you might have to cast the output value to the data type of the appropriate
dt_n output argument. You specify this casting in the stepImpl method. For bus output,
you must specify the name of the output bus in getOutputDataTypeImpl.

If needed to determine the output data type, you can use propagatedInputDataType
within the getOutputDataTypeImpl method to obtain the input type.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

5 Simulink Classes

5-112

If you are debugging your code and examine the data types before Simulink completes
propagation, you might see outputs with empty, [], data types. This occurs because
Simulink has not completed setting the output data types.

Input Arguments
obj

System object

Output Arguments
dt_1,dt_2,...

Data type of the property. For built-in data types, dt is a character vector. For fixed-point
data types, dt is a numerictype object.

Examples

Specify Output Data Type

Specify, in your class definition file how to control the output data type from a MATLAB
System block. This example shows how to use the getOutputDataTypeImpl method to
change the output data type from single to double, or propagate the input as a double. It
also shows how to cast the data type to change the output data type in the stepImpl
method.

classdef DataTypeChange < matlab.System & ...
 matlab.system.mixin.Propagates

 properties(Nontunable)
 Quantize = false
 end

 methods(Access = protected)
 function y = stepImpl(obj,u)
 if obj.Quantize == true

 getOutputDataTypeImpl

5-113

 % Cast for output data type to differ from input.
 y = single(u);
 else
 % Propagate output data type.
 y = u;
 end
 end

 function out = getOutputDataTypeImpl(obj)
 if obj.Quantize == true
 out = "single";
 else
 out = propagatedInputDataType(obj,1);
 end
 end
 end
end

Specify Bus Output

Specify, in your class definition file, that the System object data type is a bus. You must
also include a property to specify the bus name.

properties(Nontunable)
 OutputBusName = "myBus";
end

methods (Access = protected)
 function out = getOutputDataTypeImpl(obj)
 out = obj.OutputBusName;
 end
end

• “Set Output Data Type”

See Also
matlab.system.mixin.Propagates | propagatedInputDataType

5 Simulink Classes

5-114

Topics
“Set Output Data Type”

 getOutputDataTypeImpl

5-115

getOutputSizeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Sizes of output ports

Syntax
[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj)

Description
[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj) returns the size of each
output port. The number of outputs must match the value returned from the
getNumOutputs method or the number of output arguments listed in the stepImpl
method.

If your System object has only one input and one output and you want the input and
output sizes to be the same, you do not need to implement this method. In this case
getOutputSizeImpl assumes that the input and output sizes are the same and returns
the size of the input. For variable-size inputs in MATLAB, the size varies each time you
run your object. For variable-size inputs in Simulink, the output size is the maximum input
size.

You must implement the getOutputSizeImpl method to define the output size, if:

• Your System object has more than one input or output
• You need the output and input sizes to be different.

If the output size differs from the input size, you must also use the
propagatedInputSize method

During Simulink model compilation and propagation, the MATLAB System block calls the
getOutputSizeImpl method to determine the output size.

5 Simulink Classes

5-116

All inputs default to variable-size inputs For these inputs, the output size is the maximum
input size.

Note You must set Access = protected for this method.

In this method, you cannot modify any properties.

Input Arguments
obj

System object handle

Output Arguments
sz_1,sz_2,...

Vector containing the size of each output port.

Examples

Specify Output Size

Specify in your class definition file the size of a System object output.

methods (Access = protected)
 function sz_1 = getOutputSizeImpl(obj)
 sz_1 = [1 1];
 end
end

Specify Multiple Output Ports

Specify in your class definition file the sizes of multiple System object outputs.

 getOutputSizeImpl

5-117

methods (Access = protected)
 function [sz_1,sz_2] = getOutputSizeImpl(obj)
 sz_1 = propagatedInputSize(obj,1);
 sz_2 = [1 1];
 end
 end

Specify Output When Using Propagated Input Size

Specify in your class definition file the size of System object output when it depends on
the propagated input size.

methods (Access = protected)
 function varargout = getOutputSizeImpl(obj)
 varargout{1} = propagatedInputSize(obj,1);
 if obj.HasSecondOutput
 varargout{2} = [1 1];
 end
 end
end

• “Set Output Size”

See Also
matlab.system.mixin.Propagates | propagatedInputSize

Topics
“Set Output Size”

5 Simulink Classes

5-118

isOutputComplexImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Complexity of output ports

Syntax
[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj)

Description
[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj) returns whether each
output port has complex data. The number of outputs must match the value returned from
the getNumOutputs method or the number of output arguments listed in the stepImpl
method.

For System objects with one input and one output and where you want the input and
output complexities to be the same, you do not need to implement this method. In this
case isOutputComplexImpl assumes the input and output complexities are the same
and returns the complexity of the input.

If your System object has more than one input or output or you need the output and input
complexities to be different, you must implement the isOutputComplexImpl method to
define the output complexity. You also must use the propagatedInputComplexity
method if the output complexity differs from the input complexity.

During Simulink model compilation and propagation, the MATLAB System block calls the
isOutputComplex method, which then calls the isOutputComplexImpl method to
determine the output complexity.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

 isOutputComplexImpl

5-119

Input Arguments
obj

System object handle

Output Arguments
cp_1,cp_2,...

Logical, scalar value indicating whether the specific output port is complex (true) or real
(false).

Examples

Specify Output as Real-Valued

Specify in your class definition file that the output from a System object is a real value.

methods (Access = protected)
 function c1 = isOutputComplexImpl(obj)
 c1 = false;
 end
end

• “Set Output Complexity”

See Also
matlab.system.mixin.Propagates | propagatedInputComplexity

Topics
“Set Output Complexity”

5 Simulink Classes

5-120

isOutputFixedSizeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Fixed- or variable-size output ports

Syntax
[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj)

Description
[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj) returns whether
each output port is fixed size. The number of outputs must match the value returned from
the getNumOutputs method, which is the number of output arguments listed in the
stepImpl method.

For System objects with one input and one output and where you want the input and
output fixed sizes to be the same, you do not need to implement this method. In this case
isOutputFixedSizeImpl assumes the input and output fixed sizes are the same and
returns the fixed size of the input.

If your System object has more than one input or output or you need the output and input
fixed sizes to be different, you must implement the isOutputFixedSizeImpl method to
define the output fixed size. You also must use the propagatedInputFixedSize method
if the output fixed size status differs from the input fixed size status.

During Simulink model compilation and propagation, the MATLAB System block calls the
isOutputFixedSize method, which then calls the isOutputFixedSizeImpl method
to determine the output fixed size.

All inputs default to variable-size inputs For these inputs, the output size is the maximum
input size.

Note You must set Access = protected for this method.

 isOutputFixedSizeImpl

5-121

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

Output Arguments
flag_1,flag2,...

Logical, scalar value indicating whether the specific output port is fixed size (true) or
variable size (false).

Examples

Specify Output as Fixed Size

Specify in your class definition file that the output from a System object is of fixed size.

methods (Access = protected)
 function c1 = isOutputFixedSizeImpl(obj)
 c1 = true;
 end
end

• “Set Fixed- or Variable-Size Output”

See Also
matlab.system.mixin.Propagates | propagatedInputFixedSize

Topics
“Set Fixed- or Variable-Size Output”

5 Simulink Classes

5-122

propagatedInputComplexity
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Complexity of input during Simulink propagation

Syntax
flag = propagatedInputComplexity(obj,index)

Description
flag = propagatedInputComplexity(obj,index) returns true or false to
indicate whether the input argument for the indicated System object is complex. index
specifies the input for which to return the complexity flag.

You can use propagatedInputComplexity only from within the
isOutputComplexImpl method in your class definition file. Use
isOutputComplexImpl when:

• Your System object has more than one input or output.
• The input complexity determines the output complexity.
• The output complexity must differ from the input complexity.

Input Arguments
obj

System object

index

Index of the specified input. Do not count the obj in the index. The first input is always
obj.

 propagatedInputComplexity

5-123

Output Arguments
flag

Complexity of the specified input, returned as true or false

Examples

Match Input and Output Complexity

Get the complexity of the second input when you run the object and set the output to
match it. Assume that the first input has no impact on the output complexity.

methods (Access = protected)
 function outcomplx = isOutputComplexImpl(obj)
 outcomplx = propagatedInputComplexity(obj,2);
 end
end

• “Set Output Complexity”

See Also
isOutputComplexImpl | matlab.system.mixin.Propagates

Topics
“Set Output Complexity”

5 Simulink Classes

5-124

propagatedInputDataType
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Data type of input during Simulink propagation

Syntax
dt = propagatedInputDataType(obj,index)

Description
dt = propagatedInputDataType(obj,index) returns the data type of an input
argument for a System object. index specifies the input for which to return the data type.

You can use propagatedInputDataType only from within getOutputDataTypeImpl.
Use getOutputDataTypeImpl when:

• Your System object has more than one input or output.
• The input data type status determines the output data type.
• The output data type must differ from the input data type.

Input Arguments
obj

System object

index

Index of the specified input. Do not count the obj in the index. The first input is always
obj.

 propagatedInputDataType

5-125

Output Arguments
dt

Data type of the specified input, returned as a character vector for floating-point input or
as a numerictype for fixed-point input.

Examples

Match Input and Output Data Type

Get the data type of the second input. If the second input data type is double, then the
output data type is int32. For all other cases, the output data type matches the second
input data type. Assume that the first input has no impact on the output.

methods (Access = protected)
 function dt = getOutputDataTypeImpl(obj)
 if strcmpi(propagatedInputDataType(obj,2),'double')
 dt = 'int32';
 else
 dt = propagatedInputDataType(obj,2);
 end
 end
end

• “Set Output Data Type”
• “Data Type Propagation”

See Also
getOutputDataTypeImpl | matlab.system.mixin.Propagates

Topics
“Set Output Data Type”
“Data Type Propagation”

5 Simulink Classes

5-126

propagatedInputFixedSize
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Fixed-size status of input during Simulink propagation

Syntax
flag = propagatedInputFixedSize(obj,index)

Description
flag = propagatedInputFixedSize(obj,index) returns true or false to indicate
whether an input argument of a System object is fixed size. index specifies the input for
which to return the fixed-size flag.

You can use propagatedInputFixedSize only from within isOutputFixedSizeImpl.
Use isOutputFixedSizeImpl when:

• Your System object has more than one input or output.
• The input fixed-size status determines the output fixed-size status.
• The output fixed-size status must differ from the input fixed-size status.

Input Arguments
obj

System object

index

Index of the specified input. Do not count the obj in the index. The first input is always
obj.

 propagatedInputFixedSize

5-127

Output Arguments
flag

Fixed-size status of the specified input, returned as true or false.

Examples

Match Fixed-Size Status of Input and Output

Get the fixed-size status of the third input and set the output to match it. Assume that the
first and second inputs have no impact on the output.

methods (Access = protected)
 function outtype = isOutputFixedSizeImpl(obj)
 outtype = propagatedInputFixedSize(obj,3)
 end
end

• “Set Fixed- or Variable-Size Output”

See Also
isOutputFixedSizeImpl | matlab.system.mixin.Propagates

Topics
“Set Fixed- or Variable-Size Output”

5 Simulink Classes

5-128

propagatedInputSize
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Size of input during Simulink propagation

Syntax
sz = propagatedInputSize(obj,index)

Description
sz = propagatedInputSize(obj,index) returns, as a vector, the input size of the
specified System object. Theindex specifies the input for which to return the size
information. (Do not count the obj in the index. The first input is always obj.)

You can use propagatedInputSize only from within the getOutputSizeImpl method
in your class definition file. Use getOutputSizeImpl when:

• Your System object has more than one input or output.
• The input size determines the output size.
• The output size must differ from the input size.

Note For variable-size inputs, the propagated input size from propagatedInputSize
differs depending on the environment.

• MATLAB — propagatedInputSize returns the size of the inputs used when you run
the object for the first time.

• Simulink — propagatedInputSize returns the upper bound of the input sizes.

 propagatedInputSize

5-129

Input Arguments
obj

System object

index

Index of the specified input

Output Arguments
sz

Size of the specified input, returned as a vector

Examples

Match Size of Input and Output

Get the size of the second input. If the first dimension of the second input has a size
greater than 1, then set the output size to a 1 x 2 vector. For all other cases, the output is
a 2 x 1 matrix. Assume that the first input has no impact on the output size.

methods (Access = protected)
 function outsz = getOutputSizeImpl(obj)
 sz = propagatedInputSize(obj,2);
 if sz(1) == 1
 outsz = [1,2];
 else
 outsz = [2,1];
 end
 end
end

• “Set Output Size”

5 Simulink Classes

5-130

See Also
getOutputSizeImpl | matlab.system.mixin.Propagates

Topics
“Set Output Size”

 propagatedInputSize

5-131

matlab.system.mixin.Nondirect class
Package: matlab.system.mixin

Nondirect feedthrough mixin class

Description
matlab.system.mixin.Nondirect is a class that uses the output and update
methods to process nondirect feedthrough data through a System object.

For System objects that use direct feedthrough, the object’s input is needed to generate
the output at that time. For these direct feedthrough objects, running the System object
calculates the output and updates the state values. For nondirect feedthrough, however,
the object’s output depends only on the internal states at that time. The inputs are used to
update the object states. For these objects, calculating the output with outputImpl is
separated from updating the state values with updateImpl. If you use the
matlab.system.mixin.Nondirect mixin and include the stepImpl method in your
class definition file, an error occurs. In this case, you must include the updateImpl and
outputImpl methods instead.

The following cases describe when System objects in Simulink use direct or nondirect
feedthrough.

• System object supports code generation and does not inherit from the Propagates
mixin — Simulink automatically infers the direct feedthrough settings from the System
object code.

• System object supports code generation and inherits from the Propagates mixin —
Simulink does not automatically infer the direct feedthrough settings. Instead, it uses
the value returned by the isInputDirectFeedthroughImpl method.

• System object does not support code generation — Default
isInputDirectFeedthroughImpl method returns false, indicating that direct
feedthrough is not enabled. To override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class definition file.

Use the Nondirect mixin to allow a System object to be used in a Simulink feedback
loop. A delay object is an example of a nondirect feedthrough object.

5 Simulink Classes

5-132

To use this mixin, you must subclass from this class in addition to subclassing from the
matlab.System base class. Type the following syntax as the first line of your class
definition file, where ObjectName is the name of your object:

classdef ObjectName < matlab.system & matlab.system.mixin.Nondirect

Methods
isInputDirectFeedthroughImpl Direct feedthrough status of input
outputImpl Output calculation from input or internal state of System

object
updateImpl Update object states based on inputs

See Also
matlab.System

Topics
“Use Update and Output for Nondirect Feedthrough”

 matlab.system.mixin.Nondirect class

5-133

isInputDirectFeedthroughImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Direct feedthrough status of input

Syntax
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,u1,u2,...,uN)

Description
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,u1,u2,...,uN)
specifies whether each input is a direct feedthrough input. If direct feedthrough is true,
the output depends on the input at each time instant.

Note You must set Access = protected for this method.

You cannot modify any properties or implement or access tunable properties in this
method.

If you do not include the isInputDirectFeedthroughImpl method in your System
object class definition file, all inputs are assumed to be direct feedthrough.

The following cases describe when System objects in Simulink code generation use direct
or nondirect feedthrough.

• System object supports code generation and does not inherit from the Propagates
mixin — Simulink automatically infers the direct feedthrough settings from the System
object code.

• System object supports code generation and inherits from the Propagates mixin —
Simulink does not automatically infer the direct feedthrough settings. Instead, it uses
the value returned by the isInputDirectFeedthroughImpl method.

5 Simulink Classes

5-134

• System object does not support code generation — Default
isInputDirectFeedthroughImpl method returns false, indicating that direct
feedthrough is not enabled. To override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class definition file.

isInputDirectFeedthroughImpl is called by the MATLAB System block.

Input Arguments
obj

System object handle

u1,u2,...,uN

Specifications of the inputs to the algorithm.

Output Arguments
flag1,...,flagN

Logical value or either true or false. This value indicates whether the corresponding
input is direct feedthrough or not, respectively. The number of outputs must match the
number of outputs returned by the getNumOutputs method.

Examples

Specify Input as Nondirect Feedthrough

Use isInputDirectFeedthroughImpl in your class definition file to mark the inputs as
nondirect feedthrough.

methods (Access = protected)
 function flag = isInputDirectFeedthroughImpl(obj,input1)
 flag = false;

 isInputDirectFeedthroughImpl

5-135

 end
end

• “Use Update and Output for Nondirect Feedthrough”

See Also
matlab.system.mixin.Nondirect

Topics
“Use Update and Output for Nondirect Feedthrough”

5 Simulink Classes

5-136

outputImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Output calculation from input or internal state of System object

Syntax
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN)

Description
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN) specifies the algorithm to
output the System object states. . The output values are calculated from the states and
property values. Any inputs that you set to nondirect feedthrough are ignored during
output calculation.

outputImpl is called by the output method. It is also called before the updateImpl
method. For sink objects, calling updateImpl before outputImpl locks the object. For
all other types of objects, calling updateImpl before outputImpl causes an error.

Note You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object handle

 outputImpl

5-137

u1,u2,...uN

Inputs from the algorithm. The number of inputs must match the number of inputs
returned by the getNumInputs method. Nondirect feedthrough inputs are ignored
during normal execution of the System object. However, for code generation, you must
provide these inputs even if they are empty.

Output Arguments
y1,y2,...yN

Outputs calculated from the specified algorithm. The number of outputs must match the
number of outputs returned by the getNumOutputs method.

Examples

Set Up Output that Does Not Depend on Input

Specify in your class definition file that the output does not directly depend on the current
input with the outputImpl method. PreviousInput is a property of the obj.

methods (Access = protected)
 function [y] = outputImpl(obj, ~)
 y = obj.PreviousInput(end);
 end
end

• “Use Update and Output for Nondirect Feedthrough”

See Also
matlab.system.mixin.Nondirect | matlab.system.mixin.Propagates

Topics
“Use Update and Output for Nondirect Feedthrough”

5 Simulink Classes

5-138

updateImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Update object states based on inputs

Syntax
updateImpl(obj,u1,u2,...,uN)

Description
updateImpl(obj,u1,u2,...,uN) specifies the algorithm to update the System object
states. You use this method when your algorithm outputs depend only on the object’s
internal state and internal properties. Do not use this method to update the outputs from
the inputs.

updateImpl is called by the update method and after the outputImpl method. For sink
objects, calling updateImpl before outputImpl locks the object. For all other types of
objects, calling updateImpl before outputImpl causes an error.

Note You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object handle

 updateImpl

5-139

u1,u2,...uN

Inputs to the algorithm. The number of inputs must match the number of inputs returned
by the getNumInputs method.

Examples

Set Up Output that Does Not Depend on Current Input

Update the object with previous inputs. Use updateImpl in your class definition file. This
example saves the u input and shifts the previous inputs.

methods (Access = protected)
 function updateImpl(obj,u)
 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];
 end
end

• “Use Update and Output for Nondirect Feedthrough”

See Also
matlab.system.mixin.Nondirect

Topics
“Use Update and Output for Nondirect Feedthrough”

5 Simulink Classes

5-140

matlab.system.mixin.SampleTime class

Control sample time for System objects in Simulink

Description
matlab.system.mixin.SampleTime specifies the sample time specifications for a
System object when it is included in a MATLAB System block. Inherit from this mixin
class and its methods to control the sample time of your System object in Simulink, via
the MATLAB System block.

With this mixin, you can:

• Specify the sample time type
• Specify the sample time
• Customize the sample time with offsets and tick times
• Get the current simulation time

System objects that inherit from this mixin class must also inherit from matlab.System.
For example:

classdef MySystemObject < matlab.System & matlab.system.mixin.SampleTime

Methods

getSampleTimeImpl Specify sample time type, offset time, and sample time
getSampleTime Query sample time
getCurrentTime Current simulation time in MATLAB System block
createSampleTime Create sample time specification object
setNumTicksUntilNextHit Set the number of ticks in Simulink sample time

 matlab.system.mixin.SampleTime class

5-141

See Also
Classes
matlab.System

createSampleTime | getCurrentTime | getSampleTime | getSampleTimeImpl

Blocks
MATLAB System

Topics
“Specify Sample Time for MATLAB System Block System Objects”

Introduced in R2017b

5 Simulink Classes

5-142

getSampleTimeImpl
Class: matlab.system.mixin.SampleTime

Specify sample time type, offset time, and sample time

Syntax
sts = getSampleTimeImpl(obj)

Description
sts = getSampleTimeImpl(obj) returns the sample time specification created within
the method body, sts, for the System object obj. Specify the sample time specification
within the body of getSampleTimeImpl by calling createSampleTime. The sample
time specification affects the simulation time when the System object is included in a
MATLAB System block.

This method is called during setup by setupImpl.

Input Arguments
obj — System object
system object

System object for which you want to specify the sample time.

Output Arguments
sts — Sample time specification object
sample time specification object

An object defining the sample time specification values. You create this object with the
createSampleTime function.

 getSampleTimeImpl

5-143

Examples
Specify Inherited Sample Time

Specify that the MATLAB System block should inherit the sample from upstream blocks.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Inherited');
end

Specify Discrete Sample Time

Specify a discrete sample time for the MATLAB System block.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Discrete',...
 'SampleTime',10.2,'OffsetTime',0.5);
end

• “Specify Sample Time for MATLAB System Block System Objects”

See Also
createSampleTime | getCurrentTime | getSampleTime |
matlab.system.mixin.SampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects”

Introduced in R2017b

5 Simulink Classes

5-144

getSampleTime
Class: matlab.system.mixin.SampleTime

Query sample time

Syntax
sts = getSampleTime(obj)

Description
sts = getSampleTime(obj) returns the sample time specification for theSystem
object obj when the System object is included in a MATLAB System block. You can call
getSampleTime in the stepImpl method to change the algorithm based on the sample
time.

Before sample time has propagated throughout the MATLAB System block model,
getSampleTime returns the getSampleTimeImpl sample time specification. If your
system object does not override getSampleTimeImpl, the default Inherited sample
time specification is returned.

After sample time has propagated, getSampleTime returns the sample time specification
populated with the actual MATLAB System block sample time type, sample time, and
offset time.

Input Arguments
obj — System object
system object

System object included in a MATLAB System block that you want to query.

 getSampleTime

5-145

Output Arguments
sts — Sample time specification object
sample time specification object

The sample time specification for the System object. For more details about sample time
specification objects, see createSampleTime.

Examples
Return Sample Time

This example of stepImpl returns a count value y, the current simulation time ct, and
the sample time st. The sample time is obtained by calling getSampleTime.

function [y,ct,st] = stepImpl(obj,u)
 y = obj.Count + u;
 obj.Count = y;
 ct = getCurrentTime(obj);
 sts = getSampleTime(obj);
 st = sts.SampleTime;
 end

For a complete class definition, see “Specify Sample Time for MATLAB System Block
System Objects”.

• “Specify Sample Time for MATLAB System Block System Objects”

See Also
createSampleTime | getCurrentTime | getSampleTimeImpl |
matlab.system.mixin.SampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects”

Introduced in R2017b

5 Simulink Classes

5-146

getCurrentTime
Class: matlab.system.mixin.SampleTime

Current simulation time in MATLAB System block

Syntax
t = getCurrentTime(obj)

Description
t = getCurrentTime(obj) returns the current simulation time in the MATLAB System
block. Call this method in the stepImpl method of your System object.

Input Arguments
obj — System object
system object

System object included in a MATLAB System block that you want to query.

Output Arguments
t — Current simulation time
double

The current simulation time of the MATLAB System block that contains the System object.

 getCurrentTime

5-147

Examples
Return Current Simulation Time

This example of stepImpl returns a count value y and the current simulation time ct.
The simulation time is obtained by calling getCurrentTime.

 function [y,ct] = stepImpl(obj,u)
 y = obj.Count + u;
 obj.Count = y;
 ct = getCurrentTime(obj);
 end

For a complete class definition, see “Specify Sample Time for MATLAB System Block
System Objects”.

• “Specify Sample Time for MATLAB System Block System Objects”

See Also
createSampleTime | getSampleTime | getSampleTimeImpl |
matlab.system.mixin.SampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects”

Introduced in R2017b

5 Simulink Classes

5-148

createSampleTime
Class: matlab.system.mixin.SampleTime

Create sample time specification object

Syntax
sts = createSampleTime(obj)
sts = createSampleTime(obj,'Type',Type)
sts = createSampleTime(obj,'Type',Type,Name,Value)

Description
sts = createSampleTime(obj) creates a sample time specification object for
inherited sample time for the System object obj. Use this sample time specification
object in the getSampleTimeImpl method of your System object. The sample time
specification affects the simulation time when the System object is included in a MATLAB
System block.

sts = createSampleTime(obj,'Type',Type) creates a sample time specification
object with the specified sample time type.

sts = createSampleTime(obj,'Type',Type,Name,Value) creates a sample time
specification object with additional options specified by one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
obj — System object
system object

System object that you want to specify the sample time.

 createSampleTime

5-149

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Type','Fixed In Minor Step'

Type — Sample time type
'Inherited' (default) | 'Controllable' | 'Discrete' | 'Fixed In Minor Step'

Type of sample time you want the System object to use in Simulink. For descriptions of
the different types of sample times, see:

• 'Inherited' - “Inherited Sample Time”
• 'Controllable' - “Controllable Sample Time”
• 'Discrete' - “Discrete Sample Time”
• 'Fixed In Minor Step' - “Fixed-in-Minor-Step”

Example: createSampleTime('Type','Fixed In Minor Step')

Disallow — Disallow controllable sample time
'Controllable'

Optional for Inherited sample time only.

When the sample time type is set to Inherited, this option disallows inherited
controllable sample time. Use this option if your System object depends on having
constant time between each sample-time hit.

If controllable sample time is propagated to the System object, discrete sample time is
used instead with the same tick time as the propagated controllable sample time.
Example:
createSampleTime('Type','Inherited','Disallow','Controllable')

SampleTime — Time between samples
1 (default) | positive number

For Discrete sample time only.

Specify the time between sample hits in Simulink.

5 Simulink Classes

5-150

Data Types: single | double

Example: createSampleTime('Type','Discrete','SampleTime',1)

OffsetTime — Offset from sample time
0 (default) | nonnegative number less than SampleTime

For Discrete sample time only.

Specify the offset time for the sample hit. The offset is a time interval indicating an
update delay. The block is updated later in the sample interval than other blocks
operating at the same sample rate.

The offset time must be nonnegative and less than SampleTime.
Data Types: single | double

Example: createSampleTime('Type','Discrete','SampleTime',
2,'OffsetTime',1)

TickTime — Time between sample time hits
-1 (default) | positive scalar

Required for Controllable sample time only.

Specify the time between controllable sample time hits. The tick time must be a positive
scalar.
Data Types: single | double

Example:
createSampleTime('Type','Controllable','TickTime',obj.TickTime)

Output Arguments
sts — Sample time specification object
sample time specification object

The sample time specification object. This object has the following properties:

• Type — Type of sample time

 createSampleTime

5-151

• SampleTime — Time between samples
• OffsetTime — Offset from sample time

Use this object as the return value of getSampleTimeImpl.

Examples
Create Inherited Sample Time Specification Objects

Specify that the MATLAB System block inherits the sample from upstream blocks.
Inherited sample time is the default, so no additional arguments are needed.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj);
end

Create Discrete Sample Time Object

Specify a discrete sample time specification for the MATLAB System block, including
offset time and the sample time.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Discrete',...
 'SampleTime',10.2,'OffsetTime',0.5);
end

• “Specify Sample Time for MATLAB System Block System Objects”

See Also
getCurrentTime | getSampleTime | getSampleTimeImpl |
matlab.system.mixin.SampleTime | setNumTicksUntilNextHit

Topics
“Specify Sample Time for MATLAB System Block System Objects”

Introduced in R2017b

5 Simulink Classes

5-152

setNumTicksUntilNextHit
Class: matlab.system.mixin.SampleTime

Set the number of ticks in Simulink sample time

Syntax
setNumTicksUntilNextHit(obj,ticks)

Description
setNumTicksUntilNextHit(obj,ticks) sets the number of ticks in Simulink sample
time to wait until the next call to stepImpl, or outputImpl/updateImpl. To use this
method, set your System object to controllable sample time with
createSampleTime('Type','Controllable'). Otherwise, your System object gives
a compilation error.

You can only call this method from stepImpl, outputImpl, updateImpl, or
resetImpl.

Input Arguments
obj — System object
system object

System object that you want to specify the sample time.

ticks — Number of ticks in Simulink sample time
positive integer scalar

Number of ticks in Simulink sample time to wait until the next call to stepImpl or
outputImpl/updateImpl. Specify this number as a positive integer scalar less than
intmax('uint64').

 setNumTicksUntilNextHit

5-153

The number of sample time ticks to wait until the next hit is persistent. If you don’t
update this number, Simulink uses the previously set value of number of ticks to wait.

See Also
createSampleTime | getCurrentTime | getSampleTime | getSampleTimeImpl |
matlab.system.mixin.SampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects”

Introduced in R2018a

5 Simulink Classes

5-154

ModelAdvisor.Preferences class
Package: ModelAdvisor

Set Model Advisor window preferences by specifying which folders and tabs to display

Description
Use instances of this class to set Model Advisor preferences.

Construction

The constructor ModelAdvisor.Preferences creates an instance of this class with
default property values.

Create an instance modelPreferences of the ModelAdvisor.Preferences class.
modelPreferences = ModelAdvisor.Preferences;

Properties
DeselectByProduct — Deselect the By Product folder
(default) | true

Selection of the By Product folder in the Model Advisor window. The default value is
true.
Example: true
Data Types: logical

ShowAccordion — Display advisors
(default) | true

 ModelAdvisor.Preferences class

5-155

Display of the Code Generation Advisor, Upgrade Advisor, and Performance Advisor
in the Model Advisor window. You can use these advisors to help configure your model for
code generation, upgrade your model for the current release, or improve performance.
Example: true
Data Types: logical

ShowByProduct — Display the By Product folder
(default) | true

Display of the By Product folder in the Model Advisor window. The default value is true.
Example: true
Data Types: logical

ShowByTask — Display the By Task folder
(default) | true

Display of the By Task folder in the Model Advisor window. The default value is true.
Example: true
Data Types: logical

ShowExclusionsInRpt — Include exclusions in report
(default) | true

Include exclusions in the Model Advisor report. The default value is true.
Example: true
Data Types: logical

ShowExclusionTab — Display the Exclusions tab
(default) | false

Display of the Exclusions tab in the Model Advisor window. The default value is false.
When you click the Exclusions tab, the Model Advisor window displays checks that are
excluded form the Model Advisor analysis.
Example: true
Data Types: logical

5 Simulink Classes

5-156

ShowSourceTab — Display the Source tab
(default) | false

Display of the Source tab in the Model Advisor window. The default value is false. When
you click the Source tab, the Model Advisor window displays the check Title, TitleID, and
location of the MATLAB source code for the check.
Example: true
Data Types: logical

Examples

Turn Off Display Of By Product Folder
This example shows how to not display the By Product folder in the Model Advisor
window:

mp = ModelAdvisor.Preferences;
mp.load;
mp.ShowByProduct = false;
mp.save

Alternatives
You can set the Model Advisor preferences by using the Model Advisor Preferences dialog
box:

• On the Model Advisor menu, select Settings > Preferences.
• From the Model Editor, select Analysis > Model Advisor > Preferences.

See Also
“Run Model Checks”

Introduced in R2014b

 ModelAdvisor.Preferences class

5-157

Simulink.AliasType
Create alias for signal and parameter data type

Description
Use a Simulink.AliasType to create an alias of a built-in data type such as int8.

The name of the object is the alias. The data type to which an alias refers, such as int8,
is the base type.

You create the object in the base workspace or a data dictionary. To use the alias, you use
the name of the object to set data types for signals, states, and parameters in a model.

Using aliases to specify signal and parameter data types can greatly simplify global
changes to the data types that a model specifies. In particular, changing the data type of
all signals, states, and parameters whose data type is specified by an alias requires
changing only the base type of the alias. By contrast, changing the data types of signals,
states, and parameters whose data types are specified by an actual type name requires
respecifying the data type of each signal and parameter individually.

You can use objects of this class to create an alias for Simulink built-in data types, fixed-
point data types, enumerated data types, Simulink.NumericType objects, and other
Simulink.AliasType objects. The code that you generate from a model (Simulink
Coder) uses the alias only if you use an ERT-based system target file (Embedded Coder).

Alternatively, to define and name a numeric data type, you can use an object of the class
Simulink.NumericType.

Creation
You can use either the Model Explorer or MATLAB commands to create a data type alias.

To use the Model Explorer to create an alias:

1 On the Model Explorer Model Hierarchy pane, select Base Workspace.

5 Simulink Classes

5-158

You must create data type aliases in the MATLAB workspace or in a data dictionary. If
you attempt to create an alias in a model workspace, Simulink software displays an
error.

2 From the Model Explorer Add menu, select Simulink.AliasType.

Simulink software creates an instance of a Simulink.AliasType object and assigns
it to a variable named Alias in the MATLAB workspace.

3 Rename the variable to a more appropriate name, for example, a name that reflects
its intended usage.

To change the name, edit the name displayed in the Name field on the Model
Explorer Contents pane.

4 On the Model Explorer Dialog pane, in the Base type field, enter the name of the
data type that this alias represents.

You can specify the name of any existing standard or user-defined data type in this
field. Skip this step if the base type is double (the default).

To generate Simulink.AliasType objects that correspond to typedef statements in
your external C code, consider using the Simulink.importExternalCTypes function.

To create a data type alias programmatically, use the Simulink.AliasType function
described below.

Syntax
aliasObj = Simulink.AliasType
aliasObj = Simulink.AliasType(baseType)

Description
aliasObj = Simulink.AliasType returns a Simulink.AliasType object with
default property values.

aliasObj = Simulink.AliasType(baseType) returns a Simulink.AliasType
object and initializes the value of the BaseType property by using baseType.

 Simulink.AliasType

5-159

Properties
For information about properties in the property dialog box of a Simulink.AliasType
object, see “Simulink.AliasType Property Dialog Box”.

BaseType — Name of base data type
'double' (default) | character vector

Name of the base data type that this alias renames, specified as a character vector. You
can specify the name of a stanard data type, such as int8, or the name of a custom data
type, such as the name of another Simulink.AliasType object or the name of an
enumeration.

To specify a fixed-point data type, you can use a call to the fixdt function, such as
'fixdt(0,16,7)'.

You can, with one exception, specify a nonstandard data type, e.g., a data type defined by
a Simulink.NumericType object, by specifying the data type name. The exception is a
Simulink.NumericType whose DataTypeMode is Fixed-point: unspecified
scaling.

Note Fixed-point: unspecified scaling is a partially specified type whose
definition is completed by the block that uses the Simulink.NumericType. Forbidding
its use in alias types avoids creating aliases that have different base types depending on
where they are used.

Corresponds to Base type in the property dialog box.
Example: 'int8'
Example: 'myOtherAlias'
Data Types: char

DataScope — Specification to generate or import type definition in the
generated code
'Auto' (default) | 'Exported' | 'Imported'

Specification to generate or import the type definition (typedef) in the generated code
(Simulink Coder), specified as 'Auto', 'Exported, or 'Imported'.

5 Simulink Classes

5-160

The table shows the effect of each option.

Value Action
'Auto' (default) If no value is specified for HeaderFile, export the type

definition to model_types.h, where model is the model name.
If you have an Embedded Coder license, and you have specified
a data type replacement, then export the type definition to
rtwtypes.h.
If a value is specified for HeaderFile, import the data type
definition from the specified header file.

'Exported' Export the data type definition to a header file, which can be
specified in the HeaderFile property. If no value is specified for
HeaderFile, the header file name defaults to type.h. type is
the data type name.

'Imported' Import the data type definition from a header file, which can be
specified in the HeaderFile property. If no value is specified for
HeaderFile, the header file name defaults to type.h. type is
the data type name.

For more information, see “Control File Placement of Custom Data Types” (Embedded
Coder).

Corresponds to Data scope in the property dialog box.

Description — Custom description of data type alias
'' (empty character vector) (default) | character vector

Custom description of the data type alias, specified as a character vector.

Corresponds to Description in the property dialog box.
Example: 'This type alias corresponds to a floating-point
implementation.'

Data Types: char

HeaderFile — Name of header file that contains type definition in the generated
code
'' (empty character vector) (default) | character vector

Name of the header file that contains the type definition (typedef) in the generated
code, specified as a character vector.

 Simulink.AliasType

5-161

If this property is specified, the specified name is used during code generation for
importing or exporting. If this property is empty, the value defaults to type.h if
DataScope equals 'Imported' or 'Exported', or defaults to model_types.h if
DataScope equals 'Auto'.

By default, the generated #include directive uses the preprocessor delimiter " instead
of < and >. To generate the directive #include <myTypes.h>, specify HeaderFile as
'<myTypes.h>'.

For more information, see “Control File Placement of Custom Data Types” (Embedded
Coder).

Corresponds to Header file in the property dialog box.
Example: 'myHdr.h'
Example: 'myHdr'
Example: 'myHdr.hpp'
Data Types: char

Examples

Create Alias for Enumerated Data Type

To create an alias for an enumerated type called SlDemoSign:

myEnumAlias = Simulink.AliasType('Enum: SlDemoSign');

Create Alias for Fixed-Point Data Type

To create an alias for a fixed-point data type by using a Simulink.AliasType object, set
the BaseType property of the object by using a call to the fixdt function. Because the
value of BaseType must be a character vector, wrap the function call in a character
vector.

For example, this code creates an alias for an unsigned fixed-point data type with word
length 16 and fraction length 7.

5 Simulink Classes

5-162

myFixptAlias = Simulink.AliasType;
myFixptAlias.BaseType = 'fixdt(0,16,7)';

• “Control Signal Data Types”
• “Control Data Type Names in Generated Code” (Embedded Coder)

See Also
Simulink.NumericType

Topics
“Control Signal Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)
“About Data Types in Simulink”

Introduced before R2006a

 Simulink.AliasType

5-163

Simulink.Annotation
Specify properties of model annotation

Description
Instances of this class specify the properties of annotations. You can use
getCallbackAnnotation in an annotation callback function to get the
Simulink.Annotation instance for the annotation associated with the callback
function. You can use find_system and get_param to get the Simulink.Annotation
instance associated with any annotation in a model. For example, this code gets the
annotation object for the first annotation in the currently selected model and turns on its
drop shadow
ah = find_system(gcs,'FindAll','on','type','annotation');
ao = get_param(ah(1),'Object');
ao.DropShadow = 'on';

Children
None.

Property Summary
Property Description Values
AnnotationType Type of annotation—text (note),

area, or image. This property is
read only.

note_annotation |
area_annotation |
image_annotation

5 Simulink Classes

5-164

Property Description Values
BackgroundColor Background color of this

annotation.
RGB value array | [r,g,b,a] where r,
g, b, and a are the red, green, blue, and
alpha values of the color normalized to
the range 0.0 to 1.0, delineated with
commas. The alpha value is optional
and ignored.

Annotation background color can also
be 'black', 'white', 'red',
'green', 'blue', 'cyan',
'magenta', 'yellow', 'gray',
'lightBlue', 'orange',
'darkGreen'.

ClickFcn Specifies MATLAB code to
execute when you click this
annotation. See “Associate a Click
Function with an Annotation” for
more information.

character vector

DeleteFcn MATLAB code to execute before
deleting this annotation. See
“Annotation Callback Functions”.

character vector

Description Description of this annotation. character vector
DropShadow Turn drop shadow display on or

off.
'on' | {'off'}

FixedHeight Specify whether the bottom
border of the annotation resizes
as you add content

'on' | {'off'}, where 'off' means
that the bottom border resizes as you
add content

FixedWidth Specify whether to use word wrap
or to have the width of the
annotation expand to
accommodate text

'on' | {'off'}, where 'off' means
to use word wrap

 Simulink.Annotation

5-165

Property Description Values
FontAngle Angle of the annotation font. The

default value, 'auto', uses of the
default font angle specified for
lines in the Font Styles dialog
box.

'normal' | 'italic' |
'oblique' | {'auto'}

FontName Name of annotation font. The
default value, 'auto', uses the
default font specified for lines in
the Font Styles dialog box.

character vector

FontSize Size of annotation font in points.
The default value, -1, uses the
default text size for lines specified
in the Font Styles dialog box.

decimal number | {'-1'}

FontWeight Weight of the annotation font. The
default value, 'auto', use of the
default weight for lines specified
in the Font Styles dialog box.

'light' | 'normal' | 'demi' |
'bold' | {'auto'}

ForegroundColor Foreground color of this
annotation.

RGB value array | [r,g,b,a] where r,
g, b, and a are the red, green, blue, and
alpha values of the color normalized to
the range 0.0 to 1.0, delineated with
commas. The alpha value is optional
and ignored.

Annotation background color can also
be 'black', 'white', 'red',
'green', 'blue', 'cyan',
'magenta', 'yellow', 'gray',
'lightBlue', 'orange',
'darkGreen'.

Handle Annotation handle. real
HiliteAncestors For internal use.
Horizontal‐
Alignment

Horizontal alignment of this
annotation.

'center' | {'left'}|'right'

5 Simulink Classes

5-166

Property Description Values
Interpreter Specifies whether the annotation

is interpreted as rich or contains
LaTex commands

'rich' | 'tex' | {'off'}

IsImage Specifies whether the annotation
is an image-only annotation.

'on' | {'off'}

InternalMargins Space from the bounding box of
text to the borders of the
annotation.

1x4 array [left top right
bottom]. The default is [1 1 1 1].

The maximum value for a coordinate is
32767.

LoadFcn MATLAB code to execute when
the model containing this
annotation is loaded. See
“Annotation Callback Functions”.

character vector

Name Text of annotation. Same as Text. character vector
Parent Parent name of annotation object. character vector
Path Path to the annotation. character vector
PlainText Read-only display of the text in

the annotation, without
formatting

vector

Position Location of the annotation 1x4 array [left top right
bottom].

The maximum value for a coordinate is
32767.

RequirementInfo For internal use. character vector
Selected Specifies whether this annotation

is currently selected.
'on' | 'off'

Tag Text to assign to the annotation
Tag parameter and save with the
annotation.

character vector

TeXMode Specifies whether to render TeX
markup.

'on' | {'off'}

 Simulink.Annotation

5-167

Property Description Values
Text Text of annotation. Same as Name. character vector
Type Annotation type. This is always

'annotation'.
'annotation'

UseDisplayText‐
AsClickCallback

Specifies whether to use the
contents of the Text property as
the click function for this
annotation.

If set to 'on', the text of the
annotation is interpreted as a
valid MATLAB expression and
run. If set to 'off', clicking the
annotation runs the click
function, if there is one. If there is
no click function, clicking the
annotation has no effect.

See “Associate a Click Function
with an Annotation” for more
information.

'on' | {'off'}

UserData Any data that you want to
associate with this annotation.

vector

VerticalAlignment Vertical alignment of this
annotation.

'middle' |
{'top'}|'cap'|'baseline'|'bott
om'

Method Summary
Method Description
delete Delete this annotation from the Simulink model.
dialog Display the Annotation properties dialog box.
disp Display the property names and their settings for this Annotation object.
fitToView Zoom in on this annotation and highlight it in the model.

5 Simulink Classes

5-168

Method Description
get Return the specified property settings for this annotation.
help Display a list of properties for this Annotation object with short descriptions.
methods Display all nonglobal methods of this Annotation object.
set Set the specified property of this Annotation object with the specified value.
setImage Set the annotation contents to the specified image file. The resulting annotation is

an image-only annotation.
struct Return and display a MATLAB structure containing the property settings of this

Annotation object.
view Display this annotation in the Simulink Editor with this annotation highlighted.

Introduced before R2006a

 Simulink.Annotation

5-169

Simulink.BlockCompDworkData
Provide postcompilation information about block's DWork vector

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “Dwork” on page 5-410 method of a block's run-
time object after the model containing the block has been compiled.

Parent
Simulink.BlockData

Children
None

Property Summary
Name Description
“Usage” on page 5-171 Usage type of this DWork vector.
“UsedAsDiscState” on page
5-171

True if this DWork vector is being used to store the values
of a block's discrete states.

5 Simulink Classes

5-170

Properties

Usage

Returns a character vector indicating how this DWork vector is used. Permissible values
are:

• DWork
• DState
• Scratch
• Mode

character vector

RW for MATLAB S-function blocks, RO for other blocks.

UsedAsDiscState

True if this DWork vector is being used to store the values of a block's discrete states.

Boolean

RW for MATLAB S-Function blocks, RO for other blocks.

Introduced before R2006a

 Simulink.BlockCompDworkData

5-171

Simulink.BlockCompInputPortData
Provide postcompilation information about block input port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “InputPort” on page 5-411 method of a block's
run-time object after the model containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
None

Property Summary
Name Description
“DirectFeedthrough” on page 5-
172

True if this port has direct feedthrough.

“Overwritable” on page 5-173 True if this port is overwritable.

Properties
DirectFeedthrough

True if this input port has direct feedthrough.

5 Simulink Classes

5-172

Boolean

RW for MATLAB S functions, RO for other blocks.

Overwritable

True if this input port is overwritable.

Boolean

RW for MATLAB S functions, RO for other blocks.

Introduced before R2006a

 Simulink.BlockCompInputPortData

5-173

Simulink.BlockCompOutputPortData
Provide postcompilation information about block output port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “OutputPort” on page 5-412 method of a block's
run-time object after the model containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
None

Property Summary
Name Description
“Reusable” on page 5-195 Specifies whether an output port's memory is reusable.

Properties

Reusable

Specifies whether an output port's memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

5 Simulink Classes

5-174

character vector

RW for MATLAB S functions, RO for other blocks.

Introduced before R2006a

 Simulink.BlockCompOutputPortData

5-175

Simulink.BlockData
Provide run-time information about block-related data, such as block parameters

Description
This class defines properties that are common to objects that provide run-time
information about a block's ports and work vectors.

Parent
None

Children
Simulink.BlockPortData, Simulink.BlockCompDworkData

Property Summary
Name Description
“AliasedThroughDataType” on page 5-
177

Fundamental base data type.

“AliasedThroughDataTypeID” on page
5-178

Fundamental base data type ID.

“Complexity” on page 5-178 Numeric type (real or complex) of the block
data.

“Data” on page 5-178 The block data.
“DataAsDouble” on page 5-178 The block data in double form.
“Datatype” on page 5-179 Data type of the block data.
“DatatypeID” on page 5-179 Index of the data type of the block data.

5 Simulink Classes

5-176

Name Description
“Dimensions” on page 5-180 Dimensions of the block data.
“Name” on page 5-180 Name of the block data.
“Type” on page 5-180 Type of block data (e.g., a parameter).

Properties
AliasedThroughDataType

Data type aliases allow a data type (B) to be recursively aliased to another alias type or
BaseType (A). If alias type A is aliased to another alias type that is aliased to another
alias type and so forth, this property allows the alias type to be iteratively searched
(aliased through) until the type is no longer an alias type and that final result is the value
of the property returned. For example, assume that you have created the Simulink Alias
types A and B as follows:

A=Simulink.AliasType('double')

A =
Simulink.AliasType
 Description: ''
 HeaderFile: ''
 BaseType: 'double'
B=Simulink.AliasType('A')

B =
Simulink.AliasType
 Description: ''
 HeaderFile: ''
 BaseType: 'A'

If the data type of an item of block data is B, this property returns the base type A instead
of B.

character vector

RO

 Simulink.BlockData

5-177

AliasedThroughDataTypeID

Index of the data type alias returned by the AliasedThroughDataType property.

integer

RO

Complexity

Numeric type (real or complex) of the block data.

character vector

RW for MATLAB S functions, RO for other blocks.

Data

The block data.

The data type specified by the “Datatype” on page 5-179 or “DatatypeID” on page 5-179
properties of this object.

RW

DataAsDouble

The block data's in double form.

double

5 Simulink Classes

5-178

RO

Datatype

Data type of the values of the block-related object.

character vector

RO

DatatypeID

Index of the data type of the values of the block-related object. enter the numeric value
for the desired data type, as follows:

Data Type Value
'inherited' -1
'double' 0
'single' 1
'int8' 2
'uint8' 3
'int16' 4
'uint16' 5
'int32' 6
'uint32' 7
'boolean' or fixed-point data types 8

integer

RW for MATLAB S functions, RO for other blocks

 Simulink.BlockData

5-179

Dimensions

Dimensions of the block-related object, e.g., parameter or DWork vector.

array

RW for MATLAB S functions, RO for other blocks

Name

Name of block-related object, e.g., a block parameter or DWork vector.

character vector

RW for MATLAB S functions, RO for other blocks

Type

Type of block data. Possible values are:

Type Description
'BlockPreCompInputPortData' This object contains data for an input port

before the model is compiled.
'BlockPreCompOutputPortData' This object contains data for an output port

before the model is compiled.
'BlockCompInputPortData' This object contains data for an input port

after the model is compiled.
'BlockCompOutputPortData' This object contains data for an output port

after the model is compiled.
'BlockPreCompDworkData' This object contains data for a DWork

vector before the model is compiled.

5 Simulink Classes

5-180

Type Description
'BlockCompDworkData' This object contains data for a DWork

vector after the model is compiled.
'BlockDialogPrmData' This object describes a dialog box

parameter of a Level-2 MATLAB S-function.
'BlockRuntimePrmData' This object describes a run-time parameter

of a Level-2 MATLAB S-function.
'BlockCompContStatesData' This object describes the continuous states

of the block at the current time step.
'BlockDerivativesData' This object describes the derivatives of the

block's continuous states at the current
time step.

character vector

RO

Introduced before R2006a

 Simulink.BlockData

5-181

Simulink.BlockPath
Fully specified Simulink block path

Description
A Simulink.BlockPath object represents a fully specified block path that uniquely
identifies a block within a model hierarchy, including model reference hierarchies that
involve multiple instances of a referenced model. Simulink uses block path objects in a
variety of contexts. For example, when you specify normal mode visibility, Simulink uses
block path objects to identify the models with Normal mode visibility. For details, see
“Normal Mode Visibility”.

The Simulink.BlockPath class is very similar to the
Simulink.SimulationData.BlockPath class.

You must have Simulink installed to use the Simulink.BlockPath class. However, you
do not have to have Simulink installed to use the
Simulink.SimulationData.BlockPath class. If you have Simulink installed, consider
using Simulink.BlockPath instead of Simulink.SimulationData.BlockPath,
because the Simulink.BlockPath class includes a method for checking the validity of
block path objects without you having to update the model diagram.

Property Summary
Name Description
SubPath on page 5-183 Individual component within the block specified by the

block path

Method Summary
Name Description
BlockPath on page 5-183 Create a block path.

5 Simulink Classes

5-182

Name Description
convertToCell on page
5-186

Convert a block path to a cell array of character vectors.

getBlock on page 5-187 Get a single block path in the model reference hierarchy.
getLength on page 5-188 Get the length of the block path.
validate on page 5-188 Determine whether the block path represents a valid block

hierarchy.

Properties

SubPath

Represents an individual component within the block specified by the block path.

For example, if the block path refers to a Stateflow chart, you can use SubPath to
indicate the chart signals. For example:

Block Path:
 'sf_car/shift_logic'

 SubPath:
 'gear_state.first'

character vector

RW

Methods

BlockPath

Create block path

 Simulink.BlockPath

5-183

blockpath_object = Simulink.BlockPath()
blockpath_object = Simulink.BlockPath(blockpath)
blockpath_object = Simulink.BlockPath(paths)
blockpath_object = Simulink.BlockPath(paths, subpath)

blockpath
Block path object that you want to copy.

paths
A character vector or cell array of character vectors that Simulink uses to build the
block path.

Specify each character vector in order, from the top model to the specific block for
which you are creating a block path.

Each character vector must be a path to a block within the Simulink model. The block
must be:

• A block in a single model
• A Model block (except for the last character vector, which may be a block other

than a Model block)
• A block that is in a model that is referenced by a Model block that is specified in

the previous character vector

When you create a block path for specifying Normal mode visibility:

• The first character vector must represent a block that is in the top model in the
model reference hierarchy.

• Character vectors must represent Model blocks that are in Normal mode.
• Character vectors that represent variant models or variant subsystems must refer

to an active variant.

You can use gcb in the cell array to specify the currently selected block.
subpath

Character vector that represents an individual component within a block.

blockpath_object
Block path that you create.

5 Simulink Classes

5-184

blockpath_object = Simulink.BlockPath() creates an empty block path.

blockpath_object = Simulink.BlockPath(blockpath) creates a copy of the
block path of the block path object that you specify with the source_blockpath
argument.

blockpath = Simulink.BlockPath(paths) creates a block path from the cell array
of character vectors that you specify with the paths argument. Each character vector
represents a path at a level of model hierarchy. Simulink builds the full block path based
on the character vectors.

blockpath = Simulink.BlockPath(paths, subpath) creates a block path from
the character vector or cell array of character vectors that you specify with the paths
argument and creates a path for the individual component (for example, a signal) of the
block.

Create a block path object called bp1, using gcb to get the current block.

sldemo_mdlref_depgraph
bp1 = Simulink.BlockPath(gcb)

The resulting block path is the top-level Model block called thermostat (the top-left
Model block.

bp1 =

 Simulink.BlockPath
 Package: Simulink

 Block Path:
 'sldemo_mdlref_depgraph/thermostat'

Create a block path object called bp2, using a cell array of character vectors representing
elements of the block path.

sldemo_mdlref_depgraph
bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})

The resulting block path reflects the model reference hierarchy for the block path

 Simulink.BlockPath

5-185

bp2 =

 Simulink.BlockPath
 Package: Simulink

 Block Path:
 'sldemo_mdlref_depgraph/thermostat'
 'sldemo_mdlref_heater/Fahrenheit to Celsius'
 'sldemo_mdlref_F2C/Gain1'

convertToCell

Convert block path to cell array of character vectors

cellarray = Simulink.BlockPath.convertToCell()

cellarray
Cell array of character vectors representing elements of block path.

cellarray = Simulink.BlockPath.convertToCell() converts a block path to a
cell array of character vectors.

sldemo_mdlref_depgraph
bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})
cellarray_for_bp2 = bp2.convertToCell()

The result is a cell array representing the elements of the block path.

cellarray_for_bp2 =

 'sldemo_mdlref_depgraph/thermostat'
 'sldemo_mdlref_heater/Fahrenheit to Celsius'
 'sldemo_mdlref_F2C/Gain1'

5 Simulink Classes

5-186

getBlock

Get block path in model reference hierarchy

block = Simulink.BlockPath.getBlock(index)

index
The index of the block for which you want to get the block path. The index reflects the
level in the model reference hierarchy. An index of 1 represents a block in the top-
level model, an index of 2 represents a block in a model referenced by the block of
index 1, and an index of n represents a block that the block with index n-1
references.

block
The block representing the level in the model reference hierarchy specified by the
index argument.

blockpath = Simulink.BlockPath.getBlock(index) returns the block path of the
block specified by the index argument.

Get the block for the second level in the model reference hierarchy.

sldemo_mdlref_depgraph
bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})
blockpath = bp2.getBlock(2)

The result is the thermostat block, which is at the second level in the block path
hierarchy.

blockpath =

sldemo_mdlref_heater/Fahrenheit to Celsius

 Simulink.BlockPath

5-187

getLength

Get length of block path

length = Simulink.BlockPath.getLength()

length
The length of the block path. The length is the number of levels in the model
reference hierarchy.

length = Simulink.BlockPath.getLength() returns a numeric value that
corresponds to the number of levels in the model reference hierarchy for the block path.

Get the length of block path bp2.

sldemo_mdlref_depgraph
bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})
length_bp2 = bp2.getLength()

The result reflects that the block path has three elements.

length_bp2 =

 3

validate

Determine whether block path represents valid block hierarchy

Simulink.BlockPath.validate()
Simulink.BlockPath.validate(AllowInactiveVariant)

5 Simulink Classes

5-188

Simulink.BlockPath.validate() determines whether the block path represents a
valid block hierarchy. If there are any validity issues, messages appear in the MATLAB
command window. The method checks that:

• All elements in the block path represent valid blocks.
• Each element except for the last element:

• Is a valid Model block
• References the model of the next element

See Also
| Simulink.SimulationData.Dataset

 Simulink.BlockPath

5-189

Simulink.BlockPortData
Describe block input or output port

Description
This class defines properties that are common to objects that provide run-time
information about a block's ports.

Parent
Simulink.BlockData

Children
Simulink.BlockPreCompInputPortData,
Simulink.BlockPreCompOutputPortData, Simulink.BlockCompInputPortData,
Simulink.BlockCompOutputPortData

Property Summary
Name Description
“IsBus” on page 5-191 True if this port is connected to a bus.
“IsSampleHit” on page 5-191 True if this port produces output or accepts input at

the current simulation time step.
“SampleTime” on page 5-191 Sample time of this port.
“SampleTimeIndex” on page 5-
191

Sample time index of this port.

5 Simulink Classes

5-190

Properties

IsBus

True if this port is connected to a bus.

Boolean

RO

IsSampleHit

True if this port produces output or accepts input at the current simulation time step.

Boolean

RO

SampleTime

Sample time of this port.

[period offset] where period and offset are values of type double. See “Specify
Sample Time” for more information.

RW for MATLAB S functions, RO for other blocks

SampleTimeIndex

Sample time index of this port.

 Simulink.BlockPortData

5-191

integer

RO

Introduced before R2006a

5 Simulink Classes

5-192

Simulink.BlockPreCompInputPortData
Provide precompilation information about block input port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “InputPort” on page 5-411 method of a block's
run-time object before the model containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
None

Property Summary
Name Description
“DirectFeedthrough” on
page 5-194

True if this port has direct feedthrough.

“Overwritable” on page 5-
194

True if this port is overwritable.

 Simulink.BlockPreCompInputPortData

5-193

Properties

DirectFeedthrough

True if this input port has direct feedthrough.

Boolean

RW for MATLAB S functions, RO for other blocks

Overwritable

True if this input port is overwritable.

Boolean

RW for MATLAB S functions, RO for other blocks

Introduced before R2006a

5 Simulink Classes

5-194

Simulink.BlockPreCompOutputPortData
Provide precompilation information about block output port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “OutputPort” on page 5-412 method of a block's
run-time object before the model containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
none

Property Summary
Name Description
“Reusable” on page 5-195 Specifies whether an output port's memory is reusable.

Properties

Reusable

Specifies whether an output port's memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

 Simulink.BlockPreCompOutputPortData

5-195

character vector

RW for MATLAB S functions, RO for other blocks

Introduced before R2006a

5 Simulink Classes

5-196

Simulink.Breakpoint class
Package: Simulink

Store and share data for a breakpoint set, configure the data for ASAP2 and AUTOSAR
code generation

Description
An object of the Simulink.Breakpoint class stores breakpoint set data for a lookup
table. You can use that data in one or more Prelookup blocks. With the object, you can
specify a data type and code generation settings for the breakpoint set and share the set
between multiple lookup tables. Use Simulink.Breakpoint objects and
Simulink.LookupTable objects to configure COM_AXIS code generation for
calibration.

The code generated for a Simulink.Breakpoint object is an array or a structure with
two fields. If you configure the object to appear as a structure, one field stores the
specified breakpoint set data and one scalar field stores the number of elements in the
breakpoint set data. You can configure the structure type name, the field name, and other
characteristics by using the properties of the object.

To package lookup table and breakpoint set data into a single structure in the generated
code, for example, for STD_AXIS code generation, use a Simulink.LookupTable object
to store all of the data. See “Package Shared Breakpoint and Table Data for Lookup
Tables”.

Construction
BpSet = Simulink.Breakpoint returns a Simulink.Breakpoint object named
BpSet with default property values.

To create a Simulink.Breakpoint object by using the Model Explorer, use the button

 on the toolbar. The default name for the object is Object.

 Simulink.Breakpoint class

5-197

Property Dialog Box

Breakpoints
The breakpoint set information. You can configure these characteristics:

Support tunable size
Specification to enable tuning the effective size of the table in the generated code.
If you select this option, in the generated code, the Simulink.Breakpoint
object appears as a structure variable. The structure has one field to store the
breakpoint vector data and one field to store the number of elements in the
breakpoint vector. You can change the value of the second field to adjust the
effective size of the table.

If you clear this option, the Simulink.Breakpoint object appears in the
generated code as a separate array variable instead of a structure.

Value
Breakpoint set data. Specify a vector with at least two elements.

You can also use an expression with mathematical operators such as
sin(1:0.5:30) as long as the expression returns a numeric vector. When you
click Apply or OK, the object executes the expression and uses the result to set
the value of this property.

5 Simulink Classes

5-198

When you set Data type to auto, to set Value, use a typed expression such as
single([1 2 3]) or use the fi constructor to embed an fi object.

You can edit this data by using a more intuitive interface in a lookup table block.
See “Import Lookup Table Data from MATLAB”.

Data type
Data type of the breakpoint set. The default setting is auto, which means that the
breakpoint set acquires a data type from the value that you specify in Value. If
you use an untyped expression such as [1 2 3] to set Value, the breakpoint data
use the data type double. If you specify a typed expression such as single([1
2 3]) or an fi object, the breakpoint data use the data type specified by the
expression or object. Enumerated data types are also supported.

You can explicitly specify an integer data type, a floating-point data type, a fixed-
point data type, or a data type expression such as the name of a
Simulink.AliasType object.

For more information about data types in Simulink, see “Data Types Supported by
Simulink”. To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control
Data Types of Lookup Table Objects” (Simulink Coder).

Dimensions
Dimension lengths of the breakpoint set.

To use symbolic dimensions, specify a character vector. See “Implement
Dimension Variants for Array Sizes in Generated Code” (Embedded Coder).

Min
Minimum value of the elements in the breakpoint set. The default value is empty,
[]. You can specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify
Minimum and Maximum Values for Block Parameters”.

Max
Maximum value of the elements in the breakpoint set. The default value is empty,
[]. You can specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify
Minimum and Maximum Values for Block Parameters”.

 Simulink.Breakpoint class

5-199

Unit
Physical unit of the elements in the breakpoint set. You can specify text such as
degC. See “Unit Specification in Simulink Models”.

Field name
Name of a structure field in the generated code. This field stores the breakpoint
set data. The default value is BP. To change the field name, specify text.

This column appears only if you select Support tunable size.
Tunable size name

Name of a structure field in the generated code. This scalar field stores the length
of the breakpoint set (the number of elements), which the generated code
algorithm uses to determine the size of the table. To tune the effective size of the
table during code execution, change the value of this structure field in memory.
The default name is N. To change the field name, specify text.

This column appears only if you select Support tunable size.
Description

Description of the breakpoint set. You can specify text such as This breakpoint
set represents the pressure input.

Data definition: Storage class
Storage class of the structure variable (if you select Support tunable size) or array
variable in the generated code. The variable stores the breakpoint set data. The
default setting is Auto.

For more information about storage classes, see “Apply Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Simulink Coder).

If you have Embedded Coder, you can choose a custom storage class. For information
about custom storage classes, see “Apply Custom Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Embedded Coder).

Data definition: Alias
Alternative name for the variable in the generated code. The default value is empty, in
which case the generated code uses the name of the Simulink.Breakpoint object
as the name of the variable. To set the alias, specify text.

To enable this property, set Data definition: Storage class to a setting other than
Auto.

5 Simulink Classes

5-200

Data definition: Alignment
Data alignment boundary in the generated code. The starting memory address for the
data allocated for the structure or array variable is a multiple of the value that you
specify. The default value is -1, which allows the code generator to determine an
optimal alignment based on usage.

Specify a positive integer that is a power of 2, not exceeding 128. For more
information about using data alignment for code replacement, see “Data Alignment
for Code Replacement” (Embedded Coder).

Struct Type definition: Name
Name of the structure type that the structure variable uses in the generated code.
The default value is empty. Specify text.

This property appears only if you select Support tunable size.
Struct Type definition: Data scope

Scope of the structure type definition (imported from your handwritten code or
exported from the generated code). The default value is Auto. When you select Auto:

• If you do not specify a value in the Struct Type definition: Header file box, the
generated code exports the structure type definition to the file model_types.h.
model is the name of the model.

• If you specify a value in the Struct Type definition: Header file box, such as
myHdr.h, the generated code imports the structure type definition from myHdr.h.

To explicitly specify the data scope:

• To import the structure type definition into the generated code from your custom
code, select Imported.

• To export the structure type definition from the generated code, select Exported.

If you do not specify a value in the Struct Type definition: Header file box, the
generated code imports or exports the type definition from or to StructName.h.
StructName is the name that you specify with the property Struct Type definition:
Name.

This property appears only if you select Support tunable size.
Struct Type definition: Header file

Name of the header file that contains the structure type definition. You can import the
definition from a header file that you create, or export the definition into a generated

 Simulink.Breakpoint class

5-201

header file. To control the scope of the structure type, adjust the setting for the
Struct Type definition: Data scope property.

This property appears only if you select Support tunable size.

Properties
Breakpoints — Breakpoint set data
Simulink.lookuptable.Breakpoint object

Breakpoint set data, specified as a Simulink.lookuptable.Breakpoint object. Use
this embedded object to configure the structure field names and characteristics of the
breakpoint set data such as breakpoint values, data type, and dimensions.

CoderInfo — Code generation settings for variable
Simulink.CoderInfo object

Code generation settings for the structure variable (if you set SupportTunableSize to
true) or array variable (false) that stores the breakpoint set data, specified as a
Simulink.CoderInfo object. You can specify a storage class or custom storage class by
using this embedded object. For more information, see Simulink.CoderInfo.

StructTypeInfo — Settings for structure type in the generated code
Simulink.lookuptable.StructTypeInfo object

Settings for the structure type that the structure variable uses in the generated code,
specified as a Simulink.lookuptable.StructTypeInfo object.

If you set SupportTunableSize to false, the Simulink.Breakpoint object does not
appear in the generated code as a structure. The code generator ignores this property.

SupportTunableSize — Option to generate code that enables tunability of table
size
false (default) | true

Option to generate code that enables tunability of the effective size of the table, specified
as true or false. See the Support Tunable Size parameter.
Data Types: logical

5 Simulink Classes

5-202

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Share Breakpoint Data Between One-Dimensional Lookup
Tables
1 Create a Simulink.Breakpoint object named myBpSet.

myBpSet = Simulink.Breakpoint
2 Specify the breakpoint data.

myBpSet.Breakpoints.Value = [-2 -1 0 1 2];
3 Create a Simulink.LookupTable object named FirstLUTObj.

FirstLUTObj = Simulink.LookupTable;
4 Specify the table data.

FirstLUTObj.Table.Value = [1.1 2.2 3.3 4.4 5.5];
5 Configure the lookup table object to refer to the breakpoint set object.

FirstLUTObj.Breakpoints = {'myBpSet'};
6 Create another Simulink.LookupTable object to store a different set of table data.

Configure the lookup table object to refer to the same breakpoint set object.

SecondLUTObj = Simulink.LookupTable;
SecondLUTObj.Table.Value = [1.2 2.3 3.4 4.5 5.6];
SecondLUTObj.Breakpoints = {'myBpSet'};

You can use FirstLUTObj and SecondLUTObj to specify the table data in two different
Interpolation Using Prelookup blocks. Use myBpSet to specify the breakpoint set data in
one or two Prelookup blocks that provide the inputs for the Interpolation Using Prelookup
blocks.

 Simulink.Breakpoint class

5-203

Limitations
• You cannot subclass Simulink.Breakpoint or Simulink.LookupTable. For this

reason, you cannot apply custom storage classes other than those in the built-in
Simulink package.

• You cannot use Simulink.Breakpoint objects or Simulink.LookupTable objects
that refer to Simulink.Breakpoint objects as instance-specific parameter data for
reusable components. For example, you cannot use one of these objects as:

• A model argument in a model workspace or a model argument value in a Model
block.

• The value of a mask parameter on a CodeReuse Subsystem block.
• The value of a mask parameter on a subsystem that you reuse by creating a custom

library.

However, you can use standalone Simulink.LookupTable objects, which do not
refer to Simulink.Breakpoint objects, in these ways.

• You cannot generate code according to the FIX_AXIS style.
• When blocks in a subsystem use Simulink.LookupTable or

Simulink.Breakpoint objects, you cannot set data type override (see “Control
Fixed-Point Instrumentation and Data Type Override”) only on the subsystem. Instead,
set data type override on the entire model.

See Also
Simulink.LookupTable | Simulink.Parameter |
Simulink.lookuptable.Breakpoint | Simulink.lookuptable.StructTypeInfo |
Simulink.lookuptable.Table

Topics
“Configure STD_AXIS and COM_AXIS Lookup Tables for AUTOSAR Measurement and
Calibration” (Embedded Coder)
“About Lookup Table Blocks”
“Package Shared Breakpoint and Table Data for Lookup Tables”
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

Introduced in R2016b

5 Simulink Classes

5-204

Simulink.Bus class
Package: Simulink

Specify properties of bus signal

Description
Objects of the Simulink.Bus class, used with objects of the Simulink.BusElement
class, specify the properties of a bus signal. Bus objects validate the properties of bus
signals. When you simulate a model or update diagram, Simulink checks whether the
buses connected to the blocks have the properties specified by the bus objects. If not,
Simulink halts and displays an error message. For a complete list of blocks that support
using a bus object as a data type, see “When to Use Bus Objects”.

You can use the Simulink Bus editor or MATLAB commands to create and modify bus
objects in the base MATLAB workspace. You cannot store a bus object in a model
workspace.

When you use the Bus Editor, you create Simulink.Bus and Simulink.BusElement
objects in the base workspace or the associated Simulink data dictionary.

Also, you can use a bus object to specify the attributes of a signal (for example, at the root
level of a model or in a Data Store Memory block).

Construction
busObj = Simulink.Bus returns a bus object with these property values:

 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''
 Alignment: -1
 Elements: [0×0 Simulink.BusElement]

The name of the bus object is the name of the MATLAB variable to which you assign the
bus object. You can set individual properties after you construct the bus object.

 Simulink.Bus class

5-205

Output Arguments
busObject — Bus object
Simulink.Bus object

Bus object, returned as a Simulink.Bus object.

Properties
Description — Bus object description
character vector

Bus object description, specified as a character vector. Use the description to document
information about the bus object, such as the kind of signal it applies to or where the bus
object is used. This information does not affect Simulink processing.

Elements — Bus elements
array of Simulink.BusElement objects

Bus elements, specified as an array of Simulink.BusElement objects. Each bus element
object defines the name, data type, dimensions, and other properties of the signal within a
bus.

DataScope — Data type definition mode in generated code
'Auto' (default) | 'Exported' | 'Imported'

Data type definition mode in generated code, specified as 'Auto', 'Exported', or
'Imported'. This property specifies whether during code generation the data type
definition is imported from, or exported to, the header file specified with the HeaderFile
property.

Value Action
'Auto' (default) Import the data type definition from the specified header file. If

you do not specify the header file, export the data type definition
to the default header file.

'Exported' Export the data type definition to the specified header file or to
the default header file.

5 Simulink Classes

5-206

Value Action
'Imported' Import the data type definition from the specified header file

specified or from the default header file.

HeaderFile — C header file used with data type definition
character vector

C header file used with data type definition, specified as a character vector. The header
file is the file to import the data type definition from or export the data type definition to
(based on the value of the DataScope property. The Simulink Coder software uses this
property for code generation. Simulink software ignores this property.

By default, the generated #include directive uses the preprocessor delimiter " instead
of < and >. To generate the directive #include <myTypes.h>, specify HeaderFile as
<myTypes.h>.

Alignment — Data alignment boundary
-1 (default) | integer

Data alignment boundary, specified as an integer, in number of bytes. The Simulink Coder
software uses this property for code generation. Simulink software ignores this property.

The starting memory address for the data allocated for the bus is a multiple of the
Alignment setting. If the object occurs in a context that requires alignment, you must
specify an Alignment value with a positive integer that is a power of 2, not exceeding
128.

Methods
Method Purpose
Simulink.Bus.cellToObject Convert cell array containing bus information to bus

objects
Simulink.Bus.createMATLABS
truct

Create MATLAB structures using same hierarchy and
attributes as bus signals

Simulink.Bus.createObject Create bus objects from blocks or MATLAB structures
Simulink.Bus.objectToCell Use bus objects to create cell array containing bus

information

 Simulink.Bus class

5-207

Method Purpose
Simulink.Bus.save Save bus objects in MATLAB file

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Create Bus Objects and Bus Elements

Create the CONTROL bus object and its bus elements. The bus objects are stored in the
base workspace.

clear elems;
elems(1) = Simulink.BusElement;
elems(1).Name = 'VALVE1';
elems(1).Dimensions = 1;
elems(1).DimensionsMode = 'Fixed';
elems(1).DataType = 'double';
elems(1).SampleTime = -1;
elems(1).Complexity = 'real';

elems(2) = Simulink.BusElement;
elems(2).Name = 'VALVE2';
elems(2).Dimensions = 1;
elems(2).DimensionsMode = 'Fixed';
elems(2).DataType = 'double';
elems(2).SampleTime = -1;
elems(2).Complexity = 'real';

CONTROL = Simulink.Bus;
CONTROL.Elements = elems;

This script is similar to the file that you get by saving a bus object to a MATLAB file and
choosing the Object format.

• “Create Bus Objects Programmatically”

5 Simulink Classes

5-208

• “Organize Data into Structures in Generated Code” (Simulink Coder)
• “Data Alignment for Code Replacement” (Embedded Coder)
• “Create Bus Objects with the Bus Editor”
• “Save and Import Bus Objects”
• “When to Use Bus Objects”

Alternatives
You can use the Bus Editor to create interactively a bus object and its bus elements. For
details, see “Create Bus Objects with the Bus Editor”.

Programmatically, you can create bus objects from:

• Blocks in a model
• MATLAB data
• External C code. See Simulink.importExternalCTypes.

See Also
Simulink.Bus.cellToObject | Simulink.Bus.createObject |
Simulink.BusElement

Topics
“Create Bus Objects Programmatically”
“Organize Data into Structures in Generated Code” (Simulink Coder)
“Data Alignment for Code Replacement” (Embedded Coder)
“Create Bus Objects with the Bus Editor”
“Save and Import Bus Objects”
“When to Use Bus Objects”

Introduced before R2006a

 Simulink.Bus class

5-209

Simulink.BusElement class
Package: Simulink

Describe element of bus signal

Description
An object of this class specifies the properties of a signal in a bus. Bus element objects
validate of the properties of signals in a bus. A Simulink.Bus object contains bus
elements. A bus element exists only within a bus object. You can specify a bus object, but
not a bus element, as a block parameter value. When you simulate a model or update
diagram, Simulink checks whether the signals in a bus connected to blocks have the
properties specified by the bus elements. If not, Simulink halts and displays an error
message.

You can use the Simulink Bus editor (see “Create Bus Objects with the Bus Editor”), or
MATLAB commands (see “Create Bus Objects Programmatically”) to create and modify
bus objects and bus elements in the base MATLAB workspace.

Construction
busElementName = Simulink.BusElement returns a bus element with these property
values:

 Name: 'a'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'double'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 SampleTime: -1
 Unit: ''
 Description: ''

5 Simulink Classes

5-210

Output Arguments
busElement — Bus element
Simulink.BusElement object

Bus element, returned as a Simulink.BusElement object.

Properties
Name — Name of bus element
character vector

Name of bus element, specified as a character vector.

Complexity — Numeric type of bus element
'real' (default) | 'complex'

Numeric type of the bus element, specified as 'real' or 'complex'.

Dimensions — Dimensions of bus element
array

Dimensions of bus element, specified as an array.

DataType — Data type of bus element
built-in Simulink data type | a Simulink.NumericType object | a Simulink.Bus object

Data type of bus element, specified as a built-in Simulink data type or
Simulink.NumericType object. Examples of built-in data types include double and
uint8. You can specify a Simulink.NumericType object whose DataTypeMode
property is set to a value other than 'Fixed-point: unspecified scaling'.
Specifying a bus object allows you to create bus objects that specify hierarchical buses
(that is, buses that contain other buses).

Min — Minimum value of bus element
double | []

Minimum value of the bus element, specified as a double. This value must be a finite real
double scalar or, if the element is a bus, the value must be empty, [].

 Simulink.BusElement class

5-211

Max — Maximum value of bus element
double | []

Maximum value of the bus element, specified as a double. This value must be a finite real
double scalar or, if the element is a bus, the value must be empty, [].

DimensionsMode — How to handle size of bus element
'Fixed' (default) | 'Variable'

How to handle size of bus element, specified as 'Fixed' or 'Variable'.

SampleTime — Sample time of bus element
-1 (default) | double

Sample time of bus element, specified as a double. The sample time is the size of the
interval between times when this signal value must be recomputed. If these conditions
apply, use the default value of -1:

• The bus element is a bus.
• The bus that includes this element passes through a block that changes the bus

sample time, such as a Rate Transition block.

Unit — Physical unit for expressing bus element
character vector

Physical unit for expressing bus element, specified as a character vector (for example,
'inches').

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Create Bus Objects and Bus Elements

Create the CONTROL bus object and its bus elements. The bus objects are stored in the
base workspace.

5 Simulink Classes

5-212

clear elems;
elems(1) = Simulink.BusElement;
elems(1).Name = 'VALVE1';
elems(1).Dimensions = 1;
elems(1).DimensionsMode = 'Fixed';
elems(1).DataType = 'double';
elems(1).SampleTime = -1;
elems(1).Complexity = 'real';

elems(2) = Simulink.BusElement;
elems(2).Name = 'VALVE2';
elems(2).Dimensions = 1;
elems(2).DimensionsMode = 'Fixed';
elems(2).DataType = 'double';
elems(2).SampleTime = -1;
elems(2).Complexity = 'real';

CONTROL = Simulink.Bus;
CONTROL.Elements = elems;

This script is similar to the file that you get by saving a bus object to a MATLAB file and
choosing the Object format. For information about saving bus objects, see “Save and
Import Bus Objects”.

• “Create Bus Objects Programmatically”
• “Save and Import Bus Objects”
• “Signal Names and Labels”
• “Specify Sample Time”
• “Variable-Size Signal Basics”

Alternatives
You can use the Bus Editor to create interactively a bus object and its bus elements. For
details, see “Create Bus Objects with the Bus Editor”.

Programmatically, you can create bus objects and elements from:

• Blocks in a model
• MATLAB data

 Simulink.BusElement class

5-213

See Also
Simulink.Bus | Simulink.Bus.cellToObject | Simulink.Bus.createObject

Topics
“Create Bus Objects Programmatically”
“Save and Import Bus Objects”
“Signal Names and Labels”
“Specify Sample Time”
“Variable-Size Signal Basics”

Introduced before R2006a

5 Simulink Classes

5-214

Simulink.CoderInfo
Specify information needed to generate code for signal, state, or parameter data

Description
Use a Simulink.CoderInfo object to specify code generation settings for signal, state,
and parameter data in a model.

Simulink creates a Simulink.CoderInfo object for each data object that you create.
Data objects represent signal, state, or parameter data. The Simulink.CoderInfo
object exists in the CoderInfo property of each data object.

Data objects include objects of these classes:

• Simulink.Parameter
• Simulink.Signal
• Simulink.LookupTable
• Simulink.Breakpoint
• Simulink.DualScaledParameter

Use the properties of the Simulink.CoderInfo object to configure the representation
of the parent data object in the generated code.

You can set the properties of a Simulink.CoderInfo object through the CoderInfo
property or the property dialog box of the parent data object. For example, the following
MATLAB expression sets the StorageClass property of a Simulink.CoderInfo object
used by a signal object named mysignal.

mysignal.CoderInfo.StorageClass = 'ExportedGlobal';

Creation
When you create a data object, Simulink sets the value of the CoderInfo property by
creating a Simulink.CoderInfo object. You do not need to create a
Simulink.CoderInfo object explicitly.

 Simulink.CoderInfo

5-215

Properties
Alias — Alternative name for code generation
'' (empty character vector) (default) | character vector

Alternative name for the data in the generated code, specified as a character vector.
Example: 'myOtherName'
Data Types: char

Alignment — Data alignment boundary
-1 (default) | positive integer

Data alignment boundary for this data, specified as a positive integer that is a power of 2,
not exceeding 128. Specify an integer number of double data type. See “Data Alignment
for Code Replacement” (Embedded Coder) for more information.
Example: 8
Data Types: double
Complex Number Support: Yes

CustomAttributes — Custom storage class attributes of this data
SimulinkCSC.AttribClass_Simulink_Default object (default) | custom attributes
object

Custom storage class attributes of this data, returned as a custom attributes object. You
must set the property StorageClass to 'Custom' to enable this property.

Depending on the custom storage class that you apply by using the
CustomStorageClass property of the Simulink.CoderInfo object, Simulink sets the
value of this property by creating a custom attributes object. Then, you can set the values
of the properties of the custom attributes object. See “Apply Custom Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Embedded Coder) for more
information.

CustomStorageClass — Custom storage class of this data
'Default' (default) | character vector

Custom storage class of this data, specified as a character vector. You must set the
property StorageClass to 'Custom' to enable this property.

5 Simulink Classes

5-216

For a list of valid custom storage classes (Embedded Coder) when you create the data
object from the Simulink package, see “Choose a Storage Class for Controlling Data
Representation in the Generated Code” (Embedded Coder).
Example: 'ExportToFile'
Data Types: char

StorageClass — Storage class of this data
'Auto' (default) | character vector

Storage class of this data, specified as a character vector. For more information, see
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder).
Example: 'ExportedGlobal'
Data Types: char

Examples
Configure Code Generation Settings Programmatically

For examples that show how to configure code generation settings for a data item
programmatically, see “Apply Storage Classes to Individual Signal, State, and Parameter
Data Elements” (Simulink Coder) and “Apply Custom Storage Classes to Individual Signal,
State, and Parameter Data Elements” (Embedded Coder).

• “Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)

• “Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

See Also

Topics
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)
“Data Objects”

 Simulink.CoderInfo

5-217

“Apply Custom Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Embedded Coder)

Introduced in R2015a

5 Simulink Classes

5-218

ConfigSet
Model configuration set

Description
Use the ConfigSet object to access a model configuration set. Get information about
your configuration set, manage configuration parameters, and manage components.

Creation
Use the getActiveConfigSet function to get the active configuration set for a model. Use
the getConfigSet function to get a model configuration set by name.

Properties
Components — Components of the configuration set
cell array of Simulink.ConfigComponent objects

Components of the configuration set, specified by a cell array of
Simulink.ConfigComponent objects.

Description — Description of the configuration set
character vector

Description of the configuration set, specified as a character vector. Use the description
to provide additional information about a configuration set, such as its purpose.

Name — Name of the configuration set
character vector

Name of the configuration set, specified by a character vector. This name represents the
configuration set in the Model Explorer.

 ConfigSet

5-219

Object Functions
attachComponent Attach a component to a configuration set
copy Copy a configuration set
getComponent Get a configuration set component
getFullName
getModel
get_param Get parameter names and values
isActive
isValidParam
saveAs
setPropEnabled
set_param Set system and block parameter values

Examples

Get the Active Configuration Set for a Model
This example gets the active configuration set of the currently selected model.

hCs - getActiveConfigSet(gcs);

See Also
getActiveConfigSet | getConfigSet | getConfigSets

Topics
“About Configuration Sets”
“Manage a Configuration Set”

Introduced in R2006a

5 Simulink Classes

5-220

Simulink.ConfigSetRef
Link model to configuration set stored independently of any model

Description
Instances of this handle class allow a model to reference configuration sets that exist
outside any model. See “Manage a Configuration Set”, “Overview”, and “Manage a
Configuration Reference” for more information.

Property Summary
Name Description
“Description” on page 5-222 Description of the configuration reference.
“Name” on page 5-222 Name of the configuration reference.
“SourceName” on page 5-223 Name of the variable in the workspace or the data

dictionary that contains the referenced configuration
set.

Note You can use the Configuration Reference dialog box to set the Name,
Description, and SourceName properties of a configuration reference. See “Create and
Attach a Configuration Reference” for details.

Method Summary
Name Description
“copy” on page 5-223 Create a copy of a configuration reference.
“getFullName” on page 5-
223

Get the full pathname of a configuration reference.

“getModel” on page 5-224 Get the handle of the model that owns a configuration
reference.

 Simulink.ConfigSetRef

5-221

Name Description
“get_param” on page 5-224 Get the value of a configuration set parameter indirectly

through a configuration reference.
“getRefConfigSet” on page
5-225

Get the configuration set specified by a configuration
reference.

“isActive” on page 5-225 Determine whether a configuration reference is the active
configuration object of the model.

“refresh” on page 5-225 Update configuration reference after any change to
properties or configuration set availability.

Properties

Description

Description of the configuration reference. You can use this property to provide additional
information about a configuration reference, such as its purpose. This field can remain
blank.

character vector

RW

Name

Name of the configuration reference. This name represents the configuration reference in
the GUI.

character vector

RW

5 Simulink Classes

5-222

SourceName

Name of the variable in the workspace or the data dictionary that contains the referenced
configuration set.

character vector

RW

Methods
copy

Create a copy of this configuration reference.

copy

This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration references. This is
because Simulink.ConfigSetRef is a handle class. See “Handle Versus Value Classes”
for more information.

getFullName

Get the full pathname of a configuration reference.

getFullName

This method returns a character vector specifying the full pathname of a configuration
reference, e.g., 'vdp/Configuration'.

 Simulink.ConfigSetRef

5-223

getModel

Get the model that owns this configuration reference.

getModel

Returns a handle to the model that owns this configuration reference.

The following command opens the block diagram of the model that owns the
configuration set referenced by the MATLAB workspace variable hCr.

open_system(hCr.getModel);

get_param

Get the value of a configuration set parameter indirectly through a configuration
reference.

get_param(paramName)

paramName
Character vector specifying the name of the parameter whose value is to be returned.

This method returns the value of the specified parameter from the configuration set to
which the configuration reference points. To obtain this value, the method uses the value
of SourceName to retrieve the configuration set, then retrieves the value of paramName
from that configuration set. Specifying paramName as 'ObjectParameters' returns the
names of all valid parameters in the configuration set. If a valid configuration set is not
attached to the configuration reference, the method returns unreliable values.

The inverse method, set_param, is not defined for configuration references. To obtain a
parameter value through a configuration reference, you must first use the
getRefConfigSet method to retrieve the configuration set from the reference, then use
set_param directly on the configuration set itself.

5 Simulink Classes

5-224

You can also use the get_param model construction command to get the values of
parameters of a model's active configuration set, e.g., get_param(bdroot,
'SolverName') gets the solver name of the currently selected model.

The following command gets the name of the solver used by the selected model's active
configuration.

hAcs = getActiveConfigSet(bdroot);
hAcs.get_param('SolverName');

getRefConfigSet

Get the configuration set specified by a configuration reference

getRefConfigSet

Returns a handle to the configuration set specified by the SourceName property of a
configuration reference.

isActive

Determine whether this configuration set is its model's active configuration set.

isActive

Returns true if this configuration set is the active configuration set of the model that
owns this configuration set.

refresh

Update configuration reference after any change to properties or configuration set
availability

 Simulink.ConfigSetRef

5-225

refresh

Updates a configuration reference after using the API to change any property of the
reference, or after providing a configuration set that did not exist at the time the set was
originally specified in SourceName. If you omit executing refresh after any such
change, the configuration reference handle will be stale, and using it will give incorrect
results.

Introduced in R2007a

5 Simulink Classes

5-226

Simulink.FindOptions class
Package: Simulink

Options for finding blocks in models and subsystems

Description
Create an options object to use with Simulink.findBlocks and
Simulink.findBlocksOfType to constrain the search.

Construction
f = Simulink.FindOptions creates a FindOptions object that uses the default
search options.

f = Simulink.FindOptions(Option1,Value1,...OptionN,ValueN) creates the
object using the specified search options.

Input Arguments
'CaseSensitive' — Option to specify whether to match case when searching
true (default) | false

Option to specify whether to match case when searching, specified as true for case-
sensitive search or false for case-insensitive search.

'FollowLinks' — Option to follow library links
false (default) | true

Option to follow library links, specified as true or false. If true, search follows links
into library blocks.

'IncludeCommented' — Option for the search to include commented blocks
true (default) | false

Option for the search to include commented blocks, specified as true or false.

 Simulink.FindOptions class

5-227

'LookUnderMasks' — Options to search masked blocks
'all' (default) | 'none' | 'functional' | 'graphical'

Options to search masked blocks, specified as:

• 'all' — Search in all masked blocks.
• 'none' — Prevent searching in masked systems.
• 'functional' — Include masked subsystems that do not have dialogs.
• 'graphical' — Include masked subsystems that do not have workspaces or dialogs.

'Variants' — Options to search Variant subsystems
'AllVariants' (default) | 'ActiveVariants' | 'ActivePlusCodeVariants'

Options to search Variant subsystems, specified as:

• 'AllVariants' — Search all variant choices.
• 'ActiveVariants' — Search only active variant choices.
• 'ActivePlusCodeVariants' — Search all variant choices with 'Generate

preprocessor conditionals' active. Otherwise, search only the active variant
choices.

The 'Variants' search constraint applies only to variant subsystems and model
variants.

'RegExp' — Option to treat the search text as a regular expression
false (default) | true

Option to treat the search text as a regular expression, specified as true or false. To
learn more about MATLAB regular expressions, see “Regular Expressions” (MATLAB).

'SearchDepth' — Levels in the model to search
positive integer

Levels in the model to search, specified as a positive integer. The default is to search all
levels. Specify:

• 1 — Search in the top-level system.
• 2 — Search the top-level system and its children, 3 to search an additional level, and

so on.

5 Simulink Classes

5-228

Examples
Specify Search Options to Use with Simulink.findBlocks

Search for all blocks in the Unlocked subsystem but not in any of its children.

f = Simulink.FindOptions('SearchDepth',1);
load_system('sldemo_clutch');
bl = Simulink.findBlocks('sldemo_clutch/Unlocked',f)

bl =

 1.0e+03 *

 1.1140
 1.1150
 1.1160
 1.1170
 1.1180
 1.1190
 1.1200
 1.1210
 1.1220
 1.1230
 1.1240
 1.1250
 1.1260
 1.1270
 1.1280
 1.1290
 1.1300
 1.1310
 1.1320
 1.1330

To get the block name and path instead of the handle, use getfullname.

bl = getfullname (Simulink.findBlocks('sldemo_clutch/Unlocked',f))

bl =

 20×1 cell array

 {'sldemo_clutch/Unlocked/Tfmaxk' }

 Simulink.FindOptions class

5-229

 {'sldemo_clutch/Unlocked/Tin' }
 {'sldemo_clutch/Unlocked/Enable' }
 {'sldemo_clutch/Unlocked/E_Sum' }
 {'sldemo_clutch/Unlocked/Engine↵Damping' }
 {'sldemo_clutch/Unlocked/Engine↵Inertia' }
 {'sldemo_clutch/Unlocked/Engine↵Integrator' }
 {'sldemo_clutch/Unlocked/Goto' }
 {'sldemo_clutch/Unlocked/Goto1' }
 {'sldemo_clutch/Unlocked/Max↵Dynamic↵Friction↵Torque'}
 {'sldemo_clutch/Unlocked/V_Sum' }
 {'sldemo_clutch/Unlocked/Vehicle↵Damping' }
 {'sldemo_clutch/Unlocked/Vehicle↵Inertia' }
 {'sldemo_clutch/Unlocked/Vehicle↵Integrator' }
 {'sldemo_clutch/Unlocked/W_Slip' }
 {'sldemo_clutch/Unlocked/slip direction' }
 {'sldemo_clutch/Unlocked/w0' }
 {'sldemo_clutch/Unlocked/w0 ' }
 {'sldemo_clutch/Unlocked/we' }
 {'sldemo_clutch/Unlocked/wv' }

See Also
Simulink.allBlockDiagrams | Simulink.findBlocks |
Simulink.findBlocksOfType

Introduced in R2018a

5 Simulink Classes

5-230

Simulink.GlobalDataTransfer class
Package: Simulink

Configure concurrent execution data transfers

Description
The Simulink.GlobalDataTransfer object contains the data transfer information for
the concurrent execution of a model. To access the properties of this class, use the
get_param function to get the handle for this class, and then use dot notation to access
the properties. For example:

dt=get_param(gcs,'DataTransfer');
dt.DefaultTransitionBetweenContTasks

ans =

Ensure deterministic transfer (minimum delay)

Properties
DefaultTransitionBetweenSyncTasks

Global setting for data transfer handling option when the source and destination of a
signal are in two different and periodic tasks.

Data Type: Enumeration. Can be one of:

• 'Ensure data integrity only'
• 'Ensure deterministic transfer (maximum delay)'
• 'Ensure deterministic transfer (minimum delay)'

Access: Read/write

 Simulink.GlobalDataTransfer class

5-231

DefaultTransitionBetweenContTasks

Global setting for the data transfer handling option for signals that have a continuous
sample time.

Data Type: Enumeration. Can be one of:

• 'Ensure data integrity only'
• 'Ensure deterministic transfer (maximum delay)'
• 'Ensure deterministic transfer (minimum delay)'

Access: Read/write

DefaultExtrapolationMethodBetweenContTasks

Global setting for the data transfer extrapolation method for signals that have a
continuous sample time.

Data Type: Enumeration. Can be one of:

• 'None'
• 'Zero Order Hold'
• 'Linear'
• 'Quadratic'

Access: Read/write

AutoInsertRateTranBlk

Setting for whether or not Simulink software automatically inserts hidden Rate Transition
blocks between blocks that have different sample rates to ensure the integrity of data
transfers between tasks; and optional determinism of data transfers for periodic tasks.

Data Type: Boolean. Can be one of:

• 0
• 1

Access: Read/write

5 Simulink Classes

5-232

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Access the properties of this class.

dt=get_param(gcs,'DataTransfer');
dt.DefaultTransitionBetweenContTasks

ans =

Ensure deterministic transfer (minimum delay)

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register | Simulink.architecture.set_param

Topics
“Configure Data Transfer Settings Between Concurrent Tasks”

 Simulink.GlobalDataTransfer class

5-233

Simulink.HMI.InstrumentedSignals class
Package: Simulink.HMI

Access logged signals in model

Description
Simulink.HMI.InstrumentedSignals objects contain a list of all logged signals in a
model, including signals from all subsystems, library instances, and Stateflow charts. The
list does not include signals inside reference models. You can access the list of logged
signals in a reference model by creating a Simulink.HMI.InstrumentedSignals
object for the reference model.

The Simulink.HMI.InstrumentedSignals object provides access to
Simulink.HMI.SignalSpecification objects using the get method.

Construction
instSigs = get_param(model, 'InstrumentedSignals') returns instSigs, a
Simulink.HMI.InstrumentedSignals object containing a list of all of the logged
signals in the model, model.

Input Arguments
model — Model name
character vector

Model name or full path to model.
Example: 'sldemo_fuelsys'
Example: fullpath(matlabroot, 'examples', 'simulink',
'ex_sldemo_absbrake.slx')

'InstrumentedSignals' — Parameter selection
'InstrumentedSignals'

5 Simulink Classes

5-234

Desired return from get_param, specified as a character vector. Using a value of
'InstrumentedSignals', get_param returns a
Simulink.HMI.InstrumentedSignals object with a list of all the logged signals.
Example: 'InstrumentedSignals'

Properties
Model — Model name
character vector

Name of the model the aggregation of logged signals corresponds to.
Example: 'sldemo_fuelsys'

Count — Number of logged signals
integer

Number of logged signals in the model.
Example: 10

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples
Evaluate and Modify Logged Signals in Model

This example shows how to obtain the block paths for logged signals and remove the
logging badge for a signal using Simulink.HMI.InstrumentedSignals and
Simulink.HMI.SignalSpecification objects.

Get InstrumentedSignals Object

% Load the model sldemo_absbrake
load_system('sldemo_absbrake')

 Simulink.HMI.InstrumentedSignals class

5-235

% Get logged signals with Simulink.HMI.InstrumentedSignals object
instSigs = get_param('sldemo_absbrake', 'InstrumentedSignals');

% Check logged signals count
instSigs.Count

ans = uint32
 2

Inspect Block Paths with SignalSpecifications Objects

Use the get method to get the Simulink.HMI.SignalSpecification objects for each
of the signals in the Simulink.HMI.InstrumentedSignals object

% Get Simulink.HMI.SignalSpecification objects
sig1 = instSigs.get(1);
sig2 = instSigs.get(2);

% Inspect block paths for signals
blockPath1 = sig1.BlockPath

blockPath1 =
 Simulink.BlockPath
 Package: Simulink

 Block Path:
 sldemo_absbrake/Bus Creator

 Use the getBlock method to access block path strings from this object.

 Methods

blockPath2 = sig2.BlockPath

blockPath2 =
 Simulink.BlockPath
 Package: Simulink

 Block Path:
 sldemo_absbrake/Relative Slip

 Use the getBlock method to access block path strings from this object.

 Methods

5 Simulink Classes

5-236

Remove Logging Badge for Bus Signal

Remove the logging badge for the signal from the Bus Creator block.

% Get block path string and port index for the Bus Creator signal
blockPath_str = blockPath1.getBlock(1);
portIndex = sig1.OutputPortIndex;

% Clear the logging badge for the Bus Creator signal
Simulink.sdi.markSignalForStreaming(blockPath_str, portIndex, 'off')

Save and Restore a Set of Logged Signals

This example shows the capability of using the Simulink.HMI.InstrumentedSignals
object to save a set of logged signals to restore after running a simulation with a different
set of signals.

Load Model and Save Initial Configuration

Load the sldemo_fuelsys model, and save the initial set of logged signals.

% Load model
load_system sldemo_fuelsys

% Get Simulink.HMI.InstrumentedSignals object
initSigs = get_param('sldemo_fuelsys', 'InstrumentedSignals');

% Save logging configuration to file for future use
save initial_instSigs.mat initSigs

Remove All Logging Badges

Return to a baseline of no logged signals so you can easily select a different configuration
of signals to log.

% Clear all logging signals
set_param('sldemo_fuelsys', 'InstrumentedSignals', [])

Restore Saved Logging Configuration

After working with a different set of logged signals, you can easily restore a saved
configuration with the Simulink.HMI.InstrumentedSignals object.

% Load the saved configuration
load initial_instSigs.mat

 Simulink.HMI.InstrumentedSignals class

5-237

% Restore logging configuration
set_param('sldemo_fuelsys', 'InstrumentedSignals', initSigs)

See Also
Simulink.HMI.SignalSpecification | Simulink.sdi.markSignalForStreaming

Topics
“View Data with the Simulation Data Inspector”
“Tune and Visualize Your Model with Dashboard Blocks”

Introduced in R2015b

5 Simulink Classes

5-238

Simulink.HMI.SignalSpecification class
Package: Simulink.HMI

Information for logging a signal

Description
The Simulink.HMI.SignalSpecification object contains the block path and port
index required by Simulink.sdi.markSignalForStreaming to turn logging on or off
for a signal.

Construction
sigSpec = instSigs.get(index) returns the
Simulink.HMI.SignalSpecification object sigSpec for the signal at the specified
index in the Simulink.HMI.InstrumentedSignals object instSigs.

Input Arguments
index — Index of signal
integer

Numeric index of the signal within the Simulink.HMI.InstrumentedSignals object.
Example: 1

Properties
BlockPath — Block path for signal
Simulink.BlockPath object

Simulink.BlockPath object with the block path for the signal.

OutputPortIndex — Signal index on block port
integer

 Simulink.HMI.SignalSpecification class

5-239

Index of the signal on the output port of its block. For Stateflow signals, the
OutputPortIndex is set to 1.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples
Evaluate and Modify Logged Signals in Model

This example shows how to obtain the block paths for logged signals and remove the
logging badge for a signal using Simulink.HMI.InstrumentedSignals and
Simulink.HMI.SignalSpecification objects.

Get InstrumentedSignals Object

% Load the model sldemo_absbrake
load_system('sldemo_absbrake')

% Get logged signals with Simulink.HMI.InstrumentedSignals object
instSigs = get_param('sldemo_absbrake', 'InstrumentedSignals');

% Check logged signals count
instSigs.Count

ans = uint32
 2

Inspect Block Paths with SignalSpecifications Objects

Use the get method to get the Simulink.HMI.SignalSpecification objects for each
of the signals in the Simulink.HMI.InstrumentedSignals object

% Get Simulink.HMI.SignalSpecification objects
sig1 = instSigs.get(1);
sig2 = instSigs.get(2);

% Inspect block paths for signals
blockPath1 = sig1.BlockPath

5 Simulink Classes

5-240

blockPath1 =
 Simulink.BlockPath
 Package: Simulink

 Block Path:
 sldemo_absbrake/Bus Creator

 Use the getBlock method to access block path strings from this object.

 Methods

blockPath2 = sig2.BlockPath

blockPath2 =
 Simulink.BlockPath
 Package: Simulink

 Block Path:
 sldemo_absbrake/Relative Slip

 Use the getBlock method to access block path strings from this object.

 Methods

Remove Logging Badge for Bus Signal

Remove the logging badge for the signal from the Bus Creator block.

% Get block path string and port index for the Bus Creator signal
blockPath_str = blockPath1.getBlock(1);
portIndex = sig1.OutputPortIndex;

% Clear the logging badge for the Bus Creator signal
Simulink.sdi.markSignalForStreaming(blockPath_str, portIndex, 'off')

See Also
Simulink.HMI.InstrumentedSignals | Simulink.sdi.markSignalForStreaming

Topics
“View Data with the Simulation Data Inspector”
“Tune and Visualize Your Model with Dashboard Blocks”

 Simulink.HMI.SignalSpecification class

5-241

Introduced in R2015b

5 Simulink Classes

5-242

Simulink.LookupTable class
Package: Simulink

Store and share lookup table and breakpoint data, configure the data for ASAP2 and
AUTOSAR code generation

Description
An object of the Simulink.LookupTable class stores lookup table and breakpoint data.
You can use that data in a lookup table block such as the n-D Lookup Table block. With
the object, you can specify data types and code generation settings for the table and the
breakpoint sets.

When you store all of the table and breakpoint set data in a single
Simulink.LookupTable object, all of the data appears in a single structure in the
generated code. To configure STD_AXIS code generation for calibration, use this
technique.

To share a breakpoint set between multiple lookup tables, for example for COM_AXIS
code generation, use a Simulink.Breakpoint object in one or more Prelookup blocks.
Use Simulink.LookupTable objects in Interpolation Using Prelookup blocks. Then,
configure the lookup table objects to refer to the breakpoint object. For more information,
see “Package Shared Breakpoint and Table Data for Lookup Tables”.

Construction
LUTObj = Simulink.LookupTable returns a Simulink.LookupTable object LUTObj
with default property values.

To create a Simulink.LookupTable object by using the Model Explorer, use the button

 on the toolbar. The default name for the object is Object.

 Simulink.LookupTable class

5-243

Property Dialog Box

Number of table dimensions
Number of dimensions of the lookup table. Specify an integer value up to 30
(inclusive). For example, to represent a three-dimensional lookup table, specify the
integer 3.

Table
Information for the table data. You can configure these characteristics:

Value
Table data. Specify a numeric vector or multidimensional array with at least two
elements.

5 Simulink Classes

5-244

You can also use an expression with mathematical operators such as
sin(1:0.5:30) as long as the expression returns a numeric vector or
multidimensional array. When you click Apply or OK, the object executes the
expression and uses the result to set the value of this property.

When you set Data type to auto, to set Value, use a typed expression such as
single([1 2 3]) or use the fi constructor to embed an fi object.

When you specify table data with three or more dimensions, Value displays the
data as an expression that contains a call to the reshape function. To edit the
values in the data, modify the first argument of the reshape call, which contains
all of the values in a serialized vector. When you add or remove elements along a
dimension, you must also correct the argument that represents the length of the
modified dimension.

You can edit this data by using a more intuitive interface in a lookup table block.
See “Import Lookup Table Data from MATLAB”.

Data type
Data type of the table data. The default setting is auto, which means that the
table data acquire a data type from the value that you specify in Value. If you use
an untyped expression such as [1 2 3] to set Value, the table data use the data
type double. If you specify a typed expression such as single([1 2 3]) or an
fi object, the table data use the data type specified by the expression or object.
Enumerated data types are also supported.

You can explicitly specify an integer data type, a floating-point data type, a fixed-
point data type, or a data type expression such as the name of a
Simulink.AliasType object.

For more information about data types in Simulink, see “Data Types Supported by
Simulink”. To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control
Data Types of Lookup Table Objects” (Simulink Coder).

Dimensions
Dimension lengths of the lookup table data.

To use symbolic dimensions, specify a character vector. See “Implement
Dimension Variants for Array Sizes in Generated Code” (Embedded Coder).

 Simulink.LookupTable class

5-245

Min
Minimum value of the elements in the table data. The default value is empty, [].
You can specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify
Minimum and Maximum Values for Block Parameters”.

Max
Maximum value of the elements in the table data. The default value is empty, [].
You can specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify
Minimum and Maximum Values for Block Parameters”.

Unit
Physical units of the elements in the lookup table. You can specify text such as
degC. See “Unit Specification in Simulink Models”.

Field name
Name of a structure field in the generated code. This field stores the table data if
you configure the Simulink.LookupTable object to appear in the generated
code as a structure. The default value is Table. To change the field name, specify
text.

Description
Description of the lookup table. You can specify text such as This lookup
table describes the action of a pump.

Breakpoints
Breakpoint set information. Each row is one breakpoint set. To configure additional
breakpoint sets, specify an integer value in the Number of table dimensions box.

For the breakpoint sets, you can configure these characteristics:

Specification
Source for the information of the breakpoint sets, specified as Explicit values
(default), Reference, or Even spacing.

• To store all of the table and breakpoint set data in the
Simulink.LookupTable object, set Specification to Explicit values.

The Simulink.LookupTable object appears in the generated code as a
single structure variable.

5 Simulink Classes

5-246

• To store the table data in the Simulink.LookupTable object and store the
breakpoint set data in Simulink.Breakpoint objects, set Specification to
Reference.

The Simulink.LookupTable object appears in the generated code as a
separate array variable that contains the table data. Each
Simulink.Breakpoint object appears as a separate array or structure
variable that contains the breakpoint set data.

• To store the table data and evenly spaced breakpoints in the
Simulink.LookupTable object, set Specification to Even spacing. Use
the First point and Spacing parameters to generate a set of evenly spaced
breakpoints.

Note When Specification is set to Explicit values or Even spacing, you can
change the order of the tunable size, breakpoint, and table entries in a lookup table
object-generated structure.

Support tunable size
Specification to enable tuning the effective size of the table in the generated code.
In the code, the structure that corresponds to the object has an extra field for
each breakpoint vector. Each extra field stores the length of the corresponding
breakpoint vector. You can change the value of each field to adjust the effective
size of the table.

This property appears only if you set Specification to Explicit values or
Even spacing.

Note If you store breakpoint data in Simulink.Breakpoint objects by setting
Specification to Reference, to enable tuning of the table size in the generated
code, use the Support tunable size property of each Simulink.Breakpoint
object.

Value
Data for the breakpoint set. Specify a numeric vector with at least two elements.

You can also use an expression with mathematical operators such as
sin(1:0.5:30) as long as the expression returns a numeric vector. When you

 Simulink.LookupTable class

5-247

click Apply or OK, the object executes the expression and uses the result to set
the value of this property.

When you set Data type to auto, to set Value, use a typed expression such as
single([1 2 3]) or use the fi constructor to embed an fi object.

You can edit this data by using a more intuitive interface in a lookup table block.
See “Import Lookup Table Data from MATLAB”.

Data type
Data type of the breakpoint set. The default setting is auto, which means that the
breakpoint set acquires a data type from the value that you specify in Value. If
you use an untyped expression such as [1 2 3] to set Value, the breakpoint data
use the data type double. If you specify a typed expression such as single([1
2 3]) or an fi object, the breakpoint data use the data type specified by the
expression or object.

You can explicitly specify an integer data type, a floating-point data type, a fixed-
point data type, or a data type expression such as the name of a
Simulink.AliasType object.

For more information about data types in Simulink, see “Data Types Supported by
Simulink”. To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control
Data Types of Lookup Table Objects” (Simulink Coder).

Dimensions
Dimension lengths of the breakpoint set.

To use symbolic dimensions, specify a character vector. See “Implement
Dimension Variants for Array Sizes in Generated Code” (Embedded Coder).

Min
Minimum value of the elements in the breakpoint set. The default value is empty,
[]. You can specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify
Minimum and Maximum Values for Block Parameters”.

Max
Maximum value of the elements in the breakpoint set. The default value is empty,
[]. You can specify a numeric, real value.

5 Simulink Classes

5-248

For more information about how Simulink uses this property, see “Specify
Minimum and Maximum Values for Block Parameters”.

Unit
Physical unit of the elements in the breakpoint set. You can specify text such as
degF. See “Unit Specification in Simulink Models”.

Field name
Name of a structure field in the generated code. This field stores the breakpoint
set data. The default value is BP1 for the first breakpoint set and BP2 for the
second set. To change the field name, specify text.

Tunable size name
Name of a structure field in the generated code. This field stores the length
(number of elements) of the breakpoint set, which the generated code algorithm
uses to determine the size of the table. To tune the effective size of the table
during code execution, change the value of this structure field in memory. The
default name is N1 for the first breakpoint set and N2 for the second set. To
change the field name, specify text.

This column appears only if you select Support tunable size.
Description

Description of the breakpoint set. You can specify text such as This breakpoint
set represents the pressure input.

First point
First point in evenly spaced breakpoint data. This parameter is available when
Specification is set to Even spacing.

Spacing
Spacing between points in evenly spaced breakpoint data. This parameter is
available when Specification is set to Even spacing.

Name
Name of the Simulink.Breakpoint object that stores the information for this
breakpoint set.

This column appears only if you set Specification to Reference.
First point name

Name of the Simulink.Breakpoint object that stores the information for the
first point. This parameter is available when Specification is set to Even
spacing.

 Simulink.LookupTable class

5-249

Spacing name
Name of the Simulink.Breakpoint object that stores the information for the
spacing. This parameter is available when Specification is set to Even spacing.

Data definition: Storage class
Storage class of the structure variable (if you set Specification to Explicit
values or Even spacing) or array variable (Reference) in the generated code.
The variable stores the table data and, if the variable is a structure, the breakpoint
set data. The default setting is Auto.

For more information about storage classes, see “Apply Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Simulink Coder).

If you have Embedded Coder, you can choose a custom storage class. For information
about custom storage classes, see “Apply Custom Storage Classes to Individual
Signal, State, and Parameter Data Elements” (Embedded Coder).

Data definition: Alias
Alternative name for the structure variable (if you set Specification to Explicit
values or Even spacing) or array variable (Reference) in the generated code.
The default value is empty, in which case the generated code uses the name of the
Simulink.LookupTable object as the name of the structure or array variable. To
set the alias, specify text.

To enable this property, set Data definition: Storage class to a setting other than
Auto.

Data definition: Alignment
Data alignment boundary in the generated code. The starting memory address for the
data allocated for the structure or array variable is a multiple of the value that you
specify. The default value is -1, which allows the code generator to determine an
optimal alignment based on usage.

Specify a positive integer that is a power of 2, not exceeding 128. For more
information about using data alignment for code replacement, see “Data Alignment
for Code Replacement” (Embedded Coder).

Struct Type definition: Name
Name of the structure type that the structure variable uses in the generated code.
The default value is empty. Specify text.

This property appears only if you set Specification to Explicit values or Even
spacing.

5 Simulink Classes

5-250

Struct Type definition: Data scope
Scope of the structure type definition (imported from your custom code or exported
from the generated code). The default value is Auto. When you select Auto:

• If you do not specify a value in the Struct Type definition: Header file box, the
generated code exports the structure type definition to the file model_types.h.
model is the name of the model.

• If you specify a value in the Struct Type definition: Header file box, such as
myHdr.h, the generated code imports the structure type definition from myHdr.h.

To explicitly specify the data scope:

• To import the structure type definition into the generated code from your custom
code, select Imported.

• To export the structure type definition from the generated code, select Exported.

If you do not specify a value in the Struct Type definition: Header file box, the
generated code imports or exports the type definition from or to StructName.h.
StructName is the name that you specify by using the property Struct Type
definition: Name.

This property appears only if you set Specification to Explicit values or Even
spacing.

Struct Type definition: Header file
Name of the header file that contains the structure type definition. You can import the
definition from a header file that you create, or export the definition into a generated
header file. To control the scope of the structure type, adjust the setting for the
Struct Type definition: Data scope property.

This property appears only if you set Specification to Explicit values or Even
spacing.

Properties
Breakpoints — Breakpoint set information
vector of Simulink.lookuptable.Breakpoint objects | cell array of character vectors

 Simulink.LookupTable class

5-251

Breakpoint set information, specified as a vector of
Simulink.lookuptable.Breakpoint objects, a cell array of character vectors, or a
vector of Simulink.lookuptable.Evenspacing objects.

If you use a vector of Simulink.lookuptable.Breakpoint objects, each object
represents a breakpoint set. Using a vector of Simulink.lookuptable.Breakpoint
objects sets the property BreakpointsSpecification to 'Explicit values'.

If you use a cell array of character vectors, each character vector represents the name of
a Simulink.Breakpoint object. Using a cell array of character vectors sets the
property BreakpointsSpecification to 'Reference'.

If you use a vector of Simulink.lookuptable.Evenspacing objects, each object
represents a breakpoint set. Using a vector of Simulink.lookuptable.Evenspacing
objects sets the property BreakpointsSpecification to 'Even Spacing'.

BreakpointsSpecification — Source of breakpoint set information
'Explicit values' (default) | 'Reference' | 'Even spacing'

Source of the breakpoint set information, specified as 'Explicit values' (default),
'Even spacing', or 'Reference'. See the Breakpoints > Specification parameter.
Data Types: char

CoderInfo — Code generation settings for structure or array variable
Simulink.CoderInfo object

Code generation settings for the structure variable (if you set
BreakpointsSpecification to 'Explicit values' or 'Even spacing') or array
variable ('Reference') that stores the lookup table and breakpoint sets, specified as a
Simulink.CoderInfo object. You can specify a storage class or custom storage class by
using this embedded object. See Simulink.CoderInfo.

StructTypeInfo — Settings for structure type in the generated code
Simulink.lookuptable.StructTypeInfo object

Settings for the structure type that the structure variable uses in the generated code,
specified as a Simulink.lookuptable.StructTypeInfo object.

If you set BreakpointsSpecification to 'Reference', the
Simulink.LookupTable object does not appear in the generated code as a structure.
The code generator ignores this property.

5 Simulink Classes

5-252

SupportTunableSize — Option to generate code that enables tunability of table
size
false (default) | true

Option to generate code that enables tunability of the effective size of the table, specified
as true or false. See the Support Tunable Size parameter.
Data Types: logical

Table — Information for table data
Simulink.lookuptable.Table object

Information for the table data, specified as a Simulink.lookuptable.Table object.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Represent a One-Dimensional Lookup Table
1 Create a Simulink.LookupTable object named LUTObj.

LUTObj = Simulink.LookupTable;
2 Specify the table data.

LUTObj.Table.Value = [1.1 2.2 3.3 4.4 5.5];
3 Specify the breakpoint set data.

LUTObj.Breakpoints(1).Value = [-2 -1 0 1 2];
4 Specify a name for the structure type in the generated code.

LUTObj.StructTypeInfo.Name = 'myLUTStruct';

You can use LUTObj in a 1-D Lookup Table block dialog box. In the block, set Data
specification to Lookup table object and Name to LUTObj.

 Simulink.LookupTable class

5-253

Represent a Two-Dimensional Lookup Table
1 Create a Simulink.LookupTable object named LUTObj.

LUTObj = Simulink.LookupTable;
2 Specify the table data.

LUTObj.Table.Value = [1.1 2.2 3.3 4.4 5.5; ...
 6.6 7.7 8.8 9.9 10.1];

3 Specify the breakpoint set data. In the Breakpoints property, use the vector index 2
to set the values in the second breakpoint set.

LUTObj.Breakpoints(1).Value = [-1 1];

LUTObj.Breakpoints(2).Value = [-2 -1 0 1 2];

LUTObj creates a Simulink.lookuptable.Breakpoint object as the second
vector element in the value of the Breakpoints property. Except for the Value
property, the new object has default property values.

4 Specify a name for the structure type in the generated code.

LUTObj.StructTypeInfo.Name = 'myLUTStruct';

You can use LUTObj in a 2-D Lookup Table block dialog box.

Evenly Space Every Second Value Starting from 1
To evenly space every second value starting from 1, use the Breakpoint object.

1 Create a Simulink.LookupTable object named LUTObj.

LUTObj=Simulink.LookupTable

LUTObj =

 LookupTable with properties:

 Table: [1×1 Simulink.lookuptable.Table]
 BreakpointsSpecification: 'Explicit values'
 Breakpoints: [1×1 Simulink.lookuptable.Breakpoint]
 SupportTunableSize: 0

5 Simulink Classes

5-254

 CoderInfo: [1×1 Simulink.CoderInfo]
 StructTypeInfo: [1×1 Simulink.lookuptable.StructTypeInfo]

2 Set up the breakpoint property to even spacing.

LUTObj.BreakpointsSpecification='Even spacing'

LUTObj =

 LookupTable with properties:

 Table: [1×1 Simulink.lookuptable.Table]
 BreakpointsSpecification: 'Even spacing'
 Breakpoints: [1×1 Simulink.lookuptable.Evenspacing]
 SupportTunableSize: 0
 CoderInfo: [1×1 Simulink.CoderInfo]
 StructTypeInfo: [1×1 Simulink.lookuptable.StructTypeInfo]

3 Get the properties of the breakpoint.

LUTObj.Breakpoints(1)

ans =

 Evenspacing with properties:

 FirstPoint: 0
 Spacing: 1
 DataType: 'auto'
 Min: []
 Max: []
 Unit: ''
 FirstPointName: 'BPFirstPoint1'
 SpacingName: 'BPSpacing1'
 TunableSizeName: 'N1'
 Description: ''

4 To set the first point property, use the Breakpoint object FirstPoint property.

LUTObj.Breakpoints(1).FirstPoint=1
5 To set the spacing property, use the Breakpoint object.

LUTObj.Breakpoints(1).Spacing=2
6 Get the properties of the breakpoint.

 Simulink.LookupTable class

5-255

LUTObj.Breakpoints(1)

ans =

 Evenspacing with properties:

 FirstPoint: 1
 Spacing: 2
 DataType: 'auto'
 Min: []
 Max: []
 Unit: ''
 FirstPointName: 'BPFirstPoint1'
 SpacingName: 'BPSpacing1'
 TunableSizeName: 'N1'
 Description: ''

Control Code Generation for Lookup Table and Breakpoint
Sets
Create a Simulink.LookupTable object named LUTObj.

LUTObj = Simulink.LookupTable;

Specify the table data.

LUTObj.Table.Value = [1.00 2.25 3.50 4.75 6.00; ...
 7.25 8.50 9.75 11.00 12.25];

Specify the breakpoint set data. In the Breakpoints property, use the array index 2 to
create an additional Simulink.lookuptable.BreakpointInfo object, which
represents the second breakpoint set.

LUTObj.Breakpoints(1).Value = [-1 1];

LUTObj.Breakpoints(2).Value = [-2 -1 0 1 2];

Specify data types for the lookup table and each breakpoint set.

LUTObj.Table.DataType = 'fixdt(1,16,2)';

LUTObj.Breakpoints(1).DataType = 'int16';

5 Simulink Classes

5-256

LUTObj.Breakpoints(2).DataType = 'int16';

Specify unique names for the structure fields that store the table data and breakpoint sets
in the generated code.

LUTObj.Table.FieldName = 'myTable';

LUTObj.Breakpoints(1).FieldName = 'myBPSet1';

LUTObj.Breakpoints(2).FieldName = 'myBPSet2';

Export the structure variable definition from the generated code by using the storage
class ExportedGlobal.

LUTObj.CoderInfo.StorageClass = 'ExportedGlobal';

Name the structure type in the generated code LUTStructType. Export the structure
type definition to a generated header file named myLUTHdr.h.

LUTObj.StructTypeInfo.Name = 'LUTStructType';
LUTObj.StructTypeInfo.DataScope = 'Exported';
LUTObj.StructTypeInfo.HeaderFileName = 'myLUTHdr.h';

In an n-D Lookup Table block in a model, set Data specification to Lookup table
object and Name to LUTObj.

load_system('myModel_LUTObj')
set_param('myModel_LUTObj/Lookup Table','DataSpecification','Lookup table object',...
 'LookupTableObject','LUTObj')

Generate code from the model.

rtwbuild('myModel_LUTObj')

Starting build procedure for model: myModel_LUTObj
Successful completion of code generation for model: myModel_LUTObj

The generated code defines the structure type LUTStructType in the generated header
file myLUTHdr.h.

file = fullfile('myModel_LUTObj_ert_rtw','myLUTHdr.h');
rtwdemodbtype(file,'typedef struct {','} LUTStructType;',1,1)

typedef struct {
 int16_T myBPSet1[2];

 Simulink.LookupTable class

5-257

 int16_T myBPSet2[5];
 int16_T myTable[10];
} LUTStructType;

The code uses the global structure variable LUTObj to store the table and breakpoint set
data. The table data is scaled based on the specified fixed-point data type.

file = fullfile('myModel_LUTObj_ert_rtw','myModel_LUTObj.c');
rtwdemodbtype(file,'LUTStructType LUTObj = {','/* Variable: LUTObj',1,1)

LUTStructType LUTObj = {
 { -1, 1 },

 { -2, -1, 0, 1, 2 },

 { 4, 29, 9, 34, 14, 39, 19, 44, 24, 49 }
} ; /* Variable: LUTObj

Generate Code That Uses Conditionally Compiled Dimension
Lengths
Suppose your handwritten code conditionally allocates memory and initializes a lookup
table based on dimension lengths that you specify as #define macros. This example
shows how to generate code that uses your external table and breakpoint data.

Symbolic dimensions require that you use an ERT-based system target file, which requires
Embedded Coder®.

Explore External Code

In your current folder, copy these macro definitions into a header file named
ex_myHdr_LUT.h.

#include "rtwtypes.h"

#ifndef _HEADER_MYHDR_H_
#define _HEADER_MYHDR_H_

#define bp1Len 2
#define bp2Len 2

5 Simulink Classes

5-258

typedef struct {
 real_T BP1[bp1Len];
 real_T BP2[bp2Len];
 real_T Table[bp1Len * bp2Len];
} LUTObj_Type;

extern LUTObj_Type LUTObj;

#endif

Copy this static initialization code into a source file named ex_mySrc_LUT.c.

#include "ex_myHdr_LUT.h"

#if bp1Len == 2 && bp1Len == 2
LUTObj_Type LUTObj = {
 { 1.0, 2.0 },

 { 3.0, 4.0 },

 { 3.0, 2.0, 4.0, 1.0 }
} ;
#endif

#if bp1Len == 3 && bp1Len == 3
LUTObj_Type LUTObj = {
 { 1.0, 2.0, 3.0 },

 { 4.0, 5.0, 6.0 },

 { 1.0, 6.0, 2.0, 3.0, 8.0, 9.0, 5.0, 4.0, 7.0 }
} ;
#endif

To generate code that imports this data, create bp1Len and bp2Len as
Simulink.Parameter objects in MATLAB. Create LUTObj as a
Simulink.LookupTable object. Use the parameter objects to specify the dimension
lengths for the table and breakpoint set data in the Simulink.LookupTable object.

Create Example Model

Create the example model ex_LUTObj by using an n-D Lookup Table block. In the Lookup
Table block dialog box, on the Table and Breakpoints tab, set Number of table
dimensions to 2.

 Simulink.LookupTable class

5-259

open_system('ex_LUTObj')

Create Simulink.LookupTable Object

In the Model Explorer Model Hierarchy pane, select Base Workspace.

On the toolbar, click the Add Simulink LookupTable button. A
Simulink.LookupTable object named Object appears in the base workspace.

In the Contents pane (the middle pane), rename the object as LUTObj.

Alternatively, create the object at the command prompt:

LUTObj = Simulink.LookupTable;

Configure Simulink.LookupTable Object

In the Contents pane, select the new object LUTObj. The property dialog box appears in
the Dialog pane (the right pane).

Set Number of table dimensions to 2.

Under Table, set Value to [3 4; 2 1].

In the first row under Breakpoints, set Value to [1 2].

In the second row under Breakpoints, set Value to [3 4]. Click Apply.

Under Struct Type definition, set Data scope to Imported. Set Header file to
ex_myHdr_LUT.h. Set Name to LUTObj_Type.

In the Lookup Table block dialog box, set Data specification to Lookup table object.
Set Name to LUTObj. Click Apply.

Alternatively, to configure the object and the blocks, use these commands:

5 Simulink Classes

5-260

LUTObj.Breakpoints(1).Value = [1 2];
LUTObj.Breakpoints(2).Value = [3 4];
LUTObj.Table.Value = [3 4; 2 1];
LUTObj.StructTypeInfo.DataScope = 'Imported';
LUTObj.StructTypeInfo.HeaderFileName = 'ex_myHdr_LUT.h';
LUTObj.StructTypeInfo.Name = 'LUTObj_Type';
set_param('ex_LUTObj/Lookup Table','LookupTableObject','LUTObj')
set_param('ex_LUTObj/Lookup Table',...
 'DataSpecification','Lookup table object')

Enable the code generator to use Simulink.Parameter objects as macros that specify
dimension lengths. Select the configuration parameter Allow symbolic dimension
specification.

set_param('ex_LUTObj','AllowSymbolicDim','on')

Create the Simulink.Parameter objects that represent the macros bp1Len and
bp2Len. To generate code that imports the macros from your header file
ex_myHdr_LUT.h, apply the custom storage class ImportedDefine.

bp1Len = Simulink.Parameter(2);
bp1Len.Min = 2;
bp1Len.Max = 3;
bp1Len.DataType = 'int32';
bp1Len.CoderInfo.StorageClass = 'Custom';
bp1Len.CoderInfo.CustomStorageClass = 'ImportedDefine';
bp1Len.CoderInfo.CustomAttributes.HeaderFile = 'ex_myHdr_LUT.h';

bp2Len = Simulink.Parameter(2);
bp2Len.Min = 2;
bp2Len.Max = 3;
bp2Len.DataType = 'int32';
bp2Len.CoderInfo.StorageClass = 'Custom';
bp2Len.CoderInfo.CustomStorageClass = 'ImportedDefine';
bp2Len.CoderInfo.CustomAttributes.HeaderFile = 'ex_myHdr_LUT.h';

Configure the existing Simulink.LookupTable object LUTObj to use the
Simulink.Parameter objects. Set the dimension lengths of the breakpoint set data and
the table data by using the names of the parameter objects.

LUTObj.Breakpoints(1).Dimensions = '[1 bp1Len]';
LUTObj.Breakpoints(2).Dimensions = '[1 bp2Len]';
LUTObj.Table.Dimensions = '[bp1Len bp2Len]';

 Simulink.LookupTable class

5-261

Configure LUTObj as imported data by applying the custom storage class
ImportFromFile. To import your definition of LUTObj, add the name of the file
ex_mySrc_LUT.c to the model configuration parameter Configuration Parameters >
Code Generation > Custom Code > Additional Build Information > Source files.

LUTObj.CoderInfo.StorageClass = 'Custom';
LUTObj.CoderInfo.CustomStorageClass = 'ImportFromFile';
LUTObj.CoderInfo.CustomAttributes.HeaderFile = 'ex_myHdr_LUT.h';

set_param('ex_LUTObj','CustomSource','ex_mySrc_LUT.c')

Generate and Inspect Code

Configure the model to compile an executable from the generated code.

set_param('ex_LUTObj','GenCodeOnly','off')

Generate code from the model.

rtwbuild('ex_LUTObj')

Starting build procedure for model: ex_LUTObj
Successful completion of build procedure for model: ex_LUTObj

In the code generation report, view the generated file ex_LUTObj.h. The file imports the
macro definitions and the structure type definition by including your header file
ex_myHdr_LUT.h.

file = fullfile('ex_LUTObj_ert_rtw','ex_LUTObj.h');
rtwdemodbtype(file,'#include "ex_myHdr_LUT.h"','#include "ex_myHdr_LUT.h"',1,1)

#include "ex_myHdr_LUT.h"

In the source file ex_LUTObj.c, the code algorithm in the model step function passes
the breakpoint and table data to the function that performs the table lookup. The
algorithm also passes bp1Len so the lookup function can traverse the rows and columns
of the table data, which appear in the generated code as a serialized 1-D array.

file = fullfile('ex_LUTObj_ert_rtw','ex_LUTObj.c');
rtwdemodbtype(file,'/* Model step function */','/* Model initialize function */',1,0)

/* Model step function */
void ex_LUTObj_step(void)

5 Simulink Classes

5-262

{
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Lookup_n-D: '<Root>/Lookup Table'
 */
 ex_LUTObj_Y.Out1 = look2_binlcapw(ex_LUTObj_U.In1, ex_LUTObj_U.In2,
 (&(LUTObj.BP1[0])), (&(LUTObj.BP2[0])), (&(LUTObj.Table[0])),
 ex_LUTObj_ConstP.LookupTable_maxIndex, (uint32_T)bp1Len);
}

Limitations
• You cannot subclass Simulink.Breakpoint or Simulink.LookupTable. For this

reason, you cannot apply custom storage classes other than those in the built-in
Simulink package.

• You cannot use Simulink.Breakpoint objects or Simulink.LookupTable objects
that refer to Simulink.Breakpoint objects as instance-specific parameter data for
reusable components. For example, you cannot use one of these objects as:

• A model argument in a model workspace or a model argument value in a Model
block.

• The value of a mask parameter on a CodeReuse Subsystem block.
• The value of a mask parameter on a subsystem that you reuse by creating a custom

library.

However, you can use standalone Simulink.LookupTable objects, which do not
refer to Simulink.Breakpoint objects, in these ways.

• When blocks in a subsystem use Simulink.LookupTable or
Simulink.Breakpoint objects, you cannot set data type override only on the
subsystem. Instead, set data type override on the entire model.

See Also
Simulink.Breakpoint | Simulink.Parameter |
Simulink.lookuptable.Breakpoint | Simulink.lookuptable.Evenspacing |
Simulink.lookuptable.StructTypeInfo | Simulink.lookuptable.Table

 Simulink.LookupTable class

5-263

Topics
“Configure STD_AXIS and COM_AXIS Lookup Tables for AUTOSAR Measurement and
Calibration” (Embedded Coder)
“About Lookup Table Blocks”
“Package Shared Breakpoint and Table Data for Lookup Tables”
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

Introduced in R2016b

5 Simulink Classes

5-264

Simulink.lookuptable.Breakpoint class
Package: Simulink.lookuptable

Configure breakpoint set data for lookup table object

Description
An object of the Simulink.lookuptable.Breakpoint class stores breakpoint set
information for a lookup table. The object resides in the Breakpoints property of a
Simulink.LookupTable object or Simulink.Breakpoint object.

You can use Simulink.LookupTable and Simulink.Breakpoint objects to store and
configure a lookup table for ASAP2 and AUTOSAR code generation.

To represent multiple breakpoint sets for a multidimensional lookup table, store a vector
of Simulink.lookuptable.Breakpoint objects in the Breakpoints property of a
Simulink.LookupTable object.

To share a breakpoint set between multiple lookup tables, use a Simulink.Breakpoint
object to store and configure the breakpoint set information. Use the object in a
Prelookup block and create Simulink.LookupTable objects to use in Interpolation
Using Prelookup blocks.

Construction
When you create a Simulink.LookupTable object or Simulink.Breakpoint object, a
Simulink.lookuptable.Breakpoint object appears as the value of the Breakpoints
property.

To create more Simulink.lookuptable.Breakpoint objects for a
Simulink.LookupTable object, use this technique:

Access the Breakpoints property by specifying a vector index.

To create a Simulink.lookuptable.Breakpoint object, you can set the value of any
of the object properties. The Simulink.LookupTable object creates the

 Simulink.lookuptable.Breakpoint class

5-265

Simulink.lookuptable.Breakpoint object with default property values, and sets the
property that you specified.

The value of the Breakpoints property is an array of
Simulink.lookuptable.Breakpoint objects. Each embedded object represents one
breakpoint set.

For example, suppose that you create a Simulink.LookupTable object named LUTObj.
To create more breakpoint sets, access the Breakpoints property by specifying vector
indices:

LUTObj.Breakpoints(1).Value = [-1 1];
LUTObj.Breakpoints(2).Value = [-2 -1 0 1 2];
LUTObj.Breakpoints(3).Value = [-5 -3 0 3 5];

The object LUTObj creates additional Simulink.lookuptable.Breakpoint objects
and sets the Value property of each object. LUTObj now stores information for three
breakpoint sets.

Properties
DataType — Data type of breakpoint set elements
'auto' (default) | character vector

Data type of breakpoint set elements, specified as a character vector. You can explicitly
specify an integer, a floating-point, a fixed-point data type, or a data type expression such
as the name of a Simulink.AliasType object.

The default value, 'auto', means that the breakpoint set acquires a data type from the
value that you specify in the Value property. If you use an untyped expression such as [1
2 3] to set Value, the breakpoint data use the data type double. If you specify a typed
expression such as single([1 2 3]) or an fi object, the breakpoint data use the data
type specified by the expression or object.

For more information about data types in Simulink, see “Data Types Supported by
Simulink”. To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control Data Types
of Lookup Table Objects” (Simulink Coder).
Example: 'int16'
Example: 'myTypeAlias'

5 Simulink Classes

5-266

Data Types: char

Description — Description of breakpoint set
'' (default) | character vector

Description of the breakpoint set, specified as a character vector.
Example: 'This breakpoint set represents the pressure input.'
Data Types: char

Dimensions — Dimension lengths of breakpoint set
[0 0] (default) | numeric vector

Dimension lengths of the breakpoint set, returned as a numeric vector or specified as a
character vector.

To use symbolic dimensions, specify a character vector.

FieldName — Name of structure field that stores breakpoint set data
'BP' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field
stores the breakpoint set data.

The code generator uses this property only under these circumstances, which cause the
breakpoint data to appear in the generated code as a structure field:

• The Simulink.lookuptable.Breakpoint object exists in a
Simulink.LookupTable object and in the Simulink.LookupTable object you set
BreakpointsSpecification to 'Explicit values'.

• The Simulink.lookuptable.Breakpoint object exists in a
Simulink.Breakpoint object and in the Simulink.Breakpoint object you set
SupportTunableSize to true.

Example: 'MyBkptSet1'
Data Types: char

Max — Maximum value of breakpoint set elements
[] (default) | numeric double value

Maximum value of the elements of the breakpoint set, specified as a numeric, real value
of the data type double.

 Simulink.lookuptable.Breakpoint class

5-267

Example: 17.23
Data Types: double

Min — Minimum value of breakpoint set elements
[] (default) | numeric double value

Minimum value of the elements of the breakpoint set, specified as a numeric, real value of
the data type double.
Example: -52.6
Data Types: double

TunableSizeName — Name of structure field that stores length of breakpoint set
'N' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field
stores the length of the breakpoint set, which the generated code algorithm uses to
determine the size of the table. To tune the effective size of the table during code
execution, change the value of this structure field in memory.

The code generator uses this property only under these circumstances, which enable a
tunable table size in the generated code:

• The Simulink.lookuptable.Breakpoint object exists in a
Simulink.LookupTable object and in the Simulink.LookupTable object you set:

• BreakpointsSpecification to 'Explicit values'.
• SupportTunableSize to true.

• The Simulink.lookuptable.Breakpoint object exists in a
Simulink.Breakpoint object and in the Simulink.Breakpoint object you set
SupportTunableSize to true.

Example: 'LengthForDim1'
Data Types: char

Unit — Physical unit of breakpoint set
'' (default) | character vector

Physical unit of the elements of the breakpoint set, specified as a character vector.
Example: 'inches'

5 Simulink Classes

5-268

Data Types: char

Value — Breakpoint set data
[] (default) | numeric vector

The breakpoint set data, specified as a numeric vector with at least two elements. To
control the data type of the breakpoint set, use the DataType property of the
Simulink.lookuptable.Breakpoint object.

When you set DataType to 'auto', to set the Value property, use a typed expression
such as single([1 2 3]) or use the fi constructor to embed an fi object.
Example: [10 20 30]
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

See Also
Simulink.Breakpoint | Simulink.LookupTable

Introduced in R2016b

 Simulink.lookuptable.Breakpoint class

5-269

Simulink.lookuptable.Evenspacing class
Package: Simulink.lookuptable

Configure even spacing set data for lookup table object

Description
An object of the Simulink.lookuptable.Evenspacing class stores event spacing set
information for a lookup table. The object resides in the Evenspacing property of a
Simulink.LookupTable object.

You can use Simulink.LookupTable objects to store and configure a lookup table for
ASAP2 and AUTOSAR code generation.

To represent multiple breakpoint sets for a multidimensional lookup table, store a vector
of Simulink.lookuptable.Evenspacing objects in the Evenspacing property of a
Simulink.LookupTable object.

Construction
When you create a Simulink.LookupTable object and set
BreakpointSpecification to 'Even spacing', a
Simulink.lookuptable.Evenspacing object appears as the value of the
Breakpoints property.

To create more Simulink.lookuptable.Evenspacing objects for a
Simulink.LookupTable object, use this technique:

Access the Breakpoints property by specifying a vector index.

To create a Simulink.lookuptable.Evenspacing object, you can set the value of any
of the object properties. The Simulink.LookupTable object creates the
Simulink.lookuptable.Evenspacing object with default property values, and sets
the property that you specified.

5 Simulink Classes

5-270

The value of the Breakpoints property is an array of
Simulink.lookuptable.Evenspacing objects. Each embedded object represents one
breakpoint set.

For example, suppose that you create a Simulink.LookupTable object named
myLUTObj. To create more breakpoint sets, access the Breakpoints property by
specifying scalar indices for FirstPoint and Spacing properties. To create more even
spacing breakpoint sets, update the object with this pair of properties:

LUTObj.Breakpoints(1).FirstPoint=-1;
LUTObj.Breakpoints(1).Spacing=2;
LUTObj.Breakpoints(1).FirstPoint=-2;
LUTObj.Breakpoints(1).Spacing=1;
LUTObj.Breakpoints(1).FirstPoint=-5;
LUTObj.Breakpoints(1).Spacing=2;

The object myLUTObj creates additional Simulink.lookuptable.Evenspacing
objects and sets the FirstPoint and Spacing properties of each object. LUTObj now
stores information for three breakpoint sets.

Properties
FirstPoint — First point in evenly spaced breakpoint data
[] (default) | numeric scalar

First point in evenly spaced breakpoint data, specified as a numeric scalar. To control the
data type of the breakpoint set, use the DataType property of the
Simulink.lookuptable.Evenspacing object.

When you set DataType to 'auto', to set the FirstPoint property, use a typed
expression such as single(1) or use the fi constructor to embed a fi object.
Example: -1
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Spacing — Spacing between points in evenly spaced breakpoint data
[] (default) | numeric, positive, monotonically increasing scalar

Spacing between points in evenly spaced breakpoint data, specified as a numeric scalar.
To control the data type of the breakpoint set, use the DataType property of the
Simulink.lookuptable.Evenspacing object.

 Simulink.lookuptable.Evenspacing class

5-271

When you set DataType to 'auto', to set the Spacing property, use a typed expression
such as single(1) or use the fi constructor to embed an fi object.
Example: -1
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

DataType — Data type of breakpoint set elements
'auto' (default) | character vector

Data type of breakpoint set elements, specified as a character vector. You can explicitly
specify an integer, a floating-point, a fixed-point data type, or a data type expression such
as the name of a Simulink.AliasType object.

The default value, 'auto', means that the breakpoint set acquires a data type from the
value that you specify in the Value property. If you use an untyped expression such as [1
2 3] to set Value, the breakpoint data use the data type double. If you specify a typed
expression such as single([1 2 3]) or an fi object, the breakpoint data use the data
type specified by the expression or object.

For more information about data types in Simulink, see “Data Types Supported by
Simulink”. To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control Data Types
of Lookup Table Objects” (Simulink Coder).
Example: 'int16'
Example: 'myTypeAlias'
Data Types: char

Min — Minimum value of breakpoint set elements
[] (default) | numeric double value

Minimum value of the elements of the breakpoint set, specified as a numeric, real value of
the data type double.
Example: -52.6
Data Types: double

Max — Maximum value of breakpoint set elements
[] (default) | numeric double value

Maximum value of the elements of the breakpoint set, specified as a numeric, real value
of the data type double.

5 Simulink Classes

5-272

Example: 17.23
Data Types: double

Unit — Physical unit of breakpoint set
'' (default) | character vector

Physical unit of the elements of the breakpoint set, specified as a character vector.
Example: 'inches'
Data Types: char

FirstPointName — Name of the Simulink.lookuptable.Evenspacing object
that stores the information for the first point
'BPFirstPoint1' (default) | character vector

Name of the Simulink.Breakpoint object that stores the information for the first
point, specified as a character vector. Generated code uses this name to display the first
point.
Example: 'myFirstPointName'
Data Types: char

SpacingName — Name of the Simulink.lookuptable.Evenspacing object that
stores the information for the spacing
'auto' (default) | character vector

Name of the Simulink.Breakpoint object that stores the information for the spacing,
specified as a character vector. Generated code uses this name to display the spacing.
Example: 'mySpacing'
Data Types: char

TunableSizeName — Name of structure field that stores length of breakpoint set
'N' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field
stores the length of the breakpoint set, which the generated code algorithm uses to
determine the size of the table. To tune the effective size of the table during code
execution, change the value of this structure field in memory.

The code generator uses the property only under these circumstances, which enable a
tunable table size in the generated code:

 Simulink.lookuptable.Evenspacing class

5-273

• The Simulink.lookuptable.Evenspacing object exists in a
Simulink.LookupTable object, in which you set BreakpointsSpecification to
'Even spacing' and SupportTunableSize to true.

Example: 'LengthForDim1'
Data Types: char

Description — Description of breakpoint set
'' (default) | character vector

Description of the breakpoint set, specified as a character vector.
Example: 'This breakpoint set represents the pressure input.'
Data Types: char

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

See Also
Simulink.LookupTable | Simulink.lookuptable.Breakpoint

Introduced in R2017b

5 Simulink Classes

5-274

Simulink.lookuptable.StructTypeInfo class
Package: Simulink.lookuptable

Configure settings for structure type that lookup table object uses in the generated code

Description
An object of the Simulink.lookuptable.StructTypeInfo class controls the structure
type that the generated code creates to store data for lookup table objects. The
Simulink.lookuptable.StructTypeInfo object resides in the StructTypeInfo
property of a Simulink.LookupTable object or Simulink.Breakpoint object. Use
these parent objects to store and configure a lookup table for ASAP2 and AUTOSAR code
generation.

A Simulink.LookupTable object appears as a structure in the generated code when
you set the Specification property to 'Explicit values'. A
Simulink.Breakpoint object appears as a structure in the generated code when you
set the SupportTunableSize property to true.

Construction
When you create a Simulink.LookupTable or Simulink.Breakpoint object, a
Simulink.lookuptable.StructTypeInfo object appears as the value of the
StructTypeInfo property.

Properties
DataScope — Scope of structure type definition
'Auto' (default) | 'Exported' | 'Imported'

Scope of structure type definition, specified as a character vector.
Data Types: char

 Simulink.lookuptable.StructTypeInfo class

5-275

HeaderFileName — Name of header file that contains structure type definition
'' (default) | character vector

Name of the header file that contains the structure type definition, specified as a
character vector.
Example: 'myHdr.h'
Data Types: char

Name — Name of structure type
'' (default) | character vector

Name of the structure type, specified as a character vector.
Data Types: char

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

See Also
Simulink.Breakpoint | Simulink.LookupTable

Introduced in R2016b

5 Simulink Classes

5-276

Simulink.lookuptable.Table class
Package: Simulink.lookuptable

Configure table data for lookup table object

Description
An object of the Simulink.lookuptable.Table class stores table information for a
lookup table. The object resides in the Table property of a Simulink.LookupTable
object. You can use the Simulink.LookupTable object to store and configure a lookup
table for ASAP2 and AUTOSAR code generation.

Construction
When you create a Simulink.LookupTable object, a Simulink.lookuptable.Table
object appears as the value of the Table property.

Properties
DataType — Data type of table data elements
'auto' (default) | character vector

Data type of the table data elements, specified as a character vector. You can explicitly
specify an integer data type, a floating-point data type, a fixed-point data type, or a data
type expression such as the name of a Simulink.AliasType object.

The default value, 'auto', means that the table data acquire a data type from the value
that you specify in the Value property. If you use an untyped expression such as [1 2 3]
to set Value, the table data use the data type double. If you specify a typed expression
such as single([1 2 3]) or an fi object, the table data use the data type specified by
the expression or object.

For more information about data types in Simulink, see “Data Types Supported by
Simulink”. To decide how to control the data types of table and breakpoint data in

 Simulink.lookuptable.Table class

5-277

Simulink.LookupTable and Simulink.Breakpoint objects, see “Control Data Types
of Lookup Table Objects” (Simulink Coder).
Example: 'int16'
Example: 'myTypeAlias'
Data Types: char

Description — Description of table data
'' (default) | character vector

Description of the table data, specified as a character vector.
Example: 'This lookup table describes the action of a pump.'
Data Types: char

Dimensions — Dimension lengths of table data
[0 0] (default) | numeric vector

Dimension lengths of the table data, returned as a numeric vector or specified as a
character vector.

To use symbolic dimensions, specify a character vector.

FieldName — Name of a structure field in the generated code
'Table' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field
stores the table data if you configure the Simulink.LookupTable object to appear in
the generated code as a structure.
Example: 'MyPumpTable'
Data Types: char

Max — Maximum value of table data elements
[] (default) | numeric double value

Maximum value of the elements of the table data, specified as a numeric, real value of the
data type double.
Example: 17.23
Data Types: double

5 Simulink Classes

5-278

Min — Minimum value of table data elements
[] (default) | numeric double value

Minimum value of the elements of the table data, specified as a numeric, real value of the
data type double.
Example: -52.6
Data Types: double

Unit — Physical unit of table elements
'' (default) | character vector

Physical unit of the elements of the table data, specified as a character vector.
Example: 'degC'
Data Types: char

Value — Table data
[] (default) | numeric vector or multidimensional array

The table data, specified as a numeric vector or multidimensional array with at least two
elements. To control the data type of the table data, use the DataType property of the
Simulink.lookuptable.Table object.

When you set DataType to 'auto', to set the Value property, use a typed expression
such as single([1 2 3]) or use the fi constructor to embed an fi object.
Example: [10 20 30; 40 50 60]
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

See Also
Simulink.Breakpoint | Simulink.LookupTable

Introduced in R2016b

 Simulink.lookuptable.Table class

5-279

Simulink.MDLInfo class
Package: Simulink

Extract model file information without loading block diagram into memory

Description
The class Simulink.MDLInfo extracts information from a model file without loading the
block diagram into memory.

You can create an MdlInfo object containing all the model information properties, or you
can use the static methods for convenient access to individual properties without creating
the class first. For example, to get the description only:

description = Simulink.MDLInfo.getDescription('mymodel')

To get the metadata only:

metadata = Simulink.MDLInfo.getMetadata('mymodel')

All model information properties are read only.

Construction
info = Simulink.MDLInfo('mymodel') creates an instance of the MdlInfo class
info and populates the properties with the information from the model file 'mymodel'.

mymodel can be:

• A block diagram name (for example, vdp)
• The file name for a file on the MATLAB path (for example, mymodel.slx)
• A file name relative to the current folder (for example, mydir/mymodel.slx)
• A fully qualified file name (for example, C:\mydir\mymodel.slx)

Simulink.MDLInfo resolves the supplied name by looking at files on the MATLAB path,
and ignores any block diagrams in memory. This may cause unexpected results if you

5 Simulink Classes

5-280

supply the name of a loaded model, but its file is shadowed by another file on the
MATLAB path. If a file is shadowed, you see a warning in the command window. To avoid
any confusion, supply a fully-qualified file name to Simulink.MDLInfo.

Properties
BlockDiagramName

Name of block diagram.

Description

Description of model.

FileName

Name of model file.

Interface

Names and attributes of the block diagram's root inports, outports, model references,
etc., describing the graphical interface if you created a Model Reference block from this
model.

Structure.

IsLibrary

Whether the block diagram is a library.

LastSavedArchitecture

Platform architecture when saved, for example, 'glnxa64'.

Metadata

Names and attributes of arbitrary data associated with the model.

Structure. The structure fields can be character vectors, numeric matrices of type
"double", or more structures. Use the method getMetadata to extract this metadata
structure without loading the model.

 Simulink.MDLInfo class

5-281

ModelVersion

Model version number.

ReleaseName

Name of release, for example, 'R2016a'.

SavedCharacterEncoding

Character encoding when saved, for example, 'UTF-8'.

SimulinkVersion

Version number of Simulink software that was used to save the model file.

Methods
getDescription Extract model file description without loading block diagram into

memory
getMetadata Extract model file metadata without loading block diagram into memory

Copy Semantics
Handle. To learn how this affects your use of the class, see Copying Objects (MATLAB) in
the MATLAB Programming Fundamentals documentation.

Examples
Construct and view a model information object:

info = Simulink.MDLInfo('mymodel')
% Get the Version when the model was saved
simulink_version = info.SimulinkVersion;
% Get model metadata
metadata = info.metadata

5 Simulink Classes

5-282

To add metadata to a model, create a metadata structure containing the information you
require and use set_param to attach it to the model. For example:

 metadata.TestStatus = 'untested';
 metadata.ExpectedCompletionDate
 = '01/01/2011';
 load_system(mymodelname);
 set_param(mymodelname,'Metadata',...
 metadata) % must be a struct
 save_system(mymodelname);
 close_system(mymodelname);

Construct a model information object for a model named mpowertrain, in order to find
the names of referenced models without loading the model into memory:

info = Simulink.MDLInfo('mpowertrain')
% Get the Interface property
info.Interface

Output:

ans =
 Inports: [0x1 struct]
 Outports: [0x1 struct]
 Trigports: [0x1 struct]
 Connports: [0x1 struct]
 ModelVersion: '1.122'
 ModelReferences: {2x1 cell}
 ParameterArgumentNames: ''
 TestPointedSignals: [0x1 struct]

Get the referenced models:

 info.Interface.ModelReferences

Output is in the form model name / block path | referenced model name:

ans =
 'mpowertrain/Model Variants|manual_transmission'
 'mpowertrain/engine model|menginemodel'

 Simulink.MDLInfo class

5-283

See Also
Simulink.MDLInfo.getDescription; Simulink.MDLInfo.getMetadata

5 Simulink Classes

5-284

Simulink.MDLInfo.getDescription
Class: Simulink.MDLInfo
Package: Simulink

Extract model file description without loading block diagram into memory

Syntax
description = Simulink.MDLInfo.getDescription('mymodel')
description = info.getDescription

Description
description = Simulink.MDLInfo.getDescription('mymodel') returns the
description associated with the file mymodel, without loading the model.

mymodel can be:

• A block diagram name (for example, vdp)
• The file name for a file on the MATLAB path (for example, mymodel.slx)
• A file name relative to the current folder (for example, mydir/mymodel.slx)
• A fully qualified file name (for example, C:\mydir\mymodel.slx)

description = info.getDescription returns the description property of the
Simulink.MDLInfo object info.

Examples
Get the description without loading the model or creating a Simulink.MDLInfo object:

description = Simulink.MDLInfo.getDescription('mymodel')

Create a Simulink.MDLInfo object containing all the model information properties, and
get the description property:

 Simulink.MDLInfo.getDescription

5-285

info = Simulink.MDLInfo('mymodel')
description = info.getDescription

See Also
Simulink.MDLInfo; Simulink.MDLInfo.getMetadata

5 Simulink Classes

5-286

Simulink.MDLInfo.getMetadata
Class: Simulink.MDLInfo
Package: Simulink

Extract model file metadata without loading block diagram into memory

Syntax
metadata = Simulink.MDLInfo.getMetadata('mymodel')
metadata = info.getMetadata

Description
metadata = Simulink.MDLInfo.getMetadata('mymodel') extracts the structure
metadata associated with the file mymodel, without loading the model.

mymodel can be:

• A block diagram name (for example, vdp)
• The file name for a file on the MATLAB path (for example, mymodel.slx)
• A file name relative to the current folder (for example, mydir/mymodel.slx)
• A fully qualified file name (for example, C:\mydir\mymodel.slx)

metadata = info.getMetadata returns the metadata property of the
Simulink.MDLInfo object info.

metadata is a structure containing the names and attributes of arbitrary data associated
with the model. The structure fields can be character vectors, numeric matrices of type
"double", or more structures.

To add metadata to a model, create a metadata structure containing the information you
require and use set_param to attach it to the model. If it is important to extract the
information without loading the model, use metadata instead of adding custom user data
with add_param.

 Simulink.MDLInfo.getMetadata

5-287

Examples
Create a metadata structure and use set_param to attach it to the model:

 metadata.TestStatus = 'untested';
 metadata.ExpectedCompletionDate = '01/01/2011';
 load_system('mymodel');
 set_param('mymodel','Metadata',metadata) % must be a struct
 save_system('mymodel');
 close_system('mymodel');

Get the metadata without loading the model or creating a Simulink.MDLInfo object:

metadata = Simulink.MDLInfo.getMetadata('mymodel')

Create a Simulink.MDLInfo object containing all the model information properties, and
get the metadata property:

info = Simulink.MDLInfo('mymodel')
metadata = info.getMetadata

See Also
Simulink.MDLInfo; Simulink.MDLInfo.getDescription

5 Simulink Classes

5-288

Simulink.ModelAdvisor
Run Model Advisor from MATLAB file

Description
Use instances of this class in MATLAB programs to run the Model Advisor, for example, to
perform a standard set of checks. MATLAB software creates an instance of this object for
each model that you open in the current MATLAB session. To get a handle to a model's
Model Advisor object, execute the following command

ma = Simulink.ModelAdvisor.getModelAdvisor(model);

where model is the name of the model or subsystem that you want to check. Your
program can then use the Model Advisor object's methods to initialize and run the Model
Advisor's checks.

About IDs
Many Simulink.ModelAdvisor object methods require or return IDs. An ID is a unique
identifier for a Model Advisor check, task, or group. ID must remain constant. A
Simulink.ModelAdvisor object includes methods that enable you to retrieve the ID or
IDs for all checks, tasks, and groups, checks belonging to groups and tasks, the active
check, and selected checks, tasks and groups.

You find check IDs in the Model Advisor, using check context menus.

To Find Do This
Check Title, ID, or location
of the MATLAB source code

1 On the model window toolbar, select Settings > Preferences.
2 In the Model Advisor Preferences dialog box, select Show

Source Tab.
3 In the right pane of the Model Advisor window, click the Source

tab. The Model Advisor window displays the check Title, TitleId,
and location of the MATLAB source code for the check.

 Simulink.ModelAdvisor

5-289

To Find Do This
Check ID 1 In the left pane of the Model Advisor, select the check.

2 Right-click the check name and select Send Check ID to
Workspace. The ID is displayed in the Command Window and
sent to the base workspace.

Check IDs for selected
checks in a folder

1 In the left pane of the Model Advisor, select the checks for which
you want IDs. Clear the other checks in the folder.

2 Right-click the folder and select Send Check ID to Workspace.
An array of the selected check IDs are sent to the base
workspace.

Syntax
ma = Simulink.ModelAdvisor

Arguments
ma

A variable representing the Simulink.ModelAdvisor object you create.

Properties
EmitInputParametersToReport

The EmitInputParametersToReport property specifies the display of check input
parameters in the Model Advisor report.

Value Description
'true' (default) Display check input parameters in the

Model Advisor report.
'false' Do not display check input parameters in

the Model Advisor report.

5 Simulink Classes

5-290

Method Summary
Name Description
“closeReport” on page 5-293 Close Model Advisor report.
“deselectCheck” on page 5-293 Clear checks.
“deselectCheckAll” on page 5-294 Clear all checks.
“deselectCheckForGroup” on page 5-294 Clear a group of checks.
“deselectCheckForTask” on page 5-295 Clear checks that belong to a specified

task or set of tasks.
“deselectTask” on page 5-295 Clear tasks.
“deselectTaskAll” on page 5-296 Clear all tasks.
“displayReport” on page 5-296 Display Model Advisor report.
“exportReport” on page 5-297 Copy report to a specified location.
“filterResultWithExclusion” on page 5-297 Filter objects that have been excluded

by user-defined exclusions.
“getBaselineMode” on page 5-298 Get baseline mode setting for the

Model Advisor.
“getCheckAll” on page 5-299 Get the IDs of the checks performed

by the Model Advisor.
“getCheckForGroup” on page 5-299 Get checks belonging to a check

group.
“getCheckForTask” on page 5-300 Get checks belonging to a task.
“getCheckResult” on page 5-300 Get check results.
“getCheckResultData” on page 5-301 Get check result data.
“getCheckResultStatus” on page 5-301 Get pass/fail status of a check or set of

checks.
“getGroupAll” on page 5-302 Get the IDs of the groups of tasks

performed by the Model Advisor.
“getInputParameters” on page 5-302 Get input parameters of a check.
“getListViewParameters” on page 5-303 Get list view parameters of a check.

 Simulink.ModelAdvisor

5-291

Name Description
“getModelAdvisor” on page 5-304 Get the Model Advisor for a model or

subsystem.
“getSelectedCheck” on page 5-304 Get selected checks.
“getSelectedSystem” on page 5-305 Get path of system currently targeted

by the Model Advisor.
“getSelectedTask” on page 5-305 Get selected tasks.
“getTaskAll” on page 5-306 Get the IDs of the tasks performed by

the Model Advisor.
“Simulink.ModelAdvisor.openConfigUI” on page
5-306

Start the Model Advisor Configuration
editor.

“Simulink.ModelAdvisor.reportExists” on page 5-
307

Determine whether a report exists for
a system or subsystem.

“runCheck” on page 5-307 Run selected checks.
“runTask” on page 5-308 Run checks for selected tasks.
“selectCheck” on page 5-308 Select checks.
“selectCheckAll” on page 5-309 Select all checks.
“selectCheckForGroup” on page 5-309 Select a group of checks.
“selectCheckForTask” on page 5-310 Select checks that belong to a

specified task.
“selectTask” on page 5-310 Select tasks.
“selectTaskAll” on page 5-311 Select all tasks.
“setActionEnable” on page 5-311 Set enable/disable status for a check

action.
“setBaselineMode” on page 5-312 Set baseline mode for the Model

Advisor.
“setCheckErrorSeverity” on page 5-313 Set severity of a check failure.
“setCheckResult” on page 5-313 Set result for the currently running

check.
“setCheckResultData” on page 5-314 Set result data for the currently

running check.

5 Simulink Classes

5-292

Name Description
“setCheckResultStatus” on page 5-315 Set pass/fail status for the currently

running check.
“setListViewParameters” on page 5-315 Set list view parameters for a check.
“verifyCheckRan” on page 5-316 Verify that checks have run.
“verifyCheckResult” on page 5-317 Generate a baseline set of check

results or compare the current set of
results to the baseline results.

“verifyCheckResultStatus” on page 5-318 Verify that a model has passed or
failed a set of checks.

“verifyHTML” on page 5-319 Generate a baseline report or
compare the current report to a
baseline report.

Methods

closeReport

Close Model Advisor report

closeReport

Closes the report associated with this Model Advisor object, which closes the Model
Advisor window.

“displayReport” on page 5-296

deselectCheck

Clear check

 Simulink.ModelAdvisor

5-293

success = deselectCheck(ID)

ID
Character vector or cell array that specifies the IDs of the checks to be cleared.

success
True (1) if the check is cleared.

This method clears the checks specified by ID.

Note This method cannot clear disabled checks.

“getCheckAll” on page 5-299, “deselectCheckForGroup” on page 5-294, “selectCheck” on
page 5-308

deselectCheckAll

Clear all checks

success = deselectCheckAll

success
True (1) if all checks are cleared.

Clears all checks that are not disabled.

“selectCheckAll” on page 5-309

deselectCheckForGroup

Clear group of checks

5 Simulink Classes

5-294

success = deselectCheckForGroup(groupName)

groupName
Character vector or cell array that specifies the names of the groups to be cleared.

success
True (1) if the method succeeds in clearing the specified group.

Clears a specified group of checks.

“selectCheckForGroup” on page 5-309

deselectCheckForTask

Clear checks that belong to specified task or set of tasks

success = deselectCheckForTask(ID)

ID
Character vector or cell array of character vectors that specify the IDs of tasks whose
checks are to be cleared.

success
True (1) if the specified tasks are cleared.

Clears checks belonging to the tasks specified by the ID argument.

“getTaskAll” on page 5-306, “selectCheckForTask” on page 5-310

deselectTask

Clear task

 Simulink.ModelAdvisor

5-295

success = deselectTask(ID)

ID
Character vector or cell array that specifies the ID of tasks to be cleared

success
True (1) if the method succeeded in clearing the specified tasks.

Clears the tasks specified by ID.

“selectTask” on page 5-310, “getTaskAll” on page 5-306

deselectTaskAll

Clears all tasks

success = deselectTaskAll

success
True (1) if this method succeeds in clearing all tasks.

Clears all tasks.

“selectTaskAll” on page 5-311

displayReport

Display report in Model Advisor window

displayReport

5 Simulink Classes

5-296

Displays the report associated with this Model Advisor object in the Model Advisor
window. The report includes the most recent results of running checks on the system
associated with this Model Advisor object and the current selection status of checks,
groups, and tasks for the system.

“Simulink.ModelAdvisor.reportExists” on page 5-307

exportReport

Create copy of report generated by Model Advisor

[success message] = exportReport(destination)

destination
Path name of copy to be made of the report file.

success
True (1) if this method succeeded in creating a copy of the report at the specified
location.

message
Empty if the copy was successful; otherwise, the reason the copy did not succeed.

This method creates a copy of the last report generated by the Model Advisor and stores
the copy at the specified location.

“Simulink.ModelAdvisor.reportExists” on page 5-307

filterResultWithExclusion

Filter objects that have been excluded by user-defined exclusions.

filteredResultHandles = obj.filterResultWithExclusion(ResultHandles)

 Simulink.ModelAdvisor

5-297

filteredResultHandles
An array of objects causing exclusion enabled checks to warn or fail.

obj
A variable representing the Simulink.ModelAdvisor.getModelAdvisor object.

ResultHandles
An array of objects causing a check warning or failure.

This method filters objects that cause a check warning or failure with checks that have
exclusions enabled.

Note This method is intended for excluding objects from custom checks created with the
Model Advisor's customization API, a feature available with Simulink Check™.

“getModelAdvisor” on page 5-304

getBaselineMode

Determine whether Model Advisor is in baseline data generation mode

mode = getBaselineMode

mode
Boolean value indicating baseline mode.

The mode output variable returns true if the Model Advisor is in baseline data mode.
Baseline data mode causes the verification methods of the Model Advisor, for example,
“verifyHTML” on page 5-319, to generate baseline data.

“setBaselineMode” on page 5-312, “verifyHTML” on page 5-319, “verifyCheckResult” on
page 5-317, “verifyCheckResultStatus” on page 5-318

5 Simulink Classes

5-298

getCheckAll

Get IDs of all checks

IDs = getCheckAll

IDs
Cell array of character vectors specifying the IDs of all checks performed by the
Model Advisor.

Returns a cell array of character vectors specifying the IDs of all checks performed by the
Model Advisor.

“getTaskAll” on page 5-306, “getGroupAll” on page 5-302

getCheckForGroup

Get checks that belong to check group

IDs = getCheckForGroup(groupName)

groupName
Character vector specifying the name of a group.

IDs
Cell array of IDs.

Returns a cell array of IDs of the tasks and checks belonging to the group specified by
groupName.

“getCheckForTask” on page 5-300

 Simulink.ModelAdvisor

5-299

getCheckForTask

Get checks that belong to task

checkIDs = getCheckForTask(taskID)

taskID
ID of a task.

checkIDs
Cell array of IDs of checks belonging to the specified task.

Returns a cell array of IDs of the checks belonging to the task specified by taskID.

“getCheckForGroup” on page 5-299

getCheckResult

Get results of running check or set of checks

result = getCheckResult(ID)

ID
ID of a check or cell array of check IDs.

result
A check result or cell array of check results.

Gets results for the specified checks. The format of the results depends on the checks that
generated the data.

5 Simulink Classes

5-300

Note This method is intended for accessing results generated by custom checks created
with the Model Advisor's customization API, an optional feature available with Simulink
Check software. For more information, see “Define Custom Checks” (Simulink Check).

“getCheckResultData” on page 5-301, “getCheckResultStatus” on page 5-301

getCheckResultData

Get data resulting from running check or set of checks

result = getCheckResultData(ID)

ID
Check ID or cell array of check IDs.

result
Data from a check result or cell array of data from check results.

Gets the check result data for the specified checks. The format of the data depends on the
checks that generated the data.

Note This method is intended for accessing check result data generated by custom
checks created with the Model Advisor's customization API, an optional feature available
with Simulink Check software. For more information, see “Define Custom Checks”
(Simulink Check).

“getCheckResult” on page 5-300, “getCheckResultStatus” on page 5-301

getCheckResultStatus

Get status of check or set of checks

 Simulink.ModelAdvisor

5-301

result = getCheckResultStatus(ID)

ID
Check ID or cell array of check IDs.

result
Boolean or a cell array of Boolean values indication the pass or fail status of a check
or set of checks.

Invoke this method after running a set of checks to determine whether the checks passed
or failed.

“getCheckResult” on page 5-300, “getCheckResultData” on page 5-301

getGroupAll

Get all groups of checks run by Model Advisor

IDs = getGroupAll

IDs
Cell array of IDs of all groups of checks run by the Model Advisor.

Returns a cell array of IDs of all groups of checks run by the Model Advisor.

“getCheckAll” on page 5-299, “getTaskAll” on page 5-306

getInputParameters

Get input parameters of check

params = obj.getInputParameters(check_ID)

5 Simulink Classes

5-302

params
A cell array of ModelAdvisor.InputParameter objects.

obj
A variable representing the Simulink.ModelAdvisor object.

check_ID
A character vector that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check callback function.

Returns the input parameters associated with a check.

Note This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

ModelAdvisor.InputParameter

getListViewParameters

Get list view parameters of check

params = obj.getListViewParameters(check_ID)

params
A cell array of ModelAdvisor.ListViewParameter objects.

obj
A variable representing the Simulink.ModelAdvisor object.

check_ID
A character vector that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check callback function.

 Simulink.ModelAdvisor

5-303

Returns the list view parameters associated with a check.

Note This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

“setListViewParameters” on page 5-315, ModelAdvisor.ListViewParameter

getModelAdvisor

Get Model Advisor object for system or subsystem

obj = Simulink.ModelAdvisor.getModelAdvisor(system)
obj = Simulink.ModelAdvisor.getModelAdvisor(system, 'new')

system
Name of model or subsystem.

'new'
Required when changing Model Advisor working scope from one system to another
without closing the previous session. Alternatively, you can close the previous session
before invoking getModelAdvisor, in which case 'new' can be omitted.

obj
Model Advisor object.

This static method (see “Static Methods”) creates and returns an instance of
Simulink.ModelAdvisor class for the model or subsystem specified by system.

getSelectedCheck

Get currently selected checks

5 Simulink Classes

5-304

IDs = getSelectedCheck

IDs
Cell array of IDs of currently selected checks.

Returns the IDs of the currently selected checks in the Model Advisor.

“getSelectedTask” on page 5-305

getSelectedSystem

Get system currently targeted by Model Advisor

path = getSelectedSystem

path
Path of the selected system.

Gets the path of the system currently targeted by the Model Advisor. That is, the system
or subsystem most recently selected for checking either interactively by the user or
programmatically via Simulink.ModelAdisor.getModelAdvisor.

“getModelAdvisor” on page 5-304

getSelectedTask

Get selected tasks

IDs = getSelectedTask

 Simulink.ModelAdvisor

5-305

IDs
Cell array of IDs of currently selected tasks.

Returns the IDs of the currently selected tasks in the Model Advisor.

“getSelectedCheck” on page 5-304

getTaskAll

Get tasks run by Model Advisor

IDs = getTaskAll

IDs
Cell array of IDs of tasks run by the Model Advisor.

Returns a cell array of IDs of tasks run by the Model Advisor.

“getCheckAll” on page 5-299, “getGroupAll” on page 5-302

Simulink.ModelAdvisor.openConfigUI

Starts Model Advisor Configuration editor

Simulink.ModelAdvisor.openConfigUI

This static method starts the Model Advisor Configuration editor. Use the Model Advisor
Configuration editor to create customized configurations for the Model Advisor.

5 Simulink Classes

5-306

Note The Model Advisor Configuration editor is an optional feature available with
Simulink Check software (see “Organize Checks and Folders Using the Model Advisor
Configuration Editor” (Simulink Check) for more information).

• Before starting the Model Advisor Configuration editor, ensure that the current folder
is writable. If the folder is not writable, you see an error message when you start the
Model Advisor Configuration editor.

• The Model Advisor Configuration editor uses the slprj folder in the code generation
folder to store reports and other information. If the slprj folder does not exist in the
code generation folder, the Model Advisor Configuration editor creates it. For more
information, see “Model Reference Simulation Targets”.

Simulink.ModelAdvisor.reportExists

Determine whether report exists for model or subsystem

exists = reportexists('system')

system
Character vector specifying path of a system or subsystem.

exists
True (1) if a report exists for system.

This method returns true (1) if a report file exists for the model (system) or subsystem
specified by system in the slprj/modeladvisor subfolder of the MATLAB working
folder.

“exportReport” on page 5-297

runCheck

Run currently selected checks

 Simulink.ModelAdvisor

5-307

success = runCheck(ID)

ID
ID or cell array of IDs of checks to run.

success
True (1) if the checks were run.

Runs the checks currently selected in the Model Advisor. Invoking this method is
equivalent to selecting the Run Selected Checks button on the Model Advisor window.

“selectCheck” on page 5-308

runTask

Run currently selected tasks

success = runTask

success
True (1) if the tasks were run.

Runs the tasks currently selected in the Model Advisor. Invoking this method is equivalent
to selecting the Run Selected Checks button on the Model Advisor window.

“selectTask” on page 5-310

selectCheck

Select check

success = selectCheck(ID)

5 Simulink Classes

5-308

ID
ID or cell array of IDs of checks to be selected.

success
True (1) if this method succeeded in selecting the specified checks.

Select the check specified by ID. This method cannot select a check that is disabled.

“selectCheckAll” on page 5-309, “selectCheckForGroup” on page 5-309, “deselectCheck”
on page 5-293

selectCheckAll

Select all checks

success = selectCheckAll

success
True (1) if this method succeeded in selecting all checks.

Selects all checks that are not disabled.

“selectCheck” on page 5-308, “selectCheckForGroup” on page 5-309, “deselectCheck” on
page 5-293

selectCheckForGroup

Select group of checks

success = selectCheckForGroup(ID)

 Simulink.ModelAdvisor

5-309

ID
ID or cell array of group IDs.

success
True (1) if this method succeeded in selecting the specified groups

Selects the groups specified by ID.

“deselectCheckForGroup” on page 5-294

selectCheckForTask

Select checks that belong to specified task or set of tasks

success = selectCheckForTask(ID)

ID
ID or cell array of IDs of tasks whose checks are to be selected.

success
True (1) if this method succeeded in selecting the checks for the specified tasks

Selects checks belonging to the tasks specified by the ID argument.

“deselectCheckForTask” on page 5-295

selectTask

Select task

success = selectTask(ID)

5 Simulink Classes

5-310

ID
ID or cell array of IDs of the task to be selected.

success
True (1) if this method succeeds in selecting the specified tasks.

Selects a task.

“deselectTask” on page 5-295

selectTaskAll

Select all tasks

success = selectTaskAll

success
True (1) if this method succeeds in selecting all tasks.

Selects all tasks.

“deselectTaskAll” on page 5-296

setActionEnable

Set status for check action

obj.setActionEnable(value)

obj
A variable representing the Simulink.ModelAdvisor object.

 Simulink.ModelAdvisor

5-311

value
Boolean value indicating whether the Action box is enabled or disabled.

• true — enable the Action box.
• false — Disable the Action box.

The setActionEnable method specifies the enables or disables the Action box. Only a
check callback function can invoke this method.

Note This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

ModelAdvisor.Action

setBaselineMode

Set baseline data generation mode for Model Advisor

setBaselineMode(mode)

mode
Boolean value indicating setting of Model Advisor's baseline mode, either on (true)
or off (false).

Sets the Model Advisor's baseline mode to mode. Baseline mode causes the Model
Advisor's verify methods to generate baseline comparison data for verifying the results of
a Model Advisor run.

“getBaselineMode” on page 5-298, “verifyCheckResult” on page 5-317, “verifyHTML” on
page 5-319

5 Simulink Classes

5-312

setCheckErrorSeverity

Set severity of check failure

obj.setCheckErrorSeverity(value)

obj
A variable representing the Simulink.ModelAdvisor object.

value
Integer indicating severity of failure.

• 0 — Check Result = Warning
• 1 — Check Result = Failed

Sets result status for a currently running check that fails to value. Only a check callback
function can invoke this method.

Note This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

“setCheckResultStatus” on page 5-315

setCheckResult

Set result for currently running check

success = setCheckResult(result)

result
Character vector or cell array that specifies the result of the currently running task.

 Simulink.ModelAdvisor

5-313

success
True (1) if this method succeeds in setting the check result.

Sets the check result for the currently running check. Only the callback function of a
check can invoke this method.

Note This method is intended for use with custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

“getCheckResult” on page 5-300, “setCheckResultData” on page 5-314,
“setCheckResultStatus” on page 5-315

setCheckResultData

Set result data for currently running check

success = setCheckResultData(data)

data
Result data to be set.

success
True (1) if this method succeeds in setting the result data for the current check

Sets the check result data for the currently running check. Only the callback function of a
check can invoke this method.

Note This method is intended for use with custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

5 Simulink Classes

5-314

“getCheckResultData” on page 5-301, “setCheckResult” on page 5-313,
“setCheckResultStatus” on page 5-315

setCheckResultStatus

Set status for currently running check

success = setCheckResultStatus(status)

status
Boolean value that indicates the status of the check that just ran, either pass (true)
or fail (false)

success
True (1) if the status was set.

Sets the pass or fail status for the currently running check to status. Only the callback
function of the check can invoke this method.

Note This method is intended for use with custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

“getCheckResultStatus” on page 5-301, “setCheckResult” on page 5-313,
“setCheckResultData” on page 5-314, “setCheckErrorSeverity” on page 5-313

setListViewParameters

Specify list view parameters for check

obj.setListViewParameters(check_ID, params)

 Simulink.ModelAdvisor

5-315

obj
A variable representing the Simulink.ModelAdvisor object.

check_ID
A character vector that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check callback function.
params

A cell array of ModelAdvisor.ListViewParameter objects.

Set the list view parameters for the check.

Note This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Check software.
For more information, see “Define Custom Checks” (Simulink Check).

“getListViewParameters” on page 5-303, ModelAdvisor.ListViewParameter

verifyCheckRan

Verify that Model Advisor has run set of checks

[success, missingChecks, additionalChecks] = verifyCheckRan(IDs)

IDs
Cell array of IDs of checks to verify.

success
Boolean value specifying whether the checks ran.

missingChecks
Cell array of IDs for specified checks that did not run.

additionalChecks
Cell array of IDs for unspecified checks that ran.

5 Simulink Classes

5-316

The output variable success returns true if both:

• All the checks specified by IDs ran.
• Only the checks specified by IDs ran.

The missingChecks argument provides the specified checks that did not run. The
additionalChecks argument lists unspecified checks that ran.

“verifyCheckResultStatus” on page 5-318

verifyCheckResult

Generate baseline Model Advisor check results file or compare current check results to
baseline check results

[success message] = verifyCheckResult(baseline, checkIDs)

baseline
Path of the baseline check results MAT-file.

checkIDs
Cell array of check IDs.

success
Boolean value specifying whether the method succeeded.

message
Character vector specifying an error message.

If the Model Advisor is in baseline mode (see “setBaselineMode” on page 5-312), this
method stores the most recent results of running the checks specified by checkIDs in a
MAT-file at the location specified by baseline. If the method is unable to store the check
results at the specified location, it returns false in the output variable success and the
reason for the failure in the output variable message. If the Model Advisor is not in
baseline mode, this method compares the most recent results of running the checks
specified by checkIDs with the report specified by baseline. If the current results

 Simulink.ModelAdvisor

5-317

match the baseline results, this method returnstrue as the value of the success output
variable.

Note You must run the checks specified by checkIDs (see “runCheck” on page 5-307)
before invoking verifyCheckResult.

This method enables you to compare the most recent check results generated by the
Model Advisor with a baseline set of check results. You can use the method to generate
the baseline report as well as perform current-to-baseline result comparisons. To
generate a baseline report, put the Model Advisor in baseline mode, using
“setBaselineMode” on page 5-312. Then invoke this method with the baseline argument
set to the location where you want to store the baseline results. To perform a current-to-
baseline report comparison, first ensure that the Model Advisor is not in baseline mode
(see “getBaselineMode” on page 5-298). Then invoke this method with the path of the
baseline report as the value of the baseline input argument.

“setBaselineMode” on page 5-312, “getBaselineMode” on page 5-298, “runCheck” on
page 5-307, “verifyCheckResultStatus” on page 5-318

verifyCheckResultStatus

Verify that model has passed or failed set of checks

[success message] = verifyCheckResultStatus(baseline, checkIDs)

baseline
Array of Boolean variables.

checkIDs
Cell array of check IDs.

success
Boolean value specifying whether the method succeeded.

message
Character vector specifying an error message.

5 Simulink Classes

5-318

This method compares the passor fail (true or false) statuses from the most recent
running of the checks specified by checkIDs with the Boolean values specified by
baseline. If the statuses match the baseline, this method returns true as the value of
the success output variable.

Note You must run the checks specified by checkIDs (see “runCheck” on page 5-307)
before invoking verifyCheckResultStatus.

“runCheck” on page 5-307

verifyHTML

Generate baseline Model Advisor report or compare current report to baseline report

[success message] = verifyHTML(baseline)

baseline
Path of a Model Advisor report.

success
Boolean value specifying whether the method succeeded.

message
Character vector specifying an error message.

If the Model Advisor is in baseline mode (see “setBaselineMode” on page 5-312), this
method stores the report most recently generated by the Model Advisor at the location
specified by baseline. If the method is unable to store a copy of the report at the
specified location, it returns false in the output variable success and the reason for the
failure in the output variable message. If the Model Advisor is not in baseline mode, this
method compares the report most recently generated by the Model Advisor with the
report specified by baseline. If the current report has exactly the same content as the
baseline report, this method returns true as the value of the success output variable.

 Simulink.ModelAdvisor

5-319

This method enables you to compare a report generated by the Model Advisor with a
baseline report to determine if they differ. You can use the method to generate the
baseline report as well as perform current-to-baseline report comparisons. To generate a
baseline report, put the Model Advisor in baseline mode. Then invoke this method with
the baseline argument set to the location where you want to store the baseline report. To
perform a current-to-baseline report comparison, first ensure that the Model Advisor is
not in baseline mode (see “getBaselineMode” on page 5-298). The invoke this method
with the path of the baseline report as the value of the baseline input argument.

“setBaselineMode” on page 5-312, “getBaselineMode” on page 5-298,
“verifyCheckResult” on page 5-317

Introduced in R2006a

5 Simulink Classes

5-320

Simulink.ModelDataLogs
Container for signal data logs of a model

Description

Note The ModelDataLogs class is supported for backwards compatibility. Starting in
R2016a, you cannot log data in the ModelDataLogs format. Signal logging uses the
Dataset format. In R2016a or later, when you open a model from an earlier release that
had used ModelDataLogs format, the model simulated in use Dataset format.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

In releases before R2016a, if you set Configuration Parameters > Data Import/Export
> Signal logging format to ModelDataLogs, Simulink software created instances of
the Simulink.ModelDataLogs class to contain signal logs while simulating a model.
Logging created an instance of this class for a top model and for each model referenced
by the top model that contains signals to be logged. Logging assigned the
ModelDataLogs object for the top model to a variable in the base workspace. The name
of the variable is the name specified in the Configuration Parameters > Data Import/
export > Signal logging name parameter. The default value is logsout.

A ModelDataLogs object has a variable number of properties. The first property, named
Name, specifies the name of the model whose signal data the object contains or, if the
model is a referenced model, the name of the Model block that references the model. The
remaining properties reference objects that contain signal data logged during simulation
of the model. The objects may be instances of any of the following types of objects:

• Simulink.ModelDataLogs

 Simulink.ModelDataLogs

5-321

Container for the data logs of a model
• Simulink.SubsysDataLogs

Container for the data logs of a subsystem
• Simulink.Timeseries

Data log for any signal except a mux or bus signal
• Simulink.TsArray

Data log for a mux or bus signal

The names of the properties identify the data being logged as follows:

• For signal data logs, the name of the signal
• For a subsystem or model log container, the name of the subsystem or model,

respectively

Consider, for example, the following model.

5 Simulink Classes

5-322

As indicated by the testpoint icons, this model specifies that Simulink software should log
the signals named step and scope in the root system and the signal named clk in the
subsystem named Delayed Out. After you simulate this model in a release earlier than
R2016a, the MATLAB workspace contains the following variable:

Simulink.ModelDataLogs (siglgex):
 Name elements Simulink Class

 scope 2 TsArray
 step 1 Timeseries
 ('Delayed Out') 2 SubsysDataLogs

You can use fully qualified object names or the Simulink unpack command to access the
signal data. For example, to access the amplitudes of the clk signal in the Delayed Out
subsystem in a logsout object, enter

data = logsout.('Delayed Out').clk.Data;

or

>> logsout.unpack('all');
>> data = clk.Data;

Access Logged Signal Data Saved in ModelDataLogs Format
The Simulink.ModelDataLogs object contains signal data objects to capture signal
logging information for specific model elements.

Model Element Signal Data Object
Top-level or referenced model Simulink.ModelDataLogs
Subsystem in a model Simulink.SubsysDataLogs
Signal other than a bus or Mux signal Simulink.Timeseries
Bus signal or Mux signal Simulink.TsArray

Handling Spaces and Newlines in Logged Names
Signal names in data logs can have spaces or newlines in their names when the signal:

• Is named and the name includes a space or newline character.

 Simulink.ModelDataLogs

5-323

• Is unnamed and originates in a block whose name includes a space or newline
character.

• Exists in a subsystem or referenced model, and the name of the subsystem, Model
block, or of any superior block includes a space or newline character.

The following model shows a signal whose name contains a space, a signal whose name
contains a newline, and an unnamed signal that originates in a block whose name
contains a newline:

The following example shows how to handle spaces or new lines in logged names, if a
model uses ModelDataLogs for the signal logging format.

logsout

logsout =

Simulink.ModelDataLogs (model_name):
 Name Elements Simulink Class

 ('x y') 1 Timeseries
 ('a
b') 1 Timeseries
 ('SL_Sine
Wave1') 1 Timeseries

You cannot access any of the Simulink.Timeseries objects in this log using TAB name
completion or by typing the name to MATLAB. This syntax is not recognized because the

5 Simulink Classes

5-324

space or newline in each name appears to the MATLAB parser as a separator between
identifiers. For example:

logsout.x y

??? logsout.x y
 |
Error: Unexpected MATLAB expression.

To reference a Simulink.Timeseries object whose name contains a space, enclose the
element containing the space in single quotes:

logsout.('x y')

 Name: 'x y'
 BlockPath: 'model_name/Sine'
 PortIndex: 1
 SignalName: 'x y'
 ParentName: 'x y'
 TimeInfo: [1x1 Simulink.TimeInfo]
 Time: [51x1 double]
 Data: [51x1 double]

To reference a Simulink.Timeseries object whose name contains a newline,
concatenate to construct the element containing the newline:

cr=sprintf('\n')
logsout.(['a' cr 'b'])

The same techniques work when a space or newline in a data log derives from the name
of:

• An unnamed logged signal's originating block
• A subsystem or Model block that contains any logged signal
• Any block that is superior to such a block in the model hierarchy

This code can reference logged data for the signal:

logsout.(['SL_Sine' cr 'Wave1'])

For names with multiple spaces, newlines, or both, repeat and combine the two
techniques as needed to specify the intended name to MATLAB.

 Simulink.ModelDataLogs

5-325

Bus Signals

ModelDataLogs format stores each logged bus signal data in a separate
Simulink.TsArray object.

The hierarchy of a bus signal is preserved in the logged signal data. The logged name of a
signal in a virtual bus derives from the name of the source signal. The logged name of a
signal in a nonvirtual bus derives from the applicable bus object, and can differ from the
name of the source signal. See “Composite Signals” for information about those
capabilities.

See Also
“Convert Logged Data to Dataset Format”, “Migrate Scripts That Use Legacy
ModelDataLogs API”, Simulink.SubsysDataLogs, Simulink.Timeseries,
Simulink.TsArray, who, whos, unpack

Introduced before R2006a

5 Simulink Classes

5-326

Simulink.SimState.ModelSimState class
Package: Simulink.SimState

Access SimState snapshot data

Description
The Simulink.SimState.ModelSimState class contains all of the information
associated with a “snapshot” of a simulation, including the logged states, the time of the
snapshot, and the start time of the simulation. To access these data for a block, use the
getBlockSimState method or the loggedStates property.

Properties
description

Specify a description. By default, Simulink generates a character vector based on your
model name.

loggedStates

The logged states are the continuous and discrete states of the blocks in a model. These
states represent a subset of the complete simulation state (SimState) of the model.

If loggedStates is in Dataset format, you cannot assign a structure or a
Simulink.SimulationData.Dataset object with a different number of elements than
that of the Dataset object used for loggedStates.

If the loggedStates is in Structure format, you cannot assign a Dataset object.

Attributes:

 Simulink.SimState.ModelSimState class

5-327

dependent loggedStates is obtained from the saved
states of the block. loggedStates depends
on the full state being saved in the SimState
object, unlike, properties like
description, which are independent of
the save states.

snapshotTime

Time at which Simulink takes a “snapshot” of the complete simulation states. This data is
read only.

startTime

Time at which the simulation starts. This data is read only.

Methods
getBlockSimState Access SimState of individual Stateflow Chart, MATLAB Function, or

S-function block
setBlockSimState Set SimState of individual Stateflow Chart, MATLAB Function, or S-

function block

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB Programming Fundamentals documentation.

5 Simulink Classes

5-328

Simulink.ModelWorkspace
Interact with the model workspace of a model programmatically

Description
Use a Simulink.ModelWorkspace object to interact with a model workspace. For
example, you can add and remove variables, set the data source of the workspace, and
save changes to the workspace.

For more information, see “Model Workspaces”.

Creation
To create a Simulink.ModelWorkspace, use the get_param function to query the
value of the model parameter ModelWorkspace. For example, to create an object named
mdlWks that represents the model workspace of a model named myModel.slx:

mdlWks = get_param('myModel','ModelWorkspace')

Properties
DataSource — Source for initializing variables in model workspace
'Model File' (default) | 'MAT-File' | 'MATLAB Code' | 'MATLAB File'

Source for initializing the variables in the model workspace, specified as one of these
character vectors:

• 'Model File' — The variables are stored in the model file. When you save the
model, you also save the variables.

• 'MATLAB Code' — The variables are created by MATLAB code that you write and
store in the model file.

• 'MAT-File' — The variables are stored in a MAT-file, which you can manage and
manipulate separately from the model file.

 Simulink.ModelWorkspace

5-329

• 'MATLAB File' — The variables are created by MATLAB code in a script file, which
you can manage and manipulate separately from the model file.

Data Types: char

FileName — Name of external file that stores or creates variables
'' (empty character vector) (default) | character vector

Name of the external file that stores or creates variables, specified as a character vector.
To enable this property, set DataSource to 'MAT-File' or 'MATLAB File'.
Example: 'myFile.mat'
Example: 'myFile.m'
Data Types: char

MATLABCode — MATLAB code for initializing variables
'' (empty character vector) (default) | character vector

MATLAB code for initializing variables, specified as a character vector. To enable this
property, set DataSource to 'MATLAB Code'.
Example: sprintf('%% Create variables that this model uses.\n\nK =
0.00983;\n\nP = Simulink.Parameter(5);')

Data Types: char

Object Functions
getVariable Return value of variable in the model workspace of a model
hasVariable Determine whether variable exists in the model workspace of a model
whos Return list of variables in the model workspace of a model
saveToSource Save model workspace changes to the external data source of the model

workspace
save Save contents of model workspace to a MAT-file
reload Reinitialize variables from the data source of a model workspace
evalin Evaluate expression in the model workspace of a model
clear Clear variables from the model workspace of a model
assignin Assign value to variable in the model workspace of a model

5 Simulink Classes

5-330

Examples

Interact With Model Workspace Programmatically

Create a variable in the model workspace of a model. Then, modify the variable and query
the variable value to confirm the modification.

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object mdlWks that represents the model
workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar with value 5.12 in the model workspace.

assignin(mdlWks,'myVar',5.12)

Apply a new value, 7.22. To do so, first create a temporary copy of the variable by using
the getVariable function. Then, modify the copy and use it to overwrite the original
variable in the model workspace.

temp = getVariable(mdlWks,'myVar');
temp = 7.22;
assignin(mdlWks,'myVar',temp)

Confirm the new value by querying the value of the variable.

getVariable(mdlWks,'myVar')

ans =

 7.2200

• “Model Workspaces”

 Simulink.ModelWorkspace

5-331

See Also

Topics
“Model Workspaces”
“Variables”

Introduced before R2006a

5 Simulink Classes

5-332

assignin
Package: Simulink

Assign value to variable in the model workspace of a model

Syntax
assignin(mdlWks,varName,varValue)

Description
assignin(mdlWks,varName,varValue) assigns the value varValue to the MATLAB
variable varName in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks. If the variable does not exist, assignin
creates it.

Examples

Assign Value to Variable in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar with value 5.12 in the model workspace.

 assignin

5-333

assignin(mdlWks,'myVar',5.12)

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName — Name of target variable
character vector

Name of the target variable, specified as a character vector.
Example: 'myVar'
Data Types: char

varValue — Value to assign to target variable
valid value

Value to assign to the target value, specified as a valid value. For example, you can
specify a literal number, a structure, or an expression that evaluates to a valid value.

If you specify the name of a handle object, such as a Simulink.Parameter object, use
the copy function to create a separate copy of the object.
Example: 5.12
Example: struct('a',5.12,'b',7.22)
Example: Simulink.Parameter(5.12)
Example: copy(myExistingParameterObject)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | table | cell | categorical |
datetime | duration | calendarDuration | fi
Complex Number Support: Yes

See Also
Simulink.ModelWorkspace

5 Simulink Classes

5-334

Introduced before R2006a

 assignin

5-335

clear
Package: Simulink

Clear variables from the model workspace of a model

Syntax
clear(mdlWks)

Description
clear(mdlWks) removes all variables from the model workspace represented by the
Simulink.ModelWorkspace object mdlWks.

Examples

Clear Variables From Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar with value 5.12 in the model workspace.

assignin(mdlWks,'myVar',5.12)

Clear all variables from the model workspace, including myVar.

5 Simulink Classes

5-336

clear(mdlWks)

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

See Also
Simulink.ModelWorkspace

Introduced before R2006a

 clear

5-337

evalin
Package: Simulink

Evaluate expression in the model workspace of a model

Syntax
result = evalin(mdlWks,expression)

Description
result = evalin(mdlWks,expression) evaluates the expression expression in the
model workspace represented by the Simulink.ModelWorkspace object represented by
mdlWks. The function returns the result of the expression in result.

Examples

Evaluate Expression in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

5 Simulink Classes

5-338

Evaluate the expression myLastVar = myVar + myOtherVar in the model workspace.
The expression creates another variable, myLastVar, whose value is the sum of the first
two variables.

evalin(mdlWks,'myLastVar = myVar + myOtherVar');

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

expression — Expression to evaluate
character vector

Expression to evaluate, specified as a character vector.
Example: 'myLastVar = myVar + myOtherVar'
Data Types: char

Output Arguments
result — Result of expression
number, structure, or other MATLAB value

Result of the evaluated expression, returned as a number, structure, or other MATLAB
value.

See Also
Simulink.ModelWorkspace

Introduced before R2006a

 evalin

5-339

reload
Package: Simulink

Reinitialize variables from the data source of a model workspace

Syntax
reload(mdlWks)

Description
reload(mdlWks) reinitializes the variables in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks. When you set the DataSource property of
the model workspace to 'MAT-File', 'MATLAB File', or 'MATLAB Code', reload
overwrites variables that exist in the model workspace by loading the associated MAT-file
or by running the associated MATLAB code.

Examples

Reinitialize Variables in a Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Configure the model workspace to use some MATLAB code as a data source.

mdlWks.DataSource = 'MATLAB Code';
mdlWks.MATLABCode = sprintf('myVar = 5.12;\nmyOtherVar = 7.22;');

5 Simulink Classes

5-340

Create variables in the model workspace by executing the MATLAB code.

reload(mdlWks)

Assign new values to the variables in the model workspace.

assignin(mdlWks,'myVar',5.22)
assignin(mdlWks,'myOtherVar',7.33)

Overwrite the new values with the values specified by the MATLAB code.

reload(mdlWks)

Confirm that the variables have the values specified by the MATLAB code.

myVarValue = getVariable(mdlWks,'myVar')
myOtherVarValue = getVariable(mdlWks,'myOtherVar')

myVarValue =

 5.1200

myOtherVarValue =

 7.2200

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

See Also
Simulink.ModelWorkspace

Introduced before R2006a

 reload

5-341

save
Package: Simulink

Save contents of model workspace to a MAT-file

Syntax
save(mdlWks,fileName)

Description
save(mdlWks,fileName) saves the variables in the model workspace represented by
the Simulink.ModelWorkspace object mdlWks to the MAT-file specified by fileName.

When you set the DataSource property of the model workspace to 'MAT-File' or
'MATLAB File', to save to the file that acts as the external data source of the model,
use saveToSource instead of save.

Examples

Save Contents of Model Workspace to MAT-File

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

5 Simulink Classes

5-342

Save the variables to a new MAT-file named myVars.mat.

save(mdlWks,'myVars.mat')

The MAT-file appears in your current folder.

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

fileName — Name of target MAT-file
character vector

Name of the target MAT-file, specified as a character vector.
Example: 'myFile.mat'
Data Types: char

See Also
Simulink.ModelWorkspace

Introduced before R2006a

 save

5-343

saveToSource
Package: Simulink

Save model workspace changes to the external data source of the model workspace

Syntax
saveToSource(mdlWks)

Description
saveToSource(mdlWks) saves the variables in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks to the MAT-file or script file specified by the
FileName property of the model workspace.

When you set the DataSource property of the model workspace to 'MAT-File' or
'MATLAB File', the FileName property specifies the name of the file that acts as the
external data source of the workspace. As you make changes to the variables in the model
workspace, use saveToSource to permanently save the changes in the external data
source.

Examples

Save Variables to External Data Source of Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

5 Simulink Classes

5-344

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

Configure the model workspace to use a MAT-file named myVars.mat as the data source.

mdlWks.DataSource = 'MAT-File';
mdlWks.FileName = 'myVars.mat';

Save the variables to the external data source (the MAT-file).

saveToSource(mdlWks)

The file appears in your current folder.

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

See Also
Simulink.ModelWorkspace

Introduced before R2006a

 saveToSource

5-345

whos
Package: Simulink

Return list of variables in the model workspace of a model

Syntax
varList = whos(mdlWks)

Description
varList = whos(mdlWks) returns a list of the variables in the model workspace
represented by the Simulink.ModelWorkspace object mdlWks.

Examples

Return List of Variables in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

Display a list of the variables in the model workspace.

whos(mdlWks)

5 Simulink Classes

5-346

 Name Size Bytes Class Attributes

 myOtherVar 1x1 8 double
 myVar 1x1 8 double

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

Output Arguments
varList — List of variables
nested structure array

List of variables, returned as a nested structure array. For details about the information in
the list, see whos.

See Also
Simulink.ModelWorkspace

Introduced before R2006a

 whos

5-347

getVariable
Package: Simulink

Return value of variable in the model workspace of a model

Syntax
varValue = getVariable(mdlWks,varName)

Description
varValue = getVariable(mdlWks,varName) returns the value of the variable whose
name is varName that exists in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks.

If the value of the target variable is a handle to a handle object (such as
Simulink.Parameter), getVariable returns a copy of the handle. Changes you make
to the variable in the model workspace or to the returned variable (variableValue)
affect both variables.

To return a deep copy of the handle object, use the copy method of the object. To modify
a handle object that you store in a model workspace, it is a best practice to use both the
getVariable and assignin methods (see “Modify Property Value of Handle Object” on
page 5-349).

Examples

Return Value of Variable in Model Workspace

Open the example model vdp.

open_system('vdp')

5 Simulink Classes

5-348

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar in the model workspace.

assignin(mdlWks,'myVar',5.12)

Return the value of the new variable. Store the value in another variable named
varValue.

varValue = getVariable(mdlWks,'myVar');

Modify Property Value of Handle Object

Modify a property of the Simulink.Parameter object K, which is defined in model
mdl.slx. When you call getVariable, use the copy method because
Simulink.Parameter is a handle class.

wksp = get_param(mdl,'ModelWorkspace');
value = copy(getVariable(wksp,'K'));
value.DataType = 'single';
assignin(wksp,'K',value);

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName — Name of target variable
character vector

Name of the target variable, specified as a character vector.
Example: 'myVariable'
Data Types: char

 getVariable

5-349

Output Arguments
varValue — Value of target variable
number, structure, or other MATLAB value

Value of the target variable, returned as a number, structure, or other MATLAB value.

See Also
Simulink.ModelWorkspace | get_param

Introduced in R2012a

5 Simulink Classes

5-350

hasVariable
Package: Simulink

Determine whether variable exists in the model workspace of a model

Syntax
varExists = hasVariable(mdlWks,varName)

Description
varExists = hasVariable(mdlWks,varName) returns 1 if a variable whose name is
varName exists in the model workspace represented by the Simulink.ModelWorkspace
object mdlWks.

Examples

Determine Existence of Variable in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of
vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar in the model workspace.

assignin(mdlWks,'myVar',5.12)

Determine whether a variable named myVar exists in the model workspace.

exists = hasVariable(mdlWks,'myVar')

 hasVariable

5-351

exists =
 1

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName — Name of target variable
character vector

Name of the target variable, specified as a character vector.
Example: 'myVariable'
Data Types: char

Output Arguments
varExists — Indication of existence
1 | 0

Indication of variable existence, returned as 1 (true) or 0.

See Also
Simulink.ModelWorkspace | get_param

Introduced in R2012a

5 Simulink Classes

5-352

Simulink.MSFcnRunTimeBlock
Get run-time information about Level-2 MATLAB S-function block

Description
This class allows a Level-2 MATLAB S-function or other MATLAB program to obtain
information from Simulink software and provide information to Simulink software about a
Level-2 MATLAB S-Function block. Simulink software creates an instance of this class for
each Level-2 MATLAB S-Function block in a model. Simulink software passes the object to
the callback methods of Level-2 MATLAB S-functions when it updates or simulates a
model, allowing the callback methods to get and provide block-related information to
Simulink software. See “Write Level-2 MATLAB S-Functions” for more information.

You can also use instances of this class in MATLAB programs to obtain information about
Level-2 MATLAB S-Function blocks during a simulation. See “Access Block Data During
Simulation” for more information.

The Level-2 MATLAB S-function template matlabroot/toolbox/simulink/blocks/
msfuntmpl.m shows how to use a number of the following methods.

Parent Class
Simulink.RunTimeBlock

Derived Classes
None

 Simulink.MSFcnRunTimeBlock

5-353

matlab:edit([matlabroot,'/toolbox/simulink/blocks/msfuntmpl.m']);

Property Summary
Name Description
“AllowSignalsWithMoreThan2D” on page 5-356 enable Level-2 MATLAB S-function to

use multidimensional signals.
“DialogPrmsTunable” on page 5-356 Specifies which of the S-function's

dialog parameters are tunable.
“NextTimeHit” on page 5-356 Time of the next sample hit for

variable sample time S-functions.

Method Summary
Name Description
“AutoRegRuntimePrms” on page 5-357 Register this block's dialog

parameters as run-time
parameters.

“AutoUpdateRuntimePrms” on page 5-357 Update this block's run-time
parameters.

“IsDoingConstantOutput” on page 5-357 Determine whether the current
simulation stage is the
constant sample time stage.

“IsMajorTimeStep” on page 5-358 Determine whether the current
simulation time step is a major
time step.

“IsSampleHit” on page 5-358 Determine whether the current
simulation time is one at which
a task handled by this block is
active.

“IsSpecialSampleHit” on page 5-359 Determine whether the current
simulation time is one at which
multiple tasks handled by this
block are active.

“RegBlockMethod” on page 5-360 Register a callback method for
this block.

5 Simulink Classes

5-354

Name Description
“RegisterDataTypeFxpBinaryPoint” on page 5-360 Register fixed-point data type

with binary point-only scaling.
“RegisterDataTypeFxpFSlopeFixexpBias” on page 5-361 Register fixed-point data type

with [Slope Bias] scaling
specified in terms of fractional
slope, fixed exponent, and bias.

“RegisterDataTypeFxpSlopeBias” on page 5-362 Register data type with [Slope
Bias] scaling.

“SetAccelRunOnTLC” on page 5-364 Specify whether to use this
block's TLC file to generate the
simulation target for the model
that uses it.

“SetPreCompInpPortInfoToDynamic” on page 5-364 Set precompiled attributes of
this block's input ports to be
inherited.

“SetPreCompOutPortInfoToDynamic” on page 5-365 Set precompiled attributes of
this block's output ports to be
inherited.

“SetPreCompPortInfoToDefaults” on page 5-365 Set precompiled attributes of
this block's ports to the default
values.

“SetSimViewingDevice” on page 5-365 Specify whether block is a
viewer.

“SupportsMultipleExecInstances” on page 5-366
“WriteRTWParam” on page 5-366 Write custom parameter

information to Simulink Coder
file.

 Simulink.MSFcnRunTimeBlock

5-355

Properties

AllowSignalsWithMoreThan2D

Allow Level-2 MATLAB S-functions to use multidimensional signals. You must set the
AllowSignalsWithMoreThan2D property in the setup method.

Boolean

RW

DialogPrmsTunable

Specifies whether a dialog parameter of the S-function is tunable. Tunable parameters
are registered as run-time parameters when you call the “AutoRegRuntimePrms” on page
5-357 method. Note that SimOnlyTunable parameters are not registered as run-time
parameters. For example, the following lines initializes three dialog parameters where the
first is tunable, the second in not tunable, and the third is tunable only during simulation.
block.NumDialogPrms = 3;
block.DialogPrmsTunable = {'Tunable','Nontunable','SimOnlyTunable'};

array

RW

NextTimeHit

Time of the next sample hit for variable sample-time S-functions.

double

RW

5 Simulink Classes

5-356

Methods

AutoRegRuntimePrms

Register a block's tunable dialog parameters as run-time parameters.

AutoRegRuntimePrms;

Use in the PostPropagationSetup method to register this block's tunable dialog
parameters as run-time parameters.

AutoUpdateRuntimePrms

Update a block's run-time parameters.

AutoUpdateRuntimePrms;

Automatically update the values of the run-time parameters during a call to
ProcessParameters.

See the S-function matlabroot/toolbox/simulink/simdemos/simfeatures/
adapt_lms.m in the Simulink model sldemo_msfcn_lms for an example.

IsDoingConstantOutput

Determine whether this is in the constant sample time stage of a simulation.

bVal = IsDoingConstantOutput;

Returns true if this is the constant sample time stage of a simulation, i.e., the stage at the
beginning of a simulation where Simulink software computes the values of block outputs
that cannot change during the simulation (see “Constant Sample Time”). Use this method

 Simulink.MSFcnRunTimeBlock

5-357

matlab:edit([matlabroot,'/toolbox/simulink/simdemos/simfeatures/adapt_lms.m']);
matlab:open_system('sldemo_msfcn_lms');

in the Outputs method of an S-function with port-based sample times to avoid
unnecessarily computing the outputs of ports that have constant sample time, i.e., [inf,
0].

function Outputs(block)
.
.
 if block.IsDoingConstantOutput
 ts = block.OutputPort(1).SampleTime;
 if ts(1) == Inf
 %% Compute port's output.
 end
 end
.
.
%% end of Outputs

See “Specifying Port-Based Sample Times” for more information.

IsMajorTimeStep

Determine whether current time step is a major or a minor time step.

bVal = IsMajorTimeStep;

Returns true if the current time step is a major time step; false, if it is a minor time step.
This method can be called only from the Outputs or Update methods.

IsSampleHit

Determine whether the current simulation time is one at which a task handled by this
block is active.

bVal = IsSampleHit(stIdx);

stIdx
Global index of the sample time to be queried.

5 Simulink Classes

5-358

Use in Outputs or Update block methods when the MATLAB S-function has multiple
sample times to determine whether a sample hit has occurred at stIdx. The sample time
index stIdx is a global index for the Simulink model. For example, consider a model that
contains three sample rates of 0.1, 0.2, and 0.5, and a MATLAB S-function block that
contains two rates of 0.2 and 0.5. In the MATLAB S-function, block.IsSampleHit(0)
returns true for the rate 0.1, not the rate 0.2.

This block method is similar to ssIsSampleHit for C-MeX S-functions, however
ssIsSampleHit returns values based on only the sample times contained in the S-
function. For example, if the model described above contained a C-MeX S-function with
sample rates of 0.2 and 0.5, ssIsSampleHit(S,0,tid) returns true for the rate of 0.2.

Use port-based sample times to avoid using the global sample time index for multi-rate
systems (see Simulink.BlockPortData).

IsSpecialSampleHit

Determine whether the current simulation time is one at which multiple tasks
implemented by this block are active.

bVal = IsSpecialSampleHit(stIdx1,stIdx1);

stIdx1
Index of sample time of first task to be queried.

stIdx2
Index of sample time of second task to be queried.

Use in Outputs or Update block methods to ensure the validity of data shared by
multiple tasks running at different rates. Returns true if a sample hit has occurred at
stIdx1 and a sample hit has also occurred at stIdx2 in the same time step (similar to
ssIsSpecialSampleHit for C-Mex S-functions).

When using the IsSpecialSampleHit macro, the slower sample time must be an
integer multiple of the faster sample time.

 Simulink.MSFcnRunTimeBlock

5-359

RegBlockMethod

Register a block callback method.

RegBlockMethod(methName, methHandle);

methName
Name of method to be registered.

methHandle
MATLAB function handle of the callback method to be registered.

Registers the block callback method specified by methName and methHandle. Use this
method in the setup function of a Level-2 MATLAB S-function to specify the block
callback methods that the S-function implements.

RegisterDataTypeFxpBinaryPoint

Register fixed-point data type with binary point-only scaling.

dtID = RegisterDataTypeFxpBinaryPoint(isSigned, wordLength,
fractionalLength, obeyDataTypeOverride);

isSigned
true if the data type is signed.

false if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalLength

Number of bits in the data type to the right of the binary point.
obeyDataTypeOverride

true indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type could

5 Simulink Classes

5-360

be Double, Single, ScaledDouble, or the fixed-point data type specified by the
other arguments of the function.

false indicates that the Data Type Override setting is to be ignored.

This method registers a fixed-point data type with Simulink software and returns a data
type ID. The data type ID can be used to specify the data types of input and output ports,
run-time parameters, and DWork states. It can also be used with all the standard data
type access methods defined for instances of this class, such as “DatatypeSize” on page 5-
409.

Use this function if you want to register a fixed-point data type with binary point-only
scaling. Alternatively, you can use one of the other fixed-point registration functions:

• Use “RegisterDataTypeFxpFSlopeFixexpBias” on page 5-361 to register a data type
with [Slope Bias] scaling by specifying the word length, fractional slope, fixed
exponent, and bias.

• Use “RegisterDataTypeFxpSlopeBias” on page 5-362 to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point
Designer license is checked out.

RegisterDataTypeFxpFSlopeFixexpBias

Register fixed-point data type with [Slope Bias] scaling specified in terms of fractional
slope, fixed exponent, and bias

dtID = RegisterDataTypeFxpFSlopeFixexpBias(isSigned, wordLength,
fractionalSlope, fixedexponent, bias, obeyDataTypeOverride);

isSigned
true if the data type is signed.

false if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.

 Simulink.MSFcnRunTimeBlock

5-361

fractionalSlope
Fractional slope of the data type.

fixedexponent
exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type could
be True Doubles, True Singles, ScaledDouble, or the fixed-point data type
specified by the other arguments of the function.

false indicates that the Data Type Override setting is to be ignored.

This method registers a fixed-point data type with Simulink software and returns a data
type ID. The data type ID can be used to specify the data types of input and output ports,
run-time parameters, and DWork states. It can also be used with all the standard data
type access methods defined for instances of this class, such as “DatatypeSize” on page 5-
409.

Use this function if you want to register a fixed-point data type by specifying the word
length, fractional slope, fixed exponent, and bias. Alternatively, you can use one of the
other fixed-point registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” on page 5-360 to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpSlopeBias” on page 5-362 to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point
Designer license is checked out.

RegisterDataTypeFxpSlopeBias

Register data type with [Slope Bias] scaling.

5 Simulink Classes

5-362

dtID = RegisterDataTypeFxpSlopeBias(isSigned, wordLength,
totalSlope, bias, obeyDataTypeOverride);

isSigned
true if the data type is signed.

false if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
totalSlope

Total slope of the scaling of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

true indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type could
be True Doubles, True Singles, ScaledDouble, or the fixed-point data type
specified by the other arguments of the function.

false indicates that the Data Type Override setting is to be ignored.

This method registers a fixed-point data type with Simulink software and returns a data
type ID. The data type ID can be used to specify the data types of input and output ports,
run-time parameters, and DWork states. It can also be used with all the standard data
type access methods defined for instances of this class, such as “DatatypeSize” on page 5-
409.

Use this function if you want to register a fixed-point data type with [Slope Bias] scaling.
Alternatively, you can use one of the other fixed-point registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” on page 5-360 to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpFSlopeFixexpBias” on page 5-361 to register a data type by
specifying the word length, fractional slope, fixed exponent, and bias

 Simulink.MSFcnRunTimeBlock

5-363

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point
Designer license is checked out.

SetAccelRunOnTLC

Specify whether to use block's TLC file to generate code for the Accelerator mode of
Simulink software.

SetAccelRunOnTLC(bVal);

bVal
May be 'true' (use TLC file) or 'false' (run block in interpreted mode).

Specify if the block should use its TLC file to generate code that runs with the accelerator.
If this option is 'false', the block runs in interpreted mode. See the S-function
msfcn_times_two.m in the Simulink model msfcndemo_timestwo for an example.

Note The default JIT Accelerator mode does not support inlining of user-written TLC S-
Functions. Please see “How Acceleration Modes Work” and “Control S-Function
Execution” for more information.

SetPreCompInpPortInfoToDynamic

Set precompiled attributes of this block's input ports to be inherited.

SetPreCompInpPortInfoToDynamic;

Initialize the compiled information (dimensions, data type, complexity, and sampling
mode) of this block's input ports to be inherited. See the S-function matlabroot/
toolbox/simulink/simdemos/simfeatures/adapt_lms.m in the Simulink model
sldemo_msfcn_lms for an example.

5 Simulink Classes

5-364

matlab:edit('msfcn_times_two.m')
matlab:open_system('msfcndemo_timestwo');
matlab:edit([matlabroot,'/toolbox/simulink/simdemos/simfeatures/adapt_lms.m']);
matlab:open_system('sldemo_msfcn_lms');

SetPreCompOutPortInfoToDynamic

Set precompiled attributes of this block's output ports to be inherited.

SetPreCompOutPortInfoToDynamic;

Initialize the compiled information (dimensions, data type, complexity, and sampling
mode) of the block's output ports to be inherited. See the S-function matlabroot/
toolbox/simulink/simdemos/simfeatures/adapt_lms.m in the Simulink model
sldemo_msfcn_lms for an example.

SetPreCompPortInfoToDefaults

Set precompiled attributes of this block's ports to the default values.

SetPreCompPortInfoToDefaults;

Initialize the compiled information (dimensions, data type, complexity, and sampling
mode) of the block's ports to the default values. By default, a port accepts a real scalar
sampled signal with a data type of double.

SetSimViewingDevice

Specify whether this block is a viewer.

SetSimViewingDevice(bVal);

bVal
May be 'true' (is a viewer) or 'false' (is not a viewer).

Specify if the block is a viewer/scope. If this flag is specified, the block will be used only
during simulation and automatically stubbed out in generated code.

 Simulink.MSFcnRunTimeBlock

5-365

matlab:edit([matlabroot,'/toolbox/simulink/simdemos/simfeatures/adapt_lms.m']);
matlab:open_system('sldemo_msfcn_lms');

SupportsMultipleExecInstances

Specify whether or not a For Each Subsystem supports an S-function inside of it.

SupportsMultipleExecInstances(bVal);

bVal
May be 'true' (S-function is supported) or 'false' (S-function is not supported).

Specify if an S-function can operate within a For Each Subsystem.

WriteRTWParam

Write a custom parameter to the Simulink Coder information file used for code
generation.

WriteRTWParam(pType, pName, pVal)

pType
Type of the parameter to be written. Valid values are 'string' and 'matrix'.

pName
Name of the parameter to be written.

pVal
Value of the parameter to be written.

Use in the WriteRTW method of the MATLAB S-function to write out custom parameters.
These parameters are generally settings used to determine how code should be generated
in the TLC file for the S-function. See the S-function matlabroot/toolbox/simulink/
simdemos/simfeatures/adapt_lms.m in the Simulink model sldemo_msfcn_lms for
an example.

5 Simulink Classes

5-366

matlab:edit([matlabroot,'/toolbox/simulink/simdemos/simfeatures/adapt_lms.m']);
matlab:open_system('sldemo_msfcn_lms');

Introduced before R2006a

 Simulink.MSFcnRunTimeBlock

5-367

Simulink.NumericType
Specify floating-point, integer, or fixed-point data type

Description
Use a Simulink.NumericType object to set and share numeric data types for signal,
state, and parameter data in a model.

1 Create an instance of this class in the MATLAB base workspace, a model workspace,
or a data dictionary. To create a numeric type in a model workspace, you must clear
the Is alias property.

2 Set the properties of the object to create a custom floating point, integer, or fixed
point data type.

3 Assign the data type to all signals and parameters of your model that you want to
conform to the data type.

Assigning a data type in this way allows you to change the data types of the signals and
parameters in your model by changing the properties of the object that describe them.
You do not have to change the model itself.

To rename a data type in a model and in the code that you generate from a model (by
generating a typedef statement), you can use an object of the class
Simulink.AliasType.

Creation
To create a Simulink.NumericType object interactively, use the Model Explorer:

1 On the Model Explorer Model Hierarchy pane, select a workspace, such as the base
workspace, or a data dictionary.

2 From the Model Explorer Add menu, select Simulink.NumericType.

The Model Explorer creates an instance of a Simulink.NumericType object and
assigns it to a variable named Numeric in the target workspace.

5 Simulink Classes

5-368

3 Rename the variable to a more appropriate name, for example, a name that reflects
its intended usage.

To change the name, edit the name displayed in the Name field on the Model
Explorer Contents pane.

4 On the Model Explorer Dialog pane, use the Data type mode property to select a
data type that the object represents.

To create a Simulink.NumericType object programmatically, use the
Simulink.NumericType function described below.

Syntax
typeObj = Simulink.NumericType

Description
typeObj = Simulink.NumericType returns a Simulink.NumericType object with
default property values.

Properties
Bias — Bias for slope and bias scaling
0 (default) | real number

Bias for slope and bias scaling of a fixed-point data type (Fixed-Point Designer), specified
as a real number.

If you use a number with a data type other than double to set the value, Simulink
converts the value to double.

Corresponds to Bias in the property dialog box.
Example: 3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

 Simulink.NumericType

5-369

DataScope — Specification to generate or import type definition in the
generated code
'Auto' (default) | 'Exported' | 'Imported'

Specification to generate or import the type definition (typedef) in the generated code
(Simulink Coder), specified as 'Auto', 'Exported, or 'Imported'.

The table shows the effect of each option.

Value Action
'Auto' (default) If no value is specified for HeaderFile, export the type

definition to model_types.h. model is the model name.
If a value is specified for HeaderFile, import the data type
definition from the specified header file.

'Exported' Export the data type definition to a header file, which can be
specified in the HeaderFile property. If no value is specified for
HeaderFile, the header file name defaults to type.h. type is
the data type name.

'Imported' Import the data type definition from a header file, which can be
specified in the HeaderFile property. If no value is specified for
HeaderFile, the header file name defaults to type.h. type is
the data type name.

For more information, see “Control File Placement of Custom Data Types” (Embedded
Coder).

Corresponds to Data scope in the property dialog box.

DataTypeMode — Mode of numeric data type
'Double' (default) | 'Single' | 'Boolean' | 'Fixed-point: unspecified
scaling' | 'Fixed-point: binary point scaling' | 'Fixed-point: slope
and bias scaling'

Mode of the numeric data type, specified as one of these character vectors:

• 'Double' — Same as the MATLAB double type.
• 'Single' — Same as the MATLAB single type.
• 'Boolean' — Same as the MATLAB boolean type.
• 'Fixed-point: unspecified scaling' — A fixed-point data type with
unspecified scaling.

5 Simulink Classes

5-370

• 'Fixed-point: binary point scaling' — A fixed-point data type with binary-
point scaling.

• 'Fixed-point: slope and bias scaling' — A fixed-point data type with slope
and bias scaling.

Selecting a fixed-point data type mode can, depending on the other dialog box options
that you select, cause the model to run only on systems that have a Fixed-Point Designer
option installed.

Corresponds to Data type mode in the property dialog box.
Data Types: char

DataTypeOverride — Data type override mode
'Inherit' (default) | 'Off'

Data type override mode, specified as 'Inherit' or 'Off'.

• If you specify 'Inherit', the data type override setting for the context in which this
numeric type is used (block, signal, Stateflow chart in Simulink) applies to this
numeric type.

• If you specify 'Off', data type override does not apply to this numeric type.

For more information about data type override, see “Control Data Type Override”.

Corresponds to Data type override in the property dialog box.
Data Types: char

Description — Custom description of data type
'' (empty character vector) (default) | character vector

Custom description of the data type, specified as a character vector.

Corresponds to Description in the property dialog box.
Example: 'This is a floating-point data type.'
Data Types: char

FixedExponent — Exponent for binary point scaling
0 (default) | real number

Exponent for binary point scaling, specified as a real number. Setting this property causes
Simulink software to set the FractionLength and Slope properties accordingly, and

 Simulink.NumericType

5-371

vice versa. This property applies only if the DataTypeMode is Fixed-point: binary
point scaling or Fixed-point: slope and bias scaling.

If you use a number with a data type other than double to set the value, Simulink
converts the value to double.

This property does not appear in the property dialog box.
Example: -8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

FractionLength — Bit length of the fractional portion of a fixed-point number
0 (default) | real integer

Bit length of the fractional portion of a fixed-point number (Fixed-Point Designer),
specified as a real integer. This property equals -FixedExponent. Setting this property
causes Simulink software to set the FixedExponent property accordingly, and vice
versa.

If you use a number with a data type other than double to set the value, Simulink
converts the value to double.

Corresponds to Fraction length in the property dialog box.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

HeaderFile — Name of header file that contains type definition in the generated
code
'' (empty character vector) (default) | character vector

Name of the header file that contains the type definition (typedef) in the generated
code, specified as a character vector.

If this property is specified, the specified name is used during code generation for
importing or exporting. If this property is empty, the value defaults to type.h if
DataScope equals 'Imported' or 'Exported', or defaults to model_types.h if
DataScope equals 'Auto'.

5 Simulink Classes

5-372

By default, the generated #include directive uses the preprocessor delimiter " instead
of < and >. To generate the directive #include <myTypes.h>, specify HeaderFile as
'<myTypes.h>'.

For more information, see “Control File Placement of Custom Data Types” (Embedded
Coder).

Corresponds to Header file in the property dialog box.
Example: 'myHdr.h'
Example: 'myHdr'
Example: 'myHdr.hpp'
Data Types: char

IsAlias — Specification to create data type alias using object name
false (default) | true

Specification to create a data type alias by using the name of the object, specified as true
(yes) or false (no).

If you specify true, the object acts as a data type alias in a similar manner to a
Simulink.AliasType object. For more information, see “Control Data Type Names in
Generated Code” (Embedded Coder).

Corresponds to Is alias in the property dialog box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Signedness — Signedness of fixed-point data type
'Signed (default) | 'Unsigned' | 'Auto'

Signedness of a fixed-point data type (Fixed-Point Designer), specified as 'Signed'
(signed), 'Unsigned' (unsigned), or 'Auto' (inherit signedness).

Corresponds to Signedness in the property dialog box.
Data Types: char

Slope — Slope for slope and bias scaling of fixed-point data type
2^0 (default) | real number

 Simulink.NumericType

5-373

Slope for slope and bias scaling of a fixed-point data type (Fixed-Point Designer), specified
as a real number.

This property equals SlopeAdjustmentFactor * 2^FixedExponent. If
SlopeAdjustmentFactor is 1.0, Simulink software displays the value of this field as
2^SlopeAdjustmentFactor. Otherwise, it displays it as a numeric value. Setting this
property causes Simulink software to set the FixedExponent and
SlopeAdjustmentFactor properties accordingly, and vice versa.

If you use a number with a data type other than double to set the value, Simulink
converts the value to double.

This property appears only if DataTypeMode is Fixed-point: slope and bias
scaling.

Corresponds to Slope in the property dialog box.
Example: 5.2
Example: 2^9
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

SlopeAdjustmentFactor — Slope for slope and bias scaling of fixed-point data
type
1 (default) | real number

Slope for slope and bias scaling of a fixed-point data type (Fixed-Point Designer), specified
as a real number in the range [1, 2).

Setting this property causes Simulink software to adjust the Slope property accordingly,
and vice versa. This property applies only if DataTypeMode is Fixed-point: slope
and bias scaling.

If you use a number with a data type other than double to set the value, Simulink
converts the value to double.

This property does not appear in the property dialog box.
Example: 1.7
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

5 Simulink Classes

5-374

WordLength — Word size of fixed-point or integer data type
16 (default) | integer

Word size of a fixed-point (Fixed-Point Designer) or integer data type, specified as an
integer number of bits.

This property appears only if DataTypeMode is Fixed-point.

If you use a number with a data type other than double to set the value, Simulink
converts the value to double.

Corresponds to Word length in the property dialog box.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Object Functions
isboolean Determine whether numeric type represents the Boolean data type

boolean
isdouble Determine whether numeric type represents the double-precision,

floating-point data type double
isfixed Determine whether numeric type represents a fixed-point data type
isfloat Determine whether numeric type represents a floating-point data

type
isscalingbinarypoint Determine whether fixed-point numeric type has binary-point

scaling
isscalingslopebias Determine whether numeric type represents a fixed-point data type

with slope-and-bias scaling
isscalingunspecified Determine whether numeric type represents a data type with

unspecified scaling
issingle Determine whether numeric type represents the single-precision,

floating-point data type single

Examples

 Simulink.NumericType

5-375

Share a Data Type Between Separate Algorithms, Data Paths, Models, and Bus
Elements

See “Share a Data Type Between Separate Algorithms, Data Paths, Models, and Bus
Elements”.

• “Validate a Floating-Point Embedded Model”
• “Control Signal Data Types”
• “Control Data Type Names in Generated Code” (Embedded Coder)

See Also
Simulink.AliasType

Topics
“Validate a Floating-Point Embedded Model”
“Control Signal Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)
“Data Types Supported by Simulink”
“About Data Types in Simulink”

Introduced before R2006a

5 Simulink Classes

5-376

isboolean
Package: Simulink

Determine whether numeric type represents the Boolean data type boolean

Syntax
indication = isboolean(numericType)

Description
indication = isboolean(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents the Boolean data type
boolean and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents boolean
1 | 0

Indication of whether the target object represents boolean, returned as 1 (true) or 0
(false).

 isboolean

5-377

See Also
Simulink.NumericType

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-378

isdouble
Package: Simulink

Determine whether numeric type represents the double-precision, floating-point data type
double

Syntax
indication = isdouble(numericType)

Description
indication = isdouble(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents the double-precision, floating-
point data type double and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents double
1 | 0

Indication of whether the target object represents double, returned as 1 (true) or 0
(false).

 isdouble

5-379

See Also
Simulink.NumericType | isfloat | issingle

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-380

isfixed
Package: Simulink

Determine whether numeric type represents a fixed-point data type

Syntax
indication = isfixed(numericType)

Description
indication = isfixed(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a fixed-point data type and 0
(false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents a fixed-point type
1 | 0

Indication of whether the target object represents a fixed-point type, returned as 1 (true)
or 0 (false).

 isfixed

5-381

See Also
Simulink.NumericType | isscalingbinarypoint | isscalingslopebias |
isscalingunspecified

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-382

isfloat
Package: Simulink

Determine whether numeric type represents a floating-point data type

Syntax
indication = isfloat(numericType)

Description
indication = isfloat(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a floating-point data type
such as double or single, and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents a floating-point
type
1 | 0

Indication of whether the target object represents a floating-point type, returned as 1
(true) or 0 (false).

 isfloat

5-383

See Also
Simulink.NumericType | isdouble | issingle

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-384

isscalingbinarypoint
Package: Simulink

Determine whether fixed-point numeric type has binary-point scaling

Syntax
indication = isscalingbinarypoint(numericType)

Description
indication = isscalingbinarypoint(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a fixed-point data type with
binary-point scaling and 0 (false) otherwise. A numeric type object can use binary-point
scaling if you explicitly specify it or if you specify trivial slope-and-bias scaling (the slope
is an integer power of two and the bias is zero).

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents fixed-point type
with binary-point scaling
1 | 0

 isscalingbinarypoint

5-385

Indication of whether the target object represents a fixed-point type with binary-point
scaling, returned as 1 (true) or 0 (false).

See Also
Simulink.NumericType | isfixed | isscalingslopebias |
isscalingunspecified

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-386

isscalingslopebias
Package: Simulink

Determine whether numeric type represents a fixed-point data type with slope-and-bias
scaling

Syntax
indication = isscalingslopebias(numericType)

Description
indication = isscalingslopebias(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a fixed-point data type with
nontrivial slope-and-bias scaling and 0 (false) otherwise. A slope-and-bias fixed-point
type has trivial scaling if the slope is an integer power of two and the bias is zero.

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents fixed-point type
with slope-and-bias scaling
1 | 0

 isscalingslopebias

5-387

Indication of whether the target object represents a fixed-point type with nontrivial slope-
and-bias scaling, returned as 1 (true) or 0 (false).

See Also
Simulink.NumericType | isfixed | isscalingbinarypoint |
isscalingunspecified

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-388

isscalingunspecified
Package: Simulink

Determine whether numeric type represents a data type with unspecified scaling

Syntax
indication = isscalingunspecified(numericType)

Description
indication = isscalingunspecified(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a fixed-point or scaled double
data type with unspecified scaling and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents a type with
unspecified scaling
1 | 0

Indication of whether the target object represents a type with unspecified scaling,
returned as 1 (true) or 0 (false).

 isscalingunspecified

5-389

See Also
Simulink.NumericType | isfixed | isscalingbinarypoint |
isscalingslopebias

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-390

issingle
Package: Simulink

Determine whether numeric type represents the single-precision, floating-point data type
single

Syntax
indication = issingle(numericType)

Description
indication = issingle(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents the single-precision, floating-
point data type single and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share
between different data items in a model. For more information, see
Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents single
1 | 0

Indication of whether the target object represents single, returned as 1 (true) or 0
(false).

 issingle

5-391

See Also
Simulink.NumericType | isdouble | isfloat

Topics
“Control Signal Data Types”
“Control Block Parameter Data Types”
“Control Data Type Names in Generated Code” (Embedded Coder)

Introduced in R2010b

5 Simulink Classes

5-392

Simulink.Parameter
Store, share, and configure block parameter values

Description
Create a Simulink.Parameter object to set the value of one or more block parameters
in a model, such as the Gain parameter of a Gain block. You create the object in a
workspace or in a data dictionary. Set the parameter value in the object, not in the block.

Use a Simulink.Parameter object to:

• Share a value among multiple block parameters.
• Represent an engineering constant or a tunable calibration parameter.
• Separate a parameter value from its data type.
• Configure parameter data for code generation.

The Value property of the object stores the parameter value. To use the object in a
model, set the value of a block parameter to an expression that involves the name of the
object. Omit the Value property from the expression. For more information, see “Use
Parameter Objects”.

For more information about block parameters, see “Set Block Parameter Values” and
“How Generated Code Stores Internal Signal, State, and Parameter Data” (Simulink
Coder).

Creation
Create a Simulink.Parameter object:

• Directly from a block dialog box or the Property Inspector. See “Create, Edit, and
Manage Workspace Variables”.

• By using the Model Data Editor. Inspect the Parameters tab.
• By using the Model Explorer. See “Create Data Objects from Built-In Data Class

Package Simulink”.

 Simulink.Parameter

5-393

• By using the Simulink.Parameter function, described below.

Syntax
paramObj = Simulink.Parameter
paramObj = Simulink.Parameter(paramValue)

Description
paramObj = Simulink.Parameter returns a Simulink.Parameter object with
default property values.

paramObj = Simulink.Parameter(paramValue) returns a Simulink.Parameter
object and initializes the value of the Value property by using paramValue.

Properties
For information about properties in the property dialog box of a Simulink.Parameter
object, see “Simulink.Parameter Property Dialog Box”.

CoderInfo — Specifications for generating code for parameter object
Simulink.CoderInfo object

Specifications for generating code for the parameter object, returned as a
Simulink.CoderInfo object.

This property is read only. Instead, modify the properties of the Simulink.CoderInfo
object that this property contains.

For example, the StorageClass property of the Simulink.CoderInfo object
determines how Simulink code generation toolboxes allocate memory for the parameter
object in the generated code. For more information, see “Apply Storage Classes to
Individual Signal, State, and Parameter Data Elements” (Simulink Coder) and “Choose a
Storage Class for Controlling Data Representation in the Generated Code” (Embedded
Coder).

Complexity — Numeric complexity of parameter value
'real' (default) | 'complex'

5 Simulink Classes

5-394

Numeric complexity of the parameter value, returned as 'real' (if the value is real) or
'complex' (if the value is complex). Simulink determines the complexity from the
parameter value that you specify in the Value property. This property is read only.
Data Types: char

DataType — Data type of parameter value
'auto' (default) | character vector

Data type of the parameter value that you specify in the Value property. When you
simulate the model or generate code, Simulink casts the value to the specified data type.

If you specify 'auto', the default setting, the parameter object uses the same data type
as the block parameters that use the object. See “Reduce Maintenance Effort with Data
Type Inheritance”.

When you set the Value property by using something other than a double number, the
object typically sets the DataType property based on the value of the Value property.
For example, when you set the Value property to int8(5), the object sets the value of
the DataType property to 'int8'.

To explicitly specify a built-in data type (see “Data Types Supported by Simulink”), specify
one of these options:

• 'double'
• 'single'
• 'int8'
• 'uint8'
• 'int16'
• 'uint16'
• 'int32'
• 'uint32'
• 'boolean'

To specify a fixed-point data type, use the fixdt function. For example, specify
'fixdt(1,16,5)'.

If you use a Simulink.AliasType or Simulink.NumericType object to create and
share custom data types in your model, specify the name of the object.

 Simulink.Parameter

5-395

To specify an enumerated data type, use the name of the type preceded by Enum:. For
example, specify 'Enum: myEnumType'.

When you store a structure or array of structures in the Value property of the object, the
object sets the DataType property to 'struct'. To specify a Simulink.Bus object as
the data type, use the name of the bus object preceded by Bus:. For example, specify
'Bus: myBusObject'.
Example: 'auto'
Example: 'int8'
Example: 'fixdt(1,16,5)'
Example: 'myAliasTypeObject'
Example: 'Enum: myEnumType'
Example: 'Bus: myBusObject'
Data Types: char

Description — Custom description of parameter object
'' (empty character vector) (default) | character vector

Custom description of the parameter object, specified as a character vector. Use this
property to document the significance that the parameter object has in your algorithm.

If you have Embedded Coder, you can configure this description to appear in the
generated code as a comment. See “Simulink data object descriptions” (Simulink Coder).
Example: 'This parameter represents the maximum rotation speed of the
engine.'

Data Types: char

Dimensions — Dimensions of parameter value
[0 0] (default) | row vector | character vector

Dimensions of the value stored in the Value property, returned as a row vector or
specified as a character vector.

When you set the Value property of the object, the object sets the value of the
Dimensions property to a double row vector. The vector is the same vector that the
size function returns.

5 Simulink Classes

5-396

To use symbolic dimensions, specify a character vector. See “Implement Dimension
Variants for Array Sizes in Generated Code” (Embedded Coder).
Example: [1 3]
Example: '[1 myDimParam]'
Data Types: double | char

Max — Maximum value of parameter
[] (empty) (default) | real double scalar

Maximum value that the Value property of the object can store, specified as a real
double scalar.

The default value is [] (empty), which means the parameter value does not have a
maximum.

If you store a complex number in the Value property, the Max property applies separately
to the real and imaginary parts.

If you store a structure in the Value property, the object ignores the Max property.
Instead, use a Simulink.Bus object as the data type of the parameter object, and specify
a maximum value for each field by using the elements of the bus object. See “Control
Field Data Types and Characteristics by Creating Parameter Object”.

If the parameter value is greater than the maximum value or if the maximum value is
outside the range of the object data type, Simulink generates a warning. When updating
the diagram or starting a simulation, Simulink generates an error.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.
Example: 5.32
Data Types: double

Min — Minimum value of parameter
[] (empty) (default) | real double scalar

Minimum value that the Value property of the object can store, specified as a real
double scalar.

The default value is [] (empty), which means the parameter value does not have a
minimum.

 Simulink.Parameter

5-397

If you store a complex number in the Value property, the Min property applies separately
to the real and imaginary parts.

If you store a structure in the Value property, the object ignores the Min property.
Instead, use a Simulink.Bus object as the data type of the parameter object, and specify
a minimum value for each field by using the elements of the bus object. See “Control Field
Data Types and Characteristics by Creating Parameter Object”.

If the parameter value is less than the minimum value or if the minimum value is outside
the range of the object data type, Simulink generates a warning. When updating the
diagram or starting a simulation, Simulink generates an error.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”
Example: -0.92
Data Types: double

Unit — Physical unit of parameter value
empty (default) | valid unit

Physical unit of parameter value, specified as a character vector. For more information,
see “Unit Specification in Simulink Models”.
Example: 'degC'
Data Types: char

Value — Value to use in target block parameters
[] (default) | valid value

Value to use in target block parameters, specified as any of these valid values:

• Numeric value
• Boolean value
• Instance of enumerated type
• Structure
• Scalar or array
• Mathematical expression (see “Set Variable Value by Using a Mathematical

Expression”)

5 Simulink Classes

5-398

You can use MATLAB syntax to specify the value.

Example Expression Description
15.23 Specifies a scalar value
[3 4; 9 8] Specifies a matrix
3+2i Specifies a complex value
struct('A',20,'B',5) Specifies a structure with two fields, A and B, with double-

precision values 20 and 5.

Organize block parameters into structures (see “Organize
Related Block Parameter Definitions in Structures”) or
initialize the signal elements in a bus (see “Specify Initial
Conditions for Bus Signals”).

slexpr('myVar +
myOtherVar')

Specifies the expression myVar + myOtherVar where
myVar and myOtherVar are other MATLAB variables or
parameter objects. Simulink preserves this mathematical
relationship between the object and the variables.

To use a Simulink.Parameter object to store a value of a particular numeric data type,
specify the ideal value with the Value property, and control the type with the DataType
property.

If you set the Value property by using a typed expression such as single(32.5), the
DataType property changes to reflect the new type. A best practice is using an
expression that is not typed. You can avoid accumulating numerical error through
repeated quantizations or data type saturation, especially for fixed-point data types.
Example: 3.15
Example: single([3.15 1.23])
Example: 1.2 + 3.2i
Example: true
Example: myEnumType.myEnumValue
Example: struct('field1',15,'field2',7.32)
Example: slexpr('myVar + myOtherVar')
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | struct | fi

 Simulink.Parameter

5-399

Complex Number Support: Yes

Examples

Use Parameter Object to Set Value of Gain Parameter
1 At the command prompt, create a Simulink.Parameter object.

myParam = Simulink.Parameter;
2 Assign a numeric value to the Value property.

myParam.Value = 15.23;
3 Specify other characteristics for the block parameter by adjusting the object

properties. For example, to specify the minimum and maximum values the parameter
can take, use the Min and Max properties.

myParam.Min = 10.11;
myParam.Max = 25.27;

4 In a block dialog box, specify the value of a parameter as myParam. For example, in a
Gain block dialog box, specify Gain as myParam.

During simulation, the Gain parameter uses the value 15.23.

Change Value Stored by Parameter Object
1 At the command prompt, create a Simulink.Parameter object that stores the value

2.52.

myParam = Simulink.Parameter(2.52);
2 Change the value by accessing the Value property of the object. This technique

preserves the values of the other properties of the object.

myParam.Value = 1.13;

5 Simulink Classes

5-400

Create Parameter Object with Specific Numeric Data Type
To reduce model maintenance, you can leave the DataType property at its default value,
auto. The parameter object acquires a data type from the block parameter that uses the
object.

To reduce the risk of the data type changing when you make changes to signal data types
and other data types in your model, you can explicitly specify a data type for the
parameter object. For example, when you generate code that exports parameter data to
your custom code, explicitly specify a data type for the object.

1 At the command prompt, create a Simulink.Parameter object that stores the value
18.25.

myParam = Simulink.Parameter(18.25);

The expression 18.25 returns the number 18.25 with the double-precision, floating-
point data type double. The Value property stores the number 18.25 with double
precision.

2 Use the DataType property to specify the single-precision data type single.

myParam.DataType = 'single';

When you simulate or generate code, the parameter object casts the value of the
Value property, 18.25, to the data type specified by the DataType property,
single.

Set Parameter Value to a Mathematical Expression
This example shows how to set the value of a parameter object, myParam, to the sum of
two other variables, myVar and myOtherVar. With this technique, when you change the
values of the independent variables, Simulink immediately calculates the new value of the
parameter object.

1 Create the two independent variables.

myVar = 5.2;
myOtherVar = 9.8;

2 Create the parameter object.

myParam = Simulink.Parameter;

 Simulink.Parameter

5-401

3 Set the value of the parameter object to the expression myVar + myOtherVar.

myParam.Value = slexpr('myVar + myOtherVar')

See Also
AUTOSAR.Parameter | Simulink.CoderInfo | Simulink.LookupTable |
Simulink.Signal

Topics
“Data Objects”
“Set Block Parameter Values”
“How Generated Code Stores Internal Signal, State, and Parameter Data” (Simulink
Coder)
“Determine Where to Store Variables and Objects for Simulink Models”
“Data Types Supported by Simulink”
“Define Data Classes”

Introduced before R2006a

5 Simulink Classes

5-402

Simulink.RunTimeBlock
Allow Level-2 MATLAB S-function and other MATLAB programs to get information about
block while simulation is running

Description
This class allows a Level-2 MATLAB S-function or other MATLAB program to obtain
information about a block. Simulink software creates an instance of this class or a derived
class for each block in a model. Simulink software passes the object to the callback
methods of Level-2 MATLAB S-functions when it updates or simulates a model, allowing
the callback methods to get block-related information from and provide such information
to Simulink software. See “Write Level-2 MATLAB S-Functions” in Writing S-Functions for
more information. You can also use instances of this class in MATLAB programs to obtain
information about blocks during a simulation. See “Access Block Data During Simulation”
for more information.

Note Simulink.RunTimeBlock objects do not support MATLAB sparse matrices. For
example, the following line of code attempts to assign a sparse identity matrix to the run-
time object's output port data. This line of code in a Level-2 MATLAB S-function produces
an error:

 block.Outport(1).Data = speye(10);

Parent Class
None

Derived Classes
Simulink.MSFcnRunTimeBlock

 Simulink.RunTimeBlock

5-403

Property Summary
Name Description
“BlockHandle” on page 5-405 Block's handle.
“CurrentTime” on page 5-405 Current simulation time.
“NumDworks” on page 5-405 Number of discrete work vectors used by the block.
“NumOutputPorts” on page 5-
406

Number of block output ports.

“NumContStates” on page 5-
406

Number of block's continuous states.

“NumDworkDiscStates” on
page 5-406

Number of block's discrete states

“NumDialogPrms” on page 5-
406

Number of parameters that can be entered on S-function
block's dialog box.

“NumInputPorts” on page 5-
407

Number of block's input ports.

“NumRuntimePrms” on page
5-407

Number of run-time parameters used by block.

“SampleTimes” on page 5-407 Sample times at which block produces outputs.

Method Summary
Name Description
“ContStates” on page 5-408 Get a block's continuous states.
“DataTypeIsFixedPoint” on page 5-408 Determine whether a data type is fixed point.
“DatatypeName” on page 5-408 Get name of a data type supported by this

block.
“DatatypeSize” on page 5-409 Get size of a data type supported by this block.
“Derivatives” on page 5-409 Get a block's continuous state derivatives.
“DialogPrm” on page 5-410 Get a parameter entered on an S-function

block's dialog box.

5 Simulink Classes

5-404

Name Description
“Dwork” on page 5-410 Get one of a block's DWork vectors.
“FixedPointNumericType” on page 5-411 Determine the properties of a fixed-point data

type.
“InputPort” on page 5-411 Get one of a block's input ports.
“OutputPort” on page 5-412 Get one of a block's output ports.
“RuntimePrm” on page 5-412 Get one of the run-time parameters used by a

block.

Properties

BlockHandle

Block's handle.

RO

CurrentTime

Current simulation time.

RO

NumDworks

Number of data work vectors.

RW

ssGetNumDWork

 Simulink.RunTimeBlock

5-405

NumOutputPorts

Number of output ports.

RW

ssGetNumOutputPorts

NumContStates

Number of continuous states.

RW

ssGetNumContStates

NumDworkDiscStates

Number of discrete states. In a MATLAB S-function, you need to use DWorks to set up
discrete states.

RW

ssGetNumDiscStates

NumDialogPrms

Number of parameters declared on the block's dialog. In the case of the S-function, it
returns the number of parameters listed as a comma-separated list in the S-function
parameters dialog field.

5 Simulink Classes

5-406

RW

ssGetNumSFcnParams

NumInputPorts

Number of input ports.

RW

ssGetNumInputPorts

NumRuntimePrms

Number of run-time parameters used by this block. See “Run-Time Parameters” for more
information.

RW

ssGetNumSFcnParams

SampleTimes

Block's sample times.

RW for MATLAB S-functions, RO for all other blocks.

 Simulink.RunTimeBlock

5-407

Methods

ContStates

Get a block's continuous states.

states = ContStates();

Get vector of continuous states.

ssGetContStates

DataTypeIsFixedPoint

Determine whether a data type is fixed point.

bVal = DataTypeIsFixedPoint(dtID);

dtID
Integer value specifying the ID of a data type.

Returns true if the specified data type is a fixed-point data type.

DatatypeName

Get the name of a data type.

name = DatatypeName(dtID);

5 Simulink Classes

5-408

dtID
Integer value specifying ID of a data type.

Returns the name of the data type specified by dtID.

“DatatypeSize” on page 5-409

DatatypeSize

Get the size of a data type.

size = DatatypeSize(dtID);

dtID
Integer value specifying the ID of a data type.

Returns the size of the data type specified by dtID.

“DatatypeName” on page 5-408

Derivatives

Get derivatives of a block's continuous states.

derivs = Derivatives();

Get vector of state derivatives.

ssGetdX

 Simulink.RunTimeBlock

5-409

DialogPrm

Get an S-function's dialog parameters.

param = DialogPrm(pIdx);

pIdx
Integer value specifying the index of the parameter to be returned.

Get the specified dialog parameter. In the case of the S-function, each DialogPrm
corresponds to one of the elements in the comma-separated list of parameters in the S-
function parameters dialog field.

ssGetSFcnParam, “RuntimePrm” on page 5-412

Dwork

Get one of a block's DWork vectors.

dworkObj = Dwork(dwIdx);

dwIdx
Integer value specifying the index of a work vector.

Get information about the DWork vector specified by dwIdx where dwIdx is the index
number of the work vector. This method returns an object of type
Simulink.BlockCompDworkData.

ssGetDWork

5 Simulink Classes

5-410

FixedPointNumericType

Get the properties of a fixed-point data type.

eno = FixedPointNumericType(dtID);

dtID
Integer value specifying the ID of a fixed-point data type.

Returns an object of embedded.Numeric class that contains the attributes of the
specified fixed-point data type.

Note embedded.Numeric is also the class of the numerictype objects created by
Fixed-Point Designer software. For information on the properties defined by
embedded.Numeric class, see “numerictype Object Properties” (Fixed-Point Designer).

InputPort

Get an input port of a block.

port = InputPort(pIdx);

pIdx
Integer value specifying the index of an input port.

Get the input port specified by pIdx, where pIdx is the index number of the input port.
For example,

port = rto.InputPort(1)

returns the first input port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreCompInputPortData or
Simulink.BlockCompInputPortData, depending on whether the model that contains

 Simulink.RunTimeBlock

5-411

the port is uncompiled or compiled. You can use this object to get and set the input port's
uncompiled or compiled properties, respectively.

ssGetInputPortSignalPtrs, Simulink.BlockPreCompInputPortData,
Simulink.BlockCompInputPortData, “OutputPort” on page 5-412

OutputPort

Get an output port of a block.

port = OutputPort(pIdx);

pIdx
Integer value specifying the index of an output port.

Get the output port specified by pIdx, where pIdx is the index number of the output
port. For example,

port = rto.OutputPort(1)

returns the first output port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreCompOutputPortData or
Simulink.BlockCompOutputPortData, depending on whether the model that contains
the port is uncompiled or compiled, respectively. You can use this object to get and set the
output port's uncompiled or compiled properties, respectively.

ssGetInputPortSignalPtrs, Simulink.BlockPreCompOutputPortData,
Simulink.BlockCompOutputPortData

RuntimePrm

Get an S-function's run-time parameters.

param = RuntimePrm(pIdx);

5 Simulink Classes

5-412

pIdx
Integer value specifying the index of a run-time parameter.

Get the run-time parameter whose index is pIdx. This run-time parameter is a
Simulink.BlockData on page 5-176 object of type Simulink.BlockRunTimePrmData.

ssGetRunTimeParamInfo

Introduced before R2006a

 Simulink.RunTimeBlock

5-413

Simulink.SampleTime class
Package: Simulink

Object containing sample time information

Description
The SampleTime class represents the sample time information associated with an
individual sample time.

Use the methods Simulink.Block.getSampleTimes and
Simulink.BlockDiagram.getSampleTimes to retrieve the values of the SampleTime
properties for a block and for a block diagram, respectively.

Properties
Value

A two-element array of doubles that contains the period and offset of the sample time

Description

A 1xn character array that describes the sample time type

ColorRGBValue

A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample
time color

Annotation

A 1xn character array that represents the annotation of a specific sample time (for
example, 'D1')

5 Simulink Classes

5-414

OwnerBlock

For asynchronous and variable sample times, OwnerBlock is a character vector
containing the full path to the block that controls the sample time. For all other types of
sample times, it is an empty character vector.

ComponentSampleTimes

If the sample time is an async union or if the sample time is hybrid and the component
sample times are available, then the array ComponentSampleTimes contains
Simulink.SampleTime objects.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB Programming Fundamentals documentation.

Examples
Retrieve the sample time information for the 'vdp' model.

ts = Simulink.BlockDiagram.getSampleTimes('vdp')

Simulink returns:

ts =

 1x2 Simulink.SampleTime
 Package: Simulink

 Properties:
 Value
 Description
 ColorRGBValue
 Annotation
 OwnerBlock
 ComponentSampleTimes

 Methods

To examine the values of the properties:

 Simulink.SampleTime class

5-415

ts(1), ts(2)

ans =

 Simulink.SampleTime
 Package: Simulink

 Properties:
 Value: [0 0]
 Description: 'Continuous'
 ColorRGBValue: [0 0 0]
 Annotation: 'Cont'
 OwnerBlock: []
 ComponentSampleTimes: {}

 Methods

ans =

 Simulink.SampleTime
 Package: Simulink

 Properties:
 Value: [Inf 0]
 Description: 'Constant'
 ColorRGBValue: [1 0.2600 0.8200]
 Annotation: 'Inf'
 OwnerBlock: []
 ComponentSampleTimes: {}

 Methods

See Also
Simulink.Block.getSampleTimes | Simulink.BlockDiagram.getSampleTimes

5 Simulink Classes

5-416

Simulink.sdi.CustomSnapshot class
Package: Simulink.sdi

Specify settings for a snapshot without opening or affecting the Simulation Data Inspector

Description
Use a Simulink.sdi.CustomSnapshot object to specify settings for a snapshot you
want to create without opening the Simulation Data Inspector or affecting the open
session. Creating a snapshot using a Simulink.sdi.CustomSnapshot object is the best
option for fully scripted workflows. You can specify the snapshot dimensions in pixels, the
subplot layout, and limits for the x- and y- axes. You can use the clearSignals and
plotOnSubplot methods to plot signals you want to include in the snapshot. To capture
the snapshot, you can pass the Simulink.sdi.CustomSnapshot object as the value for
the settings name-value pair for the Simulink.sdi.snapshot function or use the
snapshot method.

Construction
snap = Simulink.sdi.CustomSnapshot creates a
Simulink.sdi.CustomSnapshot object.

Properties
Width — Image width
600 (default) | scalar

Image width, in pixels.
Example: 750

Height — Image height
400 (default) | scalar

Image height, in pixels.

 Simulink.sdi.CustomSnapshot class

5-417

Example: 500

Rows — Number of subplot rows
1 (default) | scalar

Number of subplot rows, specified as a scalar between 1 and 8, inclusive. Use Rows and
Columns to set your desired subplot layout.
Example: 2

Columns — Number of subplot columns
1 (default) | scalar

Number of subplot rows, specified as a scalar between 1 and 8, inclusive. Use Rows and
Columns to set your desired subplot layout.
Example: 3

TimeSpan — X-axis limits
2x1 matrix

Limits for the time axis in the snapshot. The time axis limits are the same for all subplots.
By default, the time axis adjusts to accommodate the largest time range of the plotted
signals.
Example: [0 20]

YRange — Y-axis limits
cell array

Cell array of 1-by-2 matrices specifying the y-axis limits for all subplots in the custom
snapshot. By default, YRange is [-3 3] for all subplots.
Example: {[-10 10],[0 100]}

Methods
clearSignals Clear signals plotted on subplots of a Simulink.sdi.CustomSnapshot

object
plotOnSubPlot Plot signals on Simulink.sdi.CustomSnapshot object subplots
snapshot Create a custom snapshot

5 Simulink Classes

5-418

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Copy View Settings to a Run

This example shows how to copy the view settings for aligned signals from one run to
another.

Simulate Your Model and get Run Object

Simulate the vdp model to create a run of data to visualize.

load_system('vdp')
set_param('vdp','SaveFormat','Dataset','SaveOutput','on')
sim('vdp')

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
run = Simulink.sdi.getRun(runID);

Modify View Settings for Signals

Use the Simulink.sdi.Run object to access the signals in the run. Then, modify the
signals' view settings, and plot them in the Simulation Data Inspector. Open the
Simulation Data Inspector and use Simulink.sdi.snapshot to view the results.

sig1 = run.getSignalByIndex(1);
sig2 = run.getSignalByIndex(2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = '-.';

sig2.LineColor = [1 0 0];
sig2.LineDashed = ':';

 Simulink.sdi.CustomSnapshot class

5-419

Capture a Snapshot from the Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the
Simulink.sdi.snapshot function to programmatically capture a snapshot of the
contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
snap.plotOnSubPlot(1,1,sig1,true)
snap.plotOnSubPlot(2,1,sig2,true)

fig = Simulink.sdi.snapshot("from","custom","to","figure","settings",snap);

5 Simulink Classes

5-420

Copy the View Settings to a New Simulation Run

Simulate the model again, with a different Mu value. Then, visualize the new run by
copying the view settings from the first run. Specify the plot input as true to plot the
signals from the new run.

set_param('vdp/Mu','Gain','5')
sim('vdp')

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,true);

Capture a Snapshot of the New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new
simulation run. First, clear the signals from the subplots. Then, plot the signals from the
new run and capture another snapshot.

snap.clearSignals
snap.YRange = {[-2.25 2.25],[-8 8]};
snap.plotOnSubPlot(1,1,sigIDs(2),true)
snap.plotOnSubPlot(2,1,sigIDs(1),true)

fig = snap.snapshot("to","figure");

 Simulink.sdi.CustomSnapshot class

5-421

See Also
Simulink.sdi.Signal | Simulink.sdi.snapshot

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2018a

5 Simulink Classes

5-422

clearSignals
Class: Simulink.sdi.CustomSnapshot
Package: Simulink.sdi

Clear signals plotted on subplots of a Simulink.sdi.CustomSnapshot object

Syntax
snap.clearSignals

Description
snap.clearSignals clears plotted signals from all subplots in the
Simulink.sdi.CustomSnapshot object, snap. Using the clearSignals method does
not affect any subplots or signals in your open Simulation Data Inspector session.

Examples
Copy View Settings to a Run

This example shows how to copy the view settings for aligned signals from one run to
another.

Simulate Your Model and get Run Object

Simulate the vdp model to create a run of data to visualize.

load_system('vdp')
set_param('vdp','SaveFormat','Dataset','SaveOutput','on')
sim('vdp')

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
run = Simulink.sdi.getRun(runID);

 clearSignals

5-423

Modify View Settings for Signals

Use the Simulink.sdi.Run object to access the signals in the run. Then, modify the
signals' view settings, and plot them in the Simulation Data Inspector. Open the
Simulation Data Inspector and use Simulink.sdi.snapshot to view the results.

sig1 = run.getSignalByIndex(1);
sig2 = run.getSignalByIndex(2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = '-.';

sig2.LineColor = [1 0 0];
sig2.LineDashed = ':';

Capture a Snapshot from the Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the
Simulink.sdi.snapshot function to programmatically capture a snapshot of the
contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
snap.plotOnSubPlot(1,1,sig1,true)
snap.plotOnSubPlot(2,1,sig2,true)

fig = Simulink.sdi.snapshot("from","custom","to","figure","settings",snap);

5 Simulink Classes

5-424

Copy the View Settings to a New Simulation Run

Simulate the model again, with a different Mu value. Then, visualize the new run by
copying the view settings from the first run. Specify the plot input as true to plot the
signals from the new run.

set_param('vdp/Mu','Gain','5')
sim('vdp')

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,true);

 clearSignals

5-425

Capture a Snapshot of the New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new
simulation run. First, clear the signals from the subplots. Then, plot the signals from the
new run and capture another snapshot.

snap.clearSignals
snap.YRange = {[-2.25 2.25],[-8 8]};
snap.plotOnSubPlot(1,1,sigIDs(2),true)
snap.plotOnSubPlot(2,1,sigIDs(1),true)

fig = snap.snapshot("to","figure");

5 Simulink Classes

5-426

See Also
Simulink.sdi.CustomSnapshot | Simulink.sdi.clear |
Simulink.sdi.clearPreferences | Simulink.sdi.snapshot | plotOnSubPlot |
snapshot

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2018a

 clearSignals

5-427

plotOnSubPlot
Class: Simulink.sdi.CustomSnapshot
Package: Simulink.sdi

Plot signals on Simulink.sdi.CustomSnapshot object subplots

Syntax
snap.plotOnSubPlot(row,column,signal,plot)

Description
snap.plotOnSubPlot(row,column,signal,plot) plots the signal on the subplot
in the Simulink.sdi.CustomSnapshot object, snap, specified by row and column
when plot is true. When plot is false, plotOnSubPlot clears the signal from the
subplot.

Input Arguments
row — Subplot row
scalar

Row for subplot on which you want to plot a signal. Specify row as a value from 1 through
8, inclusive.
Example: 2

column — Subplot column
scalar

Column for subplot on which you want to plot a signal. Specify column as a value from 1
through 8, inclusive.
Example: 3

5 Simulink Classes

5-428

signal — Signal to plot
Simulink.sdi.Signal | signal ID

Signal ID or Simulink.sdi.Signal object corresponding to the signal you want to plot.
Example: sigID

plot — Plot indicator
logical

Logical indicator of whether to plot or clear the signal from the subplot.

• true – Plot the signal.
• false – Clear the signal.

Example: true
Data Types: logical

Examples
Copy View Settings to a Run

This example shows how to copy the view settings for aligned signals from one run to
another.

Simulate Your Model and get Run Object

Simulate the vdp model to create a run of data to visualize.

load_system('vdp')
set_param('vdp','SaveFormat','Dataset','SaveOutput','on')
sim('vdp')

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
run = Simulink.sdi.getRun(runID);

Modify View Settings for Signals

Use the Simulink.sdi.Run object to access the signals in the run. Then, modify the
signals' view settings, and plot them in the Simulation Data Inspector. Open the
Simulation Data Inspector and use Simulink.sdi.snapshot to view the results.

 plotOnSubPlot

5-429

sig1 = run.getSignalByIndex(1);
sig2 = run.getSignalByIndex(2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = '-.';

sig2.LineColor = [1 0 0];
sig2.LineDashed = ':';

Capture a Snapshot from the Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the
Simulink.sdi.snapshot function to programmatically capture a snapshot of the
contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
snap.plotOnSubPlot(1,1,sig1,true)
snap.plotOnSubPlot(2,1,sig2,true)

fig = Simulink.sdi.snapshot("from","custom","to","figure","settings",snap);

5 Simulink Classes

5-430

Copy the View Settings to a New Simulation Run

Simulate the model again, with a different Mu value. Then, visualize the new run by
copying the view settings from the first run. Specify the plot input as true to plot the
signals from the new run.

set_param('vdp/Mu','Gain','5')
sim('vdp')

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,true);

 plotOnSubPlot

5-431

Capture a Snapshot of the New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new
simulation run. First, clear the signals from the subplots. Then, plot the signals from the
new run and capture another snapshot.

snap.clearSignals
snap.YRange = {[-2.25 2.25],[-8 8]};
snap.plotOnSubPlot(1,1,sigIDs(2),true)
snap.plotOnSubPlot(2,1,sigIDs(1),true)

fig = snap.snapshot("to","figure");

5 Simulink Classes

5-432

See Also
Simulink.sdi.CustomSnapshot | Simulink.sdi.Signal |
Simulink.sdi.snapshot | clearSignals | snapshot

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2018a

 plotOnSubPlot

5-433

snapshot
Class: Simulink.sdi.CustomSnapshot
Package: Simulink.sdi

Create a custom snapshot

Syntax
fig = snap.snapshot
[fig,image] = snap.snapshot
fig = snap.snapshot(Name,Value)
[fig,image] = snap.snapshot

Description
fig = snap.snapshot creates a figure according to the properties of the
Simulink.sdi.CustomSnapshot object, snap, and returns the handle for the figure,
fig.

[fig,image] = snap.snapshot creates a figure according to the properties of the
Simulink.sdi.CustomSnapshot object, snap, and returns the handle for the figure,
fig, and an array of image data, image.

fig = snap.snapshot(Name,Value) creates a figure according to the properties of
the Simulink.sdi.CustomSnapshot object, snap, with additional options specified by
one or more Name,Value pair arguments. This syntax returns the figure handle, fig.

[fig,image] = snap.snapshot creates a figure according to the properties of the
Simulink.sdi.CustomSnapshot object, snap, with additional options specified by one
or more Name,Value pair arguments. This syntax returns the figure handle, fig, and an
array of image data, image.

5 Simulink Classes

5-434

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'to','figure','props',{'Name','My Data'}

to — Type of snapshot to create
'image' (default) | 'figure' | 'file' | 'clipboard'

Type of snapshot to create.

• 'image' — Create a figure and return the figure handle and an array of image data.
When you specify 'to','image', the fig and image outputs both have value.

• 'figure' — Create a figure and return the figure handle. When you specify
'to','figure' the fig output has value, and the image output is empty.

• 'file' — Save to a PNG file with the name specified by the filename name-value
pair. If you do not specify a filename name-value pair, the file is named plots.png.
When you specify 'to','file', the fig and image outputs are both empty.

• 'clipboard' — Copy the plots to your system clipboard. From the clipboard, you can
paste the image into another program such as Microsoft Word. When you specify
'to','clipboard', the fig and image outputs are both empty.

Example: 'to','file'
Data Types: char | string

filename — Name for image file
'plots.png' (default) | character array | string

Name of the image file to store the snapshot when you specify 'to','file'.
Example: 'filename','MyImage.png'
Data Types: char | string

props — Properties to customize the figure
cell array

 snapshot

5-435

Figure properties, specified as a cell array. You can include settings for the figure
properties described in Figure Properties.
Example: 'props',{'Name','MyData','NumberTitle','off'}
Data Types: char | string

Output Arguments
fig — Figure handle
figure handle

Handle for the figure. When a figure is not created with your specified options, the fig
output is empty.

image — Image data
array

Array of image data. The image output has value when you use
Simulink.sdi.snapshot without any input arguments or without a to name-value pair
and when you specify 'to','image'.

Examples
Copy View Settings to a Run

This example shows how to copy the view settings for aligned signals from one run to
another.

Simulate Your Model and get Run Object

Simulate the vdp model to create a run of data to visualize.

load_system('vdp')
set_param('vdp','SaveFormat','Dataset','SaveOutput','on')
sim('vdp')

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
run = Simulink.sdi.getRun(runID);

5 Simulink Classes

5-436

Modify View Settings for Signals

Use the Simulink.sdi.Run object to access the signals in the run. Then, modify the
signals' view settings, and plot them in the Simulation Data Inspector. Open the
Simulation Data Inspector and use Simulink.sdi.snapshot to view the results.

sig1 = run.getSignalByIndex(1);
sig2 = run.getSignalByIndex(2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = '-.';

sig2.LineColor = [1 0 0];
sig2.LineDashed = ':';

Capture a Snapshot from the Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the
Simulink.sdi.snapshot function to programmatically capture a snapshot of the
contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
snap.plotOnSubPlot(1,1,sig1,true)
snap.plotOnSubPlot(2,1,sig2,true)

fig = Simulink.sdi.snapshot("from","custom","to","figure","settings",snap);

 snapshot

5-437

Copy the View Settings to a New Simulation Run

Simulate the model again, with a different Mu value. Then, visualize the new run by
copying the view settings from the first run. Specify the plot input as true to plot the
signals from the new run.

set_param('vdp/Mu','Gain','5')
sim('vdp')

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,true);

5 Simulink Classes

5-438

Capture a Snapshot of the New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new
simulation run. First, clear the signals from the subplots. Then, plot the signals from the
new run and capture another snapshot.

snap.clearSignals
snap.YRange = {[-2.25 2.25],[-8 8]};
snap.plotOnSubPlot(1,1,sigIDs(2),true)
snap.plotOnSubPlot(2,1,sigIDs(1),true)

fig = snap.snapshot("to","figure");

 snapshot

5-439

See Also
Figure Properties | Simulink.sdi.CustomSnapshot | Simulink.sdi.snapshot |
clearSignals | plotOnSubPlot

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2018a

5 Simulink Classes

5-440

Simulink.sdi.DatasetRef class
Package: Simulink.sdi

Access data in Simulation Data Inspector repository

Description
The Simulink.sdi.DatasetRef class provides access to data in the Simulation Data
Inspector repository without loading the entire set of data into memory. The class is
compatible with the Simulink.SimulationData.DatasetRef class.

Construction
dsr_array = Simulink.sdi.DatasetRef constructs an array containing a
Simulink.sdi.DatasetRef object for each run in the Simulation Data Inspector.

dsr_array = Simulink.sdi.DatasetRef(domain) creates an array containing a
Simulink.sdi.DatasetRef object for each run, with the contents of each run limited
to the selected domain.

dsr = Simulink.sdi.DatasetRef(runID) creates a Simulink.sdi.DatasetRef
object of the run corresponding to the run identifier, runID.

dsr = Simulink.sdi.DatasetRef(runID, domain) creates a
Simulink.sdi.DatasetRef object of the run corresponding to runID with the contents
specified by domain.

dsr = Simulink.sdi.DatasetRef(runID, domain, repositoryPath) creates a
Simulink.sdi.DatsetRef object of the run corresponding to runID including the
contents specified by domain from a repository path specified by repositoryPath.

Input Arguments
domain — Specify contents of Simulink.sdi.DatasetRef objects
'signals' | 'outports' | []

 Simulink.sdi.DatasetRef class

5-441

Limits the contents included in the Simulink.sdi.DatasetRef object.

• 'signals' includes only logged signals.
• 'outports' includes only logged outports.
• [] includes all run data.

runID — Run identifier
integer

Specifies the run containing the data for the Simulink.sdi.DatasetRef object.

repositoryPath — Path containing the run
string | character vector

Specifies the location of the run containing the data for the Simulink.sdi.DatasetRef
object.

Properties
Name — Run name
character vector

The name of the run that corresponds with the Simulink.sdi.DatasetRef object.
Example: 'Run 1'

Run — Simulink.sdi.Run object
Simulink.sdi.Run object

Simulink.sdi.Run object associated with the Simulink.sdi.DatasetRef object.

numElements — Number of top-level elements in run
Simulink.sdi.Run object

Number of top-level elements in the Simulink.sdi.Run object associated with the
Simulink.sdi.DatasetRef object.

5 Simulink Classes

5-442

Methods
compare Compare runs with DatasetRef objects
getAsDatastore Retrieve element as sdidatastore object
getElement Retrieve DatasetRef element by index
getElementNames Get character vectors of element names
getSignal Return Signal object
plot Open the Simulation Data Inspector to view and compare data

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by
comparing two runs of the ex_sldemo_absbrake system with different desired slip
ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

 Simulink.sdi.DatasetRef class

5-443

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell array
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

See Also
Simulink.SimulationData.DatasetRef | Simulink.sdi.Run |
Simulink.sdi.WorkerRun | Simulink.sdi.WorkerRun.getDatasetRef

5 Simulink Classes

5-444

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 Simulink.sdi.DatasetRef class

5-445

compare
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Compare runs with DatasetRef objects

Syntax
[matches, mismatches, results] = dsrObj.compare(other)

Description
[matches, mismatches, results] = dsrObj.compare(other) returns the
number of matches, number of mismatches, and comparison results for a comparison of
data in a Simulink.sdi.DatasetRef object. The comparison results are returned as a
Simulink.sdi.DiffRunResult object.

Input Arguments
other — Comparison data
MAT-file | variable

Comparison data, which can come from another Simulink.sdi.DatasetRef object, a
Dataset in the workspace, or a MAT-file.
Example: 'data.mat'
Example: var

Output Arguments
matches — Number of matching signals
integer

5 Simulink Classes

5-446

Number of signals that matched within tolerance in the comparison.

mismatches — Number of mismatched signals
integer

Number of signals that did not match within tolerance in the comparison.

results — Simulink.sdi.DiffRunResult object with comparison results
Simulink.sdi.DiffRunResult object

Results of the comparison, returned in a Simulink.sdi.DiffRunResult object.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by
comparing two runs of the ex_sldemo_absbrake system with different desired slip
ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell array
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

 compare

5-447

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Alternatives
Using the Simulation Data Inspector API, you could create runs for the data you want to
compare and use Simulink.sdi.compareRuns for the comparison. You can also view
runs created from simulation, import data to runs, and compare runs with the Simulation
Data Inspector UI.

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.DiffRunResult | Simulink.sdi.Run
| Simulink.sdi.compareRuns | Simulink.sdi.compareSignals |
Simulink.sdi.view

5 Simulink Classes

5-448

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”

Introduced in R2017b

 compare

5-449

getAsDatastore
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Retrieve element as sdidatastore object

Syntax
[elementDatastore, name, index] = SDIDatasetRef.getAsDatastore(arg)

Description
[elementDatastore, name, index] = SDIDatasetRef.getAsDatastore(arg)
returns the requested element as a matlab.io.datastore.sdidatastoreobject,
along with the element name and index.

Input Arguments
arg — Element selection criterion
integer | character vector

Search criterion used to retrieve the element from the
Simulink.sdi.DatasetRefobject. For name-based searches, specify arg as a
character vector. For index-based searches, arg is an integer, representing the index of
the desired element.
Example: 'MySignal'
Example: 3

Output Arguments
elementDatastore — Element as sdidatastore
sdidatastore object

5 Simulink Classes

5-450

Element as matlab.io.datastore.sdidatastore object.

name — Element name
character vector

The name of the element.

index — Element index in DatasetRef object
integer

The index of the element in the Simulink.sdi.DatasetRef object.

Examples
Create an sdidatastore Object for a Signal

This example shows how to create a sdidatastore object for a signal in a
Simulink.sdi.DatasetRef object.

% Simulate model sldemo_fuelsys to create a run of logged signals
sim('sldemo_fuelsys')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names =

 15x1 cell array

 {'EGO Fault Switch:1' }
 {'air_fuel_ratio' }

 getAsDatastore

5-451

 {'Engine Speed Fault Switch:1' }
 {'speed' }
 {'MAP Fault Switch:1' }
 {'map' }
 {'ego' }
 {'Throttle Angle Fault Switch:1'}
 {'throttle' }
 {'fuel' }
 {'ego_sw' }
 {'engine_speed' }
 {'speed_sw' }
 {'map_sw' }
 {'throttle_sw' }

% Get sdidatastore object for fuel signal
fuel_ds = run_DSRef.getAsDatastore(10);

Alternatives
You can construct a sdidatastore object for a specified signal using
matlab.io.datastore.sdidatastore.

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.DatasetRef.getElement |
matlab.io.datastore.SimulationDatastore |
matlab.io.datastore.sdidatastore

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-452

getElement
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Retrieve DatasetRef element by index

Syntax
[element, name, index] = SDIdatasetRef.getElement(index)

Description
[element, name, index] = SDIdatasetRef.getElement(index) returns the
element within the Run in the Simulink.sdi.DatasetRef object at the specified
index.

Input Arguments
index — Index of element
integer

Location of the element in the Simulink.sdi.DatasetRef object.

Output Arguments
element — Run element in the DatasetRef object
signal

Element from the run in the Simulink.sdi.DatasetRef object.

name — Element name
character vector

Name of the element retrieved from the Simulink.sdi.DatasetRef object.

 getElement

5-453

index — Location of element
integer

Location of the element within the Simulink.sdi.DatasetRef object.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by
comparing two runs of the ex_sldemo_absbrake system with different desired slip
ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell array
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]

5 Simulink Classes

5-454

 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.DatasetRef.getElementNames |
Simulink.sdi.DatasetRef.getSignal

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 getElement

5-455

getElementNames
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Get character vectors of element names

Syntax
names = dsrObj.getElementNames

Description
names = dsrObj.getElementNames returns a cell array of character vectors
containing the names of the elements in dsrObj.

Output Arguments
names — Element names
cell array

Names of the top level elements in the Simulink.sdi.DatasetRef object in a cell
array.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by
comparing two runs of the ex_sldemo_absbrake system with different desired slip
ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')

5 Simulink Classes

5-456

sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell array
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

 getElementNames

5-457

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

See Also
Simulink.SimulationData.DatasetRef | Simulink.sdi.DatasetRef |
Simulink.sdi.DatasetRef.getElement | Simulink.sdi.DatasetRef.getSignal

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-458

getSignal
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Return Signal object

Syntax
sigObj = SDIDatasetRef.getSignal(searchArg)

Description
sigObj = SDIDatasetRef.getSignal(searchArg) returns the
Simulink.sdi.Signal object corresponding to the search argument, searchArg.

Input Arguments
searchArg — Search parameter
character vector | integer

The search parameters to select the Simulink.sdi.Signal object. The searchArg can
be a character vector or string targeting a signal name or an integer for an index-based
search.
Example: 'throttle'
Example: 2

Output Arguments
sigObj — Simulink.sdi.Signal object
Simulink.sdi.Signal object

The Simulink.sdi.Signal object corresponding to the search query.

 getSignal

5-459

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by
comparing two runs of the ex_sldemo_absbrake system with different desired slip
ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell array
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal

5 Simulink Classes

5-460

slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Alternatives
If the signal is a top-level element in the Simulink.sdi.DatasetRef object, you can
use the Simulink.sdi.DatasetRef.getElement method to get the
Simulink.sdi.Signal object by index.

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.DatasetRef.getElement |
Simulink.sdi.getSignal

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 getSignal

5-461

plot
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Open the Simulation Data Inspector to view and compare data

Syntax
SDIDatasetRef.plot

Description
SDIDatasetRef.plot opens the Simulation Data Inspector, where you can view and
compare runs and signals.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by
comparing two runs of the ex_sldemo_absbrake system with different desired slip
ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

5 Simulink Classes

5-462

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell array
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

 plot

5-463

Alternatives
You can use the Simulink.sdi.view function to open the Simulation Data Inspector.
For information on using the UI to open the Simulation Data Inspector, see “View Data
with the Simulation Data Inspector”.

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.Signal.plotOnSubPlot |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-464

Simulink.sdi.DiffRunResult class
Package: Simulink.sdi

Access run comparison metadata

Description
The Simulink.sdi.DiffRunResult class provides access to the run comparison
metadata. You can use the getSignalByIndex method to access the data and
comparison results for each signal in the run comparison.

Construction
DiffRunResultObj = Simulink.sdi.compareRuns(runID1, runID2) returns a
Simulink.sdi.DiffRunResult object to provide access to the comparison results from
comparing the runs corresponding to runID1 and runID2.

Input Arguments
runID1 — Baseline run identifier
integer

Numeric run identifier for the Baseline run in the comparison.

runID2 — Compare to run identifier
integer

Numeric identifier for the Compare to run in the comparison.

Properties
RunID1 — Baseline signal run ID
integer

Run identifier for the Baseline signal of the comparison.

 Simulink.sdi.DiffRunResult class

5-465

RunID2 — Compare to signal run ID
integer

Run identifier for the Compare to signal of the comparison.

MatlabVersion — Version used
character vector

Version of MATLAB used.

DateCreated — Object creation date
datetime

Date and time the Simulink.sdi.DiffRunResult object was created.
Data Types: datetime

Count — Number of signals compared
integer

Number of signals aligned between the two runs in the comparison. For more information
on how signals are aligned for comparisons, see “How the Simulation Data Inspector
Compares Data”.

Methods
getResultByIndex Return signal comparison result

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Analyze Simulation Data with Signal Tolerances

You can change tolerance values on a signal-by-signal basis to evaluate the effect of a
model parameter change. This example uses the slexAircraftExample model and the

5 Simulink Classes

5-466

Simulation Data Inspector to evaluate the effect of changing the time constant for the
low-pass filter following the control input.

Setup

Load the model, and mark the q, rad/sec and alpha, rad signals for logging. Then,
simulate the model to create the baseline run.

% Load example model
load_system('slexAircraftExample')

% Mark the q, rad/sec and alpha, rad signals for logging
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate system
sim('slexAircraftExample')

Modify Model Parameter

Modify the model parameter Ts in the model workspace to change the time constant of
the input low-pass filter.

% Change input filter time constant
modelWorkspace = get_param('slexAircraftExample','modelworkspace');
modelWorkspace.assignin('Ts',1)

% Simulate again
sim('slexAircraftExample')

Compare Runs and Inspect Results

Use the Simulink.sdi.compareRuns function to compare the data from the
simulations. Then, inspect the match property of the signal result to see whether the
signals fell within the default tolerance of 0.

% Get run data
runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

% Compare runs
diffRun1 = Simulink.sdi.compareRuns(runID1,runID2);

% Get signal result

 Simulink.sdi.DiffRunResult class

5-467

sig1Result1 = diffRun1.getResultByIndex(1);
sig2Result1 = diffRun1.getResultByIndex(2);

% Check whether signals matched
sig1Result1.Match

ans = logical
 0

sig2Result1.Match

ans = logical
 0

Compare Runs with Signal Tolerances

The signals did not match within the default tolerance of 0. To further analyze the effect
of the time constant change, add signal tolerances to the comparison with the baseline
signal properties to determine the tolerance required for a pass. This example uses a
combination of time and absolute tolerances.

% Get signal object for sigID1
run1 = Simulink.sdi.getRun(runID1);
sigID1 = run1.getSignalIDByIndex(1);
sigID2 = run1.getSignalIDByIndex(2);

sig1 = Simulink.sdi.getSignal(sigID1);
sig2 = Simulink.sdi.getSignal(sigID2);

% Set tolerances for q, rad/sec
sig1.AbsTol = 0.1;
sig1.TimeTol = 0.6;

% Set tolerances for alpha, rad
sig2.AbsTol = 0.2;
sig2.TimeTol = 0.8;

% Run the comparison again
diffRun2 = Simulink.sdi.compareRuns(runID1,runID2);
sig1Result2 = diffRun2.getResultByIndex(1);
sig2Result2 = diffRun2.getResultByIndex(2);

5 Simulink Classes

5-468

% Check the result
sig1Result2.Match

ans = logical
 1

sig2Result2.Match

ans = logical
 1

Alternatives
You can view and inspect comparison results using the Simulation Data Inspector UI. For
more information, see “Compare Simulation Data”.

See Also
Simulink.sdi.DatasetRef.compare | Simulink.sdi.DiffSignalResult |
Simulink.sdi.compareRuns | Simulink.sdi.compareSignals

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”

Introduced in R2012b

 Simulink.sdi.DiffRunResult class

5-469

getResultByIndex
Class: Simulink.sdi.DiffRunResult
Package: Simulink.sdi

Return signal comparison result

Syntax
diffSigObj = diffRunObj.getResultByIndex(index)

Description
diffSigObj = diffRunObj.getResultByIndex(index) returns the
Simulink.sdi.DiffSignalResult object diffSigObj corresponding to the index in
the Simulink.sdi.DiffRunResult object, diffRunObj.

Input Arguments
index — Index of signal in run
integer

Index of the signal in the Simulink.sdi.DiffRunResult object.

Output Arguments
diffSigObj — Simulink.sdi.DiffSignalResult object corresponding to the index
Simulink.sdi.DiffSignalResult object

Simulink.sdi.DiffSignalResult object for the signal at the specified index.

5 Simulink Classes

5-470

Examples
Analyze Simulation Data with Signal Tolerances

You can change tolerance values on a signal-by-signal basis to evaluate the effect of a
model parameter change. This example uses the slexAircraftExample model and the
Simulation Data Inspector to evaluate the effect of changing the time constant for the
low-pass filter following the control input.

Setup

Load the model, and mark the q, rad/sec and alpha, rad signals for logging. Then,
simulate the model to create the baseline run.

% Load example model
load_system('slexAircraftExample')

% Mark the q, rad/sec and alpha, rad signals for logging
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate system
sim('slexAircraftExample')

Modify Model Parameter

Modify the model parameter Ts in the model workspace to change the time constant of
the input low-pass filter.

% Change input filter time constant
modelWorkspace = get_param('slexAircraftExample','modelworkspace');
modelWorkspace.assignin('Ts',1)

% Simulate again
sim('slexAircraftExample')

Compare Runs and Inspect Results

Use the Simulink.sdi.compareRuns function to compare the data from the
simulations. Then, inspect the match property of the signal result to see whether the
signals fell within the default tolerance of 0.

% Get run data
runIDs = Simulink.sdi.getAllRunIDs;

 getResultByIndex

5-471

runID1 = runIDs(end - 1);
runID2 = runIDs(end);

% Compare runs
diffRun1 = Simulink.sdi.compareRuns(runID1,runID2);

% Get signal result
sig1Result1 = diffRun1.getResultByIndex(1);
sig2Result1 = diffRun1.getResultByIndex(2);

% Check whether signals matched
sig1Result1.Match

ans = logical
 0

sig2Result1.Match

ans = logical
 0

Compare Runs with Signal Tolerances

The signals did not match within the default tolerance of 0. To further analyze the effect
of the time constant change, add signal tolerances to the comparison with the baseline
signal properties to determine the tolerance required for a pass. This example uses a
combination of time and absolute tolerances.

% Get signal object for sigID1
run1 = Simulink.sdi.getRun(runID1);
sigID1 = run1.getSignalIDByIndex(1);
sigID2 = run1.getSignalIDByIndex(2);

sig1 = Simulink.sdi.getSignal(sigID1);
sig2 = Simulink.sdi.getSignal(sigID2);

% Set tolerances for q, rad/sec
sig1.AbsTol = 0.1;
sig1.TimeTol = 0.6;

% Set tolerances for alpha, rad
sig2.AbsTol = 0.2;
sig2.TimeTol = 0.8;

5 Simulink Classes

5-472

% Run the comparison again
diffRun2 = Simulink.sdi.compareRuns(runID1,runID2);
sig1Result2 = diffRun2.getResultByIndex(1);
sig2Result2 = diffRun2.getResultByIndex(2);

% Check the result
sig1Result2.Match

ans = logical
 1

sig2Result2.Match

ans = logical
 1

Alternatives
You can inspect comparison results using the Simulation Data Inspector UI. For more
information, see “Compare Simulation Data”.

See Also
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2012b

 getResultByIndex

5-473

Simulink.sdi.DiffSignalResult class
Package: Simulink.sdi

Access signal comparison results

Description
The Simulink.sdi.DiffSignalResult object provides access to the data and
metadata created by a signal comparison. A Simulink.sdi.DiffSignalResult object
gives access the difference signal, tolerance data, and the synchronized signal data.

Construction
DiffSignalObj = Simulink.sdi.compareSignals(signalID1,
signalID2)creates a Simulink.sdi.DiffSignalResult object to provide access to
the results of the comparison of the signals corresponding to sigID1 and sigID2.

DiffSignalObj = DiffRunObj.getResultByIndex(index) returns a
Simulink.sdi.DiffSignalResult object for the signal comparison corresponding to
the index within a Simulink.sdi.DiffRunResult object.

Input Arguments
signalID1 — Signal identifier for Baseline signal
integer

Numeric signal identifier for the Baseline signal in comparison.

signalID2 — Signal identifier for Compare to signal
integer

Numeric signal identifier for the Compare to signal in comparison

index — Index of signal in run
integer

5 Simulink Classes

5-474

Index of the signal within the run.

Properties
Diff — Difference signal
timeseries

Difference signal resulting from the comparison as a timeseries object.

Match — Logical indicator of signal match
logical

Logical indicator of whether comparison signals match within the tolerances.

• 0 indicates that the difference between the signals is not within tolerance.
• 1 indicates that the difference between the signals is within tolerance.

UnitsMatch — Logical indicator of unit match
logical

Logical indicator of whether comparison signals' units match. Comparisons of signals with
units that do not match are always marked out of tolerance, and no difference signal is
computed.

• 0 indicates that the signals' units do not match.
• 1 indicates that the signals' units match.

MaxDifference — Maximum difference
double

Maximum difference between the two comparison signals.

SignalID1 — Baseline signal identifier
integer

Unique signal identifier for the Baseline comparison signal.

SignalID2 — Compare to signal identifier
integer

Unique signal identifier for the Compare to comparison signal.

 Simulink.sdi.DiffSignalResult class

5-475

Sync1 — Synchronized Baseline signal
timeseries

Synchronized Baseline signal. For more information about synchronization, see “How the
Simulation Data Inspector Compares Data”.

Sync2 — Synchronized Compare to signal
timeseries

Synchronized Compare to signal. For more information about synchronization, see “How
the Simulation Data Inspector Compares Data”.

Tol — Tolerance signal
timeseries

Tolerance data for every data point of the comparison. For more information on how the
tolerance signal is computed, see “How the Simulation Data Inspector Compares Data”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Compare Signals Within a Simulation Run

This example uses the slexAircraftExample model to demonstrate the comparison of
the input and output signals for a control system. The example marks the signals for
streaming then gets the run object for a simulation run. Signal IDs from the run object
specify the signals to be compared.

% Load model slexAircraftExample and mark signals for streaming
load_system('slexAircraftExample')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate model slexAircraftExample
sim('slexAircraftExample')

5 Simulink Classes

5-476

% Get run IDs for most recent run
allIDs = Simulink.sdi.getAllRunIDs;
runID = allIDs(end);

% Get Run object
run = Simulink.sdi.getRun(runID);

% Get signal IDs
signalID1 = run.getSignalIDByIndex(1);
signalID2 = run.getSignalIDByIndex(2);

if (run.isValidSignalID(signalID1))
 % Change signal tolerance
 signal1 = Simulink.sdi.getSignal(signalID1);
 signal1.AbsTol = 0.1;
end

if (run.isValidSignalID(signalID1) && run.isValidSignalID(signalID2))
 % Compare signals
 diff = Simulink.sdi.compareSignals(signalID1,signalID2);

 % Check whether signals match within tolerance
 match = diff.match
end

match = logical
 0

Alternatives
You can view and inspect comparison results using the Simulation Data Inspector UI. For
more information, see “Compare Simulation Data”.

See Also
Simulink.sdi.DiffRunResult |
Simulink.sdi.DiffRunResult.getResultByIndex | Simulink.sdi.compareRuns
| Simulink.sdi.compareSignals

 Simulink.sdi.DiffSignalResult class

5-477

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”

Introduced in R2012b

5 Simulink Classes

5-478

Simulink.sdi.Run class
Package: Simulink.sdi

Access run signals and metadata

Description
The Simulink.sdi.Run object manages a run's metadata and the signals that comprise
the run. You can use several methods to retrieve Simulink.sdi.Signal objects to
access the signal data and metadata.

Construction
runObj = Simulink.sdi.Run.create creates an empty Simulink.sdi.Run object.

runObj = Simulink.sdi.getRun(runID) creates a Simulink.sdi.Runobject,
runObj, for the run corresponding to runID.

You can also use the Simulink.sdi.createRun and
Simulink.sdi.createRunOrAddToStreamedRun functions to create Run objects.

Input Arguments
runID — Run identifier
integer

Unique number identifying the run.

Properties
id — Run identifier
integer

Unique numerical identification for the run.

 Simulink.sdi.Run class

5-479

Name — Run name
[] (default) | character vector

Name of the run. By default, name is empty.
Example: 'Run 1'

Description — Run description
[] (default) | character vector

Description of the run. By default, Description is empty.
Example: 'Initial simulation'

Tag — Information tag
[] (default) | character vector

Tag for additional run information. By default, Tag is empty. You can use the Tag
parameter to categorize your simulation data or attach extra information to simulation
runs.
Example: 'Gain = 2'

DateCreated — Run creation time
datetime object

Date and time the run was created.
Data Types: datetime

SignalCount — Number of signals in run
integer

Number of signals contained in the run.

Model — Model that created the run
character vector

Name of the model that created the run.

SimMode — Simulation mode
character vector

Simulation mode used to create the run, for runs created by simulation.

5 Simulink Classes

5-480

StartTime — Run start time
integer

First time point shared by all signals in the run.

StopTime — Run stop time
integer

Last time point shared by all signals in the run.

SLVersion — Simulink version used to create run
character vector

Version of Simulink used for the simulation that created the run.

ModelVersion — Model version used to create run
character vector

Version of the model simulated to create the run, taken from the Model Properties.

UserID — System account
character vector

System account used for the simulation that created the run. UserID only has a value for
runs produced with Simulink simulations.

MachineName — Name of machine used for simulation
character vector

Name of the machine used for the simulation that created the run. MachineName only
has a value for runs produced with Simulink simulations.

TaskName — Task name
[] (default) | character vector

Name of the simulation task that created the run for runs created with Parallel
Computing Toolbox workers.

SolverType — Type of solver used to create run
'Variable-Step' | 'Fixed-Step'

The type of solver used for the simulation that created the run. SolverType only has a
value for runs produced with Simulink simulations.

 Simulink.sdi.Run class

5-481

SolverName — Name of solver used to create run
character vector

Name of the solver used for the simulation that created the run. SolverName only has a
value for runs produced with Simulink simulations.
Example: ode45

ModelInitializationTime — Time to initialize model
double

Amount of time to initialize the model for the simulation that created the run.
ModelInitializationTime only has a value for runs produced with Simulink
simulations.

ModelExecutionTime — Time to execute model
double

Execution time of the model simulation that created the run. ModelExecutionTime only
has a value for runs produced with Simulink simulations.

ModelTerminationTime — Time to terminate simulation
double

Time to terminate the simulation that created the run. ModelTerminationTime only has
a value for runs produced with Simulink simulations.

ModelTotalElapsedTime — Total simulation time
double

Total time to run model simulation that created the run. ModelTotalElapsedTime only
has a value for runs produced with Simulink simulations.

5 Simulink Classes

5-482

Methods
add Add signals to run
create Create a Simulink.sdi.Run object
export Export run to Simulink.SimulationData.Dataset object
getDatasetRef Create a Simulink.sdi.DatasetRef object for a run
getSignalByIndex Get Simulink.sdi.Signal object by index
getSignalIDByIndex Return signal ID for signal at index
isValidSignalID Determine whether signal ID is valid within a run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Plot Signals from a Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a run
created by logging signals to the Simulation Data Inspector. From the
Simulink.sdi.Run object you can get Simulink.sdi.Signal objects that you can use
to view data.

% Simulate model sldemo_absbrake to create a run
sim('sldemo_fuelsys')

% Get runID for the run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get run object for the run
run = Simulink.sdi.getRun(runID);

% Check signal count of the run
run.signalCount

 Simulink.sdi.Run class

5-483

ans = int32
 15

% Get signal objects for the signals in the run
signal1 = run.getSignalByIndex(4);
signal2 = run.getSignalByIndex(9);
signal3 = run.getSignalByIndex(10);

% Create subplot layout to display signals
Simulink.sdi.setSubPlotLayout(3, 1)

% Plot signals
signal1.checked = true;
signal2.plotOnSubPlot(2, 1, true);
signal3.plotOnSubPlot(3, 1, true);

% View plots in the Simulation Data Inspector
Simulink.sdi.view

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the
Simulation Data Inspector.

Create Data for the Run

This example creates timeseries objects for a sine and a cosine. To visualize your data,
the Simulation Data Inspector requires at least a time vector that corresponds with your
data.

% Generate timeseries data
time = linspace(0, 20, 100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals, time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'Cosine, T=8';

5 Simulink Classes

5-484

Create a Simulation Data Inspector Run and Add Your Data

To give the Simulation Data Inspector access to your data, use the create method and
create a run. This example modifies some of the run's properties to help identify the data.
You can easily view run and signal properties with the Simulation Data Inspector.

% Create a run
run = Simulink.sdi.Run.create;
run.Name = 'Sinusoids';
run.Description = 'Sine and cosine signals with different frequencies';

% Add timeseries data to run
run.add('vars', sine_ts, cos_ts);

Plot Your Data Using the Simulink.sdi.Signal Object

The getSignalByIndex method returns a Simulink.sdi.Signal object that can be
used to plot the signal in the Simulation Data Inspector. You can also programmatically
control aspects of the plot's appearance, such as the color and style of the line
representing the signal. This example customizes the subplot layout and signal
characteristics.

% Get signal, modify its properties, and change Checked property to true
sine_sig = run.getSignalByIndex(1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';
sine_sig.Checked = true;

% Add another subplot for the cosine signal
Simulink.sdi.setSubPlotLayout(2, 1);

% Plot the cosine signal and customize its appearance
cos_sig = run.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.plotOnSubPlot(2, 1, true);

% View the signal in the Simulation Data Inspector
Simulink.sdi.view

 Simulink.sdi.Run class

5-485

Close the Simulation Data Inspector and Save Your Data

Simulink.sdi.close('sinusoids.mat')

Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)

5 Simulink Classes

5-486

 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the
Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7

 Simulink.sdi.Run class

5-487

 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);

5 Simulink Classes

5-488

 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

Simulink.sdi.cleanupWorkerResources

Alternatives
You can view runs and their properties in the Simulation Data Inspector UI. You can also
import data to create runs in the Simulation Data Inspector GUI. For more information,
see “View Data with the Simulation Data Inspector”.

See Also
Simulink.sdi.Signal | Simulink.sdi.WorkerRun |
Simulink.sdi.WorkerRun.getLocalRun | Simulink.sdi.addToRun |
Simulink.sdi.createRun | Simulink.sdi.getRun |
Simulink.sdi.getRunIDByIndex | Simulink.sdi.setRunNamingRule

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2012b

 Simulink.sdi.Run class

5-489

add
Class: Simulink.sdi.Run
Package: Simulink.sdi

Add signals to run

Syntax
run.add(sig)
run.add(source, filename)
run.add(source, ts1, ts2)

Description
run.add(sig) adds the data sig to the Simulink.sdi.Run object run from the base
workspace.

run.add(source, filename) adds the data in the file filename to the
Simulink.sdi.Run object, run.

run.add(source, ts1, ts2) allows you to add multiple signals to the run from the
base workspace.

Input Arguments
sig — Data to add

Signals to add to the run. Data types that you can add to a run include:

• timeseries
• Simulink.SimulationData.Dataset
• Simulink.SimulationOutput
• timetable

5 Simulink Classes

5-490

• Data logged with Structure with time format
• Simscape variables

source — Data source selector
'file' | 'vars'

Source of the data to add to the run, specified as a character vector.

• 'file' indicates that the data comes from a file.
• 'vars' indicates that the data comes from one or more variables in the workspace.

filename — File containing data
character vector

File with data to add to the run.
Example: 'data.mat'

ts1, ts2 — Workspace variables to add to run
timeseries

Data to add to the run in one or more timeseries objects.

Examples
Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the
Simulation Data Inspector.

Create Data for the Run

This example creates timeseries objects for a sine and a cosine. To visualize your data,
the Simulation Data Inspector requires at least a time vector that corresponds with your
data.

% Generate timeseries data
time = linspace(0, 20, 100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals, time);

 add

5-491

sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'Cosine, T=8';

Create a Simulation Data Inspector Run and Add Your Data

To give the Simulation Data Inspector access to your data, use the create method and
create a run. This example modifies some of the run's properties to help identify the data.
You can easily view run and signal properties with the Simulation Data Inspector.

% Create a run
run = Simulink.sdi.Run.create;
run.Name = 'Sinusoids';
run.Description = 'Sine and cosine signals with different frequencies';

% Add timeseries data to run
run.add('vars', sine_ts, cos_ts);

Plot Your Data Using the Simulink.sdi.Signal Object

The getSignalByIndex method returns a Simulink.sdi.Signal object that can be
used to plot the signal in the Simulation Data Inspector. You can also programmatically
control aspects of the plot's appearance, such as the color and style of the line
representing the signal. This example customizes the subplot layout and signal
characteristics.

% Get signal, modify its properties, and change Checked property to true
sine_sig = run.getSignalByIndex(1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';
sine_sig.Checked = true;

% Add another subplot for the cosine signal
Simulink.sdi.setSubPlotLayout(2, 1);

% Plot the cosine signal and customize its appearance
cos_sig = run.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.plotOnSubPlot(2, 1, true);

% View the signal in the Simulation Data Inspector
Simulink.sdi.view

5 Simulink Classes

5-492

Close the Simulation Data Inspector and Save Your Data

Simulink.sdi.close('sinusoids.mat')

See Also
Simulink.sdi.Run | Simulink.sdi.Run.create | Simulink.sdi.addToRun |
Simulink.sdi.createRunOrAddToStreamedRun

Topics
“View Data with the Simulation Data Inspector”

Introduced in R2017b

 add

5-493

Simulink.sdi.Run.create
Class: Simulink.sdi.Run
Package: Simulink.sdi

Create a Simulink.sdi.Run object

Syntax
runObj = Simulink.sdi.Run.create

Description
runObj = Simulink.sdi.Run.create creates the empty run object, runObj. You can
add signals to the Run object with the Simulink.sdi.Run.add method or the
Simulink.sdi.addToRun function. For more information on the Simulink.sdi.Run
object and its properties, see Simulink.sdi.Run.

Output Arguments
runObj — Simulink.sdi.Run object
Simulink.sdi.Run object

Empty Simulink.sdi.Run object.

Examples
Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the
Simulation Data Inspector.

5 Simulink Classes

5-494

Create Data for the Run

This example creates timeseries objects for a sine and a cosine. To visualize your data,
the Simulation Data Inspector requires at least a time vector that corresponds with your
data.

% Generate timeseries data
time = linspace(0, 20, 100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals, time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'Cosine, T=8';

Create a Simulation Data Inspector Run and Add Your Data

To give the Simulation Data Inspector access to your data, use the create method and
create a run. This example modifies some of the run's properties to help identify the data.
You can easily view run and signal properties with the Simulation Data Inspector.

% Create a run
run = Simulink.sdi.Run.create;
run.Name = 'Sinusoids';
run.Description = 'Sine and cosine signals with different frequencies';

% Add timeseries data to run
run.add('vars', sine_ts, cos_ts);

Plot Your Data Using the Simulink.sdi.Signal Object

The getSignalByIndex method returns a Simulink.sdi.Signal object that can be
used to plot the signal in the Simulation Data Inspector. You can also programmatically
control aspects of the plot's appearance, such as the color and style of the line
representing the signal. This example customizes the subplot layout and signal
characteristics.

% Get signal, modify its properties, and change Checked property to true
sine_sig = run.getSignalByIndex(1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';
sine_sig.Checked = true;

 Simulink.sdi.Run.create

5-495

% Add another subplot for the cosine signal
Simulink.sdi.setSubPlotLayout(2, 1);

% Plot the cosine signal and customize its appearance
cos_sig = run.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.plotOnSubPlot(2, 1, true);

% View the signal in the Simulation Data Inspector
Simulink.sdi.view

Close the Simulation Data Inspector and Save Your Data

Simulink.sdi.close('sinusoids.mat')

See Also
Simulink.sdi.Run | Simulink.sdi.Run.add | Simulink.sdi.createRun |
Simulink.sdi.createRunOrAddToStreamedRun

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-496

export
Class: Simulink.sdi.Run
Package: Simulink.sdi

Export run to Simulink.SimulationData.Dataset object

Syntax
ds = runObj.export

Description
ds = runObj.export exports the Simulink.sdi.Run object runObj to the
Simulink.SimulationData.Dataset, ds.

Output Arguments
ds — Simulink.SimulationData.Dataset object containing run data
Simulink.SimulationData.Dataset object

Simulink.SimulationData.Dataset object containing the run data.

Examples
Export Run Data

This example shows how to export data from a run in the Simulation Data Inspector to a
Simulink.SimulationData.Dataset object in the base workspace you can use to
further process your data. The method you choose to export your run depends on the
processing you do in your script. If you have a run object for the run, you can use the
export method to create a Simulink.SimulationData.Dataset object with the run's
data in the base workspace. If you do not have a run object, use the
Simulink.sdi.exportRun function to export the run to the workspace.

 export

5-497

Export Run Using Simulink.sdi.exportRun

Use the Simulink.sdi.export function when your workflow does not include creating
a run object.

% Load vdp model
load_system('vdp')

% Get handles for signal lines in model
SignalHandles = get_param('vdp', 'Lines');

% Mark signals for streaming
Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

% Simulate vdp model
sim('vdp')

% Get run ID for simulation run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Export run
simDataset = Simulink.sdi.exportRun(runID);

Export Run Using export Method

When you already have a Simulink.sdi.Run object for your run, you can use the
export method to create a Simulink.SimulationData.Dataset object in the base
workspace for further processing of the data.

% Load vdp model
load_system('vdp')

% Get handles for signal lines in model
SignalHandles = get_param('vdp', 'Lines');

% Mark signals for streaming
Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

% Simulate model vdp and get run object
sim('vdp')

% Get run object for simulation run

5 Simulink Classes

5-498

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
run = Simulink.sdi.getRun(runID);

% Get signal ids for signals
sigID1 = run.getSignalIDByIndex(1);
sigID2 = run.getSignalIDByIndex(2);

% Compare signals
diffResult = Simulink.sdi.compareSignals(sigID1,sigID2);
diffResult.match

ans = logical
 0

% Export run
simDataset = run.export;

Alternatives
You can export run data programmatically using the Simulink.sdi.exportRun
function, or you can use the Simulation Data Inspector UI. For more information, see
“Save and Share Simulation Data Inspector Data and Views”.

See Also
Simulink.sdi.Run | Simulink.sdi.exportRun | Simulink.sdi.getRun |
Simulink.sdi.report

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

Introduced in R2017b

 export

5-499

getDatasetRef
Class: Simulink.sdi.Run
Package: Simulink.sdi

Create a Simulink.sdi.DatasetRef object for a run

Syntax
DatasetRef = runObj.getDatasetRef

Description
DatasetRef = runObj.getDatasetRef creates a Simulink.sdi.DatasetRef
object with the data in the Simulink.sdi.Run object, runObj.

Output Arguments
DatasetRef — Simulink.sdi.DatasetRef object
Simulink.sdi.DatasetRef object

Simulink.sdi.DatasetRef object that provides access to the run data.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by
comparing two runs of the ex_sldemo_absbrake system with different desired slip
ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

5 Simulink Classes

5-500

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = run.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell array
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

 getDatasetRef

5-501

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Alternatives
You can also create a Simulink.sdi.DatasetRef object using the
Simulink.sdi.DatasetRef constructor.

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.Run

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-502

getSignalByIndex
Class: Simulink.sdi.Run
Package: Simulink.sdi

Get Simulink.sdi.Signal object by index

Syntax
signal = runObj.getSignalByIndex(index)

Description
signal = runObj.getSignalByIndex(index) returns a signal object for the signal
at the specified index within the Simulink.sdi.Run object, runObj.

Input Arguments
index — Signal index
integer

Index of the signal within the run.

Output Arguments
signal — Simulink.sdi.Signal object
Simulink.sdi.Signal object

Simulink.sdi.Signal object for the signal at the specified index in the run.

 getSignalByIndex

5-503

Examples
Plot Signals from a Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a run
created by logging signals to the Simulation Data Inspector. From the
Simulink.sdi.Run object you can get Simulink.sdi.Signal objects that you can use
to view data.

% Simulate model sldemo_absbrake to create a run
sim('sldemo_fuelsys')

% Get runID for the run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get run object for the run
run = Simulink.sdi.getRun(runID);

% Check signal count of the run
run.signalCount

ans = int32
 15

% Get signal objects for the signals in the run
signal1 = run.getSignalByIndex(4);
signal2 = run.getSignalByIndex(9);
signal3 = run.getSignalByIndex(10);

% Create subplot layout to display signals
Simulink.sdi.setSubPlotLayout(3, 1)

% Plot signals
signal1.checked = true;
signal2.plotOnSubPlot(2, 1, true);
signal3.plotOnSubPlot(3, 1, true);

% View plots in the Simulation Data Inspector
Simulink.sdi.view

5 Simulink Classes

5-504

Alternatives
You can access signal properties, view signals, and export data to the workspace using
the Simulation Data Inspector UI. For more information, see “Organize Your Simulation
Data Inspector Workspace”.

See Also
Simulink.sdi.Run | Simulink.sdi.Run.getSignalIDByIndex |
Simulink.sdi.Run.isValidSignalID | Simulink.sdi.Signal |
Simulink.sdi.getSignal

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2012b

 getSignalByIndex

5-505

getSignalIDByIndex
Class: Simulink.sdi.Run
Package: Simulink.sdi

Return signal ID for signal at index

Syntax
signalID = runObj.getSignalIDByIndex(index)

Description
signalID = runObj.getSignalIDByIndex(index) returns the signal ID for the
signal at the specified index in the Simulink.sdi.Run object. You can use the signal ID
to create a Simulink.sdi.Signal object or to perform a signal comparison with
Simulink.sdi.compareSignals.

Input Arguments
index — Signal index
integer

Index of the signal within the run.

Output Arguments
signalID — Signal identifier
integer

Unique numeric signal identifier.

5 Simulink Classes

5-506

Examples
Compare Signals Within a Simulation Run

This example uses the slexAircraftExample model to demonstrate the comparison of
the input and output signals for a control system. The example marks the signals for
streaming then gets the run object for a simulation run. Signal IDs from the run object
specify the signals to be compared.

% Load model slexAircraftExample and mark signals for streaming
load_system('slexAircraftExample')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate model slexAircraftExample
sim('slexAircraftExample')

% Get run IDs for most recent run
allIDs = Simulink.sdi.getAllRunIDs;
runID = allIDs(end);

% Get Run object
run = Simulink.sdi.getRun(runID);

% Get signal IDs
signalID1 = run.getSignalIDByIndex(1);
signalID2 = run.getSignalIDByIndex(2);

if (run.isValidSignalID(signalID1))
 % Change signal tolerance
 signal1 = Simulink.sdi.getSignal(signalID1);
 signal1.AbsTol = 0.1;
end

if (run.isValidSignalID(signalID1) && run.isValidSignalID(signalID2))
 % Compare signals
 diff = Simulink.sdi.compareSignals(signalID1,signalID2);

 % Check whether signals match within tolerance
 match = diff.match
end

 getSignalIDByIndex

5-507

match = logical
 0

Alternatives
You can access signal properties, view signals, and export data to the workspace using
the Simulation Data Inspector UI. For more information, see “Organize Your Simulation
Data Inspector Workspace”.

See Also
Simulink.sdi.Run | Simulink.sdi.Run.getSignalByIndex |
Simulink.sdi.Run.isValidSignalID | Simulink.sdi.Signal |
Simulink.sdi.compareSignals | Simulink.sdi.getSignal

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2012b

5 Simulink Classes

5-508

isValidSignalID
Class: Simulink.sdi.Run
Package: Simulink.sdi

Determine whether signal ID is valid within a run

Syntax
isValid = runObj.isValidSignalID(signalID)

Description
isValid = runObj.isValidSignalID(signalID) returns a logical indication of
whether the signalID corresponds to a signal in the Simulink.sdi.Run object
runObj.

Input Arguments
signalID — Signal identifier
integer

Unique numeric signal identifier.

Output Arguments
isValid — Logical indicator
logical

Logical indicator of signal ID validity.

• true when the signalID corresponds to a signal in the run object.
• false when the signalID does not correspond to a signal in the run object.

 isValidSignalID

5-509

Examples
Compare Signals Within a Simulation Run

This example uses the slexAircraftExample model to demonstrate the comparison of
the input and output signals for a control system. The example marks the signals for
streaming then gets the run object for a simulation run. Signal IDs from the run object
specify the signals to be compared.

% Load model slexAircraftExample and mark signals for streaming
load_system('slexAircraftExample')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate model slexAircraftExample
sim('slexAircraftExample')

% Get run IDs for most recent run
allIDs = Simulink.sdi.getAllRunIDs;
runID = allIDs(end);

% Get Run object
run = Simulink.sdi.getRun(runID);

% Get signal IDs
signalID1 = run.getSignalIDByIndex(1);
signalID2 = run.getSignalIDByIndex(2);

if (run.isValidSignalID(signalID1))
 % Change signal tolerance
 signal1 = Simulink.sdi.getSignal(signalID1);
 signal1.AbsTol = 0.1;
end

if (run.isValidSignalID(signalID1) && run.isValidSignalID(signalID2))
 % Compare signals
 diff = Simulink.sdi.compareSignals(signalID1,signalID2);

 % Check whether signals match within tolerance
 match = diff.match
end

5 Simulink Classes

5-510

match = logical
 0

See Also
Simulink.sdi.Run | Simulink.sdi.Run.getSignalIDByIndex |
Simulink.sdi.Signal | Simulink.sdi.compareSignals

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2012b

 isValidSignalID

5-511

Simulink.sdi.Signal class
Package: Simulink.sdi

Access signal data and metadata

Description
A Simulink.sdi.Signal object provides access to signal data and metadata. The
metadata includes properties for visualizing and comparing signals.

Construction
signal = Simulink.sdi.getSignal(signalID) returns a Simulink.sdi.Signal
object corresponding to the signalID.

signal = runObj.getSignal(signalID) returns a Simulink.sdi.Signal object
corresponding to the signalID.

signal = runObj.getSignalByIndex(index) returns a Simulink.sdi.Signal
object corresponding to the signalID at the index specified by index in the Run object
runObj.

Input Arguments
signalID — Signal identifier
integer

Numeric signal identifier for the signal generated by the Simulation Data Inspector. You
can get the signal ID for a signal using methods of the Simulink.sdi.Run object or
using the Simulink.sdi.getSignal function.

index — Signal index within run
integer

Index of the signal within the run.

5 Simulink Classes

5-512

Example: 1

Properties
Signal Properties (read only)

ID — Signal identifier
integer

Unique number identifying the signal.
Example: 1330

RunID — Run identifier
integer

Run identifier for the run that contains the signal.
Example: 1402

Name — Signal name
character vector

Name of the signal.
Example: 'fuel'

Units — Signal measurement units
character vector

Signal units of measure.
Example: 'g/s'

Data Type — Data type for signal data
character vector

Data type of signal data.
Example: 'double'

Complexity — Complexity of signal data
character vector

 Simulink.sdi.Signal class

5-513

Specifies whether signal data is real or complex.
Example: 'real'

SampleTime — Signal sample time
character vector

Signal sample time. A value of 'Continuous' indicates a variable-step simulation.
Example: 'Continuous'
Example: 0.1

Model — Name of model that produced signal
character vector

Name of the model that produced the signal.
Example: 'sldemo_fuelsys'

BlockPath — Path of block that defines signal
character vector

The path to the block that produced the signal.
Example: 'sldemo_fuelsys/Engine Gas Dynamics'

FullBlockPath — Path of the block that defines the signal
character vector

Path to the block that generates the signal including the full model hierarchy. For signals
within reference models, FullBlockPath is a cell array containing the full path. For
other signals, FullBlockPath is identical to BlockPath.
Example: 'sldemo_fuelsys/Engine Gas Dynamics/Mixing & Combustion/
MinMax'

PortIndex — Block port index
integer

Index of the output port that defines the signal.
Example: 1

Dimensions — Dimensions of matrix containing signal
integer array

5 Simulink Classes

5-514

Dimensions of the matrix that contains the signal.
Example: [1]

Channel — Index of signal within matrix
integer array

Indices of the signal for signals that are part of a vector or matrix.

Values — Signal values
timeseries

Time and data values for the signal. For buses, Values is a struct.

RootSource — High-level logging structure containing signal imported from
workspace
character vector

Name of the high-level logging structure containing the signal for signals imported from
the MATLAB workspace.

TimeSource — Source of signal time data imported from workspace
character vector

Name of the variable containing the signal time data for signals imported from the
MATLAB workspace.

DataSource — Source of data imported from workspace
character vector

Name of the array containing the signal data for signals imported from the MATLAB
workspace.

Visualization Properties

ComplexFormat — Display format for complex signals
"real-imaginary" | "magnitude" | "magnitude-phase" | "phase"

Complex format specifying how to display complex signal data in the Simulation Data
Inspector.

• "real-imaginary" — The real and imaginary components of the signal display
together when you plot the signal. The imaginary component of the signal is plotted
with a different shade of the Line Color.

 Simulink.sdi.Signal class

5-515

• "magnitude" — The magnitude of the signal displays when you plot the signal.
• "magnitude-phase" — The magnitude and phase of the signal display together

when you plot the signal.
• "phase" — The phase of the signal displays when you plot the signal. The phase is

plotted with a different shade of the Line Color.

Data Types: char | string

Checked — Plotting indicator
false (default) | true

Logical value indicating whether the signal is plotted on any subplot. Setting Checked to
false clears the signal from all subplots. Setting Checked to true plots the signal on
the active subplot.
Data Types: logical

LineColor — Signal line color
1-by-3 vector

Color of signal in plots, specified as a 1-by-3 RGB vector.
Example: [0 114 189]
Data Types: double

LineDashed — Signal line style
'-' | '--' | ':' | '-.'

Signal line style.

• '-' specifies a solid line style.
• '--' specifies a dashed line style.
• ':' specifies a dotted line style.
• '-.' specifies a dash-dot line style.

InterpMethod — Interpolation method
'linear' (default) | 'zoh'

Interpolation method used in data visualization and synchronization. 'zoh' specifies
zero-order hold, and 'linear' specifies linear interpolation. For more information about
the interpolation options, see “How the Simulation Data Inspector Compares Data”.

5 Simulink Classes

5-516

Comparison Properties

AbsTol — Absolute tolerance
0 (default) | double

Positive-valued absolute tolerance of the signal used for signal comparisons. The
Simulation Data Inspector uses tolerances specified in the signal properties of the
baseline signal when Override Global Tol is set to yes. For more information about
tolerances in the Simulation Data Inspector, see “How the Simulation Data Inspector
Compares Data”.
Example: 0.1
Data Types: double

RelTol — Relative tolerance
0 (default) | double

Positive-valued relative tolerance for the signal used for signal comparisons. The
Simulation Data Inspector uses tolerances specified in the signal properties of the
baseline signal when Override Global Tol is set to yes. The relative tolerance is
expressed as a fractional multiplier. For example, 0.1 specifies a 10 percent tolerance.
For more information about tolerances in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data”.
Example: 0.05
Data Types: double

TimeTol — Time tolerance
0 (default) | double

Positive-valued time tolerance for the signal used in signal comparisons. The Simulation
Data Inspector uses tolerances specified in the signal properties of the baseline signal
when Override Global Tol is set to yes. Specify the time tolerance in seconds. For more
information about tolerances in the Simulation Data Inspector, see “How the Simulation
Data Inspector Compares Data”.
Example: 0.1
Data Types: double

SyncMethod — Synchronization method
'union' (default) | 'intersection'

 Simulink.sdi.Signal class

5-517

Method used to synchronize signal time data for comparison. For more information about
the synchronization options, see “How the Simulation Data Inspector Compares Data”.

Methods
convertUnits Convert signal units
export Export signal object to MATLAB timeseries
getAsTall Return tall timetable with time and data values
plotOnSubPlot Plot signal on specified sub-plot

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Analyze Simulation Data with Signal Tolerances

You can change tolerance values on a signal-by-signal basis to evaluate the effect of a
model parameter change. This example uses the slexAircraftExample model and the
Simulation Data Inspector to evaluate the effect of changing the time constant for the
low-pass filter following the control input.

Setup

Load the model, and mark the q, rad/sec and alpha, rad signals for logging. Then,
simulate the model to create the baseline run.

% Load example model
load_system('slexAircraftExample')

% Mark the q, rad/sec and alpha, rad signals for logging
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

5 Simulink Classes

5-518

% Simulate system
sim('slexAircraftExample')

Modify Model Parameter

Modify the model parameter Ts in the model workspace to change the time constant of
the input low-pass filter.

% Change input filter time constant
modelWorkspace = get_param('slexAircraftExample','modelworkspace');
modelWorkspace.assignin('Ts',1)

% Simulate again
sim('slexAircraftExample')

Compare Runs and Inspect Results

Use the Simulink.sdi.compareRuns function to compare the data from the
simulations. Then, inspect the match property of the signal result to see whether the
signals fell within the default tolerance of 0.

% Get run data
runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

% Compare runs
diffRun1 = Simulink.sdi.compareRuns(runID1,runID2);

% Get signal result
sig1Result1 = diffRun1.getResultByIndex(1);
sig2Result1 = diffRun1.getResultByIndex(2);

% Check whether signals matched
sig1Result1.Match

ans = logical
 0

sig2Result1.Match

ans = logical
 0

 Simulink.sdi.Signal class

5-519

Compare Runs with Signal Tolerances

The signals did not match within the default tolerance of 0. To further analyze the effect
of the time constant change, add signal tolerances to the comparison with the baseline
signal properties to determine the tolerance required for a pass. This example uses a
combination of time and absolute tolerances.

% Get signal object for sigID1
run1 = Simulink.sdi.getRun(runID1);
sigID1 = run1.getSignalIDByIndex(1);
sigID2 = run1.getSignalIDByIndex(2);

sig1 = Simulink.sdi.getSignal(sigID1);
sig2 = Simulink.sdi.getSignal(sigID2);

% Set tolerances for q, rad/sec
sig1.AbsTol = 0.1;
sig1.TimeTol = 0.6;

% Set tolerances for alpha, rad
sig2.AbsTol = 0.2;
sig2.TimeTol = 0.8;

% Run the comparison again
diffRun2 = Simulink.sdi.compareRuns(runID1,runID2);
sig1Result2 = diffRun2.getResultByIndex(1);
sig2Result2 = diffRun2.getResultByIndex(2);

% Check the result
sig1Result2.Match

ans = logical
 1

sig2Result2.Match

ans = logical
 1

Define Comparison and Visualization Properties for a Signal

This example shows how to obtain a Simulink.sdi.Signal object and modify its
properties using the Simulation Data Inspector programmatic interface.

5 Simulink Classes

5-520

Acquire a Simulink.sdi.Signal Object

First, run a simulation to create a run. This example uses example model
slexAircraftExample. Then, use the Simulation Data Inspector programmatic
interface to get the Simulink.sdi.Signal object for your signal of interest.

% Configure model "slexAircraftExample" for logging and simulate
simOut = sim('slexAircraftExample','SaveOutput','on',...
 'SaveFormat','StructureWithTime');

% Use Simulink.sdi.createRun to create a run and return the list of signal IDs for signals
% contained in the run
[~,~,signalIDs] = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Get the signal object corresponding to the first signal ID
signalObj = Simulink.sdi.getSignal(signalIDs(1));

Modify the Signal Properties

The Simulink.sdi.Signal object has several comparison and visualization properties
that you can modify.

% Define comparison and visualization properties for this signal
signalObj.syncMethod = 'intersection';
signalObj.lineColor = [1,0.4,0.6];
signalObj.lineDashed = '-';
signalObj.checked = true;

View the Signal Properties

You can view the signal properties in the command window and in the Simulation Data
Inspector to verify that the signal has its properties defined how you want them.

signalObj

signalObj =
 Signal with properties:

 ID: 129887
 RunID: 129876
 Name: 'Integrate:CSTATE'
 Units: ''
 DataType: 'double'
 Complexity: "real"
 ComplexFormat: "real-imaginary"

 Simulink.sdi.Signal class

5-521

 SampleTime: ''
 Model: 'slexAircraftExample'
 BlockPath: 'slexAircraftExample/Aircraft...'
 FullBlockPath: 'slexAircraftExample/Aircraft Dynamics Model/Vertical Channel/Integrate'
 PortIndex: 0
 Dimensions: 1
 Channel: [1x0 int32]
 Checked: 1
 LineColor: [1 0.4000 0.6000]
 LineDashed: '-'
 InterpMethod: 'linear'
 AbsTol: 0
 RelTol: 0
 TimeTol: 0
 SyncMethod: 'intersection'
 Values: [1x1 timeseries]
 RootSource: 'simOut.get('xout')'
 TimeSource: 'simOut.get('xout').time'
 DataSource: 'simOut.get('xout').signals(1).values'

Simulink.sdi.view

Compare Signals Within a Simulation Run

This example uses the slexAircraftExample model to demonstrate the comparison of
the input and output signals for a control system. The example marks the signals for
streaming then gets the run object for a simulation run. Signal IDs from the run object
specify the signals to be compared.

% Load model slexAircraftExample and mark signals for streaming
load_system('slexAircraftExample')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate model slexAircraftExample
sim('slexAircraftExample')

% Get run IDs for most recent run
allIDs = Simulink.sdi.getAllRunIDs;
runID = allIDs(end);

% Get Run object
run = Simulink.sdi.getRun(runID);

5 Simulink Classes

5-522

% Get signal IDs
signalID1 = run.getSignalIDByIndex(1);
signalID2 = run.getSignalIDByIndex(2);

if (run.isValidSignalID(signalID1))
 % Change signal tolerance
 signal1 = Simulink.sdi.getSignal(signalID1);
 signal1.AbsTol = 0.1;
end

if (run.isValidSignalID(signalID1) && run.isValidSignalID(signalID2))
 % Compare signals
 diff = Simulink.sdi.compareSignals(signalID1,signalID2);

 % Check whether signals match within tolerance
 match = diff.match
end

match = logical
 0

Plot Signals from a Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a run
created by logging signals to the Simulation Data Inspector. From the
Simulink.sdi.Run object you can get Simulink.sdi.Signal objects that you can use
to view data.

% Simulate model sldemo_absbrake to create a run
sim('sldemo_fuelsys')

% Get runID for the run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get run object for the run
run = Simulink.sdi.getRun(runID);

% Check signal count of the run
run.signalCount

ans = int32
 15

 Simulink.sdi.Signal class

5-523

% Get signal objects for the signals in the run
signal1 = run.getSignalByIndex(4);
signal2 = run.getSignalByIndex(9);
signal3 = run.getSignalByIndex(10);

% Create subplot layout to display signals
Simulink.sdi.setSubPlotLayout(3, 1)

% Plot signals
signal1.checked = true;
signal2.plotOnSubPlot(2, 1, true);
signal3.plotOnSubPlot(3, 1, true);

% View plots in the Simulation Data Inspector
Simulink.sdi.view

Alternatives
Use the Simulation Data Inspector UI to view and modify signals and signal properties.

See Also
Simulink.sdi.DatasetRef.getSignal | Simulink.sdi.Run |
Simulink.sdi.Run.getSignalByIndex |
Simulink.sdi.Run.getSignalIDByIndex | Simulink.sdi.createRun |
Simulink.sdi.getSignal

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”

Introduced in R2012b

5 Simulink Classes

5-524

convertUnits
Class: Simulink.sdi.Signal
Package: Simulink.sdi

Convert signal units

Syntax
signal.convertUnits(units)

Description
signal.convertUnits(units) converts the units of signal to the units specified by
units. For a list of acceptable units, see Allowed Units. You can use
Simulink.sdi.Signal.convertUnits to convert the units on
Simulink.sdi.Signal objects with data of all built-in and fixed-point types.

Input Arguments
units — Desired signal units
string | character vector

Desired units for the signal.
Example: 'm'
Example: "ft/s"
Data Types: char | string

 convertUnits

5-525

matlab:showunitslist

Examples
Programmatically Convert Signal Units

This example shows how to use the convertUnits method to convert the units of a
Simulink.sdi.Signal object, using the model sldemo_autotrans.

Generate Simulation Data

Simulate the model to create a run of data. Then, use the Simulation Data Inspector
programmatic interface to get the run data.

% Simulate the model
sim('sldemo_autotrans')

% Get a Simulink.sdi.Run object for the most recently created run
ids = Simulink.sdi.getAllRunIDs;
id = ids(end);
run = Simulink.sdi.getRun(id);

Inspect the Signal Properties

Get a Simulink.sdi.Signal object for the EngineRPM signal and inspect its properties
to determine the units.

% Get Simulink.sdi.Signal object
signal = run.getSignalByIndex(1)

signal =
 Signal with properties:

 ID: 150831
 RunID: 150867
 Name: 'EngineRPM'
 Units: 'rpm'
 DataType: 'double'
 Complexity: "real"
 ComplexFormat: "real-imaginary"
 SampleTime: '0.04'
 Model: 'sldemo_autotrans'
 BlockPath: 'sldemo_autotrans/Engine'
 FullBlockPath: 'sldemo_autotrans/Engine'
 PortIndex: 1
 Dimensions: 1

5 Simulink Classes

5-526

 Channel: [1x0 int32]
 Checked: 0
 LineColor: [0.3920 0.8310 0.0750]
 LineDashed: '-'
 InterpMethod: 'linear'
 AbsTol: 0
 RelTol: 0
 TimeTol: 0
 SyncMethod: 'union'
 Values: [1x1 timeseries]
 RootSource: ''
 TimeSource: ''
 DataSource: ''

Convert Signal Units

Use the convertUnits method to convert the EngineRPM signal units to rad/s. Then,
change the signal name to reflect the new units.

% Convert units
signal.convertUnits('rad/s')

signal.Name = 'Engine,rad/s';

See Also
Simulink.sdi.Signal

Topics
“Inspect and Compare Data Programmatically”
“Unit Specification in Simulink Models”
“Units in Simulink”

Introduced in R2018a

 convertUnits

5-527

export
Class: Simulink.sdi.Signal
Package: Simulink.sdi

Export signal object to MATLAB timeseries

Syntax
ts = sigObj.export
ts = sigObj.export(startTime, endTime)

Description
ts = sigObj.export exports the Simulink.sdi.Signal object sigObj to the
timeseries ts in the MATLAB workspace.

ts = sigObj.export(startTime, endTime) exports the portion of the
Simulink.sdi.Signal object defined by startTime and endTime to the timeseries ts
in the MATLAB workspace.

Input Arguments
startTime — Export start time
integer

Start time for the signal portion to export.
Example: 0
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

endTime — Export end time
integer

End time for the signal portion to export.

5 Simulink Classes

5-528

Example: 10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
ts — Exported timeseries
timeseries

Timeseries exported from Simulink.sdi.Signal object.

Examples
Export Signal Data to Timeseries

This example shows how to generate a signal and export the signal data to a timeseries.

% Simulate model sldemo_fuelsys to create a run of logged signals
sim('sldemo_fuelsys');

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Get a signal
signal = run.getSignalByIndex(2);

% Export signal data to timeseries
ts = signal.export;

Alternatives
You can export data to MATLAB or a MAT-file from the Simulation Data Inspector UI. For
more information, see “Save and Share Simulation Data Inspector Data and Views”.

 export

5-529

See Also
Simulink.sdi.Signal | Simulink.sdi.exportRun

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

Introduced in R2017b

5 Simulink Classes

5-530

getAsTall
Class: Simulink.sdi.Signal
Package: Simulink.sdi

Return tall timetable with time and data values

Syntax
tt = sigObj.getAsTall

Description
tt = sigObj.getAsTall returns a tall timetable of the time and data values in the
Simulink.sdi.Signal object sigObj. For more information on working with tall arrays, see
“Tall Arrays” (MATLAB).

Output Arguments
tt — Tall timetable
tall timetable

Tall timetable containing the data from the Simulink.sdi.Signal object.

Examples
Get Tall Timetable of Signal Data

This example shows how to generate a tall timetable from signal data in a
Simulink.sdi.Signal object.

% Simulate the model sldemo_fuelsys to create a run of logged signals
sim('sldemo_fuelsys');

 getAsTall

5-531

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
run = Simulink.sdi.getRun(runID);

% Get a signal
signal = run.getSignalByIndex(2);

% Get tall timetable of signal
tt = signal.getAsTall

tt =

 Mx1 tall timetable

 Time Data
 ______________ ________

 0 sec 0.068493
 0.00056199 sec 0.092452
 0.0033719 sec 0.21101
 0.01 sec 0.48273
 0.02 sec 0.88522
 0.03 sec 1.2763
 0.04 sec 1.6563
 0.05 sec 2.0255
 : :
 : :

See Also
Simulink.sdi.Signal | Simulink.sdi.Signal.export |
Simulink.sdi.exportRun | tall

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-532

plotOnSubPlot
Class: Simulink.sdi.Signal
Package: Simulink.sdi

Plot signal on specified sub-plot

Syntax
signalObj.plotOnSubplot(r, c, checked)

Description
signalObj.plotOnSubplot(r, c, checked) plots or clears the signal corresponding
to the Simulink.sdi.Signal object, sigObj, on the sub-plot specified by r and c.

Input Arguments
r — Row index
scalar

Row index for the sub-plot.
Example: 1

c — Column index
scalar

Column index for the sub-plot.
Example: 2

checked — Signal checked parameter state
true | false

Desired state for signal on sub-plot.

 plotOnSubPlot

5-533

• true plots the signal on the sub-plot.
• false clears the signal from the sub-plot.

Data Types: logical

Examples
Plot Signals from a Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a run
created by logging signals to the Simulation Data Inspector. From the
Simulink.sdi.Run object you can get Simulink.sdi.Signal objects that you can use
to view data.

% Simulate model sldemo_absbrake to create a run
sim('sldemo_fuelsys')

% Get runID for the run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get run object for the run
run = Simulink.sdi.getRun(runID);

% Check signal count of the run
run.signalCount

ans = int32
 15

% Get signal objects for the signals in the run
signal1 = run.getSignalByIndex(4);
signal2 = run.getSignalByIndex(9);
signal3 = run.getSignalByIndex(10);

% Create subplot layout to display signals
Simulink.sdi.setSubPlotLayout(3, 1)

% Plot signals
signal1.checked = true;
signal2.plotOnSubPlot(2, 1, true);
signal3.plotOnSubPlot(3, 1, true);

5 Simulink Classes

5-534

% View plots in the Simulation Data Inspector
Simulink.sdi.view

Alternatives
You can use the Simulation Data Inspector GUI to modify your plot layout and where you
plot signals. For more information, see “Inspect Simulation Data”.

See Also
Simulink.sdi.Signal | Simulink.sdi.setSubPlotLayout

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

Introduced in R2017b

 plotOnSubPlot

5-535

Simulink.sdi.WorkerRun class
Package: Simulink.sdi

Access simulation data from parallel workers

Description
The Simulink.sdi.WorkerRun class provides access to run data generated on Parallel
Computing Toolbox parallel workers. Create a Simulink.sdi.WorkerRun object on the
worker, and then use the object to access data in your local MATLAB session.

Construction
workerRun = Simulink.sdi.WorkerRun(runID) creates a
Simulink.sdi.WorkerRun object with the run identifier specified by runID.

workerRun = Simulink.sdi.WorkerRun.getLatest creates a
Simulink.sdi.WorkerRun object of the most recent run.

Input Arguments
runID — Run identifier
integer

Run identifier

Methods
getDataset Create Dataset of worker run data
getDatasetRef Create DatasetRef for worker run
getLatest Create worker run for latest run
getLocalRun Create local run from worker run

5 Simulink Classes

5-536

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 Simulink.sdi.WorkerRun class

5-537

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the
Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

5 Simulink Classes

5-538

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

 Simulink.sdi.WorkerRun class

5-539

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

Simulink.sdi.cleanupWorkerResources

Alternatives
You can also access, view, and analyze simulation data from Parallel Computing Toolbox
workers using the Simulation Data Inspector UI.

See Also
Simulink.sdi.Run

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-540

getDataset
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create Dataset of worker run data

Syntax
dataset = workerRun.getDataset
dataset = workerRun.getDataset(domain)

Description
dataset = workerRun.getDataset returns a
Simulink.SimulationData.Dataset object of the data corresponding to the
Simulink.sdi.WorkerRun object.

dataset = workerRun.getDataset(domain) returns a
Simulink.SimulationData.Dataset object of the data corresponding to the
Simulink.sdi.WorkerRun object limited to the scope specified by domain.

Input Arguments
domain — Scope specifier
'signals' | 'outports'

Scope limiting argument that selects the data to return in the
Simulink.SimulationData.Dataset object.

• 'signals' limits the data returned in the Dataset to signals in the WorkerRun.
• 'outports' limits the data returned in the Dataset to outport data in the

WorkerRun.

 getDataset

5-541

Output Arguments
dataset — Simulink.SimulationData.Dataset object
Simulink.SimulationData.Dataset object

Simulink.SimulationData.Dataset object containing the data from the
Simulink.sdi.WorkerRun object.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log

5 Simulink Classes

5-542

 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the
Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

 getDataset

5-543

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

5 Simulink Classes

5-544

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

Simulink.sdi.cleanupWorkerResources

See Also
Simulink.SimulationData.Dataset | Simulink.sdi.WorkerRun.getDatasetRef
| Simulink.sdi.WorkerRun.getLatest | Simulink.sdi.WorkerRun.getLocalRun

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 getDataset

5-545

getDatasetRef
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create DatasetRef for worker run

Syntax
datasetRef = workerRun.getDatasetRef
datasetRef = workerRun.getDatasetRef(domain)

Description
datasetRef = workerRun.getDatasetRef returns a
Simulink.SimulationData.DatasetRef object referencing the data in the
Simulink.sdi.WorkerRun object, workerRun.

datasetRef = workerRun.getDatasetRef(domain) returns a
Simulink.SimulationData.DatasetRef object referencing the data in the
Simulink.sdi.WorkerRun object, workerRun, limited to the scope specified by
domain.

Input Arguments
domain — Scope limiting input
'signals' | 'outports'

Scope limiting argument that selects the data to reference in the
Simulink.SimulationData.DatasetRef object.

• 'signals' limits the data referenced in the DatasetRef to signals in the
WorkerRun.

• 'outports' limits the data referenced in the DatasetRef to outport data in the
WorkerRun.

5 Simulink Classes

5-546

Output Arguments
datasetRef — Simulink.SimulationData.DatasetRef object
Simulink.sdi.DatasetRef object

Simulink.sdi.DatasetRef object referencing the data in the Parallel Computing
Toolbox worker run.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log

 getDatasetRef

5-547

 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the
Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

5 Simulink Classes

5-548

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

 getDatasetRef

5-549

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

Simulink.sdi.cleanupWorkerResources

See Also
Simulink.SimulationData.DatasetRef | Simulink.sdi.WorkerRun.getDataset
| Simulink.sdi.WorkerRun.getLatest | Simulink.sdi.WorkerRun.getLocalRun

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-550

Simulink.sdi.WorkerRun.getLatest
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create worker run for latest run

Syntax
runObj = Simulink.sdi.WorkerRun.getLatest

Description
runObj = Simulink.sdi.WorkerRun.getLatest creates a
Simulink.sdi.WorkerRun object for the latest run on a Parallel Computing Toolbox
worker.

Output Arguments
runObj — Local Simulink.sdi.Run object
Simulink.sdi.WorkerRun object

Simulink.sdi.WorkerRun object to access the data from the latest Parallel Computing
Toolbox worker run.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

 Simulink.sdi.WorkerRun.getLatest

5-551

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the

5 Simulink Classes

5-552

Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model

 Simulink.sdi.WorkerRun.getLatest

5-553

 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

5 Simulink Classes

5-554

Simulink.sdi.cleanupWorkerResources

See Also
Simulink.sdi.WorkerRun | Simulink.sdi.WorkerRun.getDataset |
Simulink.sdi.WorkerRun.getDatasetRef |
Simulink.sdi.WorkerRun.getLocalRun

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

 Simulink.sdi.WorkerRun.getLatest

5-555

getLocalRun
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create local run from worker run

Syntax
runObj = workerRun.getLocalRun

Description
runObj = workerRun.getLocalRun creates the local Simulink.sdi.Run object
runObj for the Simulink.sdi.WorkerRun object workerRun. Use getLocalRun in
the client MATLAB to access the Simulink.sdi.WorkerRun data.

Output Arguments
runObj — Local Simulink.sdi.Run object
Simulink.sdi.Run object

Local Simulink.sdi.Run object.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with
different input filter time constants and shows several ways to access the data using the
Simulation Data Inspector programmatic interface.

5 Simulink Classes

5-556

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox
support is configured to import runs created on local workers automatically. Then, create
a vector of filter parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already
have one. In an spmd code block, load the slexAircraftExample model and select
signals to log. To avoid data concurrency issues using sim in parfor, create a temporary
directory for each worker to use during simulations.

p = gcp;
spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each
simulation, and modify the value of Ts in the model workspace. Then, run the simulation
and build an array of Simulink.sdi.WorkerRun objects to access the data with the

 getLocalRun

5-557

Simulation Data Inspector. After the parfor loop, use another spmd segment to remove
the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you
can easily post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model

5 Simulink Classes

5-558

 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated
with the WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 5: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the
Simulation Data Inspector API. This example adds a tag indicating the filter time constant
value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you
want to run on your worker pool.

 getLocalRun

5-559

Simulink.sdi.cleanupWorkerResources

See Also
Simulink.sdi.Run | Simulink.sdi.WorkerRun

Topics
“Inspect and Compare Data Programmatically”

Introduced in R2017b

5 Simulink Classes

5-560

Simulink.Signal
Specify attributes of signal

Description
This class enables you to create workspace objects that you can use to assign or validate
the attributes of a signal or discrete state, such as its data type, numeric type,
dimensions, and so on.

You can use a signal object to:

• Assign values to signal attributes that are left unassigned (have a value of -1 or auto)
by the signal source.

• Validate signal attributes whose values are explicitly assigned by the signal source.
Such attributes have values other than -1 or auto. Successful validation guarantees
that the signal has the attributes that you intended it to have.

You can create a Simulink.Signal object in the MATLAB workspace or in a model
workspace.

Use signal objects to assign or validate signal or discrete state attributes by giving the
signal or discrete state the same name as the workspace variable that references the
Simulink.Signal object.

For more information about using signal objects, see “Use Simulink.Signal Objects to
Specify and Control Signal Attributes” and “Data Objects”.

Creation
Create a Simulink.Signal object:

• By using the Model Data Editor. See “For Signals”.
• By using the Model Explorer. See “Create Data Objects from Built-In Data Class

Package Simulink”.

 Simulink.Signal

5-561

• Directly from a signal properties dialog box or the Property Inspector in a model. See
“Create Signal Object from Signal Properties Dialog Box”.

• By using the Simulink.Signal function, described below.

Syntax
signalObj = Simulink.Signal

Description
signalObj = Simulink.Signal returns a Simulink.Signal object with default
property values.

Properties
For information about properties in the property dialog box of a Simulink.Signal
object, see “Property Dialog Box”.

CoderInfo — Specifications for generating code for signal
Simulink.CoderInfo object

Information used by Simulink Coder for generating code for this signal. The value of this
property is an object of Simulink.CoderInfo class.

For more information, see “Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements” (Simulink Coder) and “Choose a Storage Class for Controlling
Data Representation in the Generated Code” (Embedded Coder).

Complexity — Numeric complexity of signal
'auto' (default) | 'real' | 'complex'

Character vector specifying the numeric type of this signal. Valid values are 'auto'
(determined by Simulink), 'real', or 'complex'.
Data Types: char

DataType — Data type of signal
'auto' (default) | character vector

5 Simulink Classes

5-562

Character vector specifying the data type of this signal.

The default value, 'auto', specifies that Simulink should determine the data type. You
can specify a built-in data type (for example, 'uint8' or 'single') or a custom data
type. To specify a custom data type, use a MATLAB expression that specifies the type, (for
example, the name of a Simulink.NumericType object that you create in the base
workspace).

To specify a bus object as the data type for the signal object, use the 'Bus:
<object_name>' syntax. See “Bus Support” for details about what you need to do if you
specify a bus object as the data type.
Example: 'auto'
Example: 'int8'
Example: 'fixdt(1,16,5)'
Example: 'myAliasTypeObject'
Example: 'Enum: myEnumType'
Example: 'Bus: myBusObject'
Data Types: char

Description — Custom description of signal
'' (empty character vector) (default) | character vector

Description of this signal. This field is intended for use in documenting this signal.

This property is used by the Simulink Report Generator and for code generation.

If you have an Embedded Coder license, you can add the signal description as a comment
for the variable declaration in generated code:

• Specify a storage class for the signal object other than Auto.
• On the Code Generation > Comments pane of the model Configuration Parameters

dialog box, select the model configuration parameter Simulink data object
descriptions. For more information, see “Simulink data object descriptions” (Simulink
Coder).

Example: 'This signal represents the rotation speed of the engine.'
Data Types: char

 Simulink.Signal

5-563

Dimensions — Dimensions of signal
-1 (default) | row vector | character vector

Scalar or vector specifying the dimensions of this signal.

Valid values are -1 (the default) specifying any dimensions, N specifying a vector signal of
size N, or [M N] specifying an MxN matrix signal.

To use symbolic dimensions, specify a character vector.
Example: [1 3]
Example: '[1 myDimParam]'
Data Types: double | char

DimensionsMode — Dimension mode of signal
'auto' (default) | 'Fixed' | 'Variable'

Dimensions mode of the signal. Valid values are:

• 'auto'— Allows variable-size and fixed-size signals.
• 'Fixed'—Allows only fixed-size signals. Does not allow variable-size signals.
• 'Variable'—Allows only variable-size signals.

For information about variable-size signals, see “Variable-Size Signal Basics”.

Max — Maximum value of signal
[] (empty) (default) | real double scalar

Maximum value that this signal can have.

The default value is [] (unspecified). Specify a finite, real, double, scalar value.

Note If you specify a bus object as the data type for a signal, do not set the maximum
value for bus data on the signal property dialog box. Simulink ignores this setting.
Instead, set the maximum values for bus elements of the bus object specified as the data
type. For information on the Maximum property of a bus element, see
Simulink.BusElement.

Simulink uses this value in the following ways:

5 Simulink Classes

5-564

• When updating the diagram or starting a simulation, Simulink generates an error if
the initial value of the signal is greater than the maximum value or if the maximum
value is outside the range of the data type of the signal.

• When you enable the Simulation range checking diagnostic, Simulink alerts you
during simulation if the signal value is greater than the maximum value (see
“Simulation range checking”).

Example: 5.32
Data Types: double

Min — Minimum value of signal
[] (empty) (default) | real double scalar

Minimum value that this signal can have.

The default value is [] (unspecified). Specify a finite, real, double, scalar value.

Note If you specify a bus object as the data type for a signal, do not set the minimum
value for bus data on the signal property dialog box. Simulink ignores this setting.
Instead, set the minimum values for bus elements of the bus object specified as the data
type. For information on the Minimum property of a bus element, see
Simulink.BusElement.

Simulink uses this value in the following ways:

• When updating the diagram or starting a simulation, Simulink generates an error if
the signal's initial value is less than the minimum value or if the minimum value is
outside the range for the data type of the signal.

• When you enable the Simulation range checking diagnostic, Simulink alerts you
during simulation if the signal value is less than the minimum value (see “Simulation
range checking”).

Example: -0.92
Data Types: double

InitialValue — Initial value of signal or state
'' (empty character vector) (default) | character vector

Signal or state value before a simulation takes its first time step.

 Simulink.Signal

5-565

You can specify any MATLAB expression, including the name of a workspace variable, that
evaluates to a numeric scalar value or array.

At the command prompt or in a script, even if you use a number, specify the initial value
as a character vector.

mySigObject.InitialValue='5.3';

mySigObject.InitialValue = 'myNumericVariable';

To specify an initial value for a signal that uses a numeric data type other than double,
cast the initial value to the signal data type. For example, you can specify
'single(73.3)' to use 73.3 as the initial value for a signal of data type single.

If you use a bus object as the data type for the signal object, set InitialValue to a
character vector containing either 0 or a MATLAB structure that matches the bus object.
See “Bus Support” for details.

If the initial value evaluates to a MATLAB structure, then in the Configuration
Parameters dialog box, set “Underspecified initialization detection” to Simplified.

If necessary, Simulink converts the initial value to ensure type, complexity, and dimension
consistency with the corresponding block parameter value. If you specify an invalid value
or expression, an error message appears when you update the model. Also, Simulink
performs range checking of the initial value. The software alerts you when the initial
value of the signal lies outside a range that corresponds to its specified minimum and
maximum values and data type.

Classic initialization mode: In this mode, initial value settings for signal objects that
represent the following signals and states override the corresponding block parameter
initial values if undefined (specified as []):

• Output signals of conditionally executed subsystems and Merge blocks
• Block states

Simplified initialization mode: In this mode, initial values of signal objects associated
with the following blocks are ignored. The initial values of the corresponding blocks are
used instead.

• Outport blocks of conditionally executed subsystems
• Merge blocks

Example: '15.23'

5 Simulink Classes

5-566

Example: 'myInitParam'
Data Types: char

SampleTime — Sample time of signal
-1 (default) | double scalar or array

Rate at which this signal should be updated.

See “Specify Sample Time” for details.
Example: 0.001
Example: 2
Data Types: double

Unit — Physical unit of signal value
'' (default) | valid unit

Physical unit used for expressing this signal value (for example, inches).

For more information, see “Unit Specification in Simulink Models”.
Example: 'degC'
Data Types: char

Examples

Simulink.Signal Examples
For examples that show how to use Simulink.Signal objects, see “Use Simulink.Signal
Objects to Specify and Control Signal Attributes” and “Data Objects”.

See Also
AUTOSAR.Signal | Simulink.CoderInfo | Simulink.Parameter

Topics
“Determine Where to Store Variables and Objects for Simulink Models”

 Simulink.Signal

5-567

“Control Signal Data Types”
“Apply Storage Classes to Individual Signal, State, and Parameter Data Elements”
(Simulink Coder)
“Define Data Classes”
“Signal Basics”
“Data Objects”
“Data Types Supported by Simulink”
“MPT Data Object Properties” (Embedded Coder)

Introduced before R2006a

5 Simulink Classes

5-568

Simulink.SimulationData.BlockPath
Fully specified Simulink block path

Description
Simulink creates block path objects when creating dataset objects for signal logging and
data store logging. Simulink.SimulationData.Signal and
Simulink.SimulationData.DataStoreMemory objects include block path objects.

You can create a block path that you can use with the
Simulink.SimulationData.Dataset.getElement method to access a specific
dataset element. If you want to create a dataset in MATLAB to use as a baseline to
compare against a signal logging or data store logging dataset, then you need to create
the block paths as part of that dataset.

The Simulink.SimulationData.BlockPath class is very similar to the
Simulink.BlockPath class.

You do not have to have Simulink installed to use the
Simulink.SimulationData.BlockPath class. However, you must have Simulink
installed to use the Simulink.BlockPath class. If you have Simulink installed, consider
using Simulink.BlockPath instead of Simulink.SimulationData.BlockPath,
because the Simulink.BlockPath class includes a method for checking the validity of
block path objects without you having to update the model diagram.

Property Summary
Name Description
SubPath on page 5-183 Individual component within the block specified by the

block path

 Simulink.SimulationData.BlockPath

5-569

Method Summary
Name Description
BlockPath on page 5-183 Create a block path.
convertToCell on page
5-186

Convert a block path to a cell array of character vectors.

getBlock on page 5-187 Get a single block path in the model reference hierarchy.
getLength on page 5-188 Get the length of the block path.

Properties
SubPath

Represents an individual component within the block specified by the block path.

For example, if the block path refers to a Stateflow chart, you can use SubPath to
indicate the chart signals. For example:

Block Path:
 'sf_car/shift_logic'

 SubPath:
 'gear_state.first'

character vector

RW

Methods
BlockPath

Create block path

5 Simulink Classes

5-570

blockpath_object = Simulink.SimulationData.BlockPath()
blockpath_object = Simulink.SimulationData.BlockPath(blockpath)
blockpath_object = Simulink.SimulationData.BlockPath(paths)
blockpath_object = Simulink.SimulationData.BlockPath(paths, subpath)

blockpath
The block path object that you want to copy.

paths
A character vector or cell array of character vectors that Simulink uses to build the
block path.

Specify each character vector in order, from the top model to the specific block for
which you are creating a block path.

Each character vector must be a path to a block within the Simulink model. The block
must be:

• A block in a single model
• A Model block (except for the last character vector, which may be a block other

than a Model block)
• A block that is in a model that is referenced by a Model block that is specified in

the previous character vector

subpath
A character vector that represents an individual component within a block.

blockpath_object
The block path that you create.

blockpath_object = Simulink.SimulationData.BlockPath() creates an empty
block path.

blockpath_object = Simulink.SimulationData.BlockPath(blockpath)
creates a copy of the block path of the block path object that you specify with the
source_blockpath argument.

 Simulink.SimulationData.BlockPath

5-571

blockpath = Simulink.SimulationData.BlockPath(paths) creates a block path
from the character vector or cell array of character vectors that you specify with the
paths argument. Each character vector represents a path at a level of model hierarchy.

blockpath = Simulink.SimulationData.BlockPath(paths, subpath) creates a
block path from the character vector or cell array of character vectors that you specify
with the paths argument and creates a path for the individual component (for example, a
signal) of the block.

Create a block path object called bp1, using a cell array of character vectors representing
elements of the block path.

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})

The resulting block path reflects the model reference hierarchy for the block path.

bp1 =

 Simulink.BlockPath
 Package: Simulink

 Block Path:
 'sldemo_mdlref_depgraph/thermostat'
 'sldemo_mdlref_heater/Fahrenheit to Celsius'
 'sldemo_mdlref_F2C/Gain1

convertToCell

Convert block path to cell array of character vectors

cellarray = Simulink.SimulationData.BlockPath.convertToCell()

cellarray
The cell array of character vectors representing the elements of the block path.

5 Simulink Classes

5-572

cellarray = Simulink.SimulationData.BlockPath.convertToCell() converts
a block path to a cell array of character vectors.

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})
cellarray_for_bp1 = bp1.convertToCell()

The result is a cell array representing the elements of the block path.

cellarray_for_bp1 =

 'sldemo_mdlref_depgraph/thermostat'
 'sldemo_mdlref_heater/Fahrenheit to Celsius'
 'sldemo_mdlref_F2C/Gain1'

getBlock

Get single block path in model reference hierarchy

block = Simulink.SimulationData.BlockPath.getBlock(index)

index
The index of the block for which you want to get the block path. The index reflects the
level in the model reference hierarchy. An index of 1 represents a block in the top-
level model, an index of 2 represents a block in a model referenced by the block of
index 1, and an index of n represents a block that the block with index n-1
references.

block
The block representing the level in the model reference hierarchy specified by the
index argument.

blockpath = Simulink.SimulationData.BlockPath.getBlock(index) returns
the block path of the block specified by the index argument.

 Simulink.SimulationData.BlockPath

5-573

Get the block for the second level in the model reference hierarchy.

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})
blockpath = bp1.getBlock(2)

The result is the thermostat block, which is at the second level in the block path
hierarchy.

blockpath =

sldemo_mdlref_heater/Fahrenheit to Celsius

getLength

Get length of block path

length = Simulink.SimulationData.BlockPath.getLength()

length
The length of the block path. The length is the number of levels in the model
reference hierarchy.

length = Simulink.SimulationData.BlockPath.getLength() returns a numeric
value that corresponds to the number of levels in the model reference hierarchy for the
block path.

Get the length of block path bp1.

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
 'sldemo_mdlref_F2C/Gain1'})
length_bp1 = bp1.getLength()

The result reflects that the block path has three elements.

5 Simulink Classes

5-574

length_bp1 =

 3

See Also
Simulink.BlockPath | Simulink.SimulationData.Dataset

Introduced in R2012b

 Simulink.SimulationData.BlockPath

5-575

Simulink.SimulationData.Dataset class
Package: Simulink.SimulationData

Create Simulink.SimulationData.Dataset object

Description
Simulink creates Simulink.SimulationData.Dataset objects to store data elements
when:

• Performing signal logging, which use the Dataset format
• Logging states or outputs, if you use the default format of Dataset.
• Logging a data store

Using the Dataset format for state and output logging offers several advantages
compared to Array, Structure, or Structure with time. For details, see “Format
for State Information Saved Without SimState”.

To generate a Simulink.SimulationData.Dataset object from the root-level Inport
blocks in a model, you can use the createInputDataset function. Signals in the
generated dataset have the properties of the Inport blocks and the corresponding ground
values at model start and stop times. You can create timeseries and timetable objects
for the time and values for signals for which you want to load data for simulation. The
other signals use ground values.

You can use curly braces ({}) to streamline indexing syntax to access, set, and add
elements in a dataset, instead of using get, getElement, setElement, or addElement
methods. To get or set an element using curly braces, the index must be a scalar that is
not greater than the number of elements in the dataset variable. To add an element, the
index must be a scalar that is greater than the total number of elements in the dataset by
one. The get, getElement, setElement, or addElement methods support specifying an
element by name or block path, as well as by index.

For individual non-bus signal data, you can specify these types of data for Dataset
elements:

5 Simulink Classes

5-576

• timeseries
• timetable
• matlab.io.datastore.SimulationDatastore
• double vectors or structure of double data
• timeseries
• a Simulink.SimulationData.Signal, Simulink.SimulationData.State, or

Simulink.SimulationData.DataStoreMemory object

For bus signals, use a structure with a data element for each leaf signal, using one of
these formats:

• A MATLAB timeseries object
• A MATLAB timetable object
• A matlab.io.datastore.SimulationDatastore object
• An empty matrix
• An array that meets one of these requirements:

• An array with time in the first column and the remaining columns each
corresponding to an input port. See “Loading Data Arrays to Root-Level Inputs”.

• An nx1 array for a root inport that drives a function-call subsystem.
• Another structure, with data elements for each signal that are consistent with these

requirements for a structure for bus data

Variable-size signals are not supported for Dataset data values.

Construction
convertedDataset = Simulink.SimulationData.Dataset(
loggedDataToConvert) converts the loggedDataToConvert to a
Simulink.SimulationData.Dataset object. You can then use the
Simulink.SimulationData.Dataset.concat method to combine elements of two
Dataset objects.

constructedDataset = Simulink.SimulationData.Dataset(
variableName,'DatasetName','dsname') constructs a
Simulink.SimulationData.Dataset object, adds variable variableName, and
names the data set dsname.

 Simulink.SimulationData.Dataset class

5-577

Input Arguments
loggedDataToConvert — Data element to convert
character vector

Data element to convert to a data set, specified as a character vector. You can convert
elements such as:

• Array
• Structure

Note Structure inputs cannot be arrays or matrices.
• Structure with time
• MATLAB time series
• Structure of MATLAB time-series elements
• ModelDataLogs

variableName — Variable to add to data set
character vector

Variable to add to data set, specified as a character vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DatasetName','dsname'

DatasetName — Data set name
character vector

Data set name, specified as a character vector.

5 Simulink Classes

5-578

Output Arguments
convertedDataset — Converted data set
Simulink.SimulationData.Dataset object

Converted data set, returned as a Simulink.SimulationData.Dataset object.

constructedDataset — Constructed data set
Simulink.SimulationData.Dataset object

Constructed data set, returned as a Simulink.SimulationData.Dataset object.

Properties
Name — Name of the data set
same as the logging variable (default) | character vector

Name of the data set, specified as a character vector or logging variable (for example,
logsout for signal logging). Specify a name when you want to distinguish easily one data
set from another. For example, you could reset the name when comparing multiple
simulations. This property is read/write.

ds = Simulink.SimulationData.Dataset
ds.Name = 'Dataset1'

Total Elements — Total number of elements
double

Total number of elements in data set, specified as a double. This property is read only. To
get this value, use the Simulink.SimulationData.Dataset.numElements method.

 Simulink.SimulationData.Dataset class

5-579

Methods

addElement Add element to end of data set
concat Concatenate dataset to another dataset
get Get element or collection of elements from dataset
getElementNames Return names of all elements in dataset
find Get element or collection of elements from dataset
numElements Get number of elements in data set
plot Plot dataset elements in Signal Preview window or Simulation Data

Inspector
setElement Change element stored at specified index

Tip To get the names of Dataset variables in the MAT-file, using the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function
processes faster than using the who or whos functions.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Concatenate Dataset ds1 to Dataset ds

Convert data from two To Workspace blocks, convert to Dataset format, and concatenate
them. myvdp is the vdp model with two To Workspace blocks with variables named
simout and simout1. These blocks log data in time-series format.

mdl = 'myvdp';
open_system(mdl);
sim(mdl)
ds = Simulink.SimulationData.Dataset(simout);

5 Simulink Classes

5-580

ds1 = Simulink.SimulationData.Dataset(simout1);
dsfinal = concat(ds,ds1)

Access, Change, and Add Dataset Elements

Use curly brace indexing syntax to work with a logsout signal logging dataset that has
three elements.

Get the second element of the logsout dataset.

logsout{2}

Change the name of the third element.

logsout{3}.Name = 'thirdSignal'

Add a fourth element.

time = 0.1*(0:100)';
element4 = Simulink.SimulationData.Signal;
element4.Name = 'C';
element4.Values = timeseries(3*sin(time),time);
logsout{4} = element4

• “Convert Logged Data to Dataset Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Load Big Data for Simulations”

See Also
| Simulink.ModelDataLogs | Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames |
Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset.plot |

 Simulink.SimulationData.Dataset class

5-581

Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.DatasetRef |
Simulink.SimulationData.DatasetRef.getDatasetVariableNames |
Simulink.SimulationData.Signal | createInputDataset | loadIntoMemory

Topics
“Convert Logged Data to Dataset Format”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Load Big Data for Simulations”

Introduced in R2011a

5 Simulink Classes

5-582

Simulink.SimulationData.DatasetRef class
Package: Simulink.SimulationData

Create Simulink.SimulationData.DatasetRef object

Description
To use a reference for accessing a Simulink.SimulationData.Dataset object stored
in a MAT-file, create a Simulink.SimulationData.DatasetRef object. You can use
this reference to avoid running out of memory, by retrieving data signal by signal, for data
that you log to persistent storage. You can stream a DatasetRef object into a root-level
input port or you can use it to create a SimulationDatastore object to use for
streaming. For details, see “Load Big Data for Simulations”.

For parallel simulations, for which you specify an array of Simulink.SimulationInput
objects, if you are logging to file, Simulink:

• Creates Simulink.SimulationData.DatasetRef objects to access output data in
the MAT-file and includes those objects in the SimulationOutput object data

• Enables the CaptureErrors argument for simulation

Construction
datasetRefObj = Simulink.SimulationData.DatasetRef(location,
identifier) creates a reference to the contents of a
Simulink.SimulationData.Dataset variable stored in a MAT-file.

Input Arguments
location — MAT-file containing Simulink.SimulationData.Dataset object to
reference
character vector

 Simulink.SimulationData.DatasetRef class

5-583

MAT-file containing Simulink.SimulationData.Dataset object to reference, specified
as a character vector. The character vector is a path to the MAT-file. Do not use a file
name from one locale in a different locale.

identifier — Name of variable in MAT-file
character vector

Name of a Simulink.SimulationData.Dataset variable in MAT-file, specified as a
character vector. When you log to persistent storage, Simulink uses the variable names
specified for each kind of logging.

Suppose that you use the default variable name for signal logging (logsout) and default
MAT-file name for persistent storage logging (mat.out), After you simulate the model,
then to create a reference to the Dataset object for signal logging, at the MATLAB
command line, enter:

sigLogRef = Simulink.SimulationData.DatasetRef('out.mat','logsout');

Output Arguments
datasetRefObj — Reference to Dataset object
Simulink.SimulationData.DatasetRef object

Reference to logging dataset, returned as a Simulink.SimulationData.DatasetRef
object.

Properties
Location — MAT-file containing Simulink.SimulationData.Dataset object to
reference
character vector

MAT-file containing Simulink.SimulationData.Dataset object to reference, specified
as a character vector. The character vector is a path to the MAT-file. Include the .mat
extension in the file name. Do not use a file name from one locale in a different locale.

Identifier — Name of variable in MAT-file
character vector

5 Simulink Classes

5-584

Name of a Simulink.SimulationData.Dataset variable in MAT-file, specified as a
character vector. When you log to persistent storage, Simulink uses the variable names
specified for each kind of logging (for example, 'logsout' for signal logging data).

Methods
Use the numElements, getElement, and getElementNames methods for a
Simulink.SimulationData.DatasetRef object the same way that you use those
methods for a Simulink.SimulationData.Dataset object.

Method Purpose
numElements Get number of elements from dataset
getElementNames Return names of all elements in

dataset
get

The get method is an alias for the getElement
method.

Note You can use curly braces to streamline
indexing syntax to access elements in a dataset
reference, instead of using get or getElement
methods. To get an element using curly braces,
the index must be a scalar that is not greater than
the number of elements in the variable. The get
and getElement methods support specifying an
element by name or block path, as well as by
index.

Get element from dataset

getAsDatastore Get
matlab.io.datastore.Simulati
onDatastore representation of
element from a DatasetRef object

getDatasetVariableNames on page 2-858 List names of Dataset variables in
MAT-file

 Simulink.SimulationData.DatasetRef class

5-585

Method Purpose
plot Plot elements from dataset in Signal

Preview window

Tip To get the names of Dataset variables in the MAT-file, using the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function
processes faster than using the who or whos functions.

Copy Semantics
You can copy DatasetRef object properties by value. However, copying the DatasetRef
object produces a handle object. Copying the DatasetRef object does not copy the data
in the MAT-file that the object references. For details about copy operations, see Copying
Objects (MATLAB) in the MATLAB documentation.

Examples

Create References to Persistent Storage Dataset Objects

This example shows how to construct and use
Simulink.SimulationData.DatasetRef objects to access data for a model that logs
to persistent storage. This simple example shows the basic steps for logging to persistent
storage. This example does not represent a realistic situation for logging to persistent
storage, because it shows a short simulation with small memory requirements.

Open the vdp model.

In the Configuration Parameters > Data Import/Export pane, select these
parameters:

• States
• Log Dataset data to file

Set the Format parameter to Dataset.

Leave the other parameter settings as they are and click Apply.

5 Simulink Classes

5-586

matlab:load_system('vdp');

In the model, click a signal and from the action bar, select Enable Data Logging.

Simulate the model.

Get a list of Dataset variable names in the out.mat file.

varNames = Simulink.SimulationData.DatasetRef.getDatasetVariableNames('out.mat')

varNames =

 1x2 cell array

 'logsout' 'xout'

Create a reference to the logged states data that is stored in out.mat. The variable for
the logged states data is xout.

statesLogRef = Simulink.SimulationData.DatasetRef('out.mat','xout')

statesLogRef =

 Simulink.SimulationData.DatasetRef
 Characteristics:
 Location: out.mat (/my_files/out.mat)
 Identifier: xout

 Resolved Dataset: 'xout' with 2 elements

 Name BlockPath
 ____ _________
 1 '' vdp/x1
 2 '' vdp/x2

Create a reference to the signal logging data that is stored in out.mat. The variable for
the signal logging data is logsout.

sigLogRef = Simulink.SimulationData.DatasetRef('out.mat.','logsout')

sigLogRef =

 Simulink.SimulationData.DatasetRef
 Characteristics:
 Location: out.mat (/my_files/out.mat)
 Identifier: logsout

 Simulink.SimulationData.DatasetRef class

5-587

 Resolved Dataset: 'logsout' with 1 element

 Name BlockPath
 ____ _________
 1 x1 vdp/x1

Use the numElements to access the number of elements in the logged states dataset.

statesLogRef.numElements

ans =

 2

Use the DatasetRef to access the first element of the signal logging dataset.

sigLogRef{1}

ans =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'x1'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1x1 timeseries]

 Methods, Superclasses

Delete the persistent storage MAT-file and try to use one of the DatasetRef objects.

delete('out.mat');
statesLogRef.get(1)

File does not exist.

The statesLogRef still exists, but it is a reference to a Dataset object that is in a file
that no longer exists.

• “Log Data to Persistent Storage”

5 Simulink Classes

5-588

• “Load Big Data for Simulations”
• “Convert Logged Data to Dataset Format”

See Also
Simulink.SimulationData.Dataset |
Simulink.SimulationData.DatasetRef.getDatasetVariableNames |
matlab.io.datastore.SimulationDatastore

Topics
“Log Data to Persistent Storage”
“Load Big Data for Simulations”
“Convert Logged Data to Dataset Format”

Introduced in R2016a

 Simulink.SimulationData.DatasetRef class

5-589

Simulink.SimulationData.DataStoreMemory
Container for data store logging information

Description
Simulink uses Simulink.SimulationData.DataStoreMemory objects to store logging
information from Data Store Memory blocks during simulation. The objects contain
information about the blocks that write to the data store.

Property Summary
Name Description
BlockPath on page 5-590 Location of Data Store Memory block for the logged

data store
DSMWriterBlockPaths on page
5-591

Location of Data Store Write blocks that write to the
data store

DSMWriters on page 5-591 Data Store Write blocks for each signal value
Name on page 5-591 Name of the data store dataset
Scope on page 5-592 Scope of the data store: 'local' or 'global'
Values on page 5-592 Time and data that were logged

Properties

BlockPath

Location of Data Store Memory block for the logged data store.

character vector

5 Simulink Classes

5-590

RW

DSMWriterBlockPaths

Location of blocks that write to the data store. Each element of the array contains the full
block path of one writer block.

Vector of Simulink.SimulationData.BlockPath objects

RO

DSMWriters

The number of writes in the data store.

The nth element of DSMWriters contains the index of the element in
DSMWriterBLockPaths that contains the block path of the writer that performed the nth
write to Values.

Integer vector

RO

Name

Name of the data store dataset

character vector

RO

 Simulink.SimulationData.DataStoreMemory

5-591

Scope

Scope of the data store: 'local' or 'global'

character vector

RW

Values

Time and data that were logged

MATLAB timeseries

RW

See Also
| Data Store Memory | Data Store Write | Simulink.SimulationData.Dataset

Topics
“Log Data Stores”

5 Simulink Classes

5-592

Simulink.SimulationData.LoggingInfo
Signal logging override settings

Description
This object specifies a set of signal logging override settings.

Use a Simulink.SimulationData.LoggingInfo object to specify the signal logging
override settings for a signal. You can use this object for the LoggingInfo property of a
Simulink.SimulationData.SignalLoggingInfo object.

Property Summary
Name Description
DataLogging on page 5-594 Signal logging mode.
NameMode on page 5-594 Source of signal logging name.
LoggingName on page 5-594 Custom signal logging name.
DecimateData on page 5-595 Use subset of sample points.
Decimation on page 5-595 Decimation value (n): Simulink logs every nth data

point.
LimitDataPoints on page 5-
595

Limit number of data points to log.

MaxPoints on page 5-596 Maximum number of data points to log (N). The set of
logged data points is the last N data points generated
by the simulation.

 Simulink.SimulationData.LoggingInfo

5-593

Method Summary
Name Description
LoggingInfo on page 5-
596

Create a set of signal logging override settings for a signal.

Properties

DataLogging

Signal logging mode.

Indicates whether logging is enabled for this signal.

logical value — {true} | false

RW

NameMode

Source of signal logging name.

Indicates whether the signal logging name is a custom name ('true') or whether the
signal logging name is the same as the signal name ('false').

logical value — true | {false}

RW

LoggingName

Custom signal logging name

5 Simulink Classes

5-594

The custom signal logging name to use for this signal, if the NameMode property is true.

character vector

RW

DecimateData

Log a subset of sample points, selecting data points at a specified interval. The first
sample point is always logged.

logical value — true | {false}

RW

Decimation

Decimation value (n). If the DecimateData property is true, then Simulink logs every
nth data point.

positive integer

RW

LimitDataPoints

Limit the number of data points to log.

logical value — true | {false}

RW

 Simulink.SimulationData.LoggingInfo

5-595

MaxPoints

Maximum number of data points to log (N). If the LimitDataPoints property is true,
then the set of logged data points includes the last N data points generated by the
simulation.

positive integer

RW

Methods

LoggingInfo

Create a Simulink.SimulationData.LoggingInfo object.

logging_info_object = Simulink.SimulationData.LoggingInfo()
logging_info_object = Simulink.SimulationData.LoggingInfo(object)

object
A signal logging override settings object whose property values the constructor uses
for the new Simulink.SimlationData.LoggingInfo object. The signal logging
override object that you specify must be one of the following types of objects:

• Simulink.SimulationData.LoggingInfo object
• Simulink.LoggingInfo object

logging_info_object
A Simulink.SimulationData.LoggingInfo object.

logging_info_object = Simulink.SimulationData.LoggingInfo() creates a
Simulink.SimulationData.LoggingInfo object that has default property values.

5 Simulink Classes

5-596

logging_info_object = Simulink.SimulationData.LoggingInfo(object)
creates a Simulink.SimulationData.LoggingInfo object that copies the property
values from the signal logging override object that you specify with the object
argument.

The following example creates a Simulink.SimulationData.LoggingInfo object
with default settings, changes the DecimateData and Decimation properties, and uses
the object for the LoggingInfo property of a
Simulink.SimulationData.SignalLoggingInfo object mi.

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', 'examples', 'ex_mdlref_counter_bus')));
open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', 'examples', 'ex_bus_logging')));
log_info = Simulink.SimulationData.LoggingInfo();
log_info.DecimateData = true;
log_info.Decimation = 2;
mi = Simulink.SimulationData.SignalLoggingInfo('ex_bus_logging');
mi.LoggingInfo = log_info

Simulink.SimulationData.SignalLoggingInfo
 Package: Simulink.SimulationData

 BlockPath:
 'ex_bus_logging'

 OutputPortIndex: 1

 LoggingInfo:
 DataLogging: 1
 NameMode: 0
 LoggingName: ''
 DecimateData: 1
 Decimation: 2
 LimitDataPoints: 0
 MaxPoints: 5000

See Also
| Simulink.ModelDataLogs | Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.Signal |
Simulink.SimulationData.SignalLoggingInfo

 Simulink.SimulationData.LoggingInfo

5-597

Topics
“Override Signal Logging Settings from MATLAB”
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”

Introduced in R2012b

5 Simulink Classes

5-598

Simulink.SimulationData.ModelLoggingInfo
Signal logging override settings for a model

Description
This class is a collection of Simulink.SimulationData.SignalLoggingInfo objects
that specify all signal logging override settings for a model.

Use methods and properties of this class to:

• Turn off logging for a signal or a Model block.
• Change logging settings for any signals that are already marked for logging within a

model.

You can control whether a top-level model and referenced models use override signal
logging settings or use the signal logging settings specified by the model. Use the
LoggingMode and LogAsSpecifiedByModels properties to control which logging
settings to apply.

Logging Mode for Models Property Settings
For top-level model and all
referenced models, use logging
settings specified in the model.

Set LoggingMode to LogAllAsSpecifiedInModel.

For top-level model and all
referenced models, use override
signal logging settings.

Set LoggingMode to OverrideSignals.

For top-level model and
referenced models, use a mix of
override signal logging settings
and the signal logging settings
specified in the model.

Set LoggingMode to OverrideSignals.

In the LogAsSpecifiedByModels cell array, include
the models that you do not want to use the override
signal logging settings.

For more information and examples, see “Override Signal Logging Settings from
MATLAB”.

 Simulink.SimulationData.ModelLoggingInfo

5-599

Property Summary
Name Description
LoggingMode on page 5-600 Signal logging override status
LogAsSpecifiedByModels on
page 5-601

Source of signal logging settings for the top-level
model or a top-level Model block

Signals on page 5-602 All signals that have signal override settings

Method Summary
Name Description
findSignal on page 5-607 Find signals within the Signals vector, using

block path and output port index.
verifySignalAndModelPaths on
page 5-610

Verify signal and model paths for the model
signal logging override object.

getLogAsSpecifiedInModel on
page 5-608

Determine whether the model logs signals as
specified in the model or uses override settings.

setLogAsSpecifiedInModel on
page 5-609

Set the logging mode for the top-level model or
a top-level Model block.

createFromModel on page 5-602 Create and populate a model signal logging
override object with all logged signals in the
model reference hierarchy.

ModelLoggingInfo on page 5-605 Set signals to log or override logging settings.

Properties

LoggingMode

Signal logging override status. Values are:

• OverrideSignals — (Default) Uses the logging settings for signals, as specified in
the Signals property. For models where getLogAsSpecifiedInModel is:

5 Simulink Classes

5-600

• true — Logs all signals, as specified in the model.
• false — Logs only the signals specified in the Signals property.

• LogAllAsSpecifiedInModel — Logs signals in the top-level model and all
referenced models, as specified in the model. Simulink honors the signal logging
indicators (blue antennae) and ignores the Signals property.

To change the logging mode for the top-level model or for a given reference model, use
the setLogAsSpecifiedInModel method.

character array

RW

LogAsSpecifiedByModels

When LoggingMode is set to 'OverrideSignals', this cell array specifies whether the
top-level model or a top-level Model block logs all signals based on the signal logging
settings defined in the model.

• For the top-level model and top-level Model blocks that the cell array includes,
Simulink ignores the Signals property overrides.

• For a model or Model block that the cell array does not include, Simulink uses the
Signals property to determine which signals to log.

When LoggingMode is set to 'LogAllAsSpecifiedInModel', Simulink ignores the
LogAsSpecifiedByModels property.

Use the getLogAsSpecifiedInModel method to determine whether the top-level model
or top-level Model block logs signals as specified in the model (default logging), and use
setLogAsSpecifiedInModel to turn default logging on and off.

cell array — For the top-level model, specify the model name. For Model blocks, specify
the block path.

RW

 Simulink.SimulationData.ModelLoggingInfo

5-601

Signals

Vector of Simulink.SimulationData.SignalLoggingInfo objects for all signals with
signal logging override settings.

vector of Simulink.SimulationData.SignalLoggingInfo objects

RW

Methods

createFromModel

Create a Simulink.SimulationData.ModelLoggingInfo object for a top-level model,
with override settings for each logged signal in the model.

model_logging_info_object = ...
Simulink.SimulationData.ModelLoggingInfo.createFromModel(...
model,options)

model
Name of the top-level model for which to create a
Simulink.SimulationData.ModelLoggingInfo object.

options
You can use any combination of the following option name and value pairs to control
the kinds of systems from which to include logged signals.

• FollowLinks

• on — (Default) Include logged signals from inside of libraries.
• off — Skip all libraries.

• LookUnderMasks

5 Simulink Classes

5-602

• all — (Default) Include logged signals from all masked subsystems.
• none — Skip all masked subsystems.
• graphical — Include logged signals from masked subsystems that do not

have a workspace or dialog box.
• functional — Include logged signals from masked subsystems that do not

have a dialog box.
• Variants

• ActiveVariants — (Default) Include logged signals from only active
subsystem and model reference variants.

• AllVariants — Include logged signals from all subsystem and model
reference variants.

• RefModels

• on — (Default) Include logged signals from referenced models.
• off — Skip all referenced models.

If you select more than one option, then the created
Simulink.SimlationData.ModelLoggingInfo object includes signals that fit the
combinations (the “AND”) of the specified options. For example, if you set
FollowLinks to on and set RefModels to off, then the model signal logging
override object does not include signals from library links that exist inside of
referenced models.

model_logging_override_object
Simulink.SimulationData.ModelLoggingInfo object for the top-level model.

model_logging_info_object =
Simulink.SimulationData.ModelLoggingInfo.createFromModel(model)
creates a Simulink.SimulationData.ModelLoggingInfo object for the model that
includes logged signals for the following kinds of systems:

• Libraries
• Masked subsystems
• Referenced models

 Simulink.SimulationData.ModelLoggingInfo

5-603

• Active variants

model_logging_override_object =
Simulink.SimulationData.ModelLoggingInfo.createFromModel(model,
options) creates a Simulink.SimulationData.ModelLoggingInfo object for the
model. The included logged signals reflect the options settings for the following kinds of
systems:

• Libraries
• Masked subsystems
• Referenced models
• Variants

The following example creates a model logging override object for the
sldemo_mdlref_bus model and automatically adds each logged signal in the model to
that object:
mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...
'sldemo_mdlref_bus')

mi =

 ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x3 Simulink.SimulationData.SignalLoggingInfo]

To apply the model override object settings, use:

set_param(sldemo_mdlref_bus,'DataLoggingOverride',mi);

The following example explicitly specifies the kinds of systems from which to include
signals, rather than use the default settings for each kind of system. This example
specifies to include signals from all model reference variants (instead of using the default
of including only active variant).

The sldemo_mdlref_variants model has two variants:
sldemo_mrv_nonlinear_controller and sldemo_controller. In this example, in
each variant, you configure a signal for signal logging, and then create a
Simulink.SimulationData.ModelLoggingInfo object. The resulting object includes,
in the Signals property, two signals (one from each variant).

5 Simulink Classes

5-604

sldemo_mrv_nonlinear_controller;
sldemo_mrv_nonlinear_controller;
ph = get_param('sldemo_mrv_nonlinear_controller/Add','PortHandles');
set_param(ph.Outport(1),'DataLogging','on');
ph1 = get_param('sldemo_mrv_nonlinear_controller/Add','PortHandles');
set_param(ph1.Outport(1),'DataLogging','on');
mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...
'sldemo_mdlref_variants', 'Variants', 'AllVariants')

V_NONLINEAR_CONTROLLER =

Simulink.Variant
 Condition: 'CTRL==1'

V_NONLINEAR_CONTROLLER =

Simulink.Variant
 Condition: 'CTRL==2'

CTRL =

 1

mi =

 Simulink.SimulationData.ModelLoggingInfo
 Package: Simulink.SimulationData

 Properties:
 Model: 'sldemo_mdlref_variants'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x2 Simulink.SimulationData.SignalLoggingInfo]

 Methods

ModelLoggingInfo

Specify signals to log or override logging settings.

model_logging_override_object =
Simulink.SimulationData.ModelLoggingInfo(model)

model
Name of the top-level model for which to create a
Simulink.SimulationData.ModelLoggingInfo object

 Simulink.SimulationData.ModelLoggingInfo

5-605

model_logging_override_object
Simulink.SimulationData.ModelLoggingInfo object created for the specified
top-level model.

model_logging_override_object=
Simulink.SimulationData.ModelLoggingInfo(model) creates a
Simulink.SimulationData.ModelLoggingInfo object for the specified top-level
model.

If you use the Simulink.SimulationData.ModelLoggingInfo constructor, specify a
Simulink.SimulationData.SignalLoggingInfo object for each logged signal for
which you want to override logging settings.

To check that you have specified valid signal logging override settings for a model, use
the verifySignalAndModelPaths method with the
Simulink.SimulationData.ModelLoggingInfo object for the model.

The following example shows how to log all signals as specified in the top-level model and
all referenced models.
mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');
mi.LoggingMode = 'LogAllAsSpecifiedInModel'

mi =

 ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'
 LoggingMode: 'LogAllAsSpecifiedInModel'
 LogAsSpecifiedByModels: {}
 Signals: []

To apply the model override object settings, use:

set_param(sldemo_mdlref_bus, 'DataLoggingOverride', mi);

The following example shows how to log only signals in the top-level model:
mi = ...
Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');
mi.LoggingMode = 'OverrideSignals';
mi = mi.setLogAsSpecifiedInModel('sldemo_mdlref_bus', true);
set_param('sldemo_mdlref_bus', 'DataLoggingOverride', mi);

5 Simulink Classes

5-606

findSignal

Find signals within the Signals vector, using a block path and optionally an output port
index.

signal_indices = ...
 model_logging_override_object.findSignal(block_path)
signal_indices = ...
 model_logging_override_object.findSignal(...
 block_path, port_index)

block_path
Source block to search. The block_path must be one of the following:

• Character vector
• Cell array of character vectors
• Simulink.BlockPath object

port_index
Index of the output port to search. Specify a scalar greater than, or equal to, 1.

signal_indices
Vector of numeric indices into the signals vector of the
Simulink.SimulationData.ModelLoggingInfo object.

signal_indices = model_logging_override_object.findSignal(
block_path) finds the indices of the signals for the block path that you specify.

To find a single instance of a signal within a referenced model, use a
Simulink.BlockPath object or a cell array with a full path.

To find all instances of a signal within a referenced model, use a character vector with the
relative path of the signal within the referenced model.

To find a logged chart signal within a Stateflow chart, use a Simulink.BlockPath
object and set the SubPath property to the name of the Stateflow chart signal.

 Simulink.SimulationData.ModelLoggingInfo

5-607

signal_indices = model_logging_override_object.findSignal(
block_path, port_index) finds the indices of the output signal for the port that you
specify, for the block path that you specify.

Do not use the port_index argument for Stateflow chart signals.

To find a signal that is not in a Stateflow chart and that does not appear in multiple
instances of a referenced model:
open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','ex_bus_logging')))
% Open the referenced model
ex_mdlref_counter_bus
mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...
 'ex_bus_logging');
% Click the COUNTERBUSCreator block that is the source of
% the logged COUNTERBUS signal
signal_index = mi.findSignal(gcb)

signal_index =

 1

To find a signal in a specific instance of a referenced model that is not in a Stateflow
chart, use the following approach:
signal_index = mi.findSignal({'ex_bus_logging/CounterA', ...
'ex_mdlref_counter_bus/Bus Creator'})

signal_index =

 4

For an example that uses the findSignal method with a Stateflow chart, see “Override
Logging Properties with the Command-Line API” (Stateflow).

getLogAsSpecifiedInModel

Determine whether the model logs as specified in the model or uses override settings.

logging_mode = ...
getLogAsSpecifiedInModel(model_logging_override_object, path)

5 Simulink Classes

5-608

model_logging_override_object
A Simulink.SimulationData.ModelLoggingInfo object.

path
The path is a character vector that specifies one of the following:

• Name of the top-level model
• Block path of a Model block in the top-level model

logging_mode
The logging_mode is:

• true, if the model specified by path is logged as specified in the model.
• false, if the model specified by path is logged using the override settings
specified in the Signals property.

logging_mode =
model_logging_override_object.getLogAsSpecifiedInModel(path) returns:

• true, if the model specified by path is logged as specified in the model.
• false, if the model specified by path is logged using the override settings specified

in the Signals property.

In the following example, the Simulink.SimulationData.ModelLoggingInfo object
mi uses the override settings specified in its Signals property.
mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');
logging_mode = getLogAsSpecifiedInModel(mi, 'sldemo_mdlref_bus')

logging_mode =

 0

setLogAsSpecifiedInModel

Set logging mode for top-level model or top-level Model block

 Simulink.SimulationData.ModelLoggingInfo

5-609

setLogAsSpecifiedInModel(override_object, path)

override_object
Simulink.SimulationData.ModelLoggingInfo object.

path
Character vector that specifies one of the following:

• Name of the top-level model
• Block path of a Model block in the top-level model

value
Logging mode:

• true, if the model specified by path is logged as specified in the model
• false, if the model specified by path is logged using the override settings
specified in the Signals property.

setLogAsSpecifiedInModel(override_object, path, value) sets the
LoggingMode property for a top-level model or a Model block in the top-level model.

The following example shows how to log only signals in the top-level model, using the
logging settings specified in that model:
sldemo_mdlref_bus;
mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');
mi.LoggingMode = 'OverrideSignals';
mi = setLogAsSpecifiedInModel(mi, 'sldemo_mdlref_bus', true);
set_param('sldemo_mdlref_bus', 'DataLoggingOverride', mi);

verifySignalAndModelPaths

Verify paths in Simulink.SimulationData.ModelLoggingInfo object.

verified_object = verifySignalAndModelPaths...
 (model_logging_override_object, action)

5 Simulink Classes

5-610

model_logging_override_object
The Simulink.SimulationData.ModelLoggingInfo object to verify. This
argument is required.

action
The action that the function performs if verification fails. This argument is optional.
Specify one of the following values:

• error — (default) Throw an error when verification fails
• warnAndRemove — Issue a warning when verification fails and update the

Simulink.SimulationData.ModelLoggingInfo object.
• remove — Silently update the

Simulink.SimulationData.ModelLoggingInfo object.

verified_object
If the method detects no invalid paths, it returns the validated object. For example:
verified_object =

 Simulink.SimulationData.ModelLoggingInfo
 Package: Simulink.SimulationData

 Properties:
 Model: 'logging_top'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x11 Simulink.SimulationData.SignalLoggingInfo]

If the method detects an invalid path, it performs the action specified by the action
argument. By default, it issues an error message.

verified_object = verifySignalAndModelPaths(
model_logging_override_object, action)

For a Simulink.SimulationData.ModelLoggingInfo object, verify that:

• All character vectors in the LogAsSpecifiedByModels property are either the name
of the top-level model or the block path of a Model block in the top-level model.

• The block paths for signals in the Signals property refer to valid blocks within the
hierarchy of the top-level model.

 Simulink.SimulationData.ModelLoggingInfo

5-611

• The OutputPortIndex property for all signals in the Signals property are valid for
the given block.

• All signals in the Signals property refer to logged signals.

The action argument specifies what action the method performs. By default, the method
returns an error if it detects an invalid path.

If you use the Simulink.SimulationData.ModelLoggingInfo constructor and
specify a Simulink.SimulationData.SignalLoggingInfo object for each signal,
then consider using the verifySignalAndModelPaths method to verify that your
object definitions are valid.

The following example shows how to validate the signal and block paths in a
Simulink.SimulationData.ModelLoggingInfo object. Because the action
argument is warnAndRemove, if the validation fails, the verifySignalAndModelPaths
method issues a warning and updates the
Simulink.SimulationData.ModelLoggingInfo object.
mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');
verified_object = verifySignalAndModelPaths...
 (mi, 'warnAndRemove')

See Also
Simulink.BlockPath | Simulink.ModelDataLogs |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.LoggingInfo | Simulink.SimulationData.Signal |
Simulink.SimulationData.SignalLoggingInfo

Topics
“Override Signal Logging Settings from MATLAB”
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”

Introduced in R2012b

5 Simulink Classes

5-612

Simulink.SimulationData.Parameter class
Stores logged parameter data and metadata

Description
The Simulink.SimulationData.Parameter object stores data and metadata for
logged block parameters. Tunable parameters connected to Dashboard blocks are logged
to the Simulation Data Inspector during simulation. To access logged parameter data, you
can export the simulation run from the Simulation Data Inspector using the UI or the
Simulink.sdi.exportRun function. For more information about exporting simulation
runs with the Simulation Data Inspector UI, see “Export Data from the Simulation Data
Inspector”.

Construction
dataset = Simulink.sdi.exportRun(runID) returns a
Simulink.SimulationData.Parameter object as an element in dataset when the
run corresponding to runID contains logged parameter data.

Input Arguments
runID — Run ID for a run with logged parameter data
integer

Run ID for the run containing logged parameter data. Run IDs are assigned by the
Simulation Data Inspector. You can get the run ID for a simulation run using the
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex function.

Output Arguments
dataset — Dataset containing the run data
Simulink.SimulationData.Dataset

Simulink.SimulationData.Dataset object containing the run data and metadata.
When the run contains logged parameter data, the dataset contains a

 Simulink.SimulationData.Parameter class

5-613

Simulink.SimulationData.Parameter object as an element for each logged
parameter. The Simulink.SimulationData.Parameter element takes the name of the
logged parameter. You can access a Simulink.SimulationData.Parameter object
using get.

Properties
Name — Parameter name in Dashboard label
character vector

Parameter name as it appears in the label for the Dashboard block.
Example: 'Mu:Gain'

BlockPath — Path of the block associated with the parameter
Simulink.SimulationData.BlockPath

Path to the block the parameter or variable corresponds to, returned as a
Simulink.SimulationData.BlockPath object.
Example: vdp/Mu

ParameterName — Parameter name
character vector

Name of the logged parameter as it appears in the block dialog box. For variables, the
ParameterName property is empty.
Example: 'Gain'

VariableName — Variable name
character vector

Name of the logged variable. For parameters, the VariableName property is empty.
Example: 'Zw'

Values — Timeseries of parameter values
timeseries

timeseries of parameter values. For logged variables, the timeseries name is the
variable name. For logged parameters, the timeseries name is empty.

5 Simulink Classes

5-614

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples
Access Logged Parameter Data

This example shows how to access logged parameter data. Parameter data automatically
logs to the Simulation Data Inspector when you connect a Dashboard block to a block
parameter. Parameter data does not export to the workspace with other simulation data at
the end of simulation. You can access the logged parameter data by exporting the run
containing it from the Simulation Data Inspector.

Log Parameter Data

Run a simulation of the model ex_vdp_param, a modified version of the vdp model with
an Edit block connected to the gain parameter of the Mu block. The parameter data logs
with the signal data for signals marked for logging.

sim('ex_vdp_param')

Export Run

Use the Simulation Data Inspector programmatic interface to get the run ID for the
ex_vdp_param simulation, and export the run.

index = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(index);

dataset = Simulink.sdi.exportRun(runID);

Access Parameter Data

Use the get method to access the Simulink.SimulationData.Parameter object for
the logged parameter data. The Values property contains the timeseries data for the
parameter.

muGain = dataset.get('Mu:Gain')

muGain =
 Simulink.SimulationData.Parameter

 Simulink.SimulationData.Parameter class

5-615

 Package: Simulink.SimulationData

 Properties:
 Name: 'Mu:Gain'
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 Values: [1x1 timeseries]

 Methods, Superclasses

See Also
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Dataset |
get

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“View Data with the Simulation Data Inspector”

Introduced in R2018a

5 Simulink Classes

5-616

Simulink.SimulationData.SignalLoggingInfo
Signal logging override settings for signal

Description
This object contains the signal override signal logging settings for a single logged signal.

Property Summary
Name Description
BlockPath on page 5-617 Simulink.BlockPath of source block of a signal to

log.
OutputPortIndex on page 5-
618

Index of an output port to log.

LoggingInfo on page 5-618 Simulink.SimulationData.LoggingInfo object
containing all logging override settings for a signal.

Method Summary
Name Description
SignalLoggingInfo on
page 5-619

Create a signal logging override object for a signal.

Properties

BlockPath

Simulink.BlockPath of source block of signal to log. The block path represents the full
model reference hierarchy.

 Simulink.SimulationData.SignalLoggingInfo

5-617

To specify a specific instance of a signal, use an absolute path, reflecting the model
reference hierarchy, starting at the top model. For example:

sig_log_info = Simulink.SimulationData.SignalLoggingInfo(...
{'sldemo_mdlref_bus/CounterA', ...
'sldemo_mdlref_counter_bus/Bus Creator'})

Simulink.BlockPath

RW

OutputPortIndex

Index of the output port to log. The index is a 1-based numeric value.

nonzero integer

RW

LoggingInfo

Simulink.SimulationData.LoggingInfo object containing logging override settings
for a signal. The logging settings specify whether signal logging is overridden for this
signal. The logging settings also can specify a logging name, a decimation factor, and a
maximum number of data points.

Simulink.SimulationData.LoggingInfo object

RW

5 Simulink Classes

5-618

Methods

SignalLoggingInfo

Construct a Simulink.SimulationData.SignalLoggingInfo object.

signal_logging_info_object = ...
 Simulink.SimulationData.SignalLoggingInfo()
signal_loggingInfo_object = ...
 Simulink.SimulationData.SignalLoggingInfo(path)
signalLoggingInfo_object = ...
 Simulink.SimulationData.SignalLoggingInfo(path,index)

path
The block path of the source block for which the signal logging override settings
apply. If you use this argument without also using the port argument, then Simulink
sets the output port index to 1.

index
Output port index to which the signal logging override settings apply.

signal_logging_object
Simulink.SimulationData.SignalLoggingInfo object that represents the
override settings of a signal.

signal_logging_override_object =
Simulink.SimulationData.SignalLoggingInfo() creates a
Simulink.SimulationData.LoggingInfo object that contains default logging
settings for a signal.

signal_logging_override_object =
Simulink.SimulationData.SignalLoggingInfo(path) creates a
Simulink.SimulationData.LoggingInfo object, using the specified block path, and
sets the output port index to 1.

signal_logging_override_object =
Simulink.SimulationData.SignalLoggingInfo(path, port) creates a

 Simulink.SimulationData.SignalLoggingInfo

5-619

Simulink.SimulationData.LoggingInfo object that contains default logging
settings for the specified block path and output port index.

The following example creates a Simulink.SimulationData.SignalLoggingInfo
object for the first output port of the Bus Creator block in the sldemo_mdlref_bus
model.
sldemo_mdlref_bus;
mi = Simulink.SimulationData.ModelLoggingInfo(...
'sldemo_mdlref_bus');
mi.LoggingMode = 'OverrideSignals';
mi.Signals = ...
 Simulink.SimulationData.SignalLoggingInfo(...
 {'sldemo_mdlref_bus/CounterA', ...
'sldemo_mdlref_counter_bus/Bus Creator'}, 1)

The output is:
mi =

 Data.ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x1 Simulink.SimulationData.SignalLoggingInfo]

 Methods

See Also
Simulink.ModelDataLogs | Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.LoggingInfo |
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.Signal

Topics
“Override Signal Logging Settings from MATLAB”
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”

Introduced in R2012b

5 Simulink Classes

5-620

Simulink.SimulationData.Signal
Container for signal logging information

Description
Simulink uses Simulink.SimulationData.Signal objects to store signal logging
information during simulation. The objects contain information about the source block for
the signal, including the port type and index.

Property Summary
Name Description
BlockPath on page 5-621 Block path for the source block for the signal
Name on page 5-622 Name of signal element to use for name-based access
PropagatedName on page 5-
622

Propagated signal name, if any

PortIndex on page 5-622 Numeric index of port that was logged
PortType on page 5-623 Type of port that was logged: for signal logging, the

port type is 'outport'
Values on page 5-623 Time and data that were logged

Properties

BlockPath

Block path for the source block for the signal

Simulink.SimulationData.BlockPath

 Simulink.SimulationData.Signal

5-621

RW

Name

Name of signal element to use for name-based access

character vector

RW

PropagatedName

Propagated name of signal element

Signal logging and root Outport block logging data for a signal captures the propagated
signal name if the logging format is Dataset and:

• For signal logging, you:

• Mark the signal for signal logging and in the Signal Properties dialog box select
Show Propagated Signals.

• Enable Configuration Parameters > Data Import/Export > Signal logging.
• For root Outport block logging, you select Configuration Parameters > Data

Import/Export > Output.

The propagated signal name does not include angle brackets (<>).

character vector

RO

PortIndex

Numeric index of port that was logged

5 Simulink Classes

5-622

scalar real integer

RW

PortType

Type of port that was logged: for signal logging, the port type is 'outport'

character vector

RW

Values

Time and data that were logged.

For an example of how to use the Values property and plot logged signal data, in the
sldemo_mdlref_bus example, see “Logging Signal Data.”

• MATLAB timeseries object
• Structure of MATLAB timeseries objects (for bus signals)
• Array of structures of MATLAB timeseries objects (for array of buses signals)
• Array of MATLAB timeseries objects (for nonbus signals in a For Each subsystem)
• MATLAB timetable object
• Structure of MATLAB timetable objects (for bus signals)
• Array of structures of MATLAB timetable objects (for array of buses signals)
• Cell array of MATLAB timetable objects (for nonbus signals in a For Each

subsystem)

RW

 Simulink.SimulationData.Signal

5-623

matlab:showdemo('sldemo_mdlref_bus')

See Also
Simulink.BlockPath | Simulink.SimulationData.Dataset | timeseries

Topics
“View and Access Signal Logging Data”
“Loading MATLAB Timeseries Data to Root-Level Inputs”
“Load Bus Data to Root-Level Input Ports”
“Log Signals in For Each Subsystems”

5 Simulink Classes

5-624

Simulink.SimulationData.State class
Package: Simulink.SimulationData

State logging element

Description
Simulink uses Simulink.SimulationData.State objects to store state logging
information during simulation. The objects contain state information about which block
the state data is coming from and the type of state.

Properties
Name — Name of state element to use for name-based access
character vector

Name of state element to use for name-based access, specified as a character vector. If
you do not specify a name, 'CSTATE' or 'DSTATE' is used, depending on whether it a
continuous or discrete state.

BlockPath — Block path for state source block
a Simulink.SimulationData.BlockPath object

Block path for state source block, specified as a
Simulink.SimulationData.BlockPath object

Label — Type of state
'CSTATE' | 'DSTATE'

Type of state, returned as 'CSTATE' or 'DSTATE'. Read-only property.

• 'CSTATE' – Continuous state
• 'DSTATE' – Discrete state

Values — State element information
single MATLAB timeseries object | a structure of MATLAB timeseries objects

 Simulink.SimulationData.State class

5-625

State element information, specified as a single MATLAB timeseries object or as a
structure of MATLAB timeseries objects.

Examples

Final State Information in Structure with Dataset Format

Saved final state information in Dataset format and access the state data after
simulation.

Open the vdp model and specify to log final states in Dataset format. Use the default
logged state variable, xFinal.

open_system('vdp');
set_param(gcs,'SaveFinalState','on','SaveFormat','Dataset');

5 Simulink Classes

5-626

Simulate the model.

sim('vdp');

 Simulink.SimulationData.State class

5-627

View the state logging information in xFinal.

xFinal

xFinal =

Simulink.SimulationData.Dataset 'xFinal' with 2 elements

 Name BlockPath
 ____ _________
 1 [1x1 State] '' vdp/x1
 2 [1x1 State] '' vdp/x2

 - Use braces { } to access, modify, or add elements using index.

5 Simulink Classes

5-628

Examine the first element of the state dataset.

xFinal.get(1)

ans =

 Simulink.SimulationData.State
 Package: Simulink.SimulationData

 Properties:
 Name: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 Label: CSTATE
 Values: [1x1 timeseries]

See Also
Simulink.SimulationData.Dataset

Topics
“State Information”

Introduced in R2015a

 Simulink.SimulationData.State class

5-629

Simulink.SimulationData.Unit class
Package: Simulink.SimulationData

Store units for simulation data

Description
Simulink creates Simulink.SimulationData.Unit objects to store unit information
for signals when:

• Performing signal logging, which uses the Dataset format
• Logging root Outport blocks, if in Configurations Parameters you select the Output

parameter and set Format to Dataset
• Logging to a To Workspace block or To File block, if you set the Save format block

parameter to the default of Timeseries

Construction
unitsObj = Simulink.SimulationData.Unit(unitName) creates a
Simulink.SimulationData.Unit object with the unit that you specify.

Input Arguments
unitName — Name of logging data units
character vector

Name of logging data units, specified as a character vector.

Output Arguments
unitObj — Logging data units
Simulink.SimulationData.Unit object

Logging data units, returned as a Simulink.SimulationData.Unit object.

5 Simulink Classes

5-630

Properties
Name — Name of the units
character vector

Name of the units, specified as a character vector.

Methods
Method Purpose
Simulink.SimulationData.Un
it.setName

Specify name of logging data unit

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Create and Use Inches Logging Units

Create a Simulink.SimulationData.Unit object representing inches.

inchesUnit = Simulink.SimulationData.Unit('inches');

Create a MATLAB timeseries object and set its Units field to the
Simulink.SimulationData.Unit object.

ts = timeseries(1:10);
ts.DataInfo.Units = inchesUnit;
ts.DataInfo.Units

ans =

 Units with properties:

 Simulink.SimulationData.Unit class

5-631

 Name: 'inches'

• “Log Signal Data That Uses Units”
• “Load Signal Data That Uses Units”
• “Convert Logged Data to Dataset Format”
• “Prepare Model Inputs and Outputs”

See Also
Simulink.SimulationData.Dataset

Topics
“Log Signal Data That Uses Units”
“Load Signal Data That Uses Units”
“Convert Logged Data to Dataset Format”
“Prepare Model Inputs and Outputs”

Introduced in R2016a

5 Simulink Classes

5-632

Simulink.SimulationInput class
Package: Simulink

Creates SimulationInput objects to make changes to a model for multiple or individual
simulations

Description
The Simulink.SimulationInput object allows you to make changes to a model and
run simulations with those changes. These changes are temporarily applied to the model.
Through Simulink.SimulationInput object, you can change:

• Initial state
• Model parameters
• Block parameters
• External inputs
• Variables

Through the Simulink.SimulationInput object, you can also specify MATLAB
functions to run at the start and the end of each simulation by using in.PreSimFcn and
in.PostSimFcn, respectively.Simulink.SimulationInput does not support the ability
to allow model references to have their own data dictionary.

Construction
in = Simulink.SimulationInput('modelName') creates a SimulationInput
object for a model.

Input Arguments
modelName — Name of the model
character vector

 Simulink.SimulationInput class

5-633

Create a Simulink.SimulationInput object by passing the name of the model as an
argument.
Example: in = Simulink.SimulationInput('cstr')

Properties
ModelName — Name of the model
character vector

Name of the model for which the SimulationInput object is created.

InitialState — Initial state
Simulink.SimState.ModelSimState object

Initial state of the model for a simulation specified as a
Simulink.SimState.ModelSimState object

ExternalInput — External Input
numerical array, dataset object, timeseries, character array

External inputs added to the model for a simulation.

BlockParameters — Block parameters
array of Simulink.Simulation.BlockParameter

Block parameters of the model that are modified.

Variables — Variables
array of Simulink.Simulation.Variable

Variables of the model that are modified.

ModelParameters — Model parameters
array of Simulink.Simulation.ModelParameter

Model parameters of the model that are modified .

PreSimFcn — Function
MATLAB function

MATLAB function to run before the start of the simulation.

5 Simulink Classes

5-634

PostSimFcn — Function
MATLAB function

MATLAB function to run after the simulations.

UserString — User string
character array

Brief description of the simulation specified as a character array.

Methods
Method Purpose
setModelParameter Set model parameters to be used for a specific

simulation through SimulationInput object.
setBlockParameter Set block parameters to be used for a specific

simulation through SimulationInput object.
setInitialState Set initial state to be used for a specific simulation

through SimulationInput object.
setExternalInput Set external inputs for a simulation through

SimulationInput object.
setVariable Set variables for a simulation through SimulationInput

object.
setPreSimFcn Specify a MATLAB function to run before start of each

simulation through SimulationInput object.
setPostSimFcn Specify a MATLAB function to run after each

simulation is complete through SimulationInput
object.

applyToModel Apply changes to the model specified through a
SimulationInput object.

validate Validate the contents of the SimulationInput object.

Examples

 Simulink.SimulationInput class

5-635

Create a Simulink.SimulationInput Object

This example shows you how to create a SimulationInput object.

Create a single SimulationInput object for a model.

model = 'sldemo_househeat';
in = Simulink.SimulationInput(model);

Create an Array of Simulink.SimulationInput Objects

This example shows you how to create an array of SimulationInput objects.

Create an array of SimulationInput objects by using the for loop.

model = 'vdp';
for i = 10:-1:1
 in(i) = Simulink.SimulationInput(model);
end

Set Block Parameters using an Array of Simulink.SimulationInput Objects

This example modifies the block parameters of a model through the SimulationInput
object.

Open the model

mdl = 'sldemo_househeat';
open_system(mdl);

Create a SimulationInput object for this model.

in = Simulink.SimulationInput(mdl);

Modify block parameter.

in = in.setBlockParameter('sldemo_househeat/Set Point','Value','300');

Simulate the model.

5 Simulink Classes

5-636

out = sim(in)

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setExternalInput | setInitialState |
setModelParameter | setPostSimFcn | setPreSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

 Simulink.SimulationInput class

5-637

applyToModel
Apply changes to the model specified through a SimulationInput object, in

Syntax
in.applyToModel

Description
in.applyToModel applies the changes specified through the SimulationInput object
to the model. You can use it to debug a model or to interactively analyze a simulation.

Examples

Apply Changes Made Through the Simulink.SimulationInput Object to the Model

This example shows how to modify a model through a SimulationInput object and save
those modifications.

Open the model and create a SimulationInput object.

open_system('sldemo_househeat');
in = Simulink.SimulationInput('sldemo_househeat');

Modify block parameter, model parameters and a variable through SimulationInput
object.

in = in.setBlockParameter('sldemo_househeat/Set Point','Value','75');
in = in.setVariable('cost',50,'Workspace','sldemo_househeat');
in = in.setModelParameter('StartTime','1','StopTime','5');

Apply the modifications made in the above step to the model.

5 Simulink Classes

5-638

in.applyToModel

See Also
Simulation Manager | Simulink.SimulationInput | parsim |
setBlockParameter | setExternalInput | setInitialState |
setModelParameter | setPostSimFcn | setPreSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

 applyToModel

5-639

setExternalInput
Set external inputs for a simulation through SimulationInput object, in

Syntax
in = in.setExternalInput([t, u1,..uN])
in = in.setExternalInput(ds)
in = in.setExternalInput(ts)

Description
in = in.setExternalInput([t, u1,..uN]) allows you to directly specify numerical
arrays as inputs to a model if a model has root inports.

in = in.setExternalInput(ds) allows you to directly specify dataset objects as
external inputs to a model if a model has root inports..

in = in.setExternalInput(ts) allows you to directly specify timeseries object as
external input if a model has a single root inport.

Examples

Set Numerical Arrays as External Inputs Through a Simulink.SimulationInput
Object

This example shows how to set numerical arrays as external inputs.

Open the model

open_system('sldemo_mdlref_counter');

Create a SimulationInput object for this model.

in = Simulink.SimulationInput('sldemo_mdlref_counter');

5 Simulink Classes

5-640

Prepare external inputs.

t = (0:0.01:10)';
u1 = 5*ones(size(t));
u2 = 10*sin(t);
u3 = -5*ones(size(t));

Set external inputs to the model.

in.setExternalInput = [t, u1, u2, u3];

Simulate the model.

out = sim(in);

Input Arguments
[t, u1,..uN] — Numerical array
numerical array

Numerical array to be used as an external input.

ds — Dataset object
Simulink.SimulationData.Dataset object

Dataset object to be used as an external input

ts — Time series
time object handle

Time series to be used as an external input

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setInitialState | setModelParameter | setPostSimFcn |
setPreSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”

 setExternalInput

5-641

“Parallel Simulations Workflow”

Introduced in R2017a

5 Simulink Classes

5-642

setPostSimFcn
Specify a MATLAB function to run after each simulation is complete through
SimulationInput object, in

Syntax
in = in.setPostSimFcn(@(y) myfunction(arg1, arg2...))

Description
in = in.setPostSimFcn(@(y) myfunction(arg1, arg2...)) runs after each
simulation is complete. The Simulink.SimulationOutput object is passed as the
argument y to this function. myfunction is any MATLAB function and can be used to do
the post processing on the output. To return post processed data, you must return it as
values in a struct. These values are then packed into the Simulink.SimulationOutput
output to replace the usual logged data or add new data to the
Simulink.SimulationOutput object.

Examples

Specify a MATLAB function for Postprocessing of the Output

This example specifies a MATLAB Function through SimulationInput object to run
after each simulation is complete.

Create a PostSimFcn to get the mean of the output.

function newout = postsim(out);
newout.mean = mean(out.yout);
end

Create a SimulationInput object for a model.

 setPostSimFcn

5-643

in = Simulink.SimulationInput('vdp');
in = in.setPostSimFcn(@(x) postsim(x));
in = in.setModelParameter('SaveOutput','on');

Simulate the model.

out = sim(in)

View your result

out.mean

It is best practice to avoid using 'ErrorMessage' and 'SimulationMetadata' as field
names in the function.

Input Arguments
y — Copy of Simulink.SimulationOutput object for postprocessing
Simulink.SimulationOutput object

This is a Simulink.SimulationOutput object which is an input to myfunction.

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setExternalInput | setInitialState |
setModelParameter | setPreSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

5 Simulink Classes

5-644

setPreSimFcn
Specify a MATLAB function to run before start of each simulation through
SimulationInput object, in

Syntax
in = in.setPreSimFcn(@(x) myfunction(arg1, arg2...))

Description
in = in.setPreSimFcn(@(x) myfunction(arg1, arg2...)) runs before each
simulation starts. The Simulink.SimulationInput object is passed as an argument x
to this function. myfunction is any MATLAB function and can be used to modify the
Simulink.SimulationInput object. If you use myfunction to modify the
Simulink.SimulationInput object, you must return Simulink.SimulationInput
object as the only output argument.

Examples

Specify a MATLAB Function to Run Before Each Simulation

This example shows how to specify a MATLAB function through SimulationInput
object to run at before start of each simulation.

Create a PreSimFcn function.

function presim(in)
signalbuilder('sf_car/User Inputs', 'ActiveGroup', in.Variables.Value)
end

Open the model.

model = 'sf_car';
open_system(model);

 setPreSimFcn

5-645

Create an array of SimulationInput objects for this model. Use in.PreSimFcn to run
presim before simulation.

 n = 4;
 for idx = n:-1:1
 in(idx) = Simulink.SimulationInput(model);
 in(idx) = in(idx).setVariable('SigIndex', idx);
 in(idx) = in(idx).setPreSimFcn(@(x) presim(x));
 end

Simulate the model.

out = sim(in)

Input Arguments
x — A Simulink.SimulationInput object as input to the myfunction
Simulink.SimulationInput object

This is an input to myfunction in which you can modify the
Simulink.SimulationInput object.

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setExternalInput | setInitialState |
setModelParameter | setPostSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

5 Simulink Classes

5-646

setBlockParameter
Set block parameters to be used for a specific simulation through SimulationInput
object, in

Syntax
in = in.setBlockParameter(BlockPath,ParameterName,Value,...
ParameterNameN,ValueN)

Description
in = in.setBlockParameter(BlockPath,ParameterName,Value,...
ParameterNameN,ValueN) sets the parameter on the block specified at BlockPath
with the properties ParameterName and Value. You can set multiple block parameters in
a model using the same SimulationInput object. For more information on block
parameter, see “Block-Specific Parameters” on page 6-130.

Examples

Modify a Block Parameter for a Simulation

This example modifies the block parameters of a model through the SimulationInput
object.

Open the model

mdl = 'sldemo_househeat';
open_system(mdl);

Create a SimulationInput object for this model.

in = Simulink.SimulationInput(mdl);

Modify block parameter.

 setBlockParameter

5-647

in = in.setBlockParameter('sldemo_househeat/Set Point','Value','300');

Simulate the model.

out = sim(in)

Input Arguments
BlockPath — Path of the block
character vector

BlockPath is the path of the block for which the parameter is changed
Example: 'sldemo_househeat/Set Point'

ParameterName — Block parameter name
character vector

Specify optional comma-separated pairs of ParameterName,Value arguments.
ParameterName is the parameter name and Value is the corresponding value.
ParameterName must appear inside single quotes (' '). Block parameter values are
typically specified as character vectors. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.
ParameterNameN,ValueN pairs follow the same syntax as set_param.
Example: 'Value', '350'

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setExternalInput | setInitialState | setModelParameter | setPostSimFcn |
setPreSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

5 Simulink Classes

5-648

setInitialState
Set initial state to be used for a specific simulation through SimulationInput object, in

Syntax
in.setInitialState = xInitial

Description
in.setInitialState = xInitial sets the initial state of a model to xInitial, a
Simulink.SimState.ModelSimState object.

Input Arguments
xInitial — Simulink.SimState.ModelSimState object
Simulink.SimState.ModelSimState

You can change the Initial State of a model by assigning it to a
Simulink.SimState.ModelSimState object.

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setExternalInput | setModelParameter | setPostSimFcn |
setPreSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

 setInitialState

5-649

setModelParameter
Set model parameters to be used for a specific simulation through SimulationInput
object, in

Syntax
in = in.setModelParameter(ParameterName,Value,...ParameterNameN,
ValueN)

Description
in = in.setModelParameter(ParameterName,Value,...ParameterNameN,
ValueN) sets a model parameter Name with a Value. You can add multiple model
parameters to the model using the same SimulationInput object. For more information
on model parameters, see “Model Parameters” on page 6-2.

Examples

Modify a Model Parameter for a Simulation

This example modifies the model parameters of through the SimulationInput object

Open the model.

mdl = 'sldemo_househeat';
open_system(mdl);

Create a SimulationInput object for this model.

in = Simulink.SimulationInput(mdl);

Modify model parameters.

in = in.setModelParameter('StartTime','1','StopTime','4');

5 Simulink Classes

5-650

Simulate the model.

out = sim(in)

Input Arguments
ParameterName — Block parameter name
character vector

Specify optional comma-separated pairs of ParameterName,Value arguments.
ParameterName is the parameter name and Value is the corresponding value.
ParameterName must appear inside single quotes (' '). Model parameter values are
typically specified as character vectors. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.
ParameterNameN,ValueN pairs follow the same syntax as set_param.
Example: 'StartTime','1'

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setExternalInput | setInitialState | setPostSimFcn |
setPreSimFcn | setVariable | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

 setModelParameter

5-651

setVariable
Set variables for a simulation through SimulationInput object, in

Syntax
in = in.setVariable(Name,Value)
in = in.setVariable(Name,Value,'Workspace', 'ModelName')

Description
in = in.setVariable(Name,Value) assigns a Value to variable Name. You can add
multiple variables to the model using the same SimulationInput object.

in = in.setVariable(Name,Value,'Workspace', 'ModelName') assigns the
Value to variable Name. Variables that are defined through the SimulationInput object
are placed in the global workspace scope by default. The term global workspace is
specific to the Simulink.SimulationInput object and its methods. Variables in the
global workspace scope take precedence if a variable with the same name exists in the
base workspace or the data dictionary. The variables in the model workspace take
precedence over the global workspace scope. To change the value of a model workspace
variable, set the scope by specifying the model name when you add the variable to the
SimulationInput object.

For information on using nonscalar variables, structure variables and parameter objects,
see “Sweep Nonscalars, Structures, and Parameter Objects”.

Examples

Modify a Variable for a Simulation

This example modifies the model parameters of through the SimulationInput object.

Open the model.

5 Simulink Classes

5-652

mdl = 'sldemo_househeat';
open_system(mdl);

Create a SimulationInput object for this model

in = Simulink.SimulationInput(mdl);

Set the variable value to 50.

in = in.setVariable('cost',50);

By default, this variable is placed in the global workspace scope.

Simulate the model.

out = sim(in)

Modify a Variable for a Simulation in the Model Workspace

This example modifies the model parameters of through the SimulationInput object.

Set path and open the model.

mdl = 'sldemo_househeat';
open_system(mdl);

Create a SimulationInput object for this model

in = Simulink.SimulationInput(mdl);

Set the variable to 50 and set the scope to model workspace.

in = in.setVariable('cost',50,'Workspace','sldemo_househeat');

Simulate the model.

 setVariable

5-653

out = sim(in)

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the literal value of the variable. Name must appear inside
single quotes (' '). You can specify several name and value pair arguments in any order
as Name1,Value1,...,NameN,ValueN.
Example: 'cost','65'

Workspace — Workspace for the variable
character vector

Set the scope of the defined variable by specifying the model name
Example: 'Workspace', 'sldemo_househeat'

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setExternalInput | setInitialState |
setModelParameter | setPostSimFcn | setPreSimFcn | validate

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

5 Simulink Classes

5-654

validate
Validate the contents of the SimulationInput object, in

Syntax
in.validate

Description
in.validate validates the changes made to the model through the SimulationInput
object. This method validates all the changes made to the model through the
SimulationInput object.

Examples

Validate Changes Made Through the SimulationInput Object

This example modifies and validates the variable of the model through the
SimulationInput object.

Open the model.

mdl = 'sldemo_househeat';
open_system(mdl);

Create a SimulationInput object for this model

in = Simulink.SimulationInput(mdl);

Modify a model parameter

in = in.setModelParameter('InvalidParamName','5');

Validate this change

 validate

5-655

in.validate

See Also
Simulation Manager | Simulink.SimulationInput | applyToModel | parsim |
setBlockParameter | setExternalInput | setInitialState |
setModelParameter | setPostSimFcn | setPreSimFcn | setVariable

Topics
“Run Multiple Simulations”
“Parallel Simulations Workflow”

Introduced in R2017a

5 Simulink Classes

5-656

Simulink.SimulationMetadata class
Package: Simulink

Access metadata of simulation runs

Description
The SimulationMetadata class contains information about a simulation run including:

• Model information
• Timing information
• Execution and diagnostic information
• Custom character vector to tag the simulation
• Custom data to describe the simulation

SimulationMetadata packages this information with the SimulationOutput object.
To use SimulationMetadata, use one of these approaches:

• In Configuration Parameters > Data Import/Export, under Save options, select
Single simulation output.

• Use set_param to set ReturnWorkspaceOutputs to on.

set_param(model_name,'ReturnWorkspaceOutputs','on');

To retrieve the SimulationMetadata object, use the getSimulationMetadata
method on a SimulationOutput object.

Properties
ModelInfo — Information about the model and simulation operating
environment
structure

The ModelInfo structure has these fields.

 Simulink.SimulationMetadata class

5-657

Field Name Type Description
ModelName char Name of the model
ModelVersion char Version of the model
ModelFilePath char Absolute location of the .mdl/.slx file
UserID char System user ID of the machine used for

the simulation
MachineName char Hostname of the machine used for the

simulation
Platform char Operating system of the machine used

for the simulation
ModelStructuralChecks
um

4–by–1 uint32 Structural checksum of the model
calculated after an update diagram

SimulationMode char Simulation mode
StartTime double Simulation start time
StopTime double Time at which the simulation was

terminated
SolverInfo structure Solver information:

• Fixed-step solvers – Solver type,
name, and fixed step size

• Variable solvers – Solver type, name,
and max step size (initial setting)

SimulinkVersion structure Version of Simulink
LoggingInfo structure Metadata about logging to persistent

storage:

• LoggingToFile field — Indicates
whether logging to persistent storage
is enabled ('on' or 'off')

• LoggingFileName field — Specifies
the resolved file name for the
persistent storage MAT-file (if
LoggingToFile is 'on').

5 Simulink Classes

5-658

ExecutionInfo — Structure to store information about a simulation run
structure

Structure to store information about a simulation run, including the reason a simulation
stopped and any diagnostics reported during the simulation. The structure has these
fields.

 Simulink.SimulationMetadata class

5-659

Field Name Type Description
StopEvent Nontranslated

character
vector

Reason the simulation stopped,
represented by one of these.

• ReachedStopTime – Simulation
stopped upon reaching stop time and
no errors were reported during
execution. StopEvent has value
ReachedStopTime, even if errors
are reported in the stop callbacks,
which are executed after the
simulation ends.

• ModelStop – Simulation stopped by a
block or by solver before reaching
stop time

• StopCommand – Simulation stopped
manually by clicking the Stop button
or programmatically using the
set_param command

• DiagnosticError – Simulation
stopped because an error was
reported during simulation

• KeyboardControlC – Simulation
stopped using keystroke Ctrl+C.

• PauseCommand – Simulation paused
manually by clicking the Pause
button or programmatically using the
set_param command

• ConditionalPause – Simulation
paused using a conditional breakpoint

• PauseTime – Simulation paused at or
after specified pause time

• StepForward – Simulation paused
after clicking step forward

• StepBackward – Simulation paused
after clicking step backward

5 Simulink Classes

5-660

Field Name Type Description
• TimeOut – Simulation stopped

because execution time exceeded
timeout specified by TimeOut

StopEventSource Simulink.Sim
ulationData.
BlockPath

Source of stop event, if it is a valid
Simulink object

StopEventDescription Translated
character
vector

Super set of information stored in
StopEvent and StopEventSource

ErrorDiagnostic struct Error reported during simulation,
represented by these fields.

• Diagnostic – MSLDiagnostic
object that includes object paths, ID,
message, cause, and stack

• SimulationPhase – Represented by
one of these: Initialization,
Execution, or Termination

• SimulationTime – Simulation time
represented as a double, if reported
during Execution; else, represented
as []

By passing the name–value pair
'ReturnErrorsInOutput', 'on' to
the sim command, errors generated
during simulation are reported in
ExecutionInfo.ErrorDiagnostic.
The sim command does not capture
generated errors.

 Simulink.SimulationMetadata class

5-661

Field Name Type Description
WarningDiagnostics Array of struct Array of all warnings reported during the

simulation. Each array item is
represented by these fields.

• Diagnostic – MSLDiagnostic
object that includes object paths, ID,
message, cause, and stack

• SimulationPhase – Represented by
one of these: Initialization,
Execution, or Termination

• SimulationTime – Simulation time
represented as a double, if reported
during Execution; else, represented
as []

TimingInfo — Structure to store profiling information about the simulation
structure

Structure to store profiling information about the simulation, including the time stamps
for the start and end of the simulation. The structure has these fields.

Field Name Type Description
WallClockTimestampSta
rt

character
vector

Wall clock time when the simulation
started, in YYYY-MM-DD HH:MI:SS
format with microsecond resolution

WallClockTimestampSto
p

character
vector

Wall clock time when the simulation
stopped, in YYYY-MM-DD HH:MI:SS
format with microsecond resolution

InitializationElapsed
WallTime

double Time spent before execution, in seconds

ExecutionElapsedWallT
ime

double Time spent during execution, in seconds

TerminationElapsedWal
lTime

double Time spent after execution in, seconds

5 Simulink Classes

5-662

Field Name Type Description
TotalElapsedWallTime double Total time spent in initialization,

execution, and termination, in seconds

The ExecutionElapsedWallTime includes the time that Simulink spent to roll back or
step back in a simulation. The ExecutionElapsedWallTime does not include the time
spent between steps. For example, if you use Stepper to step through a simulation, the
ExecutionElapsedWallTime time does not include the time when the simulation is in a
paused state. For more information about using Stepper, see “How Simulation Stepper
Helps With Model Analysis”.

UserString — Custom character vector to describe the simulation
character vector

Use Simulink.SimulationOutput.setUserString to directly store a character
vector in the SimulationMetadata object that is contained in the SimulationOutput
object.

UserData — Custom data to store in SimulationMetadata object that is
contained in the SimulationOutput object
character vector

Use Simulink.SimulationOutput.setUserData to store custom data in the
SimulationMetadata object that is contained in the SimulationOutput object.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Get a SimulationMetadata Object for vdp Simulation

Simulate the vdp model. Retrieve metadata from a SimulationMetadata object of the
simulation.

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object in
simout.

 Simulink.SimulationMetadata class

5-663

 open_system('vdp');
 simout = sim(bdroot,'ReturnWorkspaceOutputs','on');

5 Simulink Classes

5-664

Retrieve metadata information about this simulation using mData. This is the
SimulationMetadata object that simout contains.

 mData=simout.getSimulationMetadata()

mData =

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: ''
 UserData: []

 Simulink.SimulationMetadata class

5-665

Store custom data or string in simout.

 simout=simout.setUserData(struct('param1','value1','param2','value2','param3','value3'));
 simout=simout.setUserString('Store first simulation results');

Retrieve the custom data you stored from mData.

 mData=simout.getSimulationMetadata()
 disp(mData.UserData)

mData =

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: 'Store first simulation results'
 UserData: [1x1 struct]

 param1: 'value1'
 param2: 'value2'
 param3: 'value3'

Retrieve the custom string you stored from mData.

 mData=simout.getSimulationMetadata()
 disp(mData.UserString)

mData =

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: 'Store first simulation results'
 UserData: [1x1 struct]

5 Simulink Classes

5-666

Store first simulation results

See Also
Simulink.SimulationOutput.getSimulationMetadata |
Simulink.SimulationOutput.setUserData |
Simulink.SimulationOutput.setUserString

Introduced in R2015a

 Simulink.SimulationMetadata class

5-667

Simulink.SimulationOutput class
Package: Simulink

Access object values of simulation results

Description
The SimulationOutput class contains all simulation outputs, including workspace
variables.

You can use dot notation to access the data for simulation outputs. For example, to return
data for the xout variable for a simOut SimulationOutput object, use a simOut.tout
command.

Alternatively, you can use Simulink.SimulationOutput.who and either
Simulink.SimulationOutput.get or Simulink.SimulationOutput.find methods
to access the output variable names and their respective values.

Properties
SimulationMetadata — Metadata for simulation runs
Simulink.SimulationMetadata object

Metadata for simulation runs, returned as a Simulink.SimulationMetadata object.
Fields other than the UserData and UserString fields are read only.

ErrorMessage — Simulation logging error messages
char vector

Simulation logging error message, returned as a char vector. (read only)

5 Simulink Classes

5-668

Methods
find Access and display values of simulation results
get Access and display values of simulation results
getSimulationMetadata Return SimulationMetadata object for simulation
setUserData Store custom data in SimulationMetadata object that

SimulationOutput object contains
setUserString Store custom character vector in SimulationMetadata object

that SimulationOutput object contains
who Access and display output variable names of simulation

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB Programming Fundamentals documentation.

Examples

View Simulation Output and Metadata

Simulate a model and place the results of the Simulink.SimulationOutput object in
simOut and view the simulation metadata.

Simulate the vdp model.

simOut = sim('vdp','SimulationMode','normal','AbsTol','1e-5',...
 'SaveState','on','StateSaveName','xoutNew',...
 'SaveOutput','on','OutputSaveName','youtNew')

 Simulink.SimulationOutput:

 xoutNew: [65x2 double]
 youtNew: [65x2 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Simulink.SimulationOutput class

5-669

Get the values of the variable youtNew.

simOut.youtNew

Simulink returns and displays the values.

Get the timing information for the simulation.

myMetadata = simOut.SimulationMetadata

myMetadata =

 SimulationMetadata with properties:

 ModelInfo: [1×1 struct]
 TimingInfo: [1×1 struct]
 ExecutionInfo: [1×1 struct]
 UserString: ''
 UserData: []

myMetadata.TimingInfo

ans =

 struct with fields:

 WallClockTimestampStart: '2016-12-30 08:47:51.739935'
 WallClockTimestampStop: '2016-12-30 08:47:58.185579'
 InitializationElapsedWallTime: 5.9166
 ExecutionElapsedWallTime: 0.1910
 TerminationElapsedWallTime: 0.3380
 TotalElapsedWallTime: 6.4456

See Also
| Simulink.SimulationData.Dataset | loadIntoMemory

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Simulation Data”

5 Simulink Classes

5-670

Simulink.SubsysDataLogs
Container for subsystem signal data logs

Description

Note Before R2016a, the Simulink.SubsysDataLogs class was used in conjunction
with the ModelDataLogs logging data format. Starting in R2016a, you cannot log data in
the ModelDataLogs format. Signal logging uses the Dataset format.

However, you can use data that was logged in a previous release using ModelDataLogs
format.

In releases before R2016a, Simulink created instances of this class to contain logs for
signals in a subsystem models were logged in ModelDataLogs format. Objects of this
class have a variable number of properties. The first property, named Name, is the name
of the subsystem whose log data this object contains. The remaining properties are signal
log or signal log container objects containing the data logged for the subsystem specified
by this object's Name property.

For example, suppose you have this logged data from a model run in a release earlier
than R2016a:

Simulink.SubsysDataLogs (Gain):
 Name elements Simulink Class

 a 1 Timeseries
 m 2 TsArray

You can use either fully qualified log names or the unpack command to access the signal
logs contained by a SubsysDataLogs object. For example, to access the amplitudes
logged for signal a in the preceding example, you could enter the following at the
MATLAB command line:

data = logsout.Gain.a.Data;

or

 Simulink.SubsysDataLogs

5-671

>> logsout.unpack('all');
data = a.Data;

See Also
“Load Signal Data for Simulation”, Simulink.ModelDataLogs,
Simulink.Timeseries, Simulink.TsArray, Simulink.SimulationData.Dataset,
who, whos, unpack

Introduced before R2006a

5 Simulink Classes

5-672

Simulink.SuppressedDiagnostic class
Package: Simulink

Suppress diagnostic messages from a specified block

Description
A Simulink.SuppressedDiagnostic object contains information related to diagnostic
warnings or errors that are suppressed from being thrown during simulation.

Construction
The Diagnostic Viewer in Simulink includes an option to suppress certain diagnostics.
This feature enables you to suppress warnings or errors for specific objects in your model.
Click the Suppress button next to the warning in the Diagnostic Viewer to suppress the
warning from the specified source. This action creates a
Simulink.SuppressedDiagnostic object. You can access this object at the MATLAB
command line using the Simulink.getSuppressedDiagnostics function. You can
restore the diagnostic by clicking Restore. You can add a comment for the suppressed
diagnostics.

DiagnosticObject = Simulink.SuppressedDiagnostic(source, message_id)
creates a suppressed diagnostic object. The object suppresses all instances of diagnostics
represented by message_id thrown by the blocks specified by source.

 Simulink.SuppressedDiagnostic class

5-673

Input Arguments
source — System, block, or model object throwing diagnostic
model | subsystem | block path | block handle

The source of the diagnostic, specified as a model, subsystem, block path, block handle,
cell array of block paths, or cell array of block handles.

To get the block path, use the gcb function.

To get the block handle, use the getSimulinkBlockHandle function.
Data Types: char | cell

message_id — message identifier of diagnostic
message identifier | cell array of message identifiers

The message identifier of the diagnostic, specified as a character vector or a cell array of
character vectors. You can find the message identifier of diagnostics thrown during
simulation by accessing the ExecutionInfo property of the
Simulink.SimulationMetadata object associated with a simulation. You can also use
the lastwarn function.
Data Types: char | cell

Properties
Comments — Comments associated with the suppression object
character vector

Comments associated with the suppression object, specified as a character vector. This
property is optional.
Data Types: char

ID — Message identifier of the diagnostic that was suppressed
character vector

The message identifier of the diagnostic that was suppressed, specified as a character
vector.
Data Types: char

5 Simulink Classes

5-674

LastModified — Date the suppression object was last modified
character vector

Date the suppression object was last modified, specified as a character vector. This
property is read-only.
Data Types: char

LastModifiedBy — Name of the user who was last to add or edit the suppression
object
character vector

Name of the user who last to add or edit the suppression object, specified as a character
vector. This property is optional.
Data Types: char

Source — block path of the source of the diagnostic
character vector

The block path of the model object that has a suppressed diagnostic, specified as a
character vector.
Data Types: char

Methods
restore Remove specified diagnostic suppressions
suppress Suppress diagnostic specified by Simulink.SuppressedDiagnostic object

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

 Simulink.SuppressedDiagnostic class

5-675

Create a Simulink.SuppressedDiagnostic Object

Using the model from“Suppress Diagnostic Messages Programmatically”, create and then
restore a diagnostic suppression.

Create a Simulink.SuppressedDiagnostic object, suppression to suppress the
parameter precision loss warning thrown by the Constant block, one.

suppression = Simulink.SuppressedDiagnostic('Suppressor_CLI_Demo/one',...
'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

The parameter precision loss warning is no longer thrown in future simulations of this
model.

Add accountability information to the object by editing the LastModifiedBy and
Comments properties of the object.

suppression.LastModifiedBy = 'John Doe';
suppression.Comments = 'Reviewed: Joe Schmoe'

suppression =

 SuppressedDiagnostic with properties:

 Source: 'Suppressor_CLI_Demo/one'
 Id: 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss'
 LastModifiedBy: 'John Doe'
 Comments: 'Reviewed: Joe Schmoe'
 LastModified: '2016-Jun-01 17:25:21'

You can restore the diagnostic using the restore method.

restore(suppression);

• “Suppress Diagnostic Messages Programmatically”

See Also
Simulink.SuppressedDiagnostic | Simulink.SuppressedDiagnostic.restore |
Simulink.getSuppressedDiagnostics | Simulink.restoreDiagnostic |
Simulink.suppressDiagnostic

5 Simulink Classes

5-676

Topics
“Suppress Diagnostic Messages Programmatically”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016b

 Simulink.SuppressedDiagnostic class

5-677

restore
Class: Simulink.SuppressedDiagnostic
Package: Simulink

Remove specified diagnostic suppressions

Syntax
restore(SuppressedDiagnostic)

Description
restore(SuppressedDiagnostic) removes the specified suppressed diagnostic
object.

Input Arguments
SuppressedDiagnostic — Suppressed diagnostic object to restore
Simulink.SuppressedDiagnostic object

Simulink.SuppressedDiagnostic object

Examples

Restore a Suppressed Diagnostic

Using the model from “Suppress Diagnostic Messages Programmatically”, create and
then restore a diagnostic suppression.

Create a Simulink.SuppressedDiagnostic object, suppression to suppress the
parameter precision loss warning from the Constant block, one.

5 Simulink Classes

5-678

suppression = Simulink.SuppressedDiagnostic('Suppressor_CLI_Demo/one',...
'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

You can restore the diagnostic using the restore method.

restore(suppression);

Restore All Suppressed Diagnostics

Using the model from “Suppress Diagnostic Messages Programmatically”, restore all
diagnostic suppressions associated with a model.

Use the Simulink.suppressDiagnostic function to suppress the parameter precision
loss and parameter underflow warnings from the Constant block, one.

diags = {'SimulinkFixedPoint:util:fxpParameterPrecisionLoss', 'SimulinkFixedPoint:util:fxpParameterUnderflow'};
Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',diags);

Use the Simulink.getSuppressedDiagnostics function to get all suppressions
associated with the model, returned as an array of Simulink.SuppressedDiagnostic
objects.

suppressed_diagnostics = Simulink.getSuppressedDiagnostics('Suppressor_CLI_Demo')

suppressed_diagnostics =

 1×2 SuppressedDiagnostic array with properties:

 Source
 Id
 LastModifiedBy
 Comments
 LastModified

Restore all diagnostics using the restore method and iterating through the
suppressed_diagnostics array.

for iter = 1:numel(suppressed_diagnostics)
 restore(suppressed_diagnostics(iter));
end

• “Suppress Diagnostic Messages Programmatically”

 restore

5-679

See Also
Simulink.SuppressedDiagnostic | Simulink.getSuppressedDiagnostics |
Simulink.restoreDiagnostic | Simulink.suppressDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

Introduced in R2016b

5 Simulink Classes

5-680

suppress
Class: Simulink.SuppressedDiagnostic
Package: Simulink

Suppress diagnostic specified by Simulink.SuppressedDiagnostic object

Syntax
suppress(SuppressedDiagnostic)

Description
suppress(SuppressedDiagnostic) suppresses the specified suppressed diagnostic
object.

Input Arguments
SuppressedDiagnostic — Suppressed diagnostic object to suppress
Simulink.SuppressedDiagnostic object

Simulink.SuppressedDiagnostic object

See Also
Simulink.SuppressedDiagnostic | Simulink.getSuppressedDiagnostics |
Simulink.restoreDiagnostic | Simulink.suppressDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

Introduced in R2018a

 suppress

5-681

Simulink.TimeInfo
Provide information about time data in Simulink.Timeseries object

Description
Simulink software creates instances of these objects to describe the time data that it
includes in Simulink.Timeseries objects.

Note The Simulink.Timeseries class is supported for backwards compatibility. The
ModelDataLogs format created Simulink.Timeseries objects for signal logging data.
Starting in R2016a, you cannot log data in the ModelDataLogs format. Signal logging
uses the Dataset format. In R2016a or later, when you open a model from an earlier
release that had used ModelDataLogs format, the model simulated in use Dataset
format.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

Properties
Name Access Description
Units RW The units, e.g., 'seconds', in which the time series

data are expressed in the associated
Simulink.Timeseries object.

5 Simulink Classes

5-682

Name Access Description
Start RW If the associated signal is not in a conditionally

executed subsystem, this field contains the simulation
time of the first signal value recorded in the
associated Simulink.Timeseries object. If the
signal is in a conditionally executed subsystem, this
field contains an array of times when the system
became active.

end RW If the associated signal is not in a conditionally
executed subsystem, this field contains the simulation
time of the last signal value recorded in the associated
Simulink.Timeseries object. If the signal is in a
conditionally executed subsystem, this field contains
an array of times when the system became inactive.

Increment RW The interval between simulation times at which signal
data is logged in the associated
Simulink.Timeseries object. If the signal is
aperiodic (continuous signal with variable-step solver),
this property has a value of NaN. A signal is periodic if
it has a discrete sample time (not continuous or
constant) or is continuous with a fixed-step solver.

Length W The number of signal samples recorded in the
associated Simulink.Timeseries object, i.e., the
length of the arrays referenced by the object's Time
and Data properties.

See Also
Simulink.Timeseries , Simulink.SimulationData.Dataset

Introduced before R2006a

 Simulink.TimeInfo

5-683

Simulink.Timeseries
Store data for any signal except mux or bus signal

Description

Note The Simulink.Timeseries class is supported for backwards compatibility. The
ModelDataLogs format created Simulink.Timeseries objects for signal logging data.
Starting in R2016a, you cannot log data in the ModelDataLogs format. Signal logging
uses the Dataset format. In R2016a or later, when you open a model from an earlier
release that had used ModelDataLogs format, the model simulated in use Dataset
format.

You can convert signal logging data from ModelDataLogs to Dataset format.
Converting to Dataset format makes it easier to post-process with other logged data (for
example, logged states), which can also use Dataset format. For more information, see
“Convert Logged Data to Dataset Format”.

If you have legacy code that uses the ModelDataLogs API, you can encounter situations
that require updates to your code or model. See “Migrate Scripts That Use Legacy
ModelDataLogs API”.

Simulink software creates instances of this class to store signal data that it logs for any
signal except a mux or bus signal, which are stored in a Simulink.TsArray. See
“Export Signal Data Using Signal Logging” for more information.

Properties
Name Access Description
Name RW Name of this signal log.
BlockPath RW Path of the block that output the signal logged in this

signal log.

5 Simulink Classes

5-684

Name Access Description
PortIndex RW Index of the output port that emitted the signal logged

in this signal log.
SignalName RW Name of the signal logged in this signal log.
ParentName RW Name of the parent of the signal recorded in this log,

if the signal is an element of a mux or a virtual bus;
otherwise, the same as SignalName.

TimeInfo RW An object of Simulink.TimeInfo class that
describes the time data in this log.

Time RW An array containing the simulation times at which
signal data was logged.

Data RW An array containing the signal data.

See Also
“Export Signal Data Using Signal Logging”, Simulink.TimeInfo,
Simulink.SimulationData.Dataset, Simulink.ModelDataLogs,
Simulink.SubsysDataLogs, Simulink.TsArray, who, whos, unpack

Introduced before R2006a

 Simulink.Timeseries

5-685

Simulink.TsArray
Store data for mux or bus signal

Description

Note Before R2016a, the Simulink.TsArray class was used in conjunction with the
ModelDataLogs logging data format. Starting in R2016a, you cannot log data in the
ModelDataLogs format. Signal logging uses the Dataset format.

However, you can use data that was logged in a previous release using ModelDataLogs
format.

In releases earlier than R2016a, Simulink software created instances of this class to
contain the data that it logs for a mux or bus signal. Other types of signals were stored in
a Simulink.Timeseries.

Objects of the Simulink.TsArray class have a variable number of properties. The first
property, called Name, specifies the log name of the logged signal. The remaining
properties reference logs for the elements of the logged signal: Simulink.Timeseries
objects for elementary signals and Simulink.TSArray objects for mux or bus signals.
The name of each property is the log name of the corresponding signal.

For example, suppose you have this logged data from a model run in a release earlier
than R2016a that was configured to log in ModelDataLogs format.

logsout.b2

Simulink.TsArray (untitled/Bus Creator1):
 Name elements Simulink Class

 x1 1 Timeseries
 b1 2 TsArray

The Simulink.ModelDataLogs object, named logsout, contains a
Simulink.TsArray object, named b2, that contains the logs for the elements of b2 (that
is, the elementary signal x1 and the bus signal b1). Entering the fully qualified name of

5 Simulink Classes

5-686

the Simulink.TsArray object, (logsout.b2) at the MATLAB command line reveals the
structure of the signal log for this model.

You can use either fully qualified log names or the unpack command to access the signal
logs contained by a Simulink.TsArray object. For example, to access the amplitudes
logged for signal x1 in the preceding example, you can enter the following at the
MATLAB command line:

data = logsout.b2.x1.Data;

or

logsout.unpack('all');
data = x1.Data;

See Also
Simulink.ModelDataLogs, Simulink.SubsysDataLogs, Simulink.Timeseries,
Simulink.SimulationData.Dataset, who, whos, unpack

Introduced before R2006a

 Simulink.TsArray

5-687

Simulink.Variant class
Package: Simulink

Specify conditions that control variant selection

Description
An object of the Simulink.Variant class represents a conditional expression called a
variant control. The object allows you to specify a Boolean expression that activates a
specific variant choice when it evaluates to true.

A variant control comprises one or more variant control variables, specified using
MATLAB variables or Simulink.Parameter objects.

You specify variant controls for each variant choice represented in a Variant Subsystem or
Model Variant block. For a given Variant Subsystem or Model Variant block, only one
variant control can evaluate to true at a time. When a variant control evaluates to true,
Simulink activates the variant choice that corresponds to that variant control.

Construction
variantControl = Simulink.Variant(conditionExpression) creates a variant
control.

Properties
conditionExpression — Variant condition expression
'(default)' | character vector

Variant condition expression, specified as a character vector containing one or more of
these operands and operators.

Operands

5 Simulink Classes

5-688

• Variable names that resolve to MATLAB variables or Simulink.Parameter objects
with integer or enumerated data type and scalar literal values

• Variable names that resolve to Simulink.Variant objects
• Scalar literal values that represent integer or enumerated values

Operators

• Parentheses for grouping
• Arithmetic, relational, logical, or bit-wise operators

The variant condition expression evaluates to a Boolean value. This property has read and
write access.
Example: '(Fuel==2 || Emission==1) && Ratio==2'

Examples
Create Variant Controls Using MATLAB Variables
Use MATLAB variables when you want to simulate the model but are not considering code
generation.

Create MATLAB variables with scalar literal values.

Fuel = 3;
Emission = 1;
Ratio = 3;

Develop conditional expressions using the variables.

Variant1 = Simulink.Variant('Fuel==1 && Emission==2');
Variant2 = Simulink.Variant('(Fuel==2 || Emission==1) && Ratio==2');
Variant3 = Simulink.Variant('Fuel==3 || Ratio==4');

Create Variant Controls Using Simulink.Parameter Objects
If you want to generate preprocessor conditionals for code generation, use
Simulink.Parameter objects instead of MATLAB variables.

Create variant Simulink.Parameter objects with scalar literal values.

 Simulink.Variant class

5-689

Fuel = Simulink.Parameter(3);
Emission = Simulink.Parameter(1);
Ratio = Simulink.Parameter(3);

Specify the custom storage class for these objects as ImportedDefine so that the values
are specified by an external header file.

Other valid values for the custom storage class are Define and CompilerFlag.

Fuel.CoderInfo.StorageClass = 'Custom';
Fuel.CoderInfo.CustomStorageClass = 'ImportedDefine';

Emission.CoderInfo.StorageClass = 'Custom';
Emission.CoderInfo.CustomStorageClass = 'ImportedDefine';

Ratio.CoderInfo.StorageClass = 'Custom';
Ratio.CoderInfo.CustomStorageClass = 'ImportedDefine';

Develop conditional expressions using the variables and create variant controls.

Variant1 = Simulink.Variant('Fuel==1 && Emission==2');
Variant2 = Simulink.Variant('(Fuel==2 || Emission==1) && Ratio==2');
Variant3 = Simulink.Variant('Fuel==3 || Ratio==4');

See Also
“Operators and Operands in Variant Condition Expressions”

Topics
“Define, Configure, and Activate Variants”
“Convert Variant Control Variables into Simulink.Parameter Objects”
“Approaches for Specifying Variant Controls”

5 Simulink Classes

5-690

Simulink.VariantConfigurationData class
Package: Simulink

Class representing a variant configurations data object

Description
The variant configuration data object, stores a collection of variant configurations,
constraints, and the name of the default active configuration. The
Simulink.VariantConfigurationData class has properties that enable you to add,
modify, or remove variant configurations, constraints, and control variables. Use an
instance of Simulink.VariantConfigurationData class to do the following:

• Define and edit variant configurations.
• Add control variables to variant configurations.
• Add copy of variant configuration.
• Delete existing variant configurations, constraints, and sub model configurations.
• Set a specific configuration as default active.
• Validate model using default or a specific variant configuration.
• Query or create variant configurations data object for a given model.

Properties
VariantConfigurations

Set of variant configurations. The names of the configurations must be unique and valid
MATLAB variable names.

Constraints

Set of constraints that must always be satisfied by the model for all variant
configurations. The name of the constraints must be unique and valid MATLAB variable
names.

 Simulink.VariantConfigurationData class

5-691

DefaultConfigurationName

Name of the variant configuration to be used by default for validation.

5 Simulink Classes

5-692

Methods
addConfiguration Add a new variant configuration to the variant

configuration data object
addConstraint Add a constraint to the variant configuration data object
addControlVariables Add control variables to an existing variant configuration
addCopyOfConfiguration Add a copy of an existing variant configuration to the

variant configuration data object
addSubModelConfigurations Add to a variant configuration the names of the

configurations to be used for submodels
existsFor Check if variant configuration data object exists for a

model
getConfiguration Returns the variant configuration with a given name

from a variant configuration data object
getDefaultConfiguration Returns default variant configuration, if any, for a variant

configuration data object
getFor Get existing variant configuration data object for a

model
getOrCreateFor Get existing or create a new variant configuration data

object for a model
removeConfiguration Remove a variant configuration with a given name from

the variant configuration data object
removeConstraint Remove a constraint from the variant configuration data

object
removeControlVariable Remove a control variable from a variant configuration
removeSubModelConfiguration Remove from a variant configuration, the configuration

to be used for a sub model.
setDefaultConfigurationName Set name of the default variant configuration for a

variant configuration data object
validateModel Validate all variant blocks in the model and submodels in

the hierarchy during simulation
VariantConfigurationData Object constructor with optional arguments for variant

configurations, constraints, and default configuration
name

 Simulink.VariantConfigurationData class

5-693

Examples
load_system(model);
% Create variant config and associate it with model
variantConfig = Simulink.VariantConfigurationData;
set_param(model, 'VariantConfigurationObject', 'variantConfig');

See Also

Topics
“Variant Manager Overview”

5 Simulink Classes

5-694

addConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Add a new variant configuration to the variant configuration data object

Syntax
vcdataObj.addConfiguration(name)
vcdataObj.addConfiguration(name,description)
vcdataObj.addConfiguration(name,description,controlVars)
vcdataObj.addConfiguration(name,description,controlVars,
subModelConfigurations)

Description
vcdataObj.addConfiguration(name) adds a new variant configuration with a given
name to the variant configuration data object.

vcdataObj.addConfiguration(name,description) adds a new variant
configuration with a given name and optional description to the variant configuration data
object.

vcdataObj.addConfiguration(name,description,controlVars) adds a new
variant configuration with a given name, optional description, and control variables to the
variant configuration data object.

vcdataObj.addConfiguration(name,description,controlVars,
subModelConfigurations) adds a new variant configuration with a given name,
optional description, control variables, and submodel configurations to the variant
configuration data object.

 addConfiguration

5-695

Input Arguments
name

Name of variant configuration being added.

description

Description text for the variant configuration being added.

controlVars

Control variables for the variant configuration being added. This argument must be a
vector of structures with required fields: Name and Value. The values assigned to the
Name field must be unique and valid MATLAB variable names. The Value field can
contain either character vectors or Simulink.Parameter objects. The values of control
variables are checked during validation of the variant configuration.

subModelConfigurations

Vector of structures containing fields: ModelName, ConfigurationName. The names of
submodels must be unique and valid MATLAB variable names and configuration names
must be valid MATLAB variables.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add a variant configuration LinInterExp
vcdataObj.addConfiguration('LinInterExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addControlVariables |
Simulink.VariantConfigurationData.addSubModelConfigurations

5 Simulink Classes

5-696

addConstraint
Class: Simulink.VariantConfigurationData
Package: Simulink

Add a constraint to the variant configuration data object

Syntax
vcdataObj.addConstraint(nameOfConstraint)
vcdataObj.addConstraint(nameOfConstraint,condition)
vcdataObj.addConstraint(nameOfConstraint,condition,description)

Description
vcdataObj.addConstraint(nameOfConstraint) adds a new constraint with a given
name to vcdataObj.

vcdataObj.addConstraint(nameOfConstraint,condition) adds a new constraint
with a given name and condition expression to vcdataObj.

vcdataObj.addConstraint(nameOfConstraint,condition,description)adds a
new constraint with a given name, condition expression, and description to vcdataObj.

Input Arguments
nameOfConstraint

Name of constraint being added. Must be unique and valid MATLAB variable name.

condition

Boolean expression that must evaluate to true. When the expression evaluates to true, it
means the constraint is satisfied.

 addConstraint

5-697

description

Text that describes the constraint.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add a constraint named LinNotExtern
vcdataObj.addConstraint('LinNotExtern','((Ctrl~=1)...
 || (PlantLocation ~=1))','Description of the constraint')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.removeConfiguration |
Simulink.VariantConfigurationData.removeConstraint

5 Simulink Classes

5-698

addControlVariables
Class: Simulink.VariantConfigurationData
Package: Simulink

Add control variables to an existing variant configuration

Syntax
vcdataObj.addControlVariables(nameOfConfiguration,controlVars)

Description
vcdataObj.addControlVariables(nameOfConfiguration,controlVars), adds
control variables to a variant configuration.

Input Arguments
nameOfConfiguration

Specifies the name of an existing configuration.

controlVars

Control variables being added. This argument must be a vector of structures with
required fields: Name and Value. The values assigned to the Name field must be unique
and valid MATLAB variable names. The Value field can contain either character vectors
or Simulink.Parameter objects. The values of control variables are checked during
validation of the variant configuration.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

 addControlVariables

5-699

% Add a variant configuration named LinInterExp
vcdataObj.addConfiguration('LinInterExp',...
'Linear Internal Experimental Plant Controller');

% Add control variables SmartSensor1Mod and PlanLocation
vcdataObj.addControlVariables('LinInterExp',...
 cell2struct({'SmartSensor1Mod', '2';...
 'PlantLocation', '1'},...
 {'Name', 'Value'}, 2))

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addSubModelConfigurations |
Simulink.VariantConfigurationData.removeControlVariable |
Simulink.VariantConfigurationData.removeSubModelConfiguration

5 Simulink Classes

5-700

addCopyOfConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Add a copy of an existing variant configuration to the variant configuration data object

Syntax
vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration)
vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration,
nameOfTobeAddedConfiguration)

Description
vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration), adds a
new configuration with a default name (default name is based on existing configuration
name being copied) as a copy of the existing configuration to the variant configuration
data object.

vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration,
nameOfTobeAddedConfiguration), adds a new configuration with a specified name, as
a copy of the existing configuration, to the variant configuration data object.

Input Arguments
nameOfExistingConfiguration

Name of existing configuration.

Default:

nameOfTobeAddedConfiguration

Name of new configuration to be added as a copy of the configuration.

 addCopyOfConfiguration

5-701

Default:

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration LinInterExp
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

% Add a copy of variant configuration LinInterExp
% and name the copy as LinExtExp
vcdataObj.addCopyOfConfiguration('LinInterExp','LinExtExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.removeConfiguration |
Simulink.VariantConfigurationData.setDefaultConfiguration

5 Simulink Classes

5-702

addSubModelConfigurations
Class: Simulink.VariantConfigurationData
Package: Simulink

Add to a variant configuration the names of the configurations to be used for submodels

Syntax
vcdataObj.addSubModelConfigurations(nameOfConfiguration,
subModelConfigurations)

Description
vcdataObj.addSubModelConfigurations(nameOfConfiguration,
subModelConfigurations), specifies names of the configurations to be used for
submodels.

Input Arguments
nameOfConfiguration

Name for the configuration of submodels that are model references.

subModelConfigurations

Vector of structures containing fields: ModelName, ConfigurationName. The names of
submodels must be unique and valid MATLAB variable names and configuration names
must be valid MATLAB variables.

Examples
% Add the path to the model file
addpath(fullfile(docroot,'toolbox','simulink','examples'));

 addSubModelConfigurations

5-703

% Load the model
load_system('slexVariantManagementExample');

% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration LinInterExp
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

% Add a new submodel configuration to LinInterExp
vcdataObj.addSubModelConfigurations('LinInterExp',...
 [struct('ModelName', 'slexVariantManagementExternalPlantMdlRef',...
 'ConfigurationName', 'LowFid')])

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addControlVariables |
Simulink.VariantConfigurationData.removeControlVariable |
Simulink.VariantConfigurationData.removeSubModelConfiguration

5 Simulink Classes

5-704

existsFor
Class: Simulink.VariantConfigurationData
Package: Simulink

Check if variant configuration data object exists for a model

Syntax
Simulink.VariantConfigurationData.existsFor(modelNameOrHandle)

Description
Simulink.VariantConfigurationData.existsFor(modelNameOrHandle) returns
true if the variant configuration data object exists for the model.

Input Arguments
modelNameOrHandle

Name or handle to the model.

Examples
% Add the path to the model file
addpath(fullfile(docroot,'toolbox','simulink','examples'));

% Load the model
load_system('slexVariantManagementExample');

% Checks whether a variant configuration
% data object exists for model
[exists] = Simulink.VariantConfigurationData.existsFor...
 ('slexVariantManagementExample')

 existsFor

5-705

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.getFor

5 Simulink Classes

5-706

getConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Returns the variant configuration with a given name from a variant configuration data
object

Syntax
vcdataObj.getConfiguration(nameOfConfiguration)

Description
vcdataObj.getConfiguration(nameOfConfiguration) returns a specific variant
configuration that is associated with the variant configuration data object.

Input Arguments
nameOfConfiguration

Name of the variant configuration to be returned.

Examples
 % Define the variant configuration data object
 vcdataObj = Simulink.VariantConfigurationData;

 % Add the variant configuration LinInterExp
 vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

 % Add a control variable SmartSensor1Mod
 vcdataObj.addControlVariables('LinInterExp',...
 [struct('Name','SmartSensor1Mod','Value','2')]);

 getConfiguration

5-707

 % Obtain information on the variant configuration..
 % LinInterExp from the variant configuration data object
 vc = vcdataObj.getConfiguration('LinInterExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.getDefaultConfiguration |
Simulink.VariantConfigurationData.removeConfiguration

5 Simulink Classes

5-708

getDefaultConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Returns default variant configuration, if any, for a variant configuration data object

Syntax
vcdataObj.getDefaultConfiguration

Description
vcdataObj.getDefaultConfiguration returns the default variant configuration. If no
default variant configuration is defined, then [] is returned.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration named LinInterExp
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

% Add the variant configuration LinInterStd
vcdataObj.addConfiguration('LinInterStd',...
 'Linear Internal Standard Plant Controller');

% Set LinExtExp as the default variant configuration
vcdataObj.setDefaultConfigurationName('LinExtExp');

% Obtain the default variant configuration
defvc = vcdataObj.getDefaultConfiguration

 getDefaultConfiguration

5-709

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.getConfiguration |
Simulink.VariantConfigurationData.setDefaultConfigurationName

5 Simulink Classes

5-710

getFor
Class: Simulink.VariantConfigurationData
Package: Simulink

Get existing variant configuration data object for a model

Syntax
Simulink.VariantConfigurationData.getFor(modelNameOrHandle)

Description
Simulink.VariantConfigurationData.getFor(modelNameOrHandle), returns the
variant configuration object for the model. If no default variant configuration is defined,
then [] is returned.

Input Arguments
modelNameOrHandle

Model name or handle.

Examples
% Add the path to the model file
addpath(fullfile(docroot,'toolbox','simulink','examples'));

% Load the model
load_system('slexVariantManagementExample');

% Obtain variant configuration data object for the model
% slexVariantManagementExample
vcdataObj = Simulink.VariantConfigurationData.getFor...
 ('slexVariantManagementExample')

 getFor

5-711

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.existsFor |
Simulink.VariantConfigurationData.getOrCreateFor

5 Simulink Classes

5-712

getOrCreateFor
Class: Simulink.VariantConfigurationData
Package: Simulink

Get existing or create a new variant configuration data object for a model

Syntax
Simulink.VariantConfigurationData.getOrCreateFor(modelNameOrHandle)

Description
Simulink.VariantConfigurationData.getOrCreateFor(modelNameOrHandle),
returns the object if the variant configuration data objects exists otherwise, creates an
empty object.

Input Arguments
modelNameOrHandle

Model name or handle to the model.

Examples
% Add the path to the model file
addpath(fullfile(docroot,'toolbox','simulink','examples'));

% Load the model
load_system('slexVariantManagementExample');

% Obtain existing or create an empty variant configuration
% data object for the slexVariantManagementExample model
vcdataObj = Simulink.VariantConfigurationData.getOrCreateFor...
 ('slexVariantManagementExample')

 getOrCreateFor

5-713

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.existsFor |
Simulink.VariantConfigurationData.getFor

5 Simulink Classes

5-714

removeConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove a variant configuration with a given name from the variant configuration data
object

Syntax
vcdataObj.removeConfiguration(nameOfConfiguration)

Description
vcdataObj.removeConfiguration(nameOfConfiguration) removes the
configuration from the variant configuration data object.

Input Arguments
nameOfConfiguration

Name of the configuration to be removed.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add the LinInterExp variant configuration
% to the variant configuration data object
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

% Remove the LinInterExp configuration

 removeConfiguration

5-715

% from the variant configuration data object
vcdataObj.removeConfiguration('LinInterExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.getConfiguration

5 Simulink Classes

5-716

removeConstraint
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove a constraint from the variant configuration data object

Syntax
vcdataObj.removeConstraint(nameOfConstraint)

Description
vcdataObj.removeConstraint(nameOfConstraint), removes the constraint from
the variant configuration data object.

Input Arguments
nameOfConstraint

Name of the constraint to be removed.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add a constraint named LinNotExtern
vcdataObj.addConstraint('LinNotExtern','((Ctrl~=1)...
 || (PlantLocation ~=1))',..
 'Description of the constraint');

% Remove the constraint LinNotExtern
% from the variant configuration
vcdataObj.removeConstraint('LinNotExtern')

 removeConstraint

5-717

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConstraint

5 Simulink Classes

5-718

removeControlVariable
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove a control variable from a variant configuration

Syntax
vcdataObj.removeControlVariable(nameOfConfiguration,
nameOfControlVariable)

Description
vcdataObj.removeControlVariable(nameOfConfiguration,
nameOfControlVariable) removes a control variable from a variant configuration.

Input Arguments
nameOfConfiguration

Name of the variant configuration.

nameOfControlVariable

Name of the control variable to be deleted.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add a variant configuration named LinInterExp
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

 removeControlVariable

5-719

% Add control variables SmartSensor1Mod and PlanLocation
vcdataObj.addControlVariables('LinInterExp',...
 [struct('Name','SmartSensor1Mod','Value','2')]);

% Remove the control variable SmartSensor1Mod
% from the configuration LinInterExp
vcdataObj.removeControlVariable('LinInterExp',...
 'SmartSensor1Mod')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addControlVariables

5 Simulink Classes

5-720

removeSubModelConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove from a variant configuration, the configuration to be used for a sub model.

Syntax
vcdataObj.removeSubModelConfiguration(nameOfConfiguration,
nameOfSubModel)

Description
vcdataObj.removeSubModelConfiguration(nameOfConfiguration,
nameOfSubModel), removes the configuration specified for a submodel.

Input Arguments
nameOfConfiguration

Name of the submodel configuration to be removed.

nameOfSubModel

Name of the submodel from which the configuration must be removed.

Examples
% Load the model
load_system('slexVariantManagementExample');

% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

 removeSubModelConfiguration

5-721

% Add the variant configuration named LinInterExp
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller',controlvars);

% Add a new submodel configuration to LinInterExp
vcdataObj.addSubModelConfigurations('LinInterExp',...
 [struct('ModelName','slexVariantManagementExternalPlantMdlRef',...
 'ConfigurationName', 'LowFid')]);

% Remove the submodel configuration LinInterExp
% from the submodel slexVariantManagementExternalPlantMdlRef
vcdataObj.removeSubModelConfiguration('LinInterExp',..
 'slexVariantManagementExternalPlantMdlRef')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addSubModelConfigurations

5 Simulink Classes

5-722

setDefaultConfigurationName
Class: Simulink.VariantConfigurationData
Package: Simulink

Set name of the default variant configuration for a variant configuration data object

Syntax
vcdataObj.setDefaultConfigurationName(nameOfConfiguration)

Description
vcdataObj.setDefaultConfigurationName(nameOfConfiguration) sets the
default configuration name. A variant configuration must exist with the same name. If an
empty value is passed, then the default configuration name is cleared.

Input Arguments
nameOfConfiguration

Name of the configuration to be set as the default.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add the LinInterExp variant configuration
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

% Set the configuration LinInterExp as default
vcdataObj.setDefaultConfigurationName('LinInterExp');

 setDefaultConfigurationName

5-723

% Obtain the default variant configuration
dconfig = vcdataObj.getDefaultConfiguration

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.getDefaultConfiguration

5 Simulink Classes

5-724

validateModel
Class: Simulink.VariantConfigurationData
Package: Simulink

Validate all variant blocks in the model and submodels in the hierarchy during simulation

Syntax
Simulink.VariantConfigurationData.validateModel(modelName)
Simulink.VariantConfigurationData.validateModel(modelName,
configName)

Description
Simulink.VariantConfigurationData.validateModel(modelName), validates the
model and referenced models during simulation.

Simulink.VariantConfigurationData.validateModel(modelName,
configName), validates the model and referenced models during simulation optionally
using a variant configuration.

Input Arguments
modelName

Name of the model

configName

Name of the configuration to be validated

Examples
% Add the path to the model file
addpath(fullfile(docroot,'toolbox','simulink','examples'));

 validateModel

5-725

% Load the model
load_system('slexVariantManagementExample');

% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add a variant configuration LinInterExp
vcdataObj.addConfiguration('LinInterExp');

% Add control variables to LinInterExp
vcdataObj.addControlVariables('LinInterExp',...
 cell2struct({'Ctrl', '1';...
 'PlantLocation', '2';...
 'SimType', '2'},...
 {'Name', 'Value'}, 2));

% Associate this object with the model
set_param('slexVariantManagementExample',...
 'VariantConfigurationObject', 'vcdataObj');

% Validate the model slexVariantManagementExample using
% the configuration LinInterExp
[valid, errors] = Simulink.VariantConfigurationData.validateModel...
 ('slexVariantManagementExample','LinInterExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.existsFor |
Simulink.VariantConfigurationData.getFor |
Simulink.VariantConfigurationData.getOrCreateFor

5 Simulink Classes

5-726

VariantConfigurationData
Class: Simulink.VariantConfigurationData
Package: Simulink

Object constructor with optional arguments for variant configurations, constraints, and
default configuration name

Syntax
vardataObj = Simulink.VariantConfigurationData(
variantConfigurations)

Description
vardataObj = Simulink.VariantConfigurationData(
variantConfigurations), constructor that creates an empty variant configuration
data object. Optionally, can also accept constraints and a default configuration name as
inputs.

Input Arguments
variantConfigurations

Configurations that are part of the variant configuration data object.

constraints

Constraints to be satisfied by the model.

defaultConfigurationName

Name of the default configuration

 VariantConfigurationData

5-727

Examples
% Create an empty variant configuration data object
vcdataObj = Simulink.VariantConfigurationData

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.addConstraint |
Simulink.VariantConfigurationData.addControlVariables |
Simulink.VariantConfigurationData.addSubModelConfigurations

5 Simulink Classes

5-728

Simulink.VariantManager class
Package: Simulink

Class representing a set of Variant Manager functionality

Description
The variant manager class provides a set of methods to access Variant Manager
functionality from the MATLAB command-line. Use an instance of
Simulink.VariantManager class to:

• Convert the Subsystems or Model block to a Variant Subsystem.
• Find variables used in Variant control expressions.
• Generate a reduced model for specified variant configurations.
• Display or control behavior of a variant condition legend.

Method

variantLegend Display or control behavior of variant condition legend
reduceModel Generate reduced model for specified variant configurations
convertToVariant Convert Subsystem, or Model block, or Variant Model block to a

Variant Subsystem block

See Also

Topics
“Variant Manager Overview”
Simulink.VariantManager.variantLegend
Simulink.VariantManager.convertToVariant

 Simulink.VariantManager class

5-729

variantLegend
Class: Simulink.VariantManager
Package: Simulink

Display or control behavior of variant condition legend

Syntax
Simulink.VariantManager.variantLegend(modelName, action)

Description
Simulink.VariantManager.variantLegend(modelName, action) displays or
performs a specified action on the variant condition legend.

Input Arguments
modelName — Model for which the variant legend is displayed
character vector

Model for which the variant legend is displayed, specified as a character vector.

action — Task to be performed on the variant legend
'open' | 'print' | 'showCodeConditions' | 'close'

Task to be performed on the variant condition legend for the model. You can specify the
task as:

• 'open' — Displays the variant condition legend for a model. The model must be open.
If the legend is opened for the first time, the model is updated.

• 'print' — Prints the data in the variant condition legend. The legend must be open.
There is no preview before printing the legend.

5 Simulink Classes

5-730

• 'showCodeConditions' — Displays code generation conditions column in the
variant condition legend. The legend must be open. showCodeConditions is used as
a name-value pair and accepts 'on' or 'off' as its values.

• 'close' — Closes the variant condition legend belonging to the specified model.

Examples
model = 'sldemo_variant_subsystems';
 open_system(model);
 % Open the variant condition legend
 Simulink.VariantManager.variantLegend(model,'open');
 % Display the code generation conditions
 Simulink.VariantManager.variantLegend(model,'showCodeConditions','on');

See Also
Variant Subsystem

Topics
“Create a Simple Variant Model”
“What Are Variants and When to Use Them”

Introduced in R2017b

 variantLegend

5-731

reduceModel
Class: Simulink.VariantManager
Package: Simulink

Generate reduced model for specified variant configurations

Syntax
Simulink.VariantManager.reduceModel(Model)
Simulink.VariantManager.reduceModel(Model, Name, Value)

Description
Simulink.VariantManager.reduceModel(Model) creates a reduced model for the
specified configuration. The referenced models and library blocks are also reduced. By
default, the name of the reduced model and any reduced child referenced model name is
the original model name suffixed with _r.

Simulink.VariantManager.reduceModel(Model, Name, Value) specifies the
reduction parameters in the Name and Value arguments form.

Input Arguments
Model — Model to be reduced
character vector

Required field. Model to be reduced, specified as a character vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' ') and is caseinsensitive whereas, the value string is casesensitive. You can

5 Simulink Classes

5-732

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NamedConfigurations — Variant configuration name
{' '} | character vector | 'cell array'

Specifies the names of variant configurations. By default, current values of variant control
variables are used for reduction.

VariableConfigurations — Variant control variable value
{' '} | 'cell array'

Specifies the variant control variable values to be used for reduction. By default, the
current values of variant control variables are used.

The specified values must be a cell array with variant control variable names and their
corresponding values.

Note 'VariableConfigurations' and 'NamedConfigurations' are mutually
exclusive.

Consider this example:

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableConfigurations',{'V',1,'W',[1 2]})

FullRangeVariables — Variant control variable value
{' '} | 'cell array'

Specifies the full-range variant control variable values to be used for reduction. This
allows you to reduce a model for all valid values of the specified variant control variable.
Provide a reference value for variant control variable that results in a successful model
compilation.

Consider this example:

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableConfigurations',{'V',1},...
 'FullRangeVariables',{'W',1});

 reduceModel

5-733

You can specify a variant control variable, 'W', as a full-range variant control variable. This
allows you to reduce the model for all valid values of variable 'W'. In the example, full-
range variant control variable W uses a reference value of 1.

OutputFolder — Folder to store the reduced model
character vector

Specifies the folder to place the reduced models and related artifacts. By default, the
reduced models are generated in ./reducedModel subfolder in the original model
folder.

PreserveSignalAttributes — Preserve the signal attributes in the reduced
model
{true} | false

When the value is true, the Variant Reducer preserves the compiled signal attributes
between the original and reduced models by adding signal specification blocks at
appropriate block ports in the reduced model. Compiled signal attributes include signal
data types, signal dimensions, compiled sample times, etc.

Verbose — Displays step details
true | {false}

When the value is true, the Variant Reducer displays details of the steps performed
during model reduction.

ModelSuffix — Reduced model name suffix
{_r}

Specifies the suffix to append to the reduced models and the related artifacts.

GenerateSummary — Generates a summary html file
true | {false}

When the value is true, the Variant Reducer generates a html file with details about the
reduced model and any modifications that may be required for masks and callbacks.

Note To generate summary, you must have Simulink Report Generator license.

5 Simulink Classes

5-734

Examples
% Reduce model based on its variant control variable values in the base workspace.
Simulink.VariantManager.reduceModel('sldemo_variant_subsystems');

% Reduce the model associated with a variant configuration data object and configurations to be retained in the reduced model.
Simulink.VariantManager.reduceModel('slexVariantManagementExample', ...
 'NamedConfigurations', {'LinInterStd',
 'NonLinExterHighFid'})

% Reduce the model by specifying variant control variable values. Here, two configurations are specified corresponding to
% {V==1, W==1}, and {V==2, W==2} respectively.
Simulink.VariantManager.reduceModel('iv_model', ...
 'VariableConfigurations',...
 {{'V',1,'W',1},{'V',2,'W',2}});

% Reduce the model by specifying variant control variable values where 'W' is a full-range variant control variable and 'V' is 1. Here, Variant Reducer
% automatically maps the specification to correspond to the following four explicit configurations: {V==1, W==1}, {V==1, W==2}, {V==1, W==3} and {V==1, W==0} respectively.
Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableConfigurations',...
 {'V',1},...
 'FullRangeVariables',{'W',1});

See Also
Variant Subsystem

Topics
“Create a Simple Variant Model”
“What Are Variants and When to Use Them”
Simulink.VariantManager
Simulink.VariantManager.variantLegend

Introduced in R2016a

 reduceModel

5-735

convertToVariant
Class: Simulink.VariantManager
Package: Simulink

Convert Subsystem, or Model block, or Variant Model block to a Variant Subsystem block

Syntax
variant_subsystem = Simulink.VariantManager.convertToVariant(block)
variant_subsystem = Simulink.VariantManager.convertToVariant(
blockHandle)

Description
variant_subsystem = Simulink.VariantManager.convertToVariant(block)
or variant_subsystem = Simulink.VariantManager.convertToVariant(
blockHandle) converts a Subsystem, or Model block, or Variant Model block to a
Variant Subsystem block. A Variant Subsystem can contain Subsystems, Model blocks, or
both as choices.

Consider this model with Subsystem block.

You can convert this Subsystem block to a Variant Subsystem block using the
convertToVariant method.

5 Simulink Classes

5-736

Similarly you can convert a Variant Model block to a Variant Subsystem block.

To convert a Variant Model block to a Variant Subsystem block, you can also use the
Upgrade Advisor check, Identify Variant Model blocks and convert those to Variant
Subsystem containing Model block choices. This check provides a Fix button to
convert Variant Model blocks to Variant Subsystem blocks. For more information on using
Upgrade Advisor check to convert a Variant Model block to a Variant Subsystem block,
see “Upgrade Advisor Checks”

If there are inconsistencies in the port name or port number in models referenced by
Variant Model block, Simulink corrects these inconsistencies while converting the Variant
Model block to Variant Subsystem block.

Consider this model with Variant Model block having different port names.

When you convert this Variant Model block to a Variant Subsystem block, the
inconsistencies are corrected automatically.

 convertToVariant

5-737

Note Future releases will no longer support using a Model block to contain model
variants. You can use the convertToVariant method to convert model variants so that
Model blocks are contained in a Variant Subsystem. Use of a Variant Subsystem block
provides these advantages:

• Allows you to mix Model and Subsystem blocks as variant choices
• Supports flexible I/O, so that all variants do not need to have the same number of input

and output ports

For an example of a model that uses a Variant Subsystem block as a container for variant
models, see “Model Reference Variants”.

Limitations
You cannot convert a Subsystem block that meets the following condition:

• The Subsystem block is in a Simscape model that has Editing Mode set to Restricted.
• The Variant Model block has a mix of control ports or there is a name mismatch in

control port types.
• The Variant Model block has control ports with different port numbers and name

mapping.

5 Simulink Classes

5-738

Input Arguments
block — Subsystem or Model block to convert
block path | block handle

The path or block handle of the Subsystem or Model block to convert to a Variant
Subsystem block. Specify a block path as a character vector and a block handle as a
scalar.

Output Arguments
variant_subsystem — Handle of Variant Subsystem block
scalar returned by Simulink

If you specify an output argument, the method returns the block handle of the Variant
Subsystem block created by the conversion.

Examples
open_system('autoMRVar');
 Simulink.VariantManager.convertToVariant('autoMRVar/Engine');

Alternative Functionality

Simulink Editor
In the Simulink Editor, right-click the Model block and select Subsystems & Model
Reference > Convert to > Variant Subsystem.

See Also
Variant Subsystem

Topics
“Create a Simple Variant Model”

 convertToVariant

5-739

“What Are Variants and When to Use Them”

Introduced in R2017b

5 Simulink Classes

5-740

Simulink.WorkspaceVar
Store information about workspace variables and blocks that use them

Note Simulink.WorkspaceVar is not recommended. Use Simulink.VariableUsage
instead.

Description
A Simulink.WorkspaceVar object describes attributes of a workspace variable and lists
the blocks that use the variable.

Creation
The Simulink.findVars function returns one or more Simulink.WorkspaceVar
objects that embody the results of searching for variables.

Only the Simulink.WorkspaceVar function can set any field value in a
Simulink.WorkspaceVar object. The fields are otherwise read-only.

Syntax
varObj = Simulink.WorkspaceVar(varNames,wkspName)

Description
varObj = Simulink.WorkspaceVar(varNames,wkspName) creates an array of
Simulink.WorkspaceVar objects to describe the variables varNames. The constructor
sets the Name property of each object to one of the variable names specified by
varNames, and sets the Workspace property of all the objects to the workspace specified
by wkspName. You can specify varNames with variables that are not used in any loaded
models.

 Simulink.WorkspaceVar

5-741

Input Arguments
varNames — Names of target variables
character vector | cell array of character vectors

Names of target variables, specified as a character vector or a cell array of character
vectors. The constructor creates a Simulink.WorkspaceVar object for each variable
name. You can specify varNames with variables that are not used in any loaded models.
Example: 'k'
Example: {'k','asdf','fuelFlow'}
Data Types: char | cell

wkspName — Name of containing workspace
character vector

Name of the workspace that defines the target variables, specified as a character vector.
For example, you can specify the MATLAB base workspace. The constructor also
determines and sets the WorkspaceType property of each of the returned
Simulink.WorkspaceVar objects.
Example: 'base workspace'
Example: 'myModel'
Example: 'myDictionary.sldd'
Data Types: char

Properties
Name — Name of variable
'' (empty character vector) (default) | character vector

This property is read-only.

Name of the variable described by the object, returned as a character vector.

Workspace — Name of workspace that contains variable
'' (empty character vector (default) | character vector

This property is read-only.

5 Simulink Classes

5-742

Name of the workspace that contains the variable, returned as a character vector. For
example:

Workspace value Meaning
'base workspace' The MATLAB base workspace
'MyModel' The model workspace for the model MyModel.
'MyModel/Mask1' The mask workspace for the masked block Mask1 in the

model MyModel.

WorkspaceType — Type of workspace containing variable
'unknown' (default) | 'base' | 'model' | 'mask'

This property is read-only.

Type of workspace that contains the variable, returned as a character vector. The possible
values are:

• 'base' — The base workspace
• 'model' — A model workspace
• 'mask' — A mask workspace

UsedByBlocks — Users of variable
{} (empty cell array) (default) | cell array of character vectors

This property is read-only.

Users of the variable, returned as a cell array of character vectors. Each character vector
identifies a block that uses the variable. The Simulink.findVars function populates
this property.

Object Functions
intersect Return intersection of two arrays of Simulink.VariableUsage objects
setdiff Return difference between two arrays of Simulink.VariableUsage objects

Examples

 Simulink.WorkspaceVar

5-743

Create Object That Represents Variable in Base Workspace

Return a Simulink.WorkspaceVar object for a variable k in the base workspace.

var = Simulink.WorkspaceVar('k', 'base workspace');

Represent All Variables in the Base Workspace

Return an array of Simulink.WorkspaceVar objects containing one object for each
variable returned by the whos command in the base workspace.

vars = Simulink.WorkspaceVar(who,WkspName)

Represent All Variables in a Model Workspace

Return an array of Simulink.WorkspaceVar objects that describes all the variables in a
model workspace.

hws = get_param('mymodel', 'ModelWorkspace');
vars=Simulink.WorkspaceVar(hws.whos, 'MyModel')

Represent All Variables in a Mask Workspace

Return an array of Simulink.WorkspaceVar objects that describes all the variables in a
mask workspace.

maskVars = get_param('mymodel/maskblock', 'MaskWSVariables');
vars = Simulink.WorkspaceVar(maskVars, 'mymodel/maskblock');

See Also
Simulink.findVars | intersect | setdiff

Introduced in R2010a

5 Simulink Classes

5-744

Simulink.VariableUsage
Store information about the relationship between variables and blocks in models

Description
A Simulink.VariableUsage object describes where a variable is used in models.

Use this information to:

• Prepare to permanently store the variables in files and workspaces. For more
information about storing variables for a model, see “Determine Where to Store
Variables and Objects for Simulink Models”.

• Reduce the number of variables that you need to store by eliminating unused
variables.

• Prepare to partition variables and establish variable ownership when you work in a
team.

To analyze variable usage in models, use Simulink.VariableUsage objects together
with the Simulink.findVars function. The function returns and accepts
Simulink.VariableUsage objects as arguments. For more information, see
Simulink.findVars.

A Simulink.VariableUsage object can also describe the usage of an enumerated data
type.

Only a Simulink.VariableUsage constructor or the Simulink.findVars function
can set property values in a Simulink.VariableUsage object. The properties are
otherwise read only.

Creation
The Simulink.findVars function returns Simulink.VariableUsage objects.

To create variable usage objects for use as a filter when using Simulink.findVars, use
the Simulink.VariableUsage function described below.

 Simulink.VariableUsage

5-745

Syntax
variableUsageObj = Simulink.VariableUsage(varNames,sourceName)

Description
variableUsageObj = Simulink.VariableUsage(varNames,sourceName) creates
an array of Simulink.VariableUsage objects to describe the variables varNames. The
constructor sets the Name property of each object to one of the variable names specified
by varNames, and sets the Source property of all the objects to the source specified by
sourceName. You can specify varNames with variables that are not used in any loaded
models.

Input Arguments
varNames — Names of target variables
character vector | cell array of character vectors

Names of target variables, specified as a character vector or a cell array of character
vectors. The constructor creates a Simulink.VariableUsage object for each variable
name.
Example: 'k'
Example: {'k','asdf','fuelFlow'}
Data Types: char | cell

sourceName — Name of variable source
character vector

Name of the source that defines the target variables, specified as a character vector. For
example, you can specify the MATLAB base workspace or a data dictionary as a source.
The constructor also determines and sets the SourceType property of each of the
returned Simulink.VariableUsage objects.
Example: 'base workspace'
Example: 'myModel'
Example: 'myDictionary.sldd'
Data Types: char

5 Simulink Classes

5-746

Properties
Name — Name of variable or enumerated type
'' (empty character vector) (default) | character vector

This property is read-only.

The name of the variable or enumerated data type the object describes, returned as a
character vector.

Source — Name of defining workspace
'' (empty character vector) (default) | character vector

This property is read-only.

The name of the workspace or data dictionary that defines the described variable,
returned as a character vector. The table shows some examples.

Source Value Meaning
'base workspace' MATLAB base workspace
'MyModel' Model workspace for the model MyModel
'MyModel/Mask1' Mask workspace for the masked block Mask1 in the

model MyModel
'sldemo_fuelsys_dd_controller.s
ldd'

The data dictionary named
'sldemo_fuelsys_dd_controller.sldd'

The table shows some examples if you created the Simulink.VariableUsage object by
using the Simulink.findVars function to find enumerated data types.

Source Value Meaning
'BasicColors.m' The enumerated type is defined in the MATLAB file

'BasicColors.m'.
'' The enumerated type is defined dynamically and has no

source.
'sldemo_fuelsys_dd_controller.s
ldd'

The enumerated type is defined in the data dictionary
named 'sldemo_fuelsys_dd_controller.sldd'.

 Simulink.VariableUsage

5-747

SourceType — Type of defining workspace
'unknown source' (default) | 'base workspace' | 'model workspace' | 'mask
workspace' | 'data dictionary'

This property is read-only.

The type of the workspace that defines the variable, returned as a character vector. The
possible values are:

• 'base workspace'
• 'model workspace'
• 'mask workspace'
• 'data dictionary'

If you created the Simulink.VariableUsage object by using the Simulink.findVars
function to find enumerated data types, the possible values are:

• 'MATLAB file'
• 'dynamic class'
• 'data dictionary'

Users — Blocks that use the variable or models that use the enumerated type
{} (empty cell array) (default) | cell array of character vectors

This property is read-only.

Blocks that use the variable or models that use the enumerated type, returned as a cell
array of character vectors. Each character vector names a block or model that uses the
variable or enumerated type. The Simulink.findVars function populates this property.

Object Functions
intersect Return intersection of two arrays of Simulink.VariableUsage objects
setdiff Return difference between two arrays of Simulink.VariableUsage objects

Examples

5 Simulink Classes

5-748

Create Object That Represents Variable in Base Workspace

Return a Simulink.VariableUsage object for a variable k in the base workspace.

var = Simulink.VariableUsage('k','base workspace');

You can use var as a filter for the Simulink.findVars function.

Represent All Variables in the Base Workspace

Return an array of Simulink.VariableUsage objects containing one object for each
variable returned by the whos command in the base workspace.

vars = Simulink.VariableUsage(whos,'base workspace')

Represent All Variables in a Model Workspace

Return an array of Simulink.VariableUsage objects that describes all the variables in
a model workspace.

hws = get_param('mymodel','ModelWorkspace');
vars = Simulink.VariableUsage(hws.whos,'MyModel')

Represent All Variables in a Mask Workspace

Return an array of Simulink.VariableUsage objects that describes all the variables in
a mask workspace.

maskVars = get_param('mymodel/maskblock','MaskWSVariables');
vars = Simulink.VariableUsage(maskVars,'mymodel/maskblock');

See Also
Simulink.data.existsInGlobal | Simulink.findVars

Topics
“Model Exploration”

 Simulink.VariableUsage

5-749

“Variables”

Introduced in R2012b

5 Simulink Classes

5-750

intersect
Package: Simulink

Return intersection of two arrays of Simulink.VariableUsage objects

Syntax
VarsOut = intersect(VarsIn1,VarsIn2)

Description
VarsOut = intersect(VarsIn1,VarsIn2) returns an array that identifies the
variables described in VarsIn1 and in VarsIn2, which are arrays of
Simulink.VariableUsage objects. If a variable is described by a
Simulink.VariableUsage object in VarsIn1 and in VarsIn2, the function returns a
Simulink.VariableUsage object that stores the variable usage information from both
objects in the Users property.

intersect compares the Name, Source, and SourceType properties of the
Simulink.VariableUsage objects in VarsIn1 with the same properties of the objects
in VarsIn2. If VarsIn1 and VarsIn2 each contain Simulink.VariableUsage objects
that have the same values for these three properties, they both describe the same
variable.

To create Simulink.VariableUsage objects that describe the usage of variables in a
model, use the Simulink.findVars function.

Examples

Compare Variables Used by Models

Given two models, discover the variables needed by both models.

 intersect

5-751

model1Vars = Simulink.findVars('model1');
model2Vars = Simulink.findVars('model2');
commonVars = intersect(model1Vars,model2Vars);

Input Arguments
VarsIn1 — First array of variables for comparison
array of Simulink.VariableUsage objects

First array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

VarsIn2 — Second array of variables for comparison
array of Simulink.VariableUsage objects

Second array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

Output Arguments
VarsOut — Variables described in both input arrays
array of Simulink.VariableUsage objects

Variables that are described in both input arrays, returned as an array of
Simulink.VariableUsage objects. The function returns an object for each variable that
is described in VarsIn1 and in VarsIn2.

See Also
Simulink.VariableUsage | Simulink.findVars | setdiff

Topics
“Model Exploration”
“Variables”

Introduced in R2012b

5 Simulink Classes

5-752

setdiff
Package: Simulink

Return difference between two arrays of Simulink.VariableUsage objects

Syntax
VarsOut = setdiff(VarsIn1,VarsIn2)

Description
VarsOut = setdiff(VarsIn1,VarsIn2) returns an array that identifies the variables
described in VarsIn1 but not in VarsIn2, which are arrays of
Simulink.VariableUsage objects. If a variable is described by a
Simulink.VariableUsage object in VarsIn1 but not in VarsIn2, the function returns
a copy of the object.

setdiff compares the Name, Source, and SourceType properties of the
Simulink.VariableUsage objects in VarsIn1 with the same properties of the objects
in VarsIn2. If VarsIn1 and VarsIn2 each contain a Simulink.VariableUsage object
with the same values for these three properties, the objects describe the same variable,
and setdiff does not return an object to describe it.

To create Simulink.VariableUsage objects that describe the usage of variables in a
model, use the Simulink.findVars function.

Examples

Determine Variable Usage Difference Between Models

Given two models, discover the variables that are needed by the first model but not the
second model.

 setdiff

5-753

model1Vars = Simulink.findVars('model1');
model2Vars = Simulink.findVars('model2');
differentVars = setdiff(model1Vars,model2Vars);

Find Variables Not Used by Model

Locate all variables in the base workspace that are not used by a loaded model that has
been recently compiled.

models = find_system('type','block_diagram','LibraryType','None');
base_vars = Simulink.VariableUsage(who,'base workspace');
used_vars = Simulink.findVars(models,'WorkspaceType','base');
unusedVars = setdiff(base_vars,used_vars);

Input Arguments
VarsIn1 — First array of variables for comparison
array of Simulink.VariableUsage objects

First array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

VarsIn2 — Second array of variables for comparison
array of Simulink.VariableUsage objects

Second array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

Output Arguments
VarsOut — Variables described in first array but not second array
array of Simulink.VariableUsage objects

Variables that are described in the first input array but not in the second input array,
returned as an array of Simulink.VariableUsage objects. The function returns an
object for each variable that is described in VarsIn1 but not in VarsIn2.

5 Simulink Classes

5-754

See Also
Simulink.VariableUsage | Simulink.findVars | intersect

Topics
“Model Exploration”
“Variables”

Introduced in R2012b

 setdiff

5-755

Simulink.data.Dictionary class
Package: Simulink.data

Configure data dictionary

Description
An object of the Simulink.data.Dictionary class represents a data dictionary. The
object allows you to perform operations on the data dictionary such as save or discard
changes, import data from the base workspace, and add other data dictionaries as
references.

Construction
The functions Simulink.data.dictionary.create and
Simulink.data.dictionary.open create a Simulink.data.Dictionary object.

Properties
DataSources — Referenced data dictionaries
cell array of character vectors

This property is read-only.

Referenced data dictionaries by file name, returned as a cell array of character vectors.
This property only lists directly referenced dictionaries whose parent is the
Simulink.data.Dictionary object.

EnableAccessToBaseWorkspace — Specify whether models can use design data
in the base workspace
false (default) | true

Whether linked models can use design data in the base workspace, specified as true or
false.

5 Simulink Classes

5-756

To determine whether a dictionary provides access to the base workspace (including
through referenced dictionaries), query the HasAccessToBaseWorkspace property.

For more information about this property, including restrictions that limit your ability to
interact with base workspace data through the dictionary, see “Continue to Use Shared
Data in the Base Workspace”.
Data Types: logical

HasAccessToBaseWorkspace — Query whether models can use design data in the
base workspace
0 (default) | 1

This property is read-only.

Query whether models can use design data in the base workspace, returned as 1 (true) or
0 (false). If the dictionary or a referenced dictionary has the
EnableAccessToBaseWorkspace property set to true, this property returns 1.

Use this property to determine whether models that link to the dictionary can use design
data in the base workspace. You do not need to query each referenced dictionary to
determine whether it has the EnableAccessToBaseWorkspace property set to true.
Data Types: logical

HasUnsavedChanges — Indicator of unsaved changes
0 | 1

This property is read-only.

Indicator of unsaved changes to the data dictionary, returned as 0 or 1. The value is 1 if
changes have been made since last data dictionary save and 0 if not.

NumberOfEntries — Total number of entries in data dictionary
integer

This property is read-only.

Total number of entries in data dictionary, including those in referenced dictionaries,
returned as an integer.

 Simulink.data.Dictionary class

5-757

Methods
addDataSource Add reference data dictionary to parent data dictionary
close Close connection between data dictionary and

Simulink.data.Dictionary object
discardChanges Discard changes to data dictionary
filepath Full path and file name of data dictionary
getSection Return Simulink.data.dictionary.Section object to

represent data dictionary section
hide Remove data dictionary from Model Explorer
importEnumTypes Import enumerated type definitions to data dictionary
importFromBaseWorkspace Import base workspace variables to data dictionary
listEntry List data dictionary entries
removeDataSource Remove reference data dictionary from parent data

dictionary
saveChanges Save changes to data dictionary
show Show data dictionary in Model Explorer

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Create New Data Dictionary and Data Dictionary Object

Create a data dictionary file myNewDictionary.sldd and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the
object to variable dd1.

dd1 = Simulink.data.dictionary.create('myNewDictionary.sldd')

5 Simulink Classes

5-758

dd1 =

 data dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 0
 NumberOfEntries: 0

Open Existing Data Dictionary

Create a Simulink.data.Dictionary object representing the existing data dictionary
myDictionary_ex_API.sldd. Assign the object to variable dd2.

dd2 = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

dd2 =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.dictionary.Entry | Simulink.data.dictionary.Section |
Simulink.data.dictionary.create | Simulink.data.dictionary.open

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

Introduced in R2015a

 Simulink.data.Dictionary class

5-759

addDataSource
Class: Simulink.data.Dictionary
Package: Simulink.data

Add reference data dictionary to parent data dictionary

Syntax
addDataSource(dictionaryObj,refDictionaryFile)

Description
addDataSource(dictionaryObj,refDictionaryFile) adds a data dictionary,
refDictionaryFile, as a reference dictionary to a parent dictionary dictionaryObj,
a Simulink.data.Dictionary object.

The parent dictionary contains all the entries that are defined in the referenced dictionary
until the referenced dictionary is removed from the parent dictionary. The DataSource
property of an entry indicates the dictionary that defines the entry.

Input Arguments
dictionaryObj — Parent data dictionary
Simulink.data.Dictionary object

Parent data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

refDictionaryFile — File name of data dictionary to reference
character vector

File name of data dictionary to reference, specified as a character vector that includes
the .sldd extension. The data dictionary file must be on your MATLAB path.

5 Simulink Classes

5-760

Example: 'mySubDictionary_ex_API.sldd'
Data Types: char

Examples

Add a Reference Data Dictionary to a Parent Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Add the data dictionary mySubDictionary_ex_API.sldd as a reference dictionary to
myDictionary_ex_API.sldd.

addDataSource(myDictionaryObj,'mySubDictionary_ex_API.sldd');

Confirm the addition by viewing the DataSources property of variable
myDictionaryObj. The property returns the name of the newly referenced dictionary.

myDictionaryObj.DataSources

ans =

 'myRefDictionary_ex_API.sldd'
 'mySubDictionary_ex_API.sldd'

• “Store Data in Dictionary Programmatically”

Alternatives
You can use the Model Explorer window to manage reference dictionaries. See “Partition
Dictionary Data Using Referenced Dictionaries” for more information.

See Also
Simulink.data.Dictionary | removeDataSource

 addDataSource

5-761

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-762

close
Class: Simulink.data.Dictionary
Package: Simulink.data

Close connection between data dictionary and Simulink.data.Dictionary object

Syntax
close(dictionaryObj)

Description
close(dictionaryObj) closes the connection between the
Simulink.data.Dictionary object dictionaryObj and the data dictionary it
represents. dictionaryObj remains as a Simulink.data.Dictionary object but no
longer represents any data dictionary.

Input Arguments
dictionaryObj — Target Simulink.data.Dictionary object
handle to Simulink.data.Dictionary object

Target Simulink.data.Dictionary object, specified as a handle to the object.

Tips
• Use the close function in a custom MATLAB function to disassociate a

Simulink.data.Dictionary object from a data dictionary. Custom MATLAB
functions can create and store variables and objects in function workspaces but cannot
delete those variables and objects.

• The close function does not affect the content or the state of the represented data
dictionary. The function does not discard unsaved changes to the represented
dictionary or entries. You can save or discard them later.

 close

5-763

See Also
Simulink.data.Dictionary

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-764

discardChanges
Class: Simulink.data.Dictionary
Package: Simulink.data

Discard changes to data dictionary

Syntax

discardChanges(dictionaryObj)

Description

discardChanges(dictionaryObj) discards all changes made to the specified data
dictionary since the last time changes to the dictionary were saved using the
saveChanges function. discardChanges also discards changes made to referenced
data dictionaries. The changes to the target dictionary and its referenced dictionaries are
permanently lost.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Examples

 discardChanges

5-765

Discard Changes to Data Dictionary

Create a Simulink.data.Dictionary object representing the data dictionary
myDictionary_ex_API.sldd and assign the object to variable myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

Make a change to myDictionary_ex_API.sldd by adding an entry named
myNewEntry with value 237. View the HasUnsavedChanges property of
myDictionaryObj to confirm a change was made.

addEntry(dDataSectObj,'myNewEntry',237);
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 1
 NumberOfEntries: 5

Discard all changes to myDictionary_ex_API.sldd. The HasUnsavedChanges
property of myDictionaryObj indicates changes were discarded.

discardChanges(myDictionaryObj)
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

• “Store Data in Dictionary Programmatically”

5 Simulink Classes

5-766

Alternatives
You can use the Model Explorer window to discard changes to data dictionaries. See
“View and Revert Changes to Dictionary Entries” for more information.

See Also
Simulink.data.Dictionary | saveChanges

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

Introduced in R2015a

 discardChanges

5-767

filepath
Class: Simulink.data.Dictionary
Package: Simulink.data

Full path and file name of data dictionary

Syntax
dictionaryFilePath = filepath(dictionaryObj)

Description
dictionaryFilePath = filepath(dictionaryObj) returns the full path and file
name of the data dictionary dictionaryObj, a Simulink.data.Dictionary object.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Examples

Return Path of Data Dictionary File

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

5 Simulink Classes

5-768

Return the full path of myDictionary_ex_API.sldd and assign it to variable
myDictionaryFilePath.

myDictionaryFilePath = filepath(myDictionaryObj)

myDictionaryFilePath =

C:\Users\jsmith\myDictionary_ex_API.sldd

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.Dictionary

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 filepath

5-769

getSection
Class: Simulink.data.Dictionary
Package: Simulink.data

Return Simulink.data.dictionary.Section object to represent data dictionary
section

Syntax
sectionObj = getSection(dictionaryObj,sectionName)

Description
sectionObj = getSection(dictionaryObj,sectionName) returns a
Simulink.data.dictionary.Section object representing one section,
sectionName, of a data dictionary dictionaryObj, a Simulink.data.Dictionary
object.

You cannot use the data dictionary programmatic interface (see “Store Data in Dictionary
Programmatically”) to access the Embedded Coder section of a data dictionary. Instead,
see Embedded Coder Dictionary.

Input Arguments
dictionaryObj — Data dictionary containing target section
Simulink.data.Dictionary object

Data dictionary containing target section, specified as a Simulink.data.Dictionary
object. Before you use this function, represent the dictionary with a
Simulink.data.Dictionary object by using, for example, the
Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

sectionName — Name of target data dictionary section
character vector

5 Simulink Classes

5-770

Name of target data dictionary section, specified as a character vector.
Example: 'Design Data'
Example: 'Configurations'
Data Types: char

Examples

Create New Data Dictionary Section Object

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

dDataSectObj = getSection(myDictionaryObj,'Design Data')

dDataSectObj =

 Section with properties:

 Name: 'Design Data'

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.Section

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 getSection

5-771

hide
Class: Simulink.data.Dictionary
Package: Simulink.data

Remove data dictionary from Model Explorer

Syntax
hide(dictionaryObj)

Description
hide(dictionaryObj) removes the data dictionary dictionaryObj from the Model
Hierarchy pane of Model Explorer. The target dictionary no longer appears as a node in
the model hierarchy tree. Use this function when you are finished working with a data
dictionary and want to reduce clutter in the Model Explorer.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Examples

5 Simulink Classes

5-772

Hide Data Dictionary from Model Explorer

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Open Model Explorer and display the new data dictionary as the selected tree node in the
Model Hierarchy pane.

show(myDictionaryObj)

With Model Explorer open, at the MATLAB command prompt, call the hide function to
observe the removal of myDictionary_ex_API.sldd from the model hierarchy tree.

hide(myDictionaryObj)

• “Store Data in Dictionary Programmatically”

Tips
• To add a data dictionary as a node in the model hierarchy tree in Model Explorer, use

the show function or use the interface to open and view the dictionary in Model
Explorer.

• The hide function does not affect the content of the target dictionary.

Alternatives
You can remove a data dictionary from the Model Hierarchy pane of Model Explorer by
right-clicking the dictionary tree node and selecting Close.

See Also
Simulink.data.Dictionary | show

Topics
“Store Data in Dictionary Programmatically”

 hide

5-773

Introduced in R2015a

5 Simulink Classes

5-774

importEnumTypes
Class: Simulink.data.Dictionary
Package: Simulink.data

Import enumerated type definitions to data dictionary

Syntax
importedTypes = importEnumTypes(dictionaryObj,targetTypes)
[importedTypes,importFailures] = importEnumTypes(dictionaryObj,
targetTypes)

Description
importedTypes = importEnumTypes(dictionaryObj,targetTypes) imports to
the data dictionary dictionaryObj the definitions of one or more enumerated types
targetTypes. importEnumTypes does not import MATLAB variables created using
enumerated types but instead, in support of those variables, imports the definitions of the
types. The target data dictionary stores the definition of a successfully imported type as
an entry. This syntax returns a list of the names of successfully imported types.
importEnumTypes saves changes made to the target dictionary, so before you use
importEnumTypes, confirm that unsaved changes are acceptable.

[importedTypes,importFailures] = importEnumTypes(dictionaryObj,
targetTypes) additionally returns a list of any target types that were not successfully
imported. You can inspect the list to determine the reason for each failure.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary

 importEnumTypes

5-775

object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

targetTypes — Enumerated type definitions to import
cell array of character vectors

Enumerated type definitions to import, specified as a cell array of character vectors. If
any target types are defined using classdef blocks in MATLAB files or P-files, the files
must be available on your MATLAB path so that importEnumTypes can disable them.
Example: {'myEnumType'}
Example: {'myFirstEnumType','mySecondEnumType','myThirdEnumType'}
Data Types: cell

Output Arguments
importedTypes — Target types successfully imported
array of structures

Target enumerated type definitions successfully imported, returned as an array of
structures. Each structure in the array represents one imported type. The className
field of each structure identifies a type by name and the renamedFiles field identifies
any renamed MATLAB files or P-files.

importFailures — Target types not imported
array of structures

Enumerated type definitions targeted but not imported, returned as an array of
structures. Each structure in the array represents one type not imported. The className
field of each structure identifies a type by name and the reason field explains the failure.

Examples

Import Enumerated Data to Data Dictionary

Create a data dictionary myNewDictionary.sldd in your current working folder and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the
object to the variable myDictionaryObj.

5 Simulink Classes

5-776

myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd');

Run the script in the MATLAB file myDataEnum_ex_API.m. The file defines an
enumerated type named InstrumentTypes using the Simulink.defineIntEnumType
function and creates three variables based on the new type. Then, import the new
variables from the base workspace to myDictionary_ex_API.sldd.

myDataEnum_ex_API
importFromBaseWorkspace(myDictionaryObj,'varList',...
{'firstEnumVariable','secondEnumVariable','thirdEnumVariable'});

Clear the imported variables from the base workspace. Before you can import an
enumerated data type definition to the target data dictionary, you must clear the base
workspace of any variables created using the target type.

clear firstEnumVariable
clear secondEnumVariable
clear thirdEnumVariable

Import the data type definition to myDictionary_ex_API.sldd.

importEnumTypes(myDictionaryObj,{'InstrumentTypes'})

ans =

 className: 'InstrumentTypes'
 renamedFiles: {}

• “Enumerations in Data Dictionary”
• “Store Data in Dictionary Programmatically”

Tips
• Before you can import an enumerated data type definition to a data dictionary, you

must clear the base workspace of any variables created using the target type.
• You can define an enumerated type using a classdef block in a MATLAB file or a P-
file. importEnumTypes imports type definitions directly from these files if you specify
the names of the types to import using the input argument targetTypes and if the
files defining the types are on your MATLAB path.

• To avoid conflicting definitions for imported types, importEnumTypes renders
MATLAB files or P-files ineffective by appending .save to their names. The .save

 importEnumTypes

5-777

extensions cause variables to rely on the definitions in the target data dictionary and
not on the definitions in the files. You can remove the .save extensions to restore the
files to their original state.

• You can use importEnumTypes to import enumerated types defined using the
Simulink.defineIntEnumType function. Because such types are not defined using
MATLAB files or P-files, importEnumTypes does not rename any files.

• Use the function Simulink.findVars to generate a list of the enumerated types that
are used by a model. Then, use the list with importEnumTypes to import the
definitions of the types to a data dictionary. See “Enumerations in Data Dictionary” for
more information.

See Also
Simulink.data.Dictionary | importFromBaseWorkspace

Topics
“Enumerations in Data Dictionary”
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-778

importFromBaseWorkspace
Class: Simulink.data.Dictionary
Package: Simulink.data

Import base workspace variables to data dictionary

Syntax
importedVars = importFromBaseWorkspace(dictionaryObj)
importedVars = importFromBaseWorkspace(dictionaryObj,Name,Value)
[importedVars,existingVars] = importFromBaseWorkspace(___)

Description
importedVars = importFromBaseWorkspace(dictionaryObj) imports all
variables from the MATLAB base workspace to the data dictionary dictionaryObj
without overwriting existing entries in the dictionary. If any base workspace variables are
already in the dictionary, the function present a warning and a list.

This syntax returns a list of names of the successfully imported variables. A variable is
considered successfully imported only if importFromBaseWorkspace assigns the value
of the variable to the corresponding entry in the target data dictionary.

importedVars = importFromBaseWorkspace(dictionaryObj,Name,Value)
imports base workspace variables to a data dictionary, with additional options specified by
one or more Name,Value pair arguments.

[importedVars,existingVars] = importFromBaseWorkspace(___) additionally
returns a list of variables that were not overwritten. Use this syntax if
existingVarsAction is set to 'none', the default value, which prevents existing
dictionary entries from being overwritten.

 importFromBaseWorkspace

5-779

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

clearWorkspaceVars — Flag to clear base workspace of imported variables
false (default) | true

Flag to clear the base workspace of any successfully imported variables, specified as the
comma-separated pair consisting of 'clearWorkspaceVars' and true or false.
Example: 'clearWorkspaceVars',true
Data Types: logical

existingVarsAction — Action to take for existing dictionary variables
'none' (default) | 'error' | 'overwrite'

Action to take for existing dictionary variables, specified as the comma-separated pair
consisting of 'existingVarsAction' and 'none', 'error', or 'overwrite'.

If you specify 'none', importFromBaseWorkspace attempts to import target variables
but does not import or make any changes to variables that are already in the data
dictionary.

If you specify 'error', importFromBaseWorkspace returns an error, without
importing any variables, if any target variables are already in the data dictionary.

If you specify 'overwrite', importFromBaseWorkspace imports all target variables
and overwrites any variables that are already in the data dictionary.

5 Simulink Classes

5-780

Example: 'existingVarsAction','error'
Data Types: char

varList — Variables to import
cell array of character vectors

Names of specific base workspace variables to import, specified as the comma-separated
pair consisting of 'varList' and a cell array of character vectors. If you want to import
only one variable, specify the name inside a cell array. If you do not specify 'varList',
importFromBaseWorkspace imports all variables from the MATLAB base workspace.
Example: 'varList',{'a','myVariable','fuelFlow'}
Example: 'varList',{'fuelFlow'}
Data Types: cell

Output Arguments
importedVars — Successfully imported variables
cell array of character vectors

Names of successfully imported variables, returned as a cell array of character vectors. A
variable is considered successfully imported only if importFromBaseWorkspace assigns
the value of the variable to the corresponding entry in the target data dictionary.

existingVars — Variables that were not imported
cell array of character vectors

Names of target variables that were not imported due to their existence in the target data
dictionary, returned as a cell array of character vectors. existingVars has content only
if 'existingVarsAction' is set to 'none' which is also the default. In that case
importFromBaseWorkspace imports only variables that are not already in the target
data dictionary.

Examples

 importFromBaseWorkspace

5-781

Import All Base Workspace Variables to Data Dictionary

In the MATLAB base workspace, create variables to import.

a = 'Char Variable';
myVariable = true;
fuelFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import all base workspace variables to the data dictionary and return a list of successfully
imported variables. If any base workspace variables are already in
myDictionary_ex_API.sldd, importFromBaseWorkspace presents a warning and a
list of the affected variables.

importFromBaseWorkspace(myDictionaryObj);

Warning: The following variables were not imported because
they already exist in the dictionary:
 fuelFlow

Specify Variables to Import to Data Dictionary from Base Workspace

In the MATLAB base workspace, create variables to import.

b = 'Char Variable';
mySecondVariable = true;
airFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import only the new base workspace variables to the data dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',...
{'b','mySecondVariable','airFlow'});

5 Simulink Classes

5-782

Import Variables from Base Workspace and Overwrite Conflicts

In the MATLAB base workspace, create a variable to import.

fuelFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionary_ex_API.sldd already contains an entry called fuelFlow.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the variable fuelFlow and overwrite the corresponding entry in
myDictionary_ex_API.sldd.

importFromBaseWorkspace(myDictionaryObj,'varList',{'fuelFlow'},...
'existingVarsAction','overwrite');

importFromBaseWorkspace assigns the value of the base workspace variable
fuelFlow to the value of the corresponding entry in myDictionary_ex_API.sldd.

Return Variables Not Imported to Data Dictionary from Base Workspace

Return a list of variables that are not imported from the MATLAB base workspace
because they are already in the target data dictionary.

In the MATLAB base workspace, create variables to import.

fuelFlow = 324;
myNewVariable = 'This is a character vector.'

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionary_ex_API.sldd already contains an entry called fuelFlow.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the variables fuelFlow and myNewVariable to the data dictionary. Specify
names for the output arguments of importFromBaseWorkspace to return the names of
successfully and unsuccessfully imported variables.

[importedVars,existingVars] = importFromBaseWorkspace(myDictionaryObj,...
'varList',{'fuelFlow','myNewVariable'})

 importFromBaseWorkspace

5-783

importedVars =

 'myNewVariable'

existingVars =

 'fuelFlow'

importFromBaseWorkspace does not import the variable fuelflow because it is
already in the target data dictionary.

• “Store Data in Dictionary Programmatically”

Tips
• importFromBaseWorkspace can import MATLAB variables created from enumerated

data types but cannot import the definitions of the enumerated types. Use the
importEnumTypes function to import enumerated data type definitions to a data
dictionary. If you import variables of enumerated data types to a data dictionary but do
not import the enumerated type definitions, the dictionary is less portable and might
not function properly if used by someone else.

Alternatives
• When you use the Simulink Editor to link a model to a data dictionary, you can choose

to import model variables from the base workspace. See “Migrate Single Model to Use
Dictionary” for more information.

• You can also use the Model Explorer window to drag-and-drop variables from the base
workspace into a data dictionary.

See Also
Simulink.data.Dictionary | importEnumTypes

Topics
“Store Data in Dictionary Programmatically”

5 Simulink Classes

5-784

Introduced in R2015a

 importFromBaseWorkspace

5-785

listEntry
Class: Simulink.data.Dictionary
Package: Simulink.data

List data dictionary entries

Syntax
listEntry(dictionaryObj)
listEntry(dictionaryObj,Name,Value)

Description
listEntry(dictionaryObj) displays in the MATLAB Command Window a table of
information about all the entries in the data dictionary dictionaryObj, a
Simulink.data.Dictionary object. The displayed information includes the name of
each entry, the name of the section containing each entry, the status of each entry, the
date and time each entry was last modified, the last user name to modify each entry, and
the class of the value each entry contains. By default, the function sorts the list of entries
alphabetically by entry name.

listEntry(dictionaryObj,Name,Value) displays the entries in a data dictionary
with additional options specified by one or more Name,Value pair arguments.

To return the value of a data dictionary entry at the command prompt, use the getValue
method of a Simulink.data.dictionary.Entry object. See “Store Data in Dictionary
Programmatically”.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary

5 Simulink Classes

5-786

object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Ascending — Sort order of list
true (default) | false

Sort order of the list of data dictionary entries, specified as the comma-separated pair
consisting of 'Ascending' and true or false. If you specify false, listEntry sorts
the list in descending order.
Example: 'Ascending',false
Data Types: logical

Class — Criteria to filter list by class
character vector

Criteria to filter the list of data dictionary entries by class, specified as the comma-
separated pair consisting of 'Class' and a character vector identifying a valid class. The
function lists only entries whose values are of the specified class.
Example: 'Class','Simulink.Parameter'
Data Types: char

LastModifiedBy — Criteria to filter list by user name of last modifier
character vector

Criteria to filter the list of data dictionary entries by the user name of the last user to
modify each entry, specified as the comma-separated pair consisting of
'LastModifiedBy' and a character vector identifying the specified user name. The
function lists only entries that were last modified by the specified user name.
Example: 'LastModifiedBy','jsmith'
Data Types: char

 listEntry

5-787

Limit — Maximum number of entries to list
integer

Maximum number of entries to list, specified as the comma-separated pair consisting of
'Limit' and an integer. The function lists up to the specified number of entries starting
from the top of the sorted and filtered list.
Example: 'Limit',9
Data Types: double

Name — Criteria to filter list by entry name
character vector

Criteria to filter the list of data dictionary entries by entry name, specified as the comma-
separated pair consisting of 'Name' and a character vector defining the filter criteria.
You can use an asterisk character, *, as a wildcard to represent any number of characters.
The function lists only entries whose names match the filter criteria.
Example: 'Name','fuelFlow'
Example: 'Name','fuel*'
Data Types: char

Section — Criteria to filter list by data dictionary section
character vector

Criteria to filter the list of data dictionary entries by section, specified as the comma-
separated pair consisting of 'Section' and a character vector identifying the target
section. The function lists only entries that are contained in the target section.
Example: 'Section','Design Data'

SortBy — Flag to sort list by specific property
'Name' (default) | 'Section' | 'LastModified' | 'LastModifiedBy'

Flag to sort the list of data dictionary entries by a specific property, specified as the
comma-separated pair consisting of 'SortBy' and a character vector identifying a
property in the list of entries. Valid properties include 'Name', 'Section',
'LastModified', and 'LastModifiedBy'.
Example: 'SortBy','LastModifiedBy'

5 Simulink Classes

5-788

Examples

List All Entries in Data Dictionary

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the data dictionary.

listEntry(myDictionaryObj)

Sort List of Data Dictionary Entries in Descending Order

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the data dictionary and sort the list in descending order by entry
name.

listEntry(myDictionaryObj,'Ascending',false)

Filter List of Data Dictionary Entries by Name

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List only the entries in the data dictionary whose names begin with max.

listEntry(myDictionaryObj,'Name','max*')

 listEntry

5-789

Sort List of Data Dictionary Entries by Time of Modification

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the dictionary and sort the list by the date and time each entry was
last modified.

listEntry(myDictionaryObj,'SortBy','LastModified')

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.Entry | evalin

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

Introduced in R2015a

5 Simulink Classes

5-790

removeDataSource
Class: Simulink.data.Dictionary
Package: Simulink.data

Remove reference data dictionary from parent data dictionary

Syntax
removeDataSource(dictionaryObj,refDictionaryFile)

Description
removeDataSource(dictionaryObj,refDictionaryFile) removes a referenced
data dictionary, refDictionaryFile, from a parent dictionary dictionaryObj, a
Simulink.data.Dictionary object.

The parent dictionary no longer contains the entries that are defined in the referenced
dictionary.

Input Arguments
dictionaryObj — Parent data dictionary
Simulink.data.Dictionary object

Parent data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

refDictionaryFile — File name of referenced data dictionary
character vector

File name of referenced data dictionary, specified as a character vector that includes
the .sldd extension. The data dictionary file must be on your MATLAB path.

 removeDataSource

5-791

Example: 'myRefDictionary_ex_API.sldd'
Data Types: char

Examples

Remove Referenced Data Dictionary from Parent Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj. The DataSources
property of myDictionaryObj indicates myDictionary_ex_API.sldd references
myRefDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

Remove myRefDictionary_ex_API.sldd from myDictionary_ex_API.sldd.

removeDataSource(myDictionaryObj,'myRefDictionary_ex_API.sldd');

View the properties of the Simulink.data.Dictionary object myDictionaryObj,
which represents the parent data dictionary. The DataSources property confirms the
removal of myRefDictionary_ex_API.sldd.

myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 1
 NumberOfEntries: 3

• “Store Data in Dictionary Programmatically”

5 Simulink Classes

5-792

Alternatives
You can use Model Explorer to manage reference dictionaries. See “Partition Dictionary
Data Using Referenced Dictionaries” for more information.

See Also
Simulink.data.Dictionary | addDataSource

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 removeDataSource

5-793

saveChanges
Class: Simulink.data.Dictionary
Package: Simulink.data

Save changes to data dictionary

Syntax
saveChanges(dictionaryObj)

Description
saveChanges(dictionaryObj) saves all changes made to a data dictionary
dictionaryObj, a Simulink.data.Dictionary object. saveChanges also saves
changes made to referenced data dictionaries. The previous states of the target dictionary
and its referenced dictionaries are permanently lost.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Examples

5 Simulink Classes

5-794

Save Changes to Data Dictionary

Create a new data dictionary myNewDictionary.sldd and represent the Design Data
section with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd')
dDataSectObj = getSection(myDictionaryObj,'Design Data');

myDictionaryObj =

 data dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 0
 NumberOfEntries: 0

Change myNewDictionary.sldd by adding an entry named myNewEntry with value
237. View the HasUnsavedChanges property of myDictionaryObj to confirm a change
was made.

addEntry(dDataSectObj,'myNewEntry',237);
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 1
 NumberOfEntries: 1

Save all changes to myNewDictionary.sldd. The HasUnsavedChanges property of
myDictionaryObj indicates changes were saved.

saveChanges(myDictionaryObj)
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}

 saveChanges

5-795

 HasUnsavedChanges: 0
 NumberOfEntries: 1

• “Store Data in Dictionary Programmatically”

Alternatives
You can use Model Explorer to save changes to a data dictionary by right-clicking on the
dictionary tree node in the Model Hierarchy pane and selecting Save Changes.

See Also
Simulink.data.Dictionary | discardChanges

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-796

show
Class: Simulink.data.Dictionary
Package: Simulink.data

Show data dictionary in Model Explorer

Syntax
show(dictionaryObj)
show(dictionaryObj,openModelExplorer)

Description
show(dictionaryObj) opens Model Explorer and displays the data dictionary
dictionaryObj as the selected tree node in the Model Hierarchy pane.

show(dictionaryObj,openModelExplorer) enables you to add the target dictionary
to the Model Hierarchy pane without opening Model Explorer.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

openModelExplorer — Flag to open Model Explorer
true (default) | false

Flag to open Model Explorer, specified as true or false.
Data Types: logical

 show

5-797

Examples

Show Data Dictionary in Model Explorer

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Open Model Explorer and display myDictionary_ex_API as the selected node of the
model hierarchy tree in the Model Hierarchy pane.

show(myDictionaryObj)

Add Data Dictionary to Model Hierarchy Tree

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Add myDictionary_ex_API.sldd to the model hierarchy tree without opening Model
Explorer.

show(myDictionaryObj,false)

You can confirm the addition of myDictionary_ex_API to the model hierarchy tree by
manually opening Model Explorer.

• “Store Data in Dictionary Programmatically”

Tips
• Use the hide function to remove a data dictionary from the tree in the Model

Hierarchy pane of Model Explorer. The dictionary does not appear in the hierarchy
again until you use the show function or you open and view the dictionary in the
Model Explorer using the interface.

5 Simulink Classes

5-798

See Also
Simulink.data.Dictionary | hide

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 show

5-799

Simulink.data.dictionary.Entry class
Package: Simulink.data.dictionary

Configure data dictionary entry

Description
An object of the Simulink.data.dictionary.Entry class represents one entry of a
data dictionary. The object allows you to perform operations such as assign the entry a
value or change the name of the entry.

Before you can create a new Simulink.data.dictionary.Entry object, you must
create a Simulink.data.dictionary.Section object representing the data
dictionary section that contains the target entry. However, once created, the
Simulink.data.dictionary.Entry object exists independently of the
Simulink.data.dictionary.Section object. Use the function getSection to create
a Simulink.data.dictionary.Section object.

Construction
The functions addEntry, getEntry, and find create
Simulink.data.dictionary.Entry objects.

Properties
DataSource — File name of containing data dictionary
character vector

File name of containing data dictionary, specified as a character vector. Changes you
make to this property affect the represented data dictionary entry.
Example: 'myDictionary.sldd'
Data Types: char

5 Simulink Classes

5-800

LastModified — Date and time of last modification
character vector

Date and time of last modification to entry, returned in Coordinated Universal Time (UTC)
as a character vector. This property is read only.

LastModifiedBy — Name of last user to modify entry
character vector

Name of last user to modify entry, returned as a character vector. This property is read
only.

Name — Name of entry
character vector

Name of entry, specified as a character vector. Changes you make to this property affect
the represented data dictionary entry.
Data Types: char

Status — State of entry
'New' | 'Modified' | 'Unchanged' | 'Deleted'

State of entry, returned as 'New', 'Modified', 'Unchanged', or 'Deleted'. The state
is valid since the last data dictionary save. If the state is 'Deleted', the represented
entry was deleted from its data dictionary. This property is read only.

Methods

deleteEntry Delete data dictionary entry
discardChanges Discard changes to data dictionary entry
find Search in array of data dictionary entries
getValue Return value of data dictionary entry
setValue Set value of data dictionary entry
showChanges Display changes made to data dictionary entry

 Simulink.data.dictionary.Entry class

5-801

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Add Entry to Data Dictionary and Modify its Value

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry myEntry with value 27 to the Design Data section of
myDictionary_ex_API.sldd. Assign the returned
Simulink.data.dictionary.Entry object to variable e.

e = addEntry(dDataSectObj,'myEntry',27)

e =

 Entry with properties:

 Name: 'myEntry'
 Value: 27
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Aug-26 18:42:08.439709'
 LastModifiedBy: 'jsmith'
 Status: 'New'

Change the value of myEntry from 27 to the character vector 'My New Value'.

setValue(e,'My New Value')
e

e =

 Entry with properties:

5 Simulink Classes

5-802

 Name: 'myEntry'
 Value: 'My New Value'
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Aug-26 18:45:58.336598'
 LastModifiedBy: 'jsmith'
 Status: 'New'

Return Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Return the value of the entry fuelFlow and assign the value to the variable
fuelFlowValue.

fuelFlowValue = getValue(fuelFlowObj)

fuelFlowValue =

 237

Move Entry Within Data Dictionary Hierarchy

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.
myDictionary_ex_API.sldd references the data dictionary
myRefDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Create a Simulink.data.dictionary.Entry object representing the entry fuelFlow,
which resides in myDictionary_ex_API.sldd. Assign the object to variable e.

e = getEntry(dDataSectObj,'fuelFlow')

 Simulink.data.dictionary.Entry class

5-803

e =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 237
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:12:06.099278'
 LastModifiedBy: 'jsmith'
 Status: 'Unchanged'

Migrate the entry fuelFlow to the reference data dictionary
myRefDictionary_ex_API.sldd by modifying the DataSource property of e.

e.DataSource = 'myRefDictionary_ex_API.sldd'

e =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 237
 DataSource: 'myRefDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:12:06.099278'
 LastModifiedBy: 'jsmith'
 Status: 'Modified'

Because myDictionary_ex_API.sldd references myRefDictionary_ex_API.sldd,
both dictionaries belong to the same dictionary hierarchy, allowing you to migrate the
entry fuelFlow between them.

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.Section | getEntry

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

5 Simulink Classes

5-804

Introduced in R2015a

 Simulink.data.dictionary.Entry class

5-805

deleteEntry
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Delete data dictionary entry

Syntax
deleteEntry(entryObj)

Description
deleteEntry(entryObj) deletes the data dictionary entry represented by entryObj, a
Simulink.data.dictionary.Entry object. The represented entry no longer exists in
the data dictionary that defined it.

The function sets the Status properties of any Simulink.data.dictionary.Entry
objects representing the deleted entry to 'Deleted'. You can access only the Status
properties of the objects.

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object.
Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

Examples

5 Simulink Classes

5-806

Delete Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Delete the entry fuelFlow from the data dictionary myDictionary_ex_API.sldd.
myDictionary_ex_API.sldd no longer contains the fuelFlow entry.

deleteEntry(fuelFlowObj)

• “Store Data in Dictionary Programmatically”

Alternatives
You can use the Model Explorer window to view the contents of a data dictionary and
delete entries.

See Also
Simulink.data.dictionary.Entry | addEntry

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 deleteEntry

5-807

discardChanges
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Discard changes to data dictionary entry

Syntax
discardChanges(entryObj)

Description
discardChanges(entryObj) discards all changes made to the data dictionary entry
entryObj, a Simulink.data.dictionary.Entry object, since the last time the
containing data dictionary was saved using the saveChanges function. The changes to
the entry are permanently lost.

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object.
Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

Examples

5 Simulink Classes

5-808

Discard Changes to Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Change the entry fuelFlow by assigning it the new value 493. Confirm a change was
made by viewing the Status property of fuelFlowObj.

setValue(fuelFlowObj,493);
fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 493
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:14:30.661978'
 LastModifiedBy: 'jsmith'
 Status: 'Modified'

Discard all changes to the entry fuelFlow. The Status property of fuelFlowObj shows
that changes were discarded.

discardChanges(fuelFlowObj)
fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 237
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:12:06.099278'

 discardChanges

5-809

 LastModifiedBy: 'jsmith'
 Status: 'Unchanged'

• “Store Data in Dictionary Programmatically”

Tips
• You can use the discardChanges function or the saveChanges function with an

entire data dictionary, discarding or saving changes to all entries in the dictionary at
once. However, only the discardChanges function can additionally operate on
individual entries. You cannot use the saveChanges function to save changes to
individual entries.

Alternatives
You can use Model Explorer and the Comparison Tool to discard changes to data
dictionary entries. See “View and Revert Changes to Dictionary Entries” for more
information.

See Also
Simulink.data.dictionary.Entry | saveChanges

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-810

find
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Search in array of data dictionary entries

Syntax
foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN)
foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN,
options)

Description
foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN)
searches the array of data dictionary entries targetEntries using search criteria
PName1,PValue1,...,PNameN,PValueN, and returns an array of entries matching the
criteria. This syntax matches the search criteria with the properties of the target entries,
which are Simulink.data.dictionary.Entry objects, but not with the properties of
their values. See Simulink.data.dictionary.Entry for a list of data dictionary entry
properties.

foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN,
options) searches for data dictionary entries using additional search options. For
example, you can match the search criteria with the values of the target entries.

Input Arguments
targetEntries — Data dictionary entries to search
array of Simulink.data.dictionary.Entry objects

Data dictionary entries to search, specified as an array
Simulink.data.dictionary.Entry objects. Before you use this function, represent
the target entries with Simulink.data.dictionary.Entry objects by using, for
example, the getEntry function.

 find

5-811

Example: [myEntryObj1,myEntryObj2,myEntryObj3]

PName1,PValue1,...,PNameN,PValueN — Search criteria
name-value pairs representing properties

Search criteria, specified as one or more name-value pairs representing names and values
of properties of the target data dictionary entries. For a list of the properties of a data
dictionary entry, see Simulink.data.dictionary.Entry. If you specify more than one
name-value pair, the returned entries meet all of the criteria.

If you include the '-value' option to search in the values of the target entries, the
search criteria apply to the values of the entries rather than to the entries themselves.
Example: 'LastModifiedBy','jsmith'
Example: 'DataSource','myRefDictionary_ex_API.sldd'

options — Additional search options
supported option codes

Additional search options, specified as one or more of the following supported option
codes.

'-value' This option causes find to search only in the
values of the target data dictionary entries. Specify
this option before any other search criteria or
options arguments.

'-and', '-or', '-xor', or '-not'
logical operators

These options modify or combine multiple search
criteria or other option codes.

'-property',propertyName This name-value pair causes find to search for
entries or values that have the property
propertyName regardless of the value of the
property. Specify propertyName as a character
vector.

'-class',className This name-value pair causes find to search for
entries or values that are objects of the class
className. Specify className as a character
vector.

5 Simulink Classes

5-812

'-isa',className This name-value pair causes find to search for
entries or values that are objects of the class or of
any subclass derived from the class className.
Specify className as a character vector.

'-regexp' This option allows you to use regular expressions
in your search criteria. This option affects only
search criteria that follow '-regexp'.

Example: '-value'
Example: '-value','-property','CoderInfo'
Example: '-value','-class','Simulink.Parameter'

Output Arguments
foundEntries — Data dictionary entries matching search criteria
array of Simulink.data.dictionary.Entry objects

Data dictionary entries matching the specified search criteria, returned as an array of
Simulink.data.dictionary.Entry objects.

Examples

Search Data Dictionary Entry Values for Specific Class

Search in an array of data dictionary entries myEntryObjs for entries whose values are
objects of the class Simulink.Parameter.

foundEntries = find(myEntryObjs,'-value','-class','Simulink.Parameter')

Search Data Dictionary Entries for Modifying User

Search in an array of data dictionary entries myEntryObjs for entries that were last
modified by the user jsmith.

 find

5-813

foundEntries = find(myEntryObjs,'LastModifiedBy','jsmith')

Search Data Dictionary Entries Using Multiple Criteria

Search in an array of data dictionary entries myEntryObjs for entries that were last
modified by the user jsmith or whose names begin with fuel.

foundEntries = find(myEntryObjs,'LastModifiedBy','jsmith','-or',...
'-regexp','Name','fuel*')

Search Data Dictionary Entries Using Regular Expressions

Search in an array of data dictionary entries myEntryObjs for entries whose names
begin with Press.

foundEntries = find(myEntryObjs,'-regexp','Name','Press*')

Search Data Dictionary Entries for Specific Value

Search in an array of data dictionary entries myEntryObjs for entries whose values are
273. If you find more than one entry, store the entries in an array called foundEntries.

foundEntries = [];
for i = 1:length(myEntryObjs)
 if getValue(myEntryObjs(i)) == 237
 foundEntries = [foundEntries myEntryObjs(i)];
 end
end

Search Data Dictionary Entry Values for Specific Property

Search in an array of data dictionary entries myEntryObjs for entries whose values have
a property DataType.

5 Simulink Classes

5-814

foundEntries = find(myEntryObjs,'-value','-property','DataType')

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.dictionary.Entry | find

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 find

5-815

getValue
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Return value of data dictionary entry

Syntax
entryValue = getValue(entryObj)

Description
entryValue = getValue(entryObj) returns the value of the data dictionary entry
entryObj, a Simulink.data.dictionary.Entry object.

To programmatically access variables for the purpose of sweeping block parameter
values, consider using Simulink.SimulationInput objects instead of modifying the
variables through the programmatic interface of the data dictionary. See “Optimize,
Estimate, and Sweep Block Parameter Values”.

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object.
Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

Examples

5 Simulink Classes

5-816

Return Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Return the value of the entry fuelFlow and assign the value to variable
fuelFlowValue.

fuelFlowValue = getValue(fuelFlowObj)

fuelFlowValue =

 237

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.dictionary.Entry | setValue

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 getValue

5-817

setValue
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Set value of data dictionary entry

Syntax
setValue(entryObj,newValue)

Description
setValue(entryObj,newValue) assigns the value newValue to the data dictionary
entry entryObj, a Simulink.data.dictionary.Entry object.

To programmatically access variables for the purpose of sweeping block parameter
values, consider using Simulink.SimulationInput objects instead of modifying the
variables through the programmatic interface of the data dictionary. See “Optimize,
Estimate, and Sweep Block Parameter Values”.

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object.
Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

newValue — Value to assign to data dictionary entry
MATLAB expression

5 Simulink Classes

5-818

Value to assign to data dictionary entry, specified as a MATLAB expression. The
expression must return a value that is supported by the data dictionary section that
contains the entry.
Example: 27.5
Example: myBaseWorkspaceVariable
Example: Simulink.Parameter

Examples

Set Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Set the value of the entry fuelFlow to 493. Then, view the Value property of
fuelFlowObj to observe the change.

setValue(fuelFlowObj,493)
fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 493
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:37:22.161124'
 LastModifiedBy: 'jsmith'
 Status: 'Modified'

• “Store Data in Dictionary Programmatically”

 setValue

5-819

Alternatives
You can use the Model Explorer window to view and change the values of data dictionary
entries.

See Also
Simulink.data.dictionary.Entry | getValue

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-820

showChanges
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Display changes made to data dictionary entry

Syntax
showChanges(entryObj)

Description
showChanges(entryObj) opens the Comparison Tool to show changes made to the data
dictionary entry entryObj, a Simulink.data.dictionary.Entry object. The
Comparison Tool displays the properties of entryObj as they were when the data
dictionary was last saved and as they were when the showChanges function was called.

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object.
Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

Examples

 showChanges

5-821

View Unsaved Changes to Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Make a change to the entry fuelFlow by assigning it the new value 494.

setValue(fuelFlowObj,494);

Observe the unsaved change to the entry fuelFlow. The Comparison Tool opens and
compares side by side the current state of the entry with its most recently saved state.

showChanges(fuelFlowObj)

• “Store Data in Dictionary Programmatically”

Alternatives
You can use Model Explorer and the Comparison Tool to view changes to data dictionary
entries. See “View and Revert Changes to Dictionary Entries” for more information.

See Also
Simulink.data.dictionary.Entry | discardChanges

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-822

Simulink.data.dictionary.EnumTypeDefinition
class
Package: Simulink.data.dictionary

Store enumerated type definition in data dictionary

Description
An object of the Simulink.data.dictionary.EnumTypeDefinition class defines an
enumerated data type in a data dictionary. You store the object in a data dictionary entry
so models linked to the dictionary can use the enumerated type definition.

In the MATLAB base workspace, objects of this class retain information about an
enumerated type but do not define the type for use by other variables or by models.

Construction
When you use the function importEnumTypes to import the definitions of enumerated
types to a data dictionary, Simulink creates a
Simulink.data.dictionary.EnumTypeDefinition object in the dictionary for each
imported definition. The dictionary stores each object in an individual entry.

The constructor Simulink.data.dictionary.EnumTypeDefinition creates an
instance of this class with default property values and a single enumeration member that
has underlying integer value 0.

Properties
AddClassNameToEnumNames — Flag to control enumeration identifiers in
generated code
false (default) | true

Flag to prefix enumerations with the class name in generated code, specified as true or
false.

 Simulink.data.dictionary.EnumTypeDefinition class

5-823

If you specify true, when you generate code the identifier of each enumeration member
begins with the name of the enumeration class. For example, an enumeration class
LEDcolor with enumeration members GREEN and RED defines the enumeration members
in generated code as LEDcolor_GREEN and LEDcolor_RED.
Data Types: logical

DataScope — Flag to control data type definition in generated code
'Auto' (default) | 'Imported' | 'Exported'

Flag to control data type definition in generated code, specified as 'Auto', 'Imported',
or 'Exported'. The table describes the behavior of generated code for each value.

Value Action
Auto (default) If you do not specify the property

Headerfile, export the data type
definition to model_types.h, where
model is the model name.

If you specify Headerfile, import the data
type definition from the specified header
file.

Exported Export the data type definition to a
separate header file.

If you do not specify the property
Headerfile, the header file name defaults
to type.h, where type is the data type
name.

Imported Import the data type definition from a
separate header file.

If you do not specify the property
Headerfile, the header file name defaults
to type.h, where type is the data type
name.

DefaultValue — Default enumeration member
'' (default) | character vector

5 Simulink Classes

5-824

Default enumeration member, specified as a character vector. Specify DefaultValue as
the name of an enumeration member you have already defined.

When you create a Simulink.data.dictionary.EnumTypeDefinition object,
DefaultValue is an empty character vector, '', and Simulink uses the first enumeration
member as the default member.
Example: 'enumMember1'

Description — Description of enumerated data type in generated code
'' (default) | character vector

Description of the enumerated data type, specified as a character vector. Use this
property to explain the purpose of the type in generated code.
Example: 'Two possible colors of LED indicator: GREEN and RED.'
Data Types: char

HeaderFile — Name of header file defining enumerated data type in generated
code
'' (default) | character vector

Name of the header file that defines the enumerated data type in generated code,
specified as a character vector. Use a .h extension to specify the file name.

If you do not specify HeaderFile, generated code uses a default header file name that
depends on the value of the DataScope property .
Example: 'myTypeIncludeFile.h'
Data Types: char

StorageType — Data type of underlying integer values
'' (default) | character vector

Data type of the integer values underlying the enumeration members, specified as a
character vector. Generated code stores the underlying integer values using the data type
you specify.

You can specify one of these supported integer types:

• 'int8'
• 'int16'

 Simulink.data.dictionary.EnumTypeDefinition class

5-825

• 'int32'
• 'uint8'
• 'uint16'

To store the underlying integer values in generated code using the native integer type of
the target hardware, specify StorageType as an empty character vector, '', which is the
default value.
Example: 'int16'

''

Methods
appendEnumeral Add enumeration member to enumerated data type definition in data

dictionary
removeEnumeral Remove enumeration member from enumerated data type definition in

data dictionary

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new
type defines a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

5 Simulink Classes

5-826

 Simulink.data.dictionary.EnumTypeDefinition
 enum1

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')
appendEnumeral(myColors,'Black',2,'')
appendEnumeral(myColors,'Cyan',3,'')
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1
 Orange
 Black
 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration
member in the list, identify it with index 1.

removeEnumeral(myColors,1)
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 Orange
 Black
 Cyan

Customize the enumerated type by configuring the properties of the object representing
it.

myColors.Description = 'These are my favorite colors.';
myColors.DefaultValue = 'Cyan';
myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

 Simulink.data.dictionary.EnumTypeDefinition class

5-827

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

• “Store Data in Dictionary Programmatically”

Alternatives
You can use Model Explorer to add and modify enumerated data types stored in a data
dictionary.

See Also
Simulink.data.Dictionary

Topics
“Store Data in Dictionary Programmatically”
“Use Enumerated Data in Simulink Models”

Introduced in R2015a

5 Simulink Classes

5-828

appendEnumeral
Class: Simulink.data.dictionary.EnumTypeDefinition
Package: Simulink.data.dictionary

Add enumeration member to enumerated data type definition in data dictionary

Syntax
appendEnumeral(typeObj,memberName,memberValue,memberDesc)

Description
appendEnumeral(typeObj,memberName,memberValue,memberDesc) adds an
enumeration member to the enumerated type definition stored by typeObj, a
Simulink.data.dictionary.EnumTypeDefinition object.

Input Arguments
typeObj — Target enumerated type definition
Simulink.data.dictionary.EnumTypeDefinition object

Target enumerated type definition, specified as a
Simulink.data.dictionary.EnumTypeDefinition object.

memberName — Name of new enumeration member
character vector

Name of the new enumeration member, specified as a character vector.
Example: 'myNewEnumMember'
Data Types: char

memberValue — Integer value underlying new enumeration member
integer

 appendEnumeral

5-829

Integer value underlying the new enumeration member, specified as an integer.

The definition of the enumeration class determines the integer data type used in
generated code to store the underlying values of enumeration members.
Example: 3
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | double

memberDesc — Description of new enumeration member
character vector

Description of the new enumeration member, specified as a character vector.

If you do not want to supply a description for the enumeration member, use an empty
character vector.
Example: 'Enumeration member number 1.'
Example: ''
Data Types: char

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new
type defines a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')
appendEnumeral(myColors,'Black',2,'')

5 Simulink Classes

5-830

appendEnumeral(myColors,'Cyan',3,'')
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1
 Orange
 Black
 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration
member in the list, identify it with index 1.

removeEnumeral(myColors,1)
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 Orange
 Black
 Cyan

Customize the enumerated type by configuring the properties of the object representing
it.

myColors.Description = 'These are my favorite colors.';
myColors.DefaultValue = 'Cyan';
myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

• “Store Data in Dictionary Programmatically”

 appendEnumeral

5-831

Alternatives
You can use Model Explorer to add enumeration members to the enumerated data type
represented by a Simulink.data.dictionary.EnumTypeDefinition object.

See Also
Simulink.data.dictionary.EnumTypeDefinition |
Simulink.data.dictionary.EnumTypeDefinition.removeEnumeral

Topics
“Store Data in Dictionary Programmatically”
“Use Enumerated Data in Simulink Models”

Introduced in R2015a

5 Simulink Classes

5-832

removeEnumeral
Class: Simulink.data.dictionary.EnumTypeDefinition
Package: Simulink.data.dictionary

Remove enumeration member from enumerated data type definition in data dictionary

Syntax
removeEnumeral(typeObj,memberNum)

Description
removeEnumeral(typeObj,memberNum) removes an enumeration member from the
enumerated type definition stored by typeObj, a
Simulink.data.dictionary.EnumTypeDefinition object.

Input Arguments
typeObj — Target enumerated type definition
Simulink.data.dictionary.EnumTypeDefinition object

Target enumerated type definition, specified as a
Simulink.data.dictionary.EnumTypeDefinition object.

memberNum — Index of target enumeration member
integer

Index of target enumeration member, specified as an integer.

The first enumeration member in an enumerated type definition has index 1. For example,
suppose an enumerated type BasicColors has this definition:

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 removeEnumeral

5-833

 Orange
 Black
 Cyan

To remove the enumeration member Black, specify memberNum as 2. To remove the
enumeration member Cyan, specify 3.

Do not specify memberNum using the integer value underlying an enumeration member.
The integer value underlying the member is not equivalent to the index of the member.
Example: 3
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | double

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new
type defines a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')
appendEnumeral(myColors,'Black',2,'')
appendEnumeral(myColors,'Cyan',3,'')
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1
 Orange
 Black
 Cyan

5 Simulink Classes

5-834

Remove the default enumeration member enum1. Since enum1 is the first enumeration
member in the list, identify it with index 1.

removeEnumeral(myColors,1)
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 Orange
 Black
 Cyan

Customize the enumerated type by configuring the properties of the object representing
it.

myColors.Description = 'These are my favorite colors.';
myColors.DefaultValue = 'Cyan';
myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

• “Store Data in Dictionary Programmatically”

Alternatives
You can use Model Explorer to remove enumeration members from the enumerated data
type represented by a Simulink.data.dictionary.EnumTypeDefinition object.

See Also
Simulink.data.dictionary.EnumTypeDefinition |
Simulink.data.dictionary.EnumTypeDefinition.appendEnumeral

 removeEnumeral

5-835

Topics
“Store Data in Dictionary Programmatically”
“Use Enumerated Data in Simulink Models”

Introduced in R2015a

5 Simulink Classes

5-836

Simulink.data.dictionary.Section class
Package: Simulink.data.dictionary

Configure data dictionary section

Description
An object of the Simulink.data.dictionary.Section class represents one section of
a data dictionary, such as Design Data or Configurations. The object allows you to perform
operations on the section such as add or delete entries and import data from files.

Before you can create a Simulink.data.dictionary.Section object, you must
create a Simulink.data.Dictionary object representing the target data dictionary.
Once created, the Simulink.data.dictionary.Section object exists independently
of the Simulink.data.Dictionary object.

You cannot use the data dictionary programmatic interface (see “Store Data in Dictionary
Programmatically”) to access the Embedded Coder section of a data dictionary. Instead,
see Embedded Coder Dictionary.

Construction
The function getSection creates a Simulink.data.dictionary.Section object.

Properties
Name — Name of data dictionary section
character vector

Name of data dictionary section, returned as a character vector. This property is read
only.

 Simulink.data.dictionary.Section class

5-837

Methods
addEntry Add new entry to data dictionary section
assignin Assign value to data dictionary entry
deleteEntry Delete data dictionary entry
evalin Evaluate MATLAB expression in data dictionary section
exist Check existence of data dictionary entry
exportToFile Export data dictionary entries from section to MAT-file or MATLAB file
find Search in data dictionary section
getEntry Create Simulink.data.dictionary.Entry object to represent data

dictionary entry
importFromFile Import variables from MAT-file or MATLAB file to data dictionary section

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Create New Data Dictionary Section Object

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

dDataSectObj = getSection(myDictionaryObj,'Design Data')

dDataSectObj =

 Section with properties:

5 Simulink Classes

5-838

 Name: 'Design Data'

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.Dictionary | getSection

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

Introduced in R2015a

 Simulink.data.dictionary.Section class

5-839

addEntry
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Add new entry to data dictionary section

Syntax
addEntry(sectionObj,entryName,entryValue)
entryObj = addEntry(sectionObj,entryName,entryValue)

Description
addEntry(sectionObj,entryName,entryValue) adds an entry, with name
entryName and value entryValue, to the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object.

entryObj = addEntry(sectionObj,entryName,entryValue) returns a
Simulink.data.dictionary.Entry object representing the newly added data
dictionary entry.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection
function.

entryName — Name of new data dictionary entry
character vector

Name of new data dictionary entry, specified as a character vector.

5 Simulink Classes

5-840

Example: 'myNewEntry'
Data Types: char

entryValue — Value of new data dictionary entry
MATLAB expression

Value of new data dictionary entry, specified as a MATLAB expression that returns any
valid data dictionary content.
Example: 27.5
Example: myBaseWorkspaceVariable
Example: Simulink.Parameter

Examples

Add Entry to Design Data Section of Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry to the Design Data section of myDictionary_ex_API.sldd an entry
myNewEntry with value 237.

addEntry(dDataSectObj,'myNewEntry',237)

Add New Simulink.Parameter Object to Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry to the Design Data section of myDictionary_ex_API.sldd. Name the new
entry myNewParam and assign a Simulink.Parameter object to the value.

 addEntry

5-841

addEntry(dDataSectObj,'myNewParam',Simulink.Parameter)

The expression Simulink.Parameter constructs a new Simulink.Parameter object,
and the addEntry function assigns the object to the value of the new data dictionary
entry myNewParam.

• “Store Data in Dictionary Programmatically”

Tips
• addEntry returns an error if the entry name you specify with entryName is already

the name of an entry in the target data dictionary section or in the same section of any
referenced dictionaries.

Alternatives
You can use Model Explorer to add entries to a data dictionary in the same way you can
use it to add variables to a model workspace or the base workspace.

See Also
Simulink.data.dictionary.Entry | Simulink.data.dictionary.Section |
assignin

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-842

assignin
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Assign value to data dictionary entry

Syntax
assignin(sectionObj,entryName,entryValue)

Description
assignin(sectionObj,entryName,entryValue) assigns the value entryValue to
the data dictionary entry entryName in the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object. If an entry with the specified name is
not in the target section, assignin creates the entry with the specified name and value.

If an entry with the name specified by input argument entryName is not defined in the
target data dictionary section but is defined in a referenced dictionary, assignin does
not create a new entry in the target section but operates on the entry in the referenced
dictionary.

To programmatically access variables for the purpose of sweeping block parameter
values, consider using Simulink.SimulationInput objects instead of modifying the
variables through the programmatic interface of the data dictionary. See “Optimize,
Estimate, and Sweep Block Parameter Values”.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a

 assignin

5-843

Simulink.data.dictionary.Section object by using, for example, the getSection
function.

entryName — Name of target data dictionary entry
character vector

Name of target data dictionary entry, specified as a character vector. If a matching entry
does not already exist, the functions creates a new entry using the specified name.
Example: 'myEntry'
Data Types: char

entryValue — Value to assign to data dictionary entry
MATLAB expression

Value to assign to data dictionary entry, specified as a MATLAB expression that returns
any valid data dictionary content.
Example: 27.5
Example: myBaseWorkspaceVariable
Example: Simulink.Parameter

Examples

Assign Value to Data Dictionary Entry

Assign a value to a data dictionary entry by operating on a
Simulink.data.dictionary.Section object.

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Assign the value 237 to an entry myAssignedEntry in the data dictionary
myDictionary_ex_API.sldd. If an entry named myAssignedEntry is not in
myDictionary_ex_API.sldd, create it.

5 Simulink Classes

5-844

assignin(dDataSectObj,'myAssignedEntry',237)

• “Store Data in Dictionary Programmatically”

Alternatives
You can use the Model Explorer window to view and change the values of data dictionary
entries.

See Also
Simulink.data.dictionary.Section | setValue

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 assignin

5-845

deleteEntry
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Delete data dictionary entry

Syntax
deleteEntry(sectionObj,entryName)
deleteEntry(sectionObj,entryName,'DataSource',dictionaryName)

Description
deleteEntry(sectionObj,entryName) deletes a data dictionary entry entryName
from the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object. If there are multiple entries with the
specified name in a hierarchy of reference dictionaries, the function deletes all the
entries. If you represent a data dictionary entry with one or more
Simulink.data.dictionary.Entry objects and later delete the entry using the
deleteEntry function, the objects remain with their Status property set to
'Deleted'.

deleteEntry(sectionObj,entryName,'DataSource',dictionaryName) deletes
an entry that is defined in the data dictionary DictionaryName. Use this syntax to
uniquely identify an entry that is defined more than once in a hierarchy of referenced
data dictionaries.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a

5 Simulink Classes

5-846

Simulink.data.dictionary.Section object by using, for example, the getSection
function.

entryName — Name of target data dictionary entry
character vector

Name of target data dictionary entry, specified as a character vector.
Example: 'myEntry'
Data Types: char

dictionaryName — Name of data dictionary that defines target entry
character vector

File name of data dictionary that defines the target entry, specified as a character vector
including the .sldd extension.
Example: 'mySubDictionary_ex_API.sldd'
Data Types: char

Examples

Delete Entry from Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj. The
Design Data section of myDictionary_ex_API.sldd already contains an entry named
fuelFlow.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Delete the entry fuelFlow from the data dictionary myDictionary_ex_API.sldd.
myDictionary_ex_API.sldd no longer contains the fuelFlow entry.

deleteEntry(dDataSectObj,'fuelFlow')

 deleteEntry

5-847

Delete Entry from Reference Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Delete the entry myRefEntry from the data dictionary
myRefDictionary_ex_API.sldd. myDictionary_ex_API.sldd references
myRefDictionary_ex_API.sldd, and myRefDictionary_ex_API.sldd defines an
entrymyRefEntry.

deleteEntry(dDataSectObj,'myRefEntry','DataSource',...
'myRefDictionary_ex_API.sldd')

• “Store Data in Dictionary Programmatically”

Alternatives
You can use the Model Explorer window to delete entries from a data dictionary in the
same way you can delete variables from a model workspace or the base workspace.

See Also
Simulink.data.dictionary.Entry | Simulink.data.dictionary.Section |
addEntry

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-848

evalin
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Evaluate MATLAB expression in data dictionary section

Syntax
returnValue = evalin(sectionObj,expression)

Description
returnValue = evalin(sectionObj,expression) evaluates a MATLAB expression
in the data dictionary section sectionObj and returns the values returned by
expression.

To programmatically access variables for the purpose of sweeping block parameter
values, consider using Simulink.SimulationInput objects instead of modifying the
variables through the programmatic interface of the data dictionary. See “Optimize,
Estimate, and Sweep Block Parameter Values”.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection
function.

expression — MATLAB expression to evaluate
character vector

MATLAB expression to evaluate, specified as a character vector.

 evalin

5-849

Example: 'a = 5.3'
Example: 'whos'
Example: 'CurrentSpeed.Value = 290.73'
Data Types: char

Examples

List All Entries in Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Execute the whos command in the Design Data section of myDictionary_ex_API.sldd.

evalin(dDataSectObj,'whos')

 Name Size Bytes Class Attributes

 fuelFlow 1x1 8 double
 myRefEntry 1x1 1 logical
 parameterGain37 1x1 112 Simulink.Parameter

• “Store Data in Dictionary Programmatically”

Tips
• evalin allows you to treat a data dictionary section as a MATLAB workspace. You can

think of entries contained in the section as workspace variables you can manipulate
with MATLAB expressions.

See Also
Simulink.data.dictionary.Section | Simulink.data.evalinGlobal

5 Simulink Classes

5-850

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 evalin

5-851

exist
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Check existence of data dictionary entry

Syntax
doesExist = exist(sectionObj,entryName)

Description
doesExist = exist(sectionObj,entryName) determines if the data dictionary
section sectionObj contains an entry by the name of entryName and returns an
indication.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection
function.

entryName — Name of target entry
character vector

Name of target entry, specified as a character vector.
Example: 'myEntry'
Data Types: char

5 Simulink Classes

5-852

Output Arguments
doesExist — Indication of entry existence
0 | 1

Indication of entry existence, returned as 0 if false and 1 if true.

Examples

Determine if Data Dictionary Entry Exists

Determine if an entry exists in a data dictionary by searching for the name of the entry

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Determine if an entry fuelFlow exists in the Design Data section of
myDictionary_ex_API.sldd.

exist(dDataSectObj,'fuelFlow')

ans =

 1

Determine if an entry myEntry exists in the Design Data section of
myDictionary_ex_API.sldd.

exist(dDataSectObj,'myEntry')

ans =

 0

• “Store Data in Dictionary Programmatically”

 exist

5-853

Tips
• exist also determines if a matching entry exists in the same section of any

referenced data dictionaries. For example, if sectionObj represents the Design Data
section of a data dictionary myDictionary_ex_API.sldd, exist searches the
Design Data section of myDictionary_ex_API.sldd and the Design Data sections of
any dictionaries referenced by myDictionary_ex_API.sldd.

Alternatives
You can use Model Explorer to search a data dictionary for an entry.

See Also
Simulink.data.dictionary.Section | Simulink.data.existsInGlobal | find

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-854

exportToFile
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Export data dictionary entries from section to MAT-file or MATLAB file

Syntax
exportToFile(sectionObj,fileName)

Description
exportToFile(sectionObj,fileName) exports to a MAT or MATLAB file all the
values of the entries contained in the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object. exportToFile exports the values of all
entries, including those defined in referenced dictionaries.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection
function.

fileName — Name of MAT or MATLAB file
character vector

Name of target MAT or MATLAB file, specified as a character vector. exportToFile
supplies a file extension .mat if you do not specify an extension.
Example: 'myNewFile.mat'
Example: 'myNewFile.m'

 exportToFile

5-855

Data Types: char

Examples

Export Data Dictionary Entries to MAT or MATLAB Files

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.
Represent the Configurations section of myDictionary_ex_API.sldd with an object
named configSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
configSectObj = getSection(myDictionaryObj,'Configurations');

Export the entries from the Design Data section of myDictionary_ex_API.sldd to a
MATLAB file in your current working folder.

exportToFile(dDataSectObj,'myDictionaryDesignData.m')

Export the entries from the Configurations section of myDictionary_ex_API.sldd to a
MAT-file in your current working folder.

exportToFile(configSectObj,'myDictionaryConfigurations.mat')

Exported 1 entries from scope 'Configurations'
to MAT-file myDictionaryConfigurations.mat.

• “Store Data in Dictionary Programmatically”

Limitation
The exportToFile method does not export enumerated data types (which are stored as
Simulink.data.dictionary.EnumTypeDefinition objects). To transfer or copy an
enumerated type from one dictionary to another, use the getEntry and addEntry
methods of Simulink.data.dictionary.Section objects.

5 Simulink Classes

5-856

Alternatives
You can use Model Explorer to export data dictionary entries to a file. See “Export Design
Data from Dictionary” for more information.

See Also
Simulink.data.dictionary.Section | importFromFile

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 exportToFile

5-857

find
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Search in data dictionary section

Syntax
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN)
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN,
options)

Description
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN)
searches the data dictionary section sectionObj using search criteria
PName1,PValue1,...,PNameN,PValueN, and returns an array of matching entries that
were found in the target section. This syntax matches the search criteria with the
properties of the entries in the target section but not with the properties of their values.
See Simulink.data.dictionary.Entry for a list of data dictionary entry properties.

foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN,
options) searches for data dictionary entries using additional search options. For
example, you can match the search criteria with the values of the entries in the target
section.

Input Arguments
sectionObj — Data dictionary section to search
Simulink.data.dictionary.Section object

Data dictionary section to search, specified as a
Simulink.data.dictionary.Section object. Before you use this function, represent
the target section with a Simulink.data.dictionary.Section object by using, for
example, the getSection function.

5 Simulink Classes

5-858

PName1,PValue1,...,PNameN,PValueN — Search criteria
name-value pairs representing properties

Search criteria, specified as one or more name-value pairs representing names and values
of properties of the entries in the target data dictionary section. For a list of the
properties of a data dictionary entry, see Simulink.data.dictionary.Entry. If you
specify more than one name-value pair, the returned entries meet all of the criteria.

If you include the '-value' option to search in the values of the entries, the search
criteria apply to the values of the entries rather than to the entries themselves.
Example: 'LastModifiedBy','jsmith'
Example: 'DataSource','myRefDictionary_ex_API.sldd'

options — Additional search options
supported option codes

Additional search options, specified as one or more of the following supported option
codes.

'-value' This option causes find to search only in the
values of the entries in the target data dictionary
section. Specify this option before any other search
criteria or options arguments.

'-and', '-or', '-xor', '-not'
logical operators

These options modify or combine multiple search
criteria or other option codes.

'-property',propertyName This name-value pair causes find to search for
entries or values that have the property
propertyName regardless of the value of the
property. Specify propertyName as a character
vector.

'-class',className This name-value pair causes find to search for
entries or values that are objects of the class
className. Specify className as a character
vector.

'-isa',className This name-value pair causes find to search for
entries or values that are objects of the class or of
any subclass derived from the class className.
Specify className as a character vector.

 find

5-859

'-regexp' This option allows you to use regular expressions
in your search criteria. This option affects only
search criteria that follow '-regexp'.

Example: '-value'
Example: '-value','-property','CoderInfo'
Example: '-value','-class','Simulink.Parameter'

Output Arguments
foundEntries — Data dictionary entries matching search criteria
array of Simulink.data.dictionary.Entry objects

Data dictionary entries matching the specified search criteria, returned as an array of
Simulink.data.dictionary.Entry objects.

Examples

Return Array of All Entries in Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Return all of the entries stored in the Design Data section of the data dictionary
myDictionary_ex_API.sldd.

allEntries = find(dDataSectObj)

Search Data Dictionary Section for Specific Class

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

5 Simulink Classes

5-860

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose
values are objects of the Simulink.Parameter class.

foundEntries = find(dDataSectObj,'-value','-class','Simulink.Parameter')

Search Data Dictionary Section for Modifying User

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries that were
last modified by the user jsmith.

foundEntries = find(dDataSectObj,'LastModifiedBy','jsmith')

Search Data Dictionary Section Using Multiple Criteria

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries that were
last modified by the user jsmith or whose names begin with fuel.

foundEntries = find(dDataSectObj,'LastModifiedBy','jsmith','-or',...
'-regexp','Name','fuel*')

Search Data Dictionary Section Using Regular Expressions

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

 find

5-861

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose
names begin with fuel.

foundEntries = find(dDataSectObj,'-regexp','Name','fuel*')

Search Data Dictionary Section for Specific Value

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Return all of the entries stored in the Design Data section of the data dictionary
myDictionary_ex_API.sldd.

allEntries = find(dDataSectObj);

Find the entries with value 237. If you find more than one entry, store the entries in an
array called foundEntries.

foundEntries = [];
for i = 1:length(allEntries)
 if getValue(allEntries(i)) == 237
 foundEntries = [foundEntries allEntries(i)];
 end
end

Search Data Dictionary Section for Specific Property

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose
values have a property DataType.

5 Simulink Classes

5-862

foundEntries = find(dDataSectObj,'-value','-property','DataType')

• “Store Data in Dictionary Programmatically”

Alternatives
You can use Model Explorer to search a data dictionary for entries using arbitrary
criteria.

See Also
Simulink.data.dictionary.Entry | Simulink.data.dictionary.Section |
exist | find

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

 find

5-863

getEntry
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Create Simulink.data.dictionary.Entry object to represent data dictionary entry

Syntax
entryObj = getEntry(sectionObj,entryName)
entryObj = getEntry(sectionObj,
entryName,'DataSource',dictionaryName)

Description
entryObj = getEntry(sectionObj,entryName) returns an array of
Simulink.data.dictionary.Entry objects representing data dictionary entries
entryName found in the data dictionary section sectionObj, a
Simulinkdata.dictionary.Section object. getEntry returns multiple objects if
multiple entries have the specified name in a reference hierarchy of data dictionaries.

entryObj = getEntry(sectionObj,
entryName,'DataSource',dictionaryName) returns an object representing a data
dictionary entry that is defined in the data dictionary dictionaryName. Use this syntax
to uniquely identify an entry that is defined more than once in a hierarchy of referenced
data dictionaries.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection
function.

5 Simulink Classes

5-864

entryName — Name of target data dictionary entry
character vector

Name of target data dictionary entry, specified as a character vector.
Example: 'myEntry'
Data Types: char

dictionaryName — Name of data dictionary containing target entry
character vector

File name of data dictionary containing the target entry, specified as a character vector
including the .sldd extension.
Example: 'mySubDictionary_ex_API.sldd'
Data Types: char

Output Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, returned as one or more
Simulink.data.dictionary.Entry objects.

Examples

Set Value of Data Dictionary Entry

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

 getEntry

5-865

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Set the value of the entry fuelFlow to 493.

setValue(fuelFlowObj,493)

Set Value of Entry in Reference Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Represent the data dictionary entry myRefEntry with a
Simulink.data.dictionary.Entry object named refEntryObj.
myDictionary_ex_API.sldd references myRefDictionary_ex_API.sldd, and
myRefDictionary_ex_API.sldd defines an entry myRefEntry.

refEntryObj = getEntry(dDataSectObj,'myRefEntry','DataSource',...
'myRefDictionary_ex_API.sldd');

Set the value of the entry myRefEntry to 493.

setValue(refEntryObj,493)

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.dictionary.Entry | Simulink.data.dictionary.Section |
addEntry | getValue

Topics
“Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-866

importFromFile
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Import variables from MAT-file or MATLAB file to data dictionary section

Syntax
importedVars = importFromFile(sectionObj,fileName)
importedVars = importFromFile(sectionObj,
fileName,'existingVarsAction',existAction)
[importedVars,existingVars] = importFromFile(___)

Description
importedVars = importFromFile(sectionObj,fileName) imports variables
defined in the MAT-file or MATLAB file fileName to the data dictionary section
sectionObj without overwriting any variables that are already in the target section. If
any variables are already in the target section, the function displays a warning and a list
in the MATLAB Command Window. This syntax returns a list of variables that were
successfully imported. A variable is considered successfully imported only if
importFromFile assigns the value of the variable to the corresponding entry in the
target data dictionary.

importedVars = importFromFile(sectionObj,
fileName,'existingVarsAction',existAction) imports variables that are already
in the target section by taking a specified action existAction. For example, you can
choose to use the variable values in the target file to overwrite the corresponding values
in the target section.

[importedVars,existingVars] = importFromFile(___) returns a list of
variables in the target section that were not overwritten. Use this syntax if
existingVarsAction is set to 'none', the default value, which prevents existing
dictionary entries from being overwritten.

 importFromFile

5-867

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection
function.

fileName — Name of MAT or MATLAB file
character vector

Name of target MAT or MATLAB file, specified as a character vector. importFromFile
automatically supplies a file extension .mat if you do not specify an extension.
Example: 'myFile.mat'
Example: 'myFile.m'
Data Types: char

existAction — Action to take for existing dictionary variables
'none' (default) | 'overwrite' | 'error'

Action to take for existing dictionary variables, specified as 'none', 'overwrite', or
'error'.

If you specify 'none', importFromFile attempts to import target variables but does not
import or make any changes to variables that are already in the data dictionary section.

If you specify 'overwrite', importFromFile imports all target variables and
overwrites any variables that are already in the data dictionary section.

If you specify 'error', importFromFile returns an error, without importing any
variables, if any target variables are already in the data dictionary section.
Example: 'overwrite'
Data Types: char

5 Simulink Classes

5-868

Output Arguments
importedVars — Successfully imported variables
cell array of character vectors

Names of successfully imported variables, returned as a cell array of character vectors. A
variable is considered successfully imported only if importFromFile assigns its value to
the corresponding entry in the target data dictionary.

existingVars — Variables that were not imported
cell array of character vectors

Names of target variables that were not imported due to their existence in the target data
dictionary, returned as a cell array of character vectors. existingVars has content only
if existAction is set to 'none', which is also the default. In that case
importFromFile imports only variables that are not already in the target data
dictionary.

Examples

Import to Data Dictionary from File

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary and
return a list of successfully imported variables. If any variables are already in
myDictionary_ex_API.sldd, importFromFile returns a warning and a list of the
affected variables.

importFromFile(dDataSectObj,'myData_ex_API.m')

Warning: The following variables were not imported because
they already exist in the dictionary:
 fuelFlow

ans =

 importFromFile

5-869

 'myFirstEntry'
 'mySecondEntry'
 'myThirdEntry'

Import Variables from File and Overwrite Conflicts

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary,
overwrite any variables that are already in the dictionary, and return a list of successfully
imported variables.

importFromFile(dDataSectObj,'myData_ex_API.m','existingVarsAction','overwrite')

ans =

 'fuelFlow'
 'myFirstEntry'
 'mySecondEntry'
 'myThirdEntry'

Return Variables Not Imported to Data Dictionary from File

Return a list of variables that are not imported from a file because they are already in the
target data dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary.
Specify names for the output arguments of importFromFile to return the names of
successfully and unsuccessfully imported variables.

5 Simulink Classes

5-870

[importedVars,existingVars] = importFromFile(dDataSectObj,'myData_ex_API.m')

importedVars =

 'myFirstEntry'
 'mySecondEntry'
 'myThirdEntry'

existingVars =

 'fuelFlow'

importFromFile does not import the variable fuelflow because it is already in the
target data dictionary.

• “Store Data in Dictionary Programmatically”

Tips
• importFromFile can import MATLAB variables created from enumerated data types

but cannot import the definitions of the enumerated types. Use the
importEnumTypes function to import enumerated data type definitions to a data
dictionary. If you import variables of enumerated data types to a data dictionary but do
not import the enumerated type definitions, the dictionary is less portable and might
not function properly if used by someone else.

Alternatives
You can use the Model Explorer to import variables to a data dictionary from a file. See
“Import Data to Dictionary from File” for more information.

See Also
Simulink.data.dictionary.Section | exportToFile | importEnumTypes

Topics
“Store Data in Dictionary Programmatically”

 importFromFile

5-871

Introduced in R2015a

5 Simulink Classes

5-872

Simulink.DualScaledParameter
Specify name, value, units, and other properties of Simulink dual-scaled parameter

Description
Use Simulink.DualScaledParameter so that you can define an object that stores two
scaled values of the same physical value.

For example, for temperature measurement, you can store a Fahrenheit scale and a
Celsius scale with conversion defined by a computation method that you provide. Given
one scaled value, the Simulink.DualScaledParameter computes the other scaled
value using the computation method.

A dual-scaled parameter inherits some properties from the Simulink.Parameter class.
A dual-scaled parameter has:

• A calibration value. The value that you prefer to use.
• A main value. The real-world value that Simulink uses.
• An internal stored integer value. The value that is used in the embedded code.

You can use Simulink.DualScaledParameter objects in your model for both
simulation and code generation. The parameter computes the internal value before code
generation via the computation method. This offline computation results in leaner
generated code.

If you provide the calibration value, the parameter computes the main value using the
computation method. This method can be a first-order rational function.

y
ax b

cx d
=

+

+

• x is the calibration value.
• y is the main value.
• a and b are the coefficients of the CalToMain compute numerator.
• c and d are the coefficients of the CalToMain compute denominator.

 Simulink.DualScaledParameter

5-873

If you provide the calibration minimum and maximum values, the parameter computes
minimum and maximum values of the main value. Simulink performs range checking of
parameter values. The software alerts you when the parameter object value lies outside a
range that corresponds to its specified minimum and maximum values and data type.

Creation
Create a Simulink.DualScaledParameter object:

• By using the Model Data Editor. Instead of creating a Simulink.Parameter object,
create a Simulink.DualScaledParameter object. See “Interact with a Model That
Uses Workspace Variables”.

• By using the Model Explorer:

1 In the Model Hierarchy pane, select a workspace or data dictionary.
2 On the toolbar, select Add > Add Custom.
3 In the Model Explorer — Select Object dialog box, set Object class to

Simulink.DualScaledParameter.
• By using the Simulink.DualScaledParameter function, described below.

Syntax
DSParam = Simulink.DualScaledParameter

Description
DSParam = Simulink.DualScaledParameter returns a
Simulink.DualScaledParameter object with default property values.

Properties
For information about properties in the property dialog box of a
Simulink.DualScaledParameter object, see “Simulink.DualScaledParameter Property
Dialog Box”.

5 Simulink Classes

5-874

CalibrationValue — Calibration value of this parameter
[] (default) | finite, real, double number

Calibration value of this parameter, specified as a finite, real, double number. This value
represents the value that you prefer to use.

Before specifying CalibrationValue, you must specify CalToMainCompuNumerator
and CalToMainCompuDenominator to define the computation method. The parameter
uses the computation method and the calibration value to calculate the main value that
Simulink uses.

Corresponds to Calibration value in the property dialog box.
Example: 5.34
Data Types: double

CalibrationMin — Calibration minimum value of this parameter
[] (default) | finite, real, double, scalar number

Calibration minimum value of this parameter, specified as a finite, real, double, scalar
number. The default value, [], means the minimum is unspecified.

Before specifying CalibrationMin, you must specify CalToMainCompuNumerator and
CalToMainCompuDenominator to define the computation method. The parameter uses
the computation method and the calibration minimum value to calculate the minimum or
maximum value that Simulink uses. A first order rational function is strictly monotonic,
either increasing or decreasing. If it is increasing, setting the calibration minimum sets
the main minimum value. If it is decreasing, setting the calibration minimum sets the
main maximum.

If the parameter value is less than the minimum value or if the minimum value is outside
the range of the parameter data type, Simulink generates a warning. In these cases, when
updating the diagram or starting a simulation, Simulink generates an error.

Corresponds to Calibration minimum in the property dialog box.
Example: 10.51
Data Types: double

CalibrationMax — Calibration maximum value of this parameter
[] (default) | finite, real, double, scalar number

 Simulink.DualScaledParameter

5-875

Calibration maximum value of this parameter, specified as a finite, real, double, scalar
number. The default value, [], means the maximum is unspecified.

Before specifying CalibrationMax, you must specify CalToMainCompuNumerator and
CalToMainCompuDenominator to define the computation method. The parameter uses
the computation method and the calibration maximum value to calculate the
corresponding maximum or minimum value that Simulink uses. A first order rational
function is strictly monotonic, either increasing or decreasing. If it is increasing, setting
the calibration maximum sets the main maximum value. If it is decreasing, setting the
calibration maximum sets the main minimum.

If the parameter value is less than the minimum value or if the minimum value is outside
the range of the parameter data type, Simulink generates a warning. In these cases, when
updating the diagram or starting a simulation, Simulink generates an error.

Corresponds to Calibration maximum in the property dialog box.
Example: -10.51
Data Types: double

CalToMainCompuNumerator — Numerator coefficients of the computation method
[] (default) | finite, real, double scalar | finite, real, double vector

Numerator coefficients of the computation method, specified as a scalar number or vector
of values for the numerator coefficients a and b of the first-order linear equation:

y
ax b

cx d
=

+

+

The default value is [] (unspecified). Specify finite, real, double scalar values for a and b.
For example, [1 1] or, for reciprocal scaling, 1.

Once you have applied CalToMainCompuNumerator, you cannot change it.

Corresponds to CalToMain compute numerator in the property dialog box.
Example: [1 1]
Example: 1
Data Types: double

5 Simulink Classes

5-876

CalToMainCompuDenominator — Denominator coefficients of the computation
method
[] (default) | finite, real, double scalar | finite, real, double vector

Denominator coefficients of the computation method, specified as a scalar number or
vector of values for the denominator coefficients c and d of the first-order linear equation:

y
ax b

cx d
=

+

+

The default value is [] (unspecified). Specify finite, real, double scalar values for c and d.
For example, [1 1].

Once you have applied CalToMainCompuDenominator, you cannot change it.

Corresponds to CalToMain compute denominator in the property dialog box.
Example: [1 1]
Data Types: double

CalibrationName — Name of the calibration parameter
'' (empty character vector) (default) | character vector

Name of the calibration parameter, specified as a character vector.

Corresponds to Calibration name in the property dialog box.
Example: 'This is a calibration parameter.'
Data Types: char

CalibrationDocUnits — Measurement units for this calibration parameter's
value
'' (empty character vector) (default) | character vector

Measurement units for this calibration parameter's value, specified as a character vector.

Corresponds to Calibration units in the property dialog box.
Example: 'Fahrenheit'
Data Types: char

 Simulink.DualScaledParameter

5-877

IsConfigurationValid — Information about validity of configuration
true (default) | false

This property is read-only.

Information about the validity of the object configuration, returned as true (valid) or
false (invalid). If Simulink detects an issue with the configuration, it sets this field to
false and provides information in the DiagnosticMessage property.

Corresponds to Is configuration valid in the property dialog box.
Data Types: logical

DiagnosticMessage — Diagnostic information about invalid configuration
'' (empty character vector) (default) | character vector

This property is read-only.

Diagnostic information about an invalid object configuration, returned as a character
vector. If you specify invalid property settings, Simulink displays a message in this field.
Use the diagnostic information to help you fix an invalid configuration issue.

Corresponds to Diagnostic message in the property dialog box.
Data Types: char

Examples

Create and Update a Dual-Scaled Parameter

Create a Simulink.DualScaledParameter object that stores a temperature as both
Fahrenheit and Celsius.

Create a Simulink.DualScaledParameter object.

Temp = Simulink.DualScaledParameter;

Set the computation method that converts between Fahrenheit and Celsius.

Temp.CalToMainCompuNumerator = [1 -32];
Temp.CalToMainCompuDenominator = [1.8];

5 Simulink Classes

5-878

Set the value of the temperature that you want to see in Fahrenheit.

Temp.CalibrationValue = 212

Temp =

 DualScaledParameter with properties:

 CalibrationValue: 212
 CalibrationMin: []
 CalibrationMax: []
 CalToMainCompuNumerator: [1 -32]
 CalToMainCompuDenominator: 1.8000
 CalibrationName: ''
 CalibrationDocUnits: ''
 IsConfigurationValid: 1
 DiagnosticMessage: ''
 Value: 100
 CoderInfo: [1x1 Simulink.CoderInfo]
 Description: ''
 DataType: 'auto'
 Min: []
 Max: []
 Unit: ''
 Complexity: 'real'
 Dimensions: [1 1]

The Simulink.DualScaledParameter calculates Temp.Value which is the value that
Simulink uses. Temp.CalibrationValue is 212 (degrees Fahrenheit), so Temp.Value
is 100 (degrees Celsius).

Name the value and specify the units.

Temp.CalibrationName = 'TempF';
Temp.CalibrationDocUnits = 'Fahrenheit';

Set calibration minimum and maximum values.

Temp.CalibrationMin = 0;
Temp.CalibrationMax = 300;

If you specify a calibration value outside this allowable range, Simulink generates a
warning.

Specify the units that Simulink uses.

 Simulink.DualScaledParameter

5-879

Temp.Unit = 'degC';

Open the Simulink.DualScaledParameter dialog box.

open Temp

5 Simulink Classes

5-880

The Calibration Attributes tab displays the calibration value and the computation
method that you specified.

 Simulink.DualScaledParameter

5-881

In the dialog box, click the Main Attributes tab.

This tab displays information about the value used by Simulink.

• “Configure AUTOSAR Data for Measurement and Calibration” (Embedded Coder)

5 Simulink Classes

5-882

See Also
AUTOSAR.DualScaledParameter | Simulink.Parameter

Topics
“Configure AUTOSAR Data for Measurement and Calibration” (Embedded Coder)
“Fixed Point”

Introduced in R2013b

 Simulink.DualScaledParameter

5-883

Simulink.Mask class
Package: Simulink

Control masks programmatically

Description
Use an instance of Simulink.Mask class to perform the following operations:

• Create, copy, and delete masks.
• Create, edit, and delete mask parameters.
• Determine the block that owns the mask.
• Obtain workspace variables defined for a mask.

Properties
Type

Specifies the mask type of the associated block.

Type: character vector | string scalar

Default: Empty character vector

Description

Specifies the block description of the associated block.

Type: character vector | string scalar

Default: Empty character vector

Help

Specifies the help text that is displayed for the mask.

5 Simulink Classes

5-884

Type: character vector | string scalar

Default: Empty character vector

Initialization

Specifies the initialization commands for the associated block.

Type: character vector | string scalar

Default: Empty character vector

SelfModifiable

Indicates that the block can modify itself and its content.

Type: boolean

Values: 'on'|'off'

Default: 'off'

Display

Specifies MATLAB code for drawing the block icon.

Type: character vector | string scalar

Default: Empty character vector

IconFrame

Sets the visibility of the block frame. (Visible is on, Invisible is off).

Type: boolean

Values: 'on'|'off'

Default: 'on'

IconOpaque

Sets the transparency of the icon (Opaque is on, Transparent is off).

 Simulink.Mask class

5-885

Type: boolean

Values: 'on'|'off'

Default: 'on'

RunInitForIconRedraw

Specifies whether Simulink must run mask initialization before executing the mask icon
commands.

Type: enum

Values: 'auto'|'on'|'off'

Default: 'auto'

IconRotate

Sets icon to rotate with the block.

Type: enum

Values: 'none'|'port'

Default: 'none'

PortRotate

Specifies the port rotation policy for the masked block.

Type: enum

Values: 'default'|'physical'

Default: 'default'

IconUnits

Specifies the units for the drawing commands.

Type: enum

Values: 'pixel'|'autoscale'|'normalized'

5 Simulink Classes

5-886

Default: 'autoscale'

 Simulink.Mask class

5-887

Methods
addParameter Add a parameter to a mask
copy Copy a mask from one block to another
create Create a mask on a Simulink block
delete Unmask a block and delete the mask from

memory
get Get a block mask as a mask object
addDialogControl Add dialog control elements to mask dialog box
getDialogControl Search for a specific dialog control on the mask
getOwner Determine the block that owns a mask
getParameter Get a mask parameter using its name
getWorkspaceVariables Get all the variables defined in the mask

workspace for a masked block
numParameters Determine the number of parameters in a mask
removeDialogControl Remove dialog control element from mask dialog

box
removeParameter Remove parameter from mask dialog box
removeAllParameters Remove all existing parameters from a mask
set Set the properties of an existing mask
addParameterConstraint Add parameter constraint to a mask
removeParameterConstraint Delete a mask parameter constraint
removeCrossParameterConstraint Delete a cross-parameter constraint
removeAllParameterConstraints Delete all mask parameter constraints
removeAllCrossParameterConstraints

Delete all cross-parameter constraints from a
mask

getParameterConstraint Get mask parameter constraint properties
getCrossParameterConstraint Get cross-parameter constraint
getAssociatedParametersOfConstraint

Get mask parameters associated with a constraint
addCrossParameterConstraint Add cross-parameter constraint

5 Simulink Classes

5-888

See Also

Topics
“Control Masks Programmatically”
“Block Masks”

 Simulink.Mask class

5-889

addParameter
Class: Simulink.Mask
Package: Simulink

Add a parameter to a mask

Syntax
p = Simulink.Mask.get(blockName)
p.addParameter(Name,Value)

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.addParameter(Name,Value) appends a parameter to the mask. If you do not specify
name–value pairs as arguments with this command, Simulink generates name for the
mask parameter with control type set to edit.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

5 Simulink Classes

5-890

Type

Type of control that is used to specify the value of this parameter.

Default: edit

TypeOptions

The options that are displayed within a popup control or in a promoted parameter. This
field is a cell array.

Default: empty

Name

The name of the mask parameter. This name is assigned to the mask workspace variable
created for this parameter.

Default: generated name

Prompt

Text that identifies the parameter on the Mask Parameters dialog box.

Default: empty

Value

The default value of the mask parameter in the Mask Parameters dialog box.

Default: Type specific; depends on the Type of the parameter

Evaluate

Option to specify whether parameter must be evaluated.

Default: 'on'

Tunable

Option to specify whether parameter is tunable.

Default: 'on'

 addParameter

5-891

Enabled

Option to specify whether user can set parameter value.

Default: 'on'

Visible

Option to set whether mask parameter is hidden or visible to the user.

Default: 'on'

Callback

Container for MATLAB code that executes when user makes a change in the Mask
Parameters dialog box and clicks Apply.

Default: empty

Container

Option to specifies a container for the child dialog control. The permitted values are
'panel', 'group', and 'tab'.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Add a parameter to the mask without specifying name–value pairs for parameter
attributes.

p.addParameter;

3 Add a mask parameter of type popup that cannot be evaluated.

p.addParameter('Type','popup','TypeOptions',...
{'Red' 'Blue' 'Green'},'Evaluate','off');

5 Simulink Classes

5-892

See Also
“Block Masks” | Simulink.Mask

 addParameter

5-893

Simulink.Mask.copy
Class: Simulink.Mask
Package: Simulink

Copy a mask from one block to another

Syntax
pSource = Simulink.Mask.get(srcBlockName)
pDest = Simulink.Mask.create(destBlockName)
pDest.copy(pSource)

Description
pSource = Simulink.Mask.get(srcBlockName) gets the mask on the source block
specified by blockName as a mask object.

pDest = Simulink.Mask.create(destBlockName) creates an empty mask on the
destination block specified by destBlockName.

pDest.copy(pSource) overwrites the destination mask with the source mask.

Input Arguments
srcBlockName

The handle to the source block or the path to the source block inside the model.

Note The source block should be masked.

destBlockName

The handle to the destination block or the path to the destination block inside the model.

5 Simulink Classes

5-894

Note The destination block should have an empty mask. Otherwise, the copied mask will
overwrite the non-empty mask.

Examples
1 Create an empty mask on the destination block using the block’s path.

pDest = Simulink.Mask.create('myModel/Subsystem');
2 Get source mask as an object using the source block’s path.

pSource = Simulink.Mask.get('myModel/Abs');
3 Make the destination mask a copy of the source mask.

pDest.copy(pSource);

See Also
“Block Masks” | Simulink.Mask

 Simulink.Mask.copy

5-895

Simulink.Mask.create
Class: Simulink.Mask
Package: Simulink

Create a mask on a Simulink block

Syntax
p = Simulink.Mask.create(blockName)

Description
p = Simulink.Mask.create(blockName) creates an empty mask on the block
specified by blockName. If the specified block is already masked, an error message
appears.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Examples
1 Create a mask using a block’s handle.

Note In the model, select the block to be masked.

p = Simulink.Mask.create(gcbh);
2 Create a mask using the block’s path.

p = Simulink.Mask.create('myModel/Subsystem');

5 Simulink Classes

5-896

See Also
“Block Masks” | Simulink.Mask

 Simulink.Mask.create

5-897

delete
Class: Simulink.Mask
Package: Simulink

Unmask a block and delete the mask from memory

Syntax
p = Simulink.Mask.get(blockName)
p.delete

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.delete unmasks the block and deletes the mask from memory.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Unmask the block using the mask object and delete the mask from memory.

p.delete;

5 Simulink Classes

5-898

See Also
“Block Masks” | Simulink.Mask

 delete

5-899

Simulink.Mask.get
Class: Simulink.Mask
Package: Simulink

Get a block mask as a mask object

Syntax
p = Simulink.Mask.get(blockName)

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object. If the specified block is not masked, a null value returns.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s handle.

Note In the model, select the masked block.

p = Simulink.Mask.get(gcbh);
2 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

5 Simulink Classes

5-900

See Also
“Block Masks” | Simulink.Mask

 Simulink.Mask.get

5-901

addDialogControl
Class: Simulink.Mask
Package: Simulink

Add dialog control elements to mask dialog box

Syntax
successIndicator = maskObj.addDialogControl(controlType,
controlIdentifier)
successIndicator = maskObj.addDialogControl(Name,Value)

Description
successIndicator = maskObj.addDialogControl(controlType,
controlIdentifier) adds dialog control elements like text, hyperlinks, or tabs to mask
dialog box. First get the mask object and assign it to the variable maskObj

successIndicator = maskObj.addDialogControl(Name,Value) specifies the
Name and Value arguments for an element on the mask dialog box. You can specify
multiple Name-Value pairs.

Input Arguments
controlType — Value type of dialog control element
character vector | string scalar

Type of dialog control element, specified

• 'panel'
• 'group'
• 'tabcontainer'
• 'tab'

5 Simulink Classes

5-902

• 'collapsiblepanel'
• 'text'
• 'image'
• 'hyperlink'
• 'pushbutton'

controlIdentifer — Unique identifier for the element
character vector | string scalar

Specifies the programmatic identifier for the element of mask dialog box. Use a name that
is unique and does not have space between words. For more information, see “Variable
Names” (MATLAB).

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' ') and is case-sensitive. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Type

Type of control that is used to specify the value of this dialog control element. Type is a
required argument. The permitted values are 'panel', 'group', 'tabcontainer',
'tab', 'collapsiblepanel', 'text', 'image', 'hyperlink', and 'pushbutton'.

Default: empty

Name

The identifier of the dialog control element. Name is a required argument. This field is
available for all dialog control types.

Default: empty

Prompt

Text that is displayed in the dialog control element on the Mask dialog box. This field is
available for all except for panel and image dialog control types.

Default: empty

 addDialogControl

5-903

Tooltip

Tooltip for the dialog control element.

Default: empty

Enabled

Option to specify whether you can set value for the dialog control element. This field is
available for all dialog control types.

Default: 'on'

Visible

Option to set whether the dialog control element is hidden or visible to the user. This field
is available for all dialog control types.

Default: 'on'

Callback

Container for MATLAB code that executes when you edit the dialog control element and
click Apply. This field is available only for the hyperlink and pushbutton dialog control
types.

Default: empty

Row

Option to set whether the dialog control is placed in the new row or the same row. This
field is available for all dialog control types.

Default: empty

Filepath

Contains the path to an image file. This field is available for image, and pushbutton dialog
control types.

Default: empty

5 Simulink Classes

5-904

Container

Option to specifies a container for the child dialog control. The permitted values are the
names of 'panel', 'group', and 'tab' dialog controls.

Examples

Add Dialog Control Elements to Mask Dialog Box

Get mask object and add dialog control element to it.

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add hyperlink to mask dialog box

maskLink = maskObj.addDialogControl('hyperlink','link');
maskLink.Prompt = 'Mathworks Home Page';
maskLink.Callback = 'web(''www.mathworks.com'')'

% Alternative method to add hyperlink

maskLink = maskObj.addDialogControl('hyperlink','link');
maskLink.Prompt = 'www.mathworks.com';

% Add text to mask dialog box

maskText = maskObj.addDialogControl('text','text_tag');
maskText.Prompt = 'Enable range checking';

% Add button to mask dialog box

maskButton = maskObj.addDialogControl('pushbutton','button_tag');
maskButton.Prompt = 'Compute';

Add Dialog Control Elements to Mask Dialog Box Tabs

Create tabs on the mask dialog box and add elements to these tabs.

 addDialogControl

5-905

% Get mask object on a block named 'GainBlock'

maskObj = Simulink.Mask.get('GainBlock/Gain');

% Create a tab container

maskObj.addDialogControl('tabcontainer','allTabs');
tabs = maskObj.getDialogControl('allTabs');

% Create tabs and name them

maskTab1 = tabs.addDialogControl('tab','First');
maskTab1.Prompt = 'First tab';

maskTab2 = tabs.addDialogControl('tab','Second');
maskTab2.Prompt = 'Second tab';

% Add elements to one of the tabs

firstTab = tabs.getDialogControl('First');
firstTab.addDialogControl('text','textOnFirst');
firstTab.getDialogControl('textOnFirst').Prompt = 'Tab one';

Add Dialog Control Element Using Name-Value Pair

Add dialog control element and specify values for it

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add a dialog box and specify values for it

maskDialog = maskObj.addDialogControl('Type','text',...
'Prompt','hello','Visible','off');

See Also
“Block Masks” | Control Masks Programmatically | Simulink.Mask

Introduced in R2014a

5 Simulink Classes

5-906

getDialogControl
Class: Simulink.Mask
Package: Simulink

Search for a specific dialog control on the mask

Syntax
[control, phandle] = handle.getDialogControl(cname)

Description
[control, phandle] = handle.getDialogControl(cname) , search for a specific
child dialog control recursively on the mask dialog.

Input Arguments
cname

Name of the dialog control being searched on the mask dialog.

Default:

Output Arguments
control

Target dialog control being searched on the mask dialog.

phandle

Parent of the dialog control being searched mask dialog.

 getDialogControl

5-907

Examples
Find a dialog control

Find a text dialog control on the mask dialog box. maskObj is the handle to the mask
object. The getDialogControl method returns the handle to the dialog control
(hdlgctrl) and handle to the parent dialog control (phandle).

[hdlgctrl, phandle] = maskObj.getDialogControl('txt_var')

See Also
“Block Masks” | Simulink.Mask

5 Simulink Classes

5-908

getOwner
Class: Simulink.Mask
Package: Simulink

Determine the block that owns a mask

Syntax
p = Simulink.Mask.get(blockName)
p.getOwner

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.getOwner returns the interface to the block that owns the mask.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Get the interface to the block that owns the mask.

p.getOwner;

 getOwner

5-909

See Also
“Block Masks” | Simulink.Mask

5 Simulink Classes

5-910

getParameter
Class: Simulink.Mask
Package: Simulink

Get a mask parameter using its name

Syntax
p = Simulink.Mask.get(blockName)
param = p.getParameter(paramName)

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

param = p.getParameter(paramName) returns an array of mask parameters.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

paramName

The name of the parameter you want to get.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

 getParameter

5-911

2 Get a mask parameter by using its name.

param = p.getParameter('intercept');

See Also
“Block Masks” | Simulink.Mask

5 Simulink Classes

5-912

getWorkspaceVariables
Class: Simulink.Mask
Package: Simulink

Get all the variables defined in the mask workspace for a masked block

Syntax
p = Simulink.Mask.get(blockName)
vars = p.getWorkspaceVariables

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

vars = p.getWorkspaceVariables returns as a structure all the variables defined in
the mask workspace for the masked block.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Get all the variables defined in the mask workspace for the masked block.

vars = p.getWorkspaceVariables;

 getWorkspaceVariables

5-913

See Also
“Block Masks” | Simulink.Mask

5 Simulink Classes

5-914

numParameters
Class: Simulink.Mask
Package: Simulink

Determine the number of parameters in a mask

Syntax
p = Simulink.Mask.get(blockName)
p.numParameters

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.numParameters returns the number of parameters in the mask.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Get the number of parameters in the mask.

p.numParameters;

 numParameters

5-915

See Also
“Block Masks” | Simulink.Mask

5 Simulink Classes

5-916

removeDialogControl
Class: Simulink.Mask
Package: Simulink

Remove dialog control element from mask dialog box

Syntax
successIndicator = maskVariable.removeDialogControl(
controlIdentifier)

Description
successIndicator = maskVariable.removeDialogControl(
controlIdentifier) removes dialog control element, specified by
controlIndentifier, like text, hyperlinks, or tabs from a mask dialog box. First get
the mask object and assign it to the variable maskVariable.

Successful removal of a dialog control element returns a Boolean value of 1.

Input Arguments
controlIdentifer — Unique identifier for the element
character vector | string scalar

Programmatic identifier for the dialog control element of mask dialog box.

Examples

Remove Dialog Control Element from Mask Dialog Box
% Get mask object on the Gain block in the model Engine.

 removeDialogControl

5-917

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove element named AllTab from mask dialog box.

p = maskObj.removeDialogControl('AllTab');

See Also
“Block Masks” | Simulink.Mask

Introduced in R2013b

5 Simulink Classes

5-918

removeParameter
Class: Simulink.Mask
Package: Simulink

Remove parameter from mask dialog box

Syntax
successIndicator = maskVariable.removeParameter(controlIdentifier)

Description
successIndicator = maskVariable.removeParameter(controlIdentifier)
removes parameter, specified by controlIdentifier, like edit, check box, popup from
an existing mask dialog box. First get the mask object and assign it to the variable
maskVariable.

Successful removal of a parameter returns a Boolean value of 1.

Input Arguments
controlIdentifer — Unique identifier for the parameter
character vector | string scalar

Programmatic identifier for the parameter of mask dialog box, specified as a character
vector.

Examples

Remove Parameter from Mask Dialog Box
% Get mask object on the Gain block in the model Engine.

 removeParameter

5-919

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove parameter named checkbox1 from mask dialog box.

p = maskObj.removeParameter('checkbox1');

Note You can also use the index number as the controlIdentifier.

See Also
“Block Masks” | Simulink.Mask

Introduced in R2012b

5 Simulink Classes

5-920

removeAllParameters
Class: Simulink.Mask
Package: Simulink

Remove all existing parameters from a mask

Syntax
p = Simulink.Mask.get(blockName)
p.removeAllParameters

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.removeAllParameters deletes all existing parameters from the mask.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Delete all existing parameters from the mask.

p.removeAllParameters;

 removeAllParameters

5-921

See Also
“Block Masks” | Simulink.Mask

5 Simulink Classes

5-922

set
Class: Simulink.Mask
Package: Simulink

Set the properties of an existing mask

Syntax
p = Simulink.Mask.get(blockName)
p.set(Name,Value)

Description
p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.set(Name,Value) sets mask properties that you specify using name–value pairs as
arguments.

Input Arguments
blockName

The handle to the block or the path to the block inside the model.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 set

5-923

Type

Text used as title for mask documentation that user sees on clicking Help in the Mask
Parameters dialog box.

Default: empty

Description

Text used as summary for mask documentation that user sees on clicking Help in the
Mask Parameters dialog box.

Default: empty

Help

Text used as body text for mask documentation that user sees on clicking Help in the
Mask Parameters dialog box.

Default: empty

Initialization

MATLAB code that initializes the mask.

Default: empty

SelfModifiable

Option to set whether the mask can modify itself during simulation.

Default: 'off'

Display

MATLAB code that draws the mask icon.

Default: empty

IconFrame

Option to specify whether the mask icon appears inside a visible block frame.

Default: 'on'

5 Simulink Classes

5-924

MaskIconOpaque

Option to set the mask icon as opaque or transparent.

Default: 'opaque'

RunInitForIconRedraw

Option to specify whether Simulink should run mask initialization before executing the
mask icon commands.

Default: 'off'

IconRotate

Option to specify icon rotation.

Default: 'none'

PortRotate

Option to specify port rotation.

Default: 'default'

IconUnits

Option to specify whether mask icon is autoscaled, normalized, or scaled in pixels.

Default: 'autoscale'

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Modify the mask so that its mask icon is transparent and its documentation

summarizes what it does.

p.set('IconOpaque','off','Type','Random number generator','Description',...
'This block generates random numbers.');

 set

5-925

See Also
“Block Masks” | Simulink.Mask

5 Simulink Classes

5-926

addParameterConstraint
Class: Simulink.Mask
Package: Simulink

Add parameter constraint to a mask

Syntax
paramConstraint = maskObj.addParameterConstraint(Name,Value)

Description
paramConstraint = maskObj.addParameterConstraint(Name,Value) adds a
constraint to the specified mask. Constraints can only be associated to the Edit type mask
parameters.

Input Arguments
maskObj — Block mask handle
mask object

Block mask handle, specified as a mask object. You can use the Simulink.Mask.get
command to get the block mask handle. For more information, see Simulink.Mask.get
Data Types: char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Name — Mask constraint name
character vector | string

 addParameterConstraint

5-927

Required field. Must be a valid MATLAB name. Specifies a name for the mask parameter
constraint.

Parameters — Mask parameter name
cell array of character vector | string

Optional field. Specifies the Edit mask parameter name to which you want to associate
the constraint.

Rules — Rule for mask parameter constraint
DataType | Dimension | Complexity | Sign | Finiteness | Minimum | Maximum |
CustomConstraint

Required field. Rules are defined within curly braces. A constraint can have single or
multiple rules.

Name-Value Pairs for Rules

Name Value
DataType double, single, numeric, integer,

int8, uint8, int16, uint16, int32,
uint32, boolean, enum, fixdt

Dimension scalar, rowvectar, columnvectar,
2dmatrix, ndmatrix

Complexity real, complex
Sign positive, negative, zero
Finiteness finite, inf, -inf, NaN
Minimum character vector
Maximum character vector
CustomConstraint Valid MATLAB expression returning logical

true or false.

Output Arguments
paramConstraint — Mask parameter constraint
character vector | string

5 Simulink Classes

5-928

Handle to the mask parameter constraint, returned as a character vector. You can
associate a constraint to the mask parameter either during or after creating the
constraint.

Examples

Create Mask Constraint with Single Rule
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Create mask constraint with single rule.
paramConstraint = maskObj.addParameterConstraint('Name','const2',...
'Parameters',{'Parameter2'}, 'Rules', {'DataType', 'uint8'})

ans =

 Constraints with properties:

 Name: 'const2'
 ConstraintRules: [1×1 Simulink.Mask.ParameterConstraintRules]

Create Mask Constraint with Multiple Rules
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Create mask constraint with multiple rules.
paramConstraint = maskObj.addParameterConstraint('Name','const3',...
'Parameters',{'Parameter3'}, 'Rules', {{'DataType', 'uint8'},{'DataType', {'fixdt(1,8,4)'}}})

ans =

 Constraints with properties:

 Name: 'const3'
 ConstraintRules: [1×2 Simulink.Mask.ParameterConstraintRules]

 addParameterConstraint

5-929

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

5 Simulink Classes

5-930

removeParameterConstraint
Class: Simulink.Mask
Package: Simulink

Delete a mask parameter constraint

Syntax
maskObj.removeParameterConstraint(paramConstraint)

Description
maskObj.removeParameterConstraint(paramConstraint) deletes the specified
mask parameter constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the
Simulink.Mask.get command to get the block mask handle. For more information, see
Simulink.Mask.get.
Data Types: char | cell

paramConstraint — Mask constraint name
character vector | string

Name of the mask parameter constraint to be deleted, specified as character vector.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

 removeParameterConstraint

5-931

% Remove mask constraint with name 'const1'.
maskObj.removeParameterConstraint('const1')

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

5 Simulink Classes

5-932

removeCrossParameterConstraint
Class: Simulink.Mask
Package: Simulink

Delete a cross-parameter constraint

Syntax
maskObj.removeCrossParameterConstraint(CrossConstraint)

Description
maskObj.removeCrossParameterConstraint(CrossConstraint) deletes the
specified cross-constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the
Simulink.Mask.get command to get the block mask handle. For more information, see
Simulink.Mask.get.
Data Types: char | cell

CrossConstraint — Cross constraint name
character vector | string

Name of the cross-constraint to be removed, specified as character vector.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

 removeCrossParameterConstraint

5-933

% Remove cross-constraint of name 'const1'.
maskObj.removeCrossParameterConstraint('const1')

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

5 Simulink Classes

5-934

removeAllParameterConstraints
Class: Simulink.Mask
Package: Simulink

Delete all mask parameter constraints

Syntax
maskObj.removeAllParameterConstraints()

Description
maskObj.removeAllParameterConstraints() deletes all the parameter constraints
from a mask.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask. You can use the Simulink.Mask.get command to get the
block mask handle. For more information see, Simulink.Mask.get

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Remove all constraints from the mask.
maskObj.removeAllParameterConstraints()

 removeAllParameterConstraints

5-935

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

5 Simulink Classes

5-936

removeAllCrossParameterConstraints
Class: Simulink.Mask
Package: Simulink

Delete all cross-parameter constraints from a mask

Syntax
maskObj.removeAllCrossParameterConstraints()

Description
maskObj.removeAllCrossParameterConstraints() deletes all cross-constraints
from a mask.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Remove all cross constraints from the mask.
maskObj.removeAllCrossParameterConstraints()

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

 removeAllCrossParameterConstraints

5-937

getParameterConstraint
Class: Simulink.Mask
Package: Simulink

Get mask parameter constraint properties

Syntax
paramConstraint = maskObj.getParameterConstraint(
paramConstraintName)

Description
paramConstraint = maskObj.getParameterConstraint(
paramConstraintName) gets the properties of a mask parameter constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the
Simulink.Mask.get command to get the block mask handle. For more information, see
Simulink.Mask.get.
Data Types: char | cell

paramConstraintName — Mask constraint name
character vector | string

Name of the constraint of which you want get the properties, specified as character
vector.

5 Simulink Classes

5-938

Output Arguments
paramConstraint — Mask constraint property
cell array of character vector

Constraint properties, returned as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Find parameters associated with the constraint.
paramConstraint = maskObj.getParameterConstraint('const3')

ans =

 Constraints with properties:

 Name: 'const3'
 ConstraintRules: [1×2 Simulink.Mask.ParameterConstraintRules]

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

 getParameterConstraint

5-939

getCrossParameterConstraint
Class: Simulink.Mask
Package: Simulink

Get cross-parameter constraint

Syntax
CrossConstraint = maskObj.getCrossParameterConstraint(
CrossConstraintName)

Description
CrossConstraint = maskObj.getCrossParameterConstraint(
CrossConstraintName) gets the properties of a cross parameter constraint on a mask.
Apply a cross-parameter constraint to specify rules between mask parameter values.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the
Simulink.Mask.get command to get the block mask handle. For more information, see
Simulink.Mask.get.
Data Types: char | cell

CrossConstraintName — Cross-constraint name
character vector | string

Name of the cross-parameter constraint for which you get the constraint properties,
specified as the mask object.

5 Simulink Classes

5-940

Output Arguments
CrossConstraint — Cross-constraint property
cell array

Cross-parameter constraint properties, returned as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get cross constraint.
CrossConstraint = maskObj.getCrossParameterConstraint('crossparam1')

ans =

 CrossParameterConstraints with properties:
 Name: 'crossparam1'
 Rule: 'Parameter2 > Parameter3'
 ErrorMessage: ''

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

 getCrossParameterConstraint

5-941

getAssociatedParametersOfConstraint
Class: Simulink.Mask
Package: Simulink

Get mask parameters associated with a constraint

Syntax
maskParam = maskObj.getAssociatedParametersOfConstraint(
paramConstraintName)

Description
maskParam = maskObj.getAssociatedParametersOfConstraint(
paramConstraintName) gets the parameters that are associated with a mask
constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the
Simulink.Mask.get command to get the block mask handle. For more information, see
Simulink.Mask.get.
Data Types: char | cell

paramConstraintName — Mask constraint name
character vector | string

Name of the constraint for which you want to find the associated mask parameters,
specified as character vector.

5 Simulink Classes

5-942

Output Arguments
maskParam — Mask parameter name
cell array of character vector

Mask parameter, specified as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Find parameters associated with the constraint.
maskParam = maskObj.getAssociatedParametersOfConstraint('const3')

ans =

 1×1 cell array

 {'Parameter1'}

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

 getAssociatedParametersOfConstraint

5-943

addCrossParameterConstraint
Class: Simulink.Mask
Package: Simulink

Add cross-parameter constraint

Syntax
CrossConstraint = maskObj.addCrossParameterConstraint(Name,Value)

Description
CrossConstraint = maskObj.addCrossParameterConstraint(Name,Value)
adds a constraint among parameters of a mask.

Input Arguments
maskObj — Block mask handle
mask object

Block mask handle, specified as a mask object. You can use the Simulink.Mask.get
command to get the block mask handle. For more information, see Simulink.Mask.get.
Data Types: char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the property
name and Value is the corresponding value. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Name — Cross-parameter constraint name
character vector | string

5 Simulink Classes

5-944

Cross-parameter constraint name, specified as a character vector. Must be a valid
MATLAB value.

Rule — Cross-parameter constraint rule
MATLAB expression | string

Cross-parameter constraint rule, specified as a valid MATLAB expression that returns
logical true or false. You can specify multiple rules by separating them with a logical
operators like &&. For example, parameter1 > parameter2 && parameter2 >
parameter3. Here, parameter1, parameter2 and parameter3 are parameters of a
mask.

ErrorMessage — Error message
character vector | string

Optional field. Specifies the error message to be displayed when the cross parameter
constraint rule is not satisfied. You can specify the error message as character vector or
as a message catalog ID. If you use the message catalog ID to specify an error, the error
message must not have any holes in it. Simulink displays a default error message if no
user-defined error message is found.

Output Arguments
CrossConstraint — Cross parameter constraint
cell array

Handle to the cross-parameter constraint, returned as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Add cross parameter constraint.
CrossConstraint = maskObj.addCrossParameterConstraint('Name','crossconstraint1',...
'Rule','upperbound > lowerbound','ErrorMessage','Incorrect value specified.')

ans =

 addCrossParameterConstraint

5-945

 CrossParameterConstraints with properties:

 Name: 'crossconstraint1'
 Rule: 'upperbound > lowerbound'
 ErrorMessage: 'Incorrect value specified.'

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

5 Simulink Classes

5-946

Simulink.Mask.Constraints class
Package: Simulink.Mask

Create Mask Constraint

Description
Use an instance of the Simulink.Mask.Constraint to add or remove a parameter
constraint rule.

Properties
DataType

Specifies the data type associated with the constraint rule.

Type: double, single, numeric, integer, int8, uint8, int16, uint16,
int32, uint32, boolean, enum, fixdt

Default: Empty

Dimension

Specifies the dimension associated with the constraint rule.

Type: scalar, rowvector, columnvector, 2dmatrix, ndmatrix

Default: Empty

Complexity

Specifies the complexity associated with the constraint rule.

Type: real, complex

Default: Empty

 Simulink.Mask.Constraints class

5-947

Sign

Specifies the sign associated with the constraint rule.

Type: positive, negative, zero

Default: Empty

Finiteness

Specifies the finiteness associated with the constraint rule.

Type: finite, inf, -inf, NaN

Default: Empty

Range

Specifies the range associated with the constraint rule.

Type: Minimum, Maximum

Default: Empty

CustomConstraint

Specifies the error message associated with the constraint rule.

Type: Valid MATLAB expression

Default: Empty

Methods

addParameterConstraintRule Add rules to a parameter constraint
removeParameterConstraintRule Delete a mask parameter constraint rule

5 Simulink Classes

5-948

See Also
Introduced in R2018a

 Simulink.Mask.Constraints class

5-949

addParameterConstraintRule
Class: Simulink.Mask.Constraints
Package: Simulink.Mask

Add rules to a parameter constraint

Syntax
paramConstRule = paramConstraint.addParameterConstraintRule(
Name,Value)

Description
paramConstRule = paramConstraint.addParameterConstraintRule(
Name,Value) adds rule to a parameter constraint.

Input Arguments
paramConstraint — Handle to mask constraint
constraint object

Handle to the mask parameter constraint for which you want to add constraint rules,
specified as constraint object.
Data Types: char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

5 Simulink Classes

5-950

Name-Value Pair for Rules

Name Value
DataType double, single, numeric, integer,

int8, uint8, int16, uint16, int32,
uint32, boolean, enum, fixdt

Dimension scalar, rowvectar, columnvectar,
2dmatrix, ndmatrix

Complexity real, complex
Sign positive, negative, zero
Finiteness finite, inf, -inf, NaN
Minimum string
Maximum string
CustomConstraint Valid MATLAB expression

Output Arguments
paramConstRule — Mask constraint rule
cell array

Mask constraint rule, specified as as a cell array.

Examples
% Get mask constraint handle
paramConstraint = maskObj.getParameterConstraint('const3');

% Add rules to the constraint.
paramConstRule = paramConstraint.addParameterConstraintRule('DataType','int8')

ans =

 ParameterConstraintRules with properties:

 DataType: 'int8'

 addParameterConstraintRule

5-951

 Dimension: {0×1 cell}
 Complexity: {0×1 cell}
 Sign: {0×1 cell}
 Finiteness: {0×1 cell}
 Minimum: ''
 Maximum: ''
 CustomConstraint: ''

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

5 Simulink Classes

5-952

removeParameterConstraintRule
Class: Simulink.Mask.Constraints
Package: Simulink.Mask

Delete a mask parameter constraint rule

Syntax
paramConstraint.removeParameterConstraintRule(RuleIndex)

Description
paramConstraint.removeParameterConstraintRule(RuleIndex) deletes the
specified constraint rule from a mask parameter constraint.

Input Arguments
paramConstraint — Handle to constraint
constraint object

Handle to mask parameter constraint of which you want to remove constraint rule,
specified as an object.
Data Types: char | cell

RuleIndex — Constraint rule index
integer

Index number of the mask constraint rule, specified as an integer.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

 removeParameterConstraintRule

5-953

% Get mask constraint handle.
paramConstraint = maskObj.getParameterConstraint('const3');

% Remove mask constraint rule.
paramConstraint.removeParameterConstraintRule(1)

See Also
“Block Masks” | Simulink.Mask

Introduced in R2018a

5 Simulink Classes

5-954

Simulink.MaskParameter class
Package: Simulink

Control mask parameters programmatically

Description
Use an instance of Simulink.MaskParameter to set the properties of mask parameters.

Properties
Type

Specifies the mask parameter type.

Type: character vector

Values:
'edit'|'checkbox'|'popup'|'min'|'max'|'promote'|'combobox'|'radiobut
ton'|'unidt'|'slider'|'dial'|'spinbox'

Default: 'edit'

TypeOptions

Specifies the option for the parameter if it exists, otherwise, it is empty. Applicable for
parameters of type popup, radio, Datatypestr, and promote .

Type: cell array of character vectors

Default: {''}

Name

Specifies the name of the mask parameter. This name is assigned to the mask workspace
variable created for the mask parameter. The mask parameter name must not match the
built-in parameter name.

 Simulink.MaskParameter class

5-955

Type: character vector

Default: Auto generated

Prompt

Specifies a character vector that appears as the label associated with the parameter on
the mask dialog.

Type: character vector

Default: Empty character vector

Value

Specifies the value of the mask parameter.

Default: Depends on the type of the parameter.

Evaluate

Indicates if the parameter value is to be evaluated in MATLAB or treated as a character
vector when the block is evaluated.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Tunable

Indicates if the parameter value can be changed during simulation.

Type: boolean

Values: 'on'|'off'

Default: 'on'

NeverSave

Indicates if the parameter value gets saved in the model file.

5 Simulink Classes

5-956

Type: boolean

Values: 'on'|'off'

Default: 'off'

Hidden

Indicates if the parameter should never show on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'off'

ReadOnly

Indicates if the parameter on the mask dialog box is editable or is read-only.

Type: boolean

Values: 'on'|'off'

Default: 'off'

Enabled

Indicates if the parameter is enabled in the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Visible

Indicates if the parameter is visible in the mask dialog box.

Type: boolean

Values: 'on'|'off'

 Simulink.MaskParameter class

5-957

Default: 'on'

ShowTooltip

Indicates if tool tip is enabled for the mask parameter.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Callback

Specifies the MATLAB code that executes when a user changes the parameter value from
the mask dialog box.

Type: character vector

Default: Empty character vector

TabName

Specifies the tab name of the mask dialog box where the parameter is displayed.

Type: character vector

Default: Empty character vector

Alias

Specifies the alternate name for mask parameter.

Type: character vector

Default: Empty character vector

Methods
set Set properties of mask parameters

5 Simulink Classes

5-958

See Also

Topics
“Control Masks Programmatically”
“Block Masks”

 Simulink.MaskParameter class

5-959

set
Class: Simulink.MaskParameter
Package: Simulink

Set properties of mask parameters

Syntax
Simulink.MaskParameter.set(Name,Value)

Description
Simulink.MaskParameter.set(Name,Value) sets the properties of a mask
parameter.

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Type

Type of control that is used to specify the value of this parameter.

Default: edit

TypeOptions

The options that are displayed within a popup control or in a promoted parameter. This
field is a cell array.

5 Simulink Classes

5-960

Default: empty

Name

The name of the mask parameter. This name is assigned to the mask workspace variable
created for this parameter.

Default: empty

Prompt

Text that identifies the parameter on the Mask Parameters dialog.

Default: empty

Value

The default value of the mask parameter in the Mask Parameters dialog.

Default: Type specific; depends on the Type of the parameter

Evaluate

Option to specify whether parameter must be evaluated.

Default: 'on'

Tunable

Option to specify whether parameter is tunable.

Default: 'on'

Enabled

Option to specify whether user can set parameter value.

Default: 'on'

Visible

Option to set whether mask parameter is hidden or visible to the user.

Default: 'on'

 set

5-961

Callback

Container for MATLAB code that executes when user makes a change in the Mask
Parameters dialog and clicks Apply.

Default: empty

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Get a mask parameter.

a = p.Parameters(1);
3 Edit mask parameter so it is of type popup, cannot be evaluated.

a.set('Type','popup','TypeOptions',{'Red' 'Blue' 'Green'},...
'Evaluate','off');

See Also
“Block Masks” | Simulink.Mask | Simulink.MaskParameter

5 Simulink Classes

5-962

Simulink.dialog.Control class
Package: Simulink.dialog

Create instances of dialog control

Description
Use an instance of Simulink.dialog.Control class to create, delete, or search dialog
controls.

Properties
Name

Uniquely identifies the dialog control element and is a required field.

Type: character vector

See Also
Simulink.dialog.Button | Simulink.dialog.Hyperlink |
Simulink.dialog.Image | Simulink.dialog.Text |
Simulink.dialog.parameter.Control | Simulink.dialog.Container | “Block
Masks”

 Simulink.dialog.Control class

5-963

Simulink.dialog.Container class
Package: Simulink.dialog

Create instances of a container dialog control

Description
Use an instance of Simulink.dialog.Container class to add container type dialog
control.

Properties
Name

Uniquely identifies the container dialog control and is a required filed.

Type: character vector

Enabled

Indicates whether container is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether container is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

5 Simulink Classes

5-964

AlignPrompts

Allows you to align the parameters vertically on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'off'

DialogControls

Specifies the child dialog controls contained in the container.

Type: Simulink.dialog.Control

Default: Empty array

Methods
addDialogControl Add dialog control elements to mask dialog box
removeDialogControl Remove dialog control element from mask dialog box
getDialogControl Search for a specific dialog control on the mask

See Also
Simulink.dialog.Group | Simulink.dialog.Panel | Simulink.dialog.Tab |
Simulink.dialog.TabContainer | Simulink.dialog.Control | “Block Masks”

 Simulink.dialog.Container class

5-965

addDialogControl
Class: Simulink.dialog.Container
Package: Simulink.dialog

Add dialog control elements to mask dialog box

Syntax
successIndicator = maskObj.addDialogControl(controlType,
controlIdentifier)
successIndicator = maskObj.addDialogControl(Name,Value)

Description
successIndicator = maskObj.addDialogControl(controlType,
controlIdentifier) adds dialog control elements like text, hyperlinks, or tabs to mask
dialog box. First get the mask object and assign it to the variable maskObj

successIndicator = maskObj.addDialogControl(Name,Value) specifies the
Name and Value arguments for an element on the mask dialog box. You can specify
multiple Name-Value pairs.

Input Arguments
controlType — Value type of dialog control element
character vector

Type of dialog control element, specified

• 'panel'
• 'group'
• 'tabcontainer'
• 'tab'

5 Simulink Classes

5-966

• 'collapsiblepanel'
• 'text'
• 'image'
• 'hyperlink'
• 'pushbutton'

controlIdentifer — Unique identifier for the element
character vector

Specifies the programmatic identifier for the element of mask dialog box. Use a name that
is unique and does not have space between words. For more information, see “Variable
Names” (MATLAB).

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' ') and is case-sensitive. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Type

Type of control that is used to specify the value of this dialog control element. Type is a
required argument. The permitted values are 'panel', 'group', 'tabcontainer',
'tab', 'collapsiblepanel', 'text', 'image', 'hyperlink', and 'pushbutton'.
If the parent dialog control type is 'tabcontainer', the child dialog control must be
'tab'.

Name

The identifier of the dialog control element. Name is a required argument. This field is
available for all dialog control types.

Prompt

Text that is displayed in the dialog control element on the Mask dialog box. This field is
available for all except for panel and image dialog control types.

Default: empty

 addDialogControl

5-967

Enabled

Option to specify whether you can set value for the dialog control element. This field is
available for all dialog control types.

Default: 'on'

Visible

Option to set whether the dialog control element is hidden or visible to the user. This field
is available for all dialog control types.

Default: 'on'

Callback

Container for MATLAB code that executes when you edit the dialog control element and
click Apply. This field is available only for the hyperlink and pushbutton dialog control
types.

Default: empty

Row

Option to set whether the dialog control is placed in the new row or the same row. This
field is available for all dialog control types.

Default: empty

FilePath

Contains the path to an image file. This field is available for image, and pushbutton dialog
control types.

Default: empty

Container

Option to specifies a container for the child dialog control. The permitted values are the
names of 'panel', 'group', and 'tab' dialog controls.

5 Simulink Classes

5-968

Examples

Add Dialog Control Elements to Mask Dialog Box

Get mask object and add dialog control element to it.

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add hyperlink to mask dialog box

maskLink = maskObj.addDialogControl('hyperlink','link');
maskLink.Prompt = 'Mathworks Home Page';
maskLink.Callback = 'web(''www.mathworks.com'')'

% Alternative method to add hyperlink

maskLink = maskObj.addDialogControl('hyperlink','link');
maskLink.Prompt = 'www.mathworks.com';

% Add text to mask dialog box

maskText = maskObj.addDialogControl('text','text_tag');
maskText.Prompt = 'Enable range checking';

% Add button to mask dialog box

maskButton = maskObj.addDialogControl('pushbutton','button_tag');
maskButton.Prompt = 'Compute';

Add Dialog Control Elements to Mask Dialog Box Tabs

Create tabs on the mask dialog box and add elements to these tabs.

% Get mask object on a block named 'GainBlock'

maskObj = Simulink.Mask.get('GainBlock/Gain');

% Create a tab container

 addDialogControl

5-969

maskObj.addDialogControl('tabcontainer','allTabs');
tabs = maskObj.getDialogControl('allTabs');

% Create tabs and name them

maskTab1 = tabs.addDialogControl('tab','First');
maskTab1.Prompt = 'First tab';

maskTab2 = tabs.addDialogControl('tab','Second');
maskTab2.Prompt = 'Second tab';

% Add elements to one of the tabs

firstTab = tabs.getDialogControl('First');
firstTab.addDialogControl('text','textOnFirst');
firstTab.getDialogControl('textOnFirst').Prompt = 'Tab one';

Add Dialog Control Element Using Name-Value Pair

Add dialog control element and specify values for it

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add a dialog box and specify values for it

maskDialog = maskObj.addDialogControl('Type','text',...
'Prompt','hello','Visible','off');

See Also
Simulink.dialog.Container | “Block Masks”

Introduced in R2014a

5 Simulink Classes

5-970

removeDialogControl
Class: Simulink.dialog.Container
Package: Simulink.dialog

Remove dialog control element from mask dialog box

Syntax
successIndicator = maskVariable.removeDialogControl(
controlIdentifier)

Description
successIndicator = maskVariable.removeDialogControl(
controlIdentifier) removes dialog control element, specified by
controlIndentifier, like text, hyperlinks, or tabs from a mask dialog box. First get
the mask object and assign it to the variable maskVariable.

Successful removal of a dialog control element returns a Boolean value of 1.

Input Arguments
controlIdentifer — Unique identifier for the element
character vector

Programmatic identifier for the dialog control element of mask dialog box, specified as a
character vector.

Examples

Remove Dialog Control Element from Mask Dialog Box
% Get mask object on the Gain block in the model Engine.

 removeDialogControl

5-971

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove element named AllTab from mask dialog box.

maskTab = maskObj.removeDialogControl('AllTab');

See Also
Simulink.dialog.Container | “Block Masks”

Introduced in R2013b

5 Simulink Classes

5-972

getDialogControl
Class: Simulink.dialog.Container
Package: Simulink.dialog

Search for a specific dialog control on the mask

Syntax
[control, phandle] = handle.getDialogControl(controlIdentifier)

Description
[control, phandle] = handle.getDialogControl(controlIdentifier),
search for a specific child dialog control recursively on the mask dialog box.

Input Arguments
controlIdentifier

Name of the dialog control being searched on the mask dialog box.

Default:

Output Arguments
control

Target dialog control being searched on the mask dialog box.

phandle

Parent of the dialog control being searched mask dialog box.

 getDialogControl

5-973

Examples
Find a dialog control

Find a text dialog control on the mask dialog box. maskObj is the handle to the mask
object. The getDialogControl method returns the handle to the dialog control
(hdlgctrl) and handle to the parent dialog control (phandle).

[hdlgctrl, phandle] = maskObj.getDialogControl('txt_var')

See Also
Simulink.dialog.Container | “Block Masks”

5 Simulink Classes

5-974

Simulink.dialog.Panel class
Package: Simulink.dialog

Create an instance of a panel dialog control

Description
Use an instance of Simulink.dialog.Panel class to create an instance of panel dialog
control.

Properties
Name

Uniquely identifies the panel dialog control and is a required field.

Type: character vector

Row

Specifies whether panel is placed on the current row or on a new row.

Type: character vector

Values: 'current'|'new'

Default: 'new'

Enabled

Specifies whether panel is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

 Simulink.dialog.Panel class

5-975

Visible

Specifies whether panel is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the panel.

Type: Simulink.dialog.Control

Default: Empty array

Methods
addDialogControl Add dialog control elements to mask dialog box
removeDialogControl Remove dialog control element from mask dialog box
getDialogControl Search for a specific dialog control on the mask

See Also
Simulink.dialog.Group | Simulink.dialog.Tab |
Simulink.dialog.TabContainer | Simulink.dialog.Container |
Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-976

Simulink.dialog.Group class
Package: Simulink.dialog

Create an instance of a group dialog control

Description
Use an instance of Simulink.dialog.Group class to create an instance of group dialog
control.

Properties
Name

Uniquely identifies the group dialog control and is a required field.

Type: character vector

Prompt

Specifies the text displayed on the group.

Type: character vector

Default: Empty character vector

Row

Specifies whether group is placed on the current row or on a new row.

Type: character vector

Values: 'current'|'new'

Default: 'new'

 Simulink.dialog.Group class

5-977

Enabled

Specifies whether group is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Visible

Specifies whether group is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the group.

Type: Simulink.dialog.Control

Default: Empty array

Methods
addDialogControl Add dialog control elements to mask dialog box
removeDialogControl Remove dialog control element from mask dialog box
getDialogControl Search for a specific dialog control on the mask

See Also
Simulink.dialog.Panel | Simulink.dialog.Tab |
Simulink.dialog.TabContainer | Simulink.dialog.Container |
Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-978

Simulink.dialog.Tab class
Package: Simulink.dialog

Create an instance of a tab dialog control

Description
Use an instance of Simulink.dialog.Tab class to create an instance of tab dialog
control.

Properties
Name

Uniquely identifies the tab dialog control and is a required field.

Type: character vector

Prompt

Specifies the text displayed on the tab.

Type: character vector

Default: Empty character vector

Enabled

Specifies whether tab is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

 Simulink.dialog.Tab class

5-979

Visible

Specifies whether tab is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the tab dialog control.

Type: Simulink.dialog.Control

Default: Empty array

Methods
addDialogControl Add dialog control elements to mask dialog box
removeDialogControl Remove dialog control element from mask dialog box
getDialogControl Search for a specific dialog control on the mask

See Also
Simulink.dialog.Group | Simulink.dialog.Panel |
Simulink.dialog.TabContainer | Simulink.dialog.Container |
Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-980

Simulink.dialog.TabContainer class
Package: Simulink.dialog

Create an instance of a tab container dialog control

Description
Use an instance of Simulink.dialog.TabContainer class to create an instance of tab
container dialog control. Tab container dialog box be used to group the tab dialog
controls.

Properties
Name

Uniquely identifies the tab container dialog control and is a required field.

Type: character vector

Row

Specifies whether tab container is placed on the current row or on a new row.

Type: enumerated string

Values: 'current'|'new'

Default: 'new'

Enabled

Specifies whether tab container is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

 Simulink.dialog.TabContainer class

5-981

Visible

Specifies whether tab container is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the group.
Simulink.dialog.TabContainer class can only contain Simulink.dialog.Tab
dialog control.

Type: Simulink.dialog.Tab

Default: Empty array

Methods
addDialogControl Add dialog control elements to mask dialog box
removeDialogControl Remove dialog control element from mask dialog box
getDialogControl Search for a specific dialog control on the mask

See Also
Simulink.dialog.Group | Simulink.dialog.Panel | Simulink.dialog.Tab |
Simulink.dialog.Container | Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-982

Simulink.dialog.Button class
Package: Simulink.dialog

Create a button dialog control

Description
Use an instance of Simulink.dialog.Button class to add a button dialog control.

Properties
Name

Uniquely identifies the dialog control and is a required field.

Type: character vector

Prompt

Specifies the text displayed on the button dialog control.

Type: character vector

Default: empty

FilePath

Specifies the path to the image file to be shown on the button dialog control.

Type: character vector

Default: empty

Callback

Specifies the MATLAB command (s) to be executed when the dialog control is invoked.

Type: character vector

 Simulink.dialog.Button class

5-983

Default: empty

Row

Specifies whether dialog control is placed on the current row or on a new row.

Type: character vector

Value: 'current'|'new'

Default: 'current'

Enabled

Indicates whether container is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether container is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-984

Simulink.dialog.Hyperlink class
Package: Simulink.dialog

Create a hyperlink dialog control

Description
Use an instance of Simulink.dialog.Hyperlink class to add a hyperlink dialog
control.

Properties
Name

Uniquely identifies the dialog control and is a required field.

Type: character vector

Prompt

Specifies the text displayed on the hyperlink.

Type: character vector

Default: empty

Callback

Specifies the MATLAB command (s) to be executed when the dialog control is invoked.

Type: character vector

Default: empty

Row

Specifies whether hyperlink is placed on the current row or on a new row.

 Simulink.dialog.Hyperlink class

5-985

Type: character vector

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether hyperlink is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether hyperlink is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-986

Simulink.dialog.Image class
Package: Simulink.dialog

Create an image dialog control

Description
Use an instance of Simulink.dialog.Image class to add an image dialog control.

Properties
Name

Uniquely identifies the dialog control and is a required field.

Type: character vector

FilePath

Specifies the path to the image file to be displayed on the dialog box.

Type: character vector

Default: empty

Row

Specifies whether dialog control is placed on the current row or on a new row.

Type: character vector

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether image is active on the mask dialog box.

 Simulink.dialog.Image class

5-987

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether image is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-988

Simulink.dialog.Text class
Package: Simulink.dialog

Create a text dialog control

Description
Use an instance of Simulink.dialog.Text class to add a text dialog control.

Properties
Name

Uniquely identifies the dialog control element and is a required field.

Type: character vector

Prompt

Specifies the text displayed on the mask dialog box.

Type: character vector

Default: empty

WordWrap

Specifies whether to wrap long text to the next line on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Row

Specifies whether dialog control is placed on the current row or on a new row.

 Simulink.dialog.Text class

5-989

Type: character vector

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether dialog control is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether dialog control is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control | “Block Masks”

5 Simulink Classes

5-990

Simulink.dialog.parameter.Control class
Package: Simulink.dialog.parameter

Create a parameter dialog control

Description
Use an instance of Simulink.dialog.parameter.Control class to add a parameter
dialog control.

Properties
Name

Uniquely identifies the dialog control element. This is a required field and has the same
value as its underlying parameter name.

Type: character vector

Row

Specifies whether the dialog control is placed on the current row or on a new row.

Type: character vector

Value: 'current'|'new'

Default: 'new'

See Also
Simulink.dialog.Control | “Block Masks”

 Simulink.dialog.parameter.Control class

5-991

Simulink.sfunction.Analyzer class
Package: Simulink.sfunction

Create a Simulink S-function analyzer object

Description
This class enables you to perform checks on S-functions within a model or a library. These
checks include MEX compiler setup check, source code check, MEX-file check, parameter
robustness check for S-functions. The check result can be accessed either from a
MATLAB structure or an HTML report.

The S-function analyzer checks the source code of the S-functions based on the S-function
names. The S-function source code can be automatically included in the analysis if the
source file is a single .c or .cpp file in the MATLAB path that has the same name as the S-
function. Otherwise, the build information can be specified through the S-function
Analyzer APIs. If no source code is available on the specified path, the analysis is skipped.

Construction
sfunAnalyzer = Simulink.sfunction.Analyzer(model) creates a
Simulink.sfunction.Analyzer object with the model you specify. In this case, the
source code for the S-function can be automatically included in the analysis if the source
code file is a single .c or .cpp file in the MATLAB path that has the same name as the S-
function. For example, if the specified model contains an S-function called mysfun, and
the source file for mysfun is a single file mysfun.c in the MATLAB path, a
Simulink.sfunction.analyzer.BuildInfo object is automatically created and
included in the analysis.

sfunAnalyzer = Simulink.sfunction.Analyzer(model,'BuildInfo',
{bdInfo}) creates a Simulink.sfunction.Analyzer object with the model and a
Simulink.sfunction.analyzer.BuildInfo object named bdInfo.

sfunAnalyzer = Simulink.sfunction.Analyzer(model,'Options',{opts})
creates an Simulink.sfunction.Analyzer object with the model and a
Simulink.sfunction.analyzer.Options object named opts.

5 Simulink Classes

5-992

Input Arguments
model — Specify a model in the path
character vector

Names of the model in the path, specified as a character vector.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'BuildInfo', {buildInfo}

BuildInfo — Specify the buildinfo object
cell array

A cell array of buildinfo objects. See Simulink.sfunction.analyzer.BuildInfo
for more information.

Options — Specify the S-function analyzer running options
object

An object to specify S-function analyzer running options. These checks include
Polyspace® Code Prover™ and parameter robustness checks. See
Simulink.sfunction.analyzer.Options for more information.

Methods
run Perform checks on S-functions
generateReport Generate an HTML report of S-function checks

See Also
Simulink.sfunction.Analyzer.generateReport |
Simulink.sfunction.Analyzer.run |
Simulink.sfunction.analyzer.BuildInfo |
Simulink.sfunction.analyzer.Options |
Simulink.sfunction.analyzer.findSfunctions

 Simulink.sfunction.Analyzer class

5-993

Introduced in R2017b

5 Simulink Classes

5-994

run
Class: Simulink.sfunction.Analyzer
Package: Simulink.sfunction

Perform checks on S-functions

Syntax
result = run()

Description
result = run() returns a struct containing the result from the analyzer checks. An
example result struct has the following fields:

 TimeGenerated: '19-Jul-2017 19:25:32'
 Platform: 'win64'
 Release: '(R2017b)'
 SimulinkVersion: '9.0'
 ExemptedBlocks: {}
 MexConfiguration: [1×1 mex.CompilerConfiguration]
 Data: [4×4 struct]

Output Arguments
result — Sfunction.Analyzer structure
MATLAB structure

MATLAB structure containing the result of S-function analyzer.

See Also
Simulink.sfunction.Analyzer |
Simulink.sfunction.Analyzer.generateReport |

 run

5-995

Simulink.sfunction.analyzer.BuildInfo |
Simulink.sfunction.analyzer.Options |
Simulink.sfunction.analyzer.findSfunctions

Introduced in R2017b

5 Simulink Classes

5-996

generateReport
Class: Simulink.sfunction.Analyzer
Package: Simulink.sfunction

Generate an HTML report of S-function checks

Syntax
generateReport()

Description
generateReport() generates an HTML report and launches the browser to display the
report.

See Also
Simulink.sfunction.Analyzer | Simulink.sfunction.Analyzer.run |
Simulink.sfunction.analyzer.BuildInfo |
Simulink.sfunction.analyzer.Options |
Simulink.sfunction.analyzer.findSfunctions

Introduced in R2017b

 generateReport

5-997

Simulink.sfunction.analyzer.BuildInfo class
Package: Simulink.sfunction.analyzer

Create an object to represent build information

Description
Simulink.sfunction.analyzer.BuildInfo object captures the build information for
S-functions, such as source files, header files, and linking libraries, for use with the
Simulink.sfunction.Analyzer class.

Construction
bdInfo= Simulink.sfunction.analyzer.BuildInfo(SfcnFile) creates a
Simulink.sfunction.analyzer.BuildInfo object.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, 'SrcPath',
{srcpaths}, 'ExtraSrcFileList', {srcfilelist}) creates a
Simulink.sfunction.analyzer.BuildInfo object for a C-MEX S-function source
file, a list of extra source files located in the specified path.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, '
ObjFileList',{objfilelist}) creates a
Simulink.sfunction.analyzer.BuildInfo object for C-MEX S-function source file
and list of extra objective code files.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, 'IncPaths',
{incpathslist}) creates a Simulink.sfunction.analyzer.BuildInfo object for
C-MEX S-function source file and paths to the folders including header files.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, '
LibFileList',{libfilelist}, 'LibPaths',{libpaths}) creates a
Simulink.sfunction.analyzer.BuildInfo object for C-MEX S-function source file
and library files and library file paths used for building.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, '
PreProcDefList',{preprocdir}) creates a

5 Simulink Classes

5-998

Simulink.sfunction.analyzer.BuildInfo object for C-MEX S-function source file
and pre-processor directives list.

Input Arguments
SfcnFile — S-function source file
character vector

S-function source file having the same name as the S-function.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'SrcPath', {srcpath}

SrcPath — Source file path
cell array of character vectors

Search paths to extra S-function source files that are referenced by SfcnFile, specified
as a cell array.

ExtraSrcFileList — Extra source file list
cell array of character vectors

List of extra S-function source files, specified as a cell array.

ObjFileList — Extra objective code
cell array

List of objective files used for building, specified as a cell array.

IncPaths — Search paths for header files
cell array of character vectors

Specify paths to include folders for header files, specified as a cell array.

LibFileList — External libraries list
cell array of character vectors

List of external library files used for building, specified as a cell array.

 Simulink.sfunction.analyzer.BuildInfo class

5-999

LibPaths — Search paths for external libraries
cell array of character vectors

Search paths for external library files used for building, specified as a cell array.

PreProcDefList — Preprocessor directives
cell array of character vectors

List of the preprocessor directives, specified as a cell array.

Output Arguments
bdInfo — BuildInfo object
object

Build information for the S-functions supplied to the S-function analyzer. Returns a
simulink.sfunction.analyzer.BuildInfo object.

Examples
Create a bdInfo object for an S-function mysfun that includes a source file mysfun.c:

Basic Use
bdInfo = Simulink.sfunction.analyzer.BuildInfo('mysfun.c');

The output bdInfo has the following fields:

bdInfo =

 BuildInfo with properties:

 SfcnFile: 'mysfun.c'
 SfcnName: 'mysfun'
 SrcType: 'C'
 SrcPaths: {}
 ExtraSrcFileList: {}
 ObjFileList: {}
 IncPaths: {}
 LibFileList: {}

5 Simulink Classes

5-1000

 LibPaths: {}
 PreProcDefList: {}

Advanced Use
Create a bdInfo object for an S-function mysfun that includes a source file mysfun.c
and also includes:

• List of extra source files, extra1.c and extra2.c
• Paths to source file folders, /path1 and /path2.
• List of objective files, o1.obj and o2.obj.
• List of library files, l1.lib and l2.lib.
• Library paths, /libpath1.
• Pre-processor running directives, -DDEBUG.

Simulink.sfunction.analyzer.BuildInfo('mysfun.c',...
 'ExtraSrcFileList',{extra1.c,extra2.c},... %specify extra source files, eg: extra1.c, extra2.c
 'SrcPaths',{/path1,/path2},... %specify paths to source file folders, eg: /path1, /path2
 'ObjFileList',{o1.obj,o2.obj},... %specify objective files, eg: o1.obj, o2.obj
 'LibFileList',{l1.lib,l2.lib},... %specify library files, eg: l1.lib, l2.lib
 'LibPaths',{/libpath1},... %specify library path folders, eg: /libpath1
 'PreProcDefList',{DEBUG}); %specify preprocessor directives, eg: -DDEBUG

See Also
Simulink.sfunction.Analyzer |
Simulink.sfunction.Analyzer.generateReport |
Simulink.sfunction.Analyzer.run | Simulink.sfunction.analyzer.Options |
Simulink.sfunction.analyzer.findSfunctions

Introduced in R2017b

 Simulink.sfunction.analyzer.BuildInfo class

5-1001

Simulink.sfunction.analyzer.Options class
Package: Simulink.sfunction.analyzer

Create an object to specify options for running S-function checks

Description
Simulink.sfunction.analyzer.Options object is created through the constructor
Simulink.sfunction.analyzer.Options().
Simulink.sfunction.analyzer.Options object captures the options for running S-
function checks. These checks include whether to enable Polyspace and Parameter
Robustness checks, maximum model simulation time and output path for result report.

Construction
opts= Simulink.sfunction.analyzer.Options() returns a options object with
these property values:

 EnablePolyspace: 0
 EnableRobustness: 0
 ReportPath: ''
 ModelSimTimeOut: 10

Properties
EnablePolyspace — Polyspace Code Prover check
False (default) | True

Boolean type check to determine whether to include Polyspace Code Prover check.

Note These checks usually take some time to run.

5 Simulink Classes

5-1002

EnableRobustness — Parameter robustness check
False (default) | True

Boolean type check to indicate whether to include Robutness checks.

Note These checks usually take some time to run.

ReportPath — Generated report directory
character array

Path to the generated report directory.

ModelSimTimeOut — Maximum model simulation time
positive scalar

Maximum model simulation time in seconds.

See Also
Simulink.sfunction.Analyzer |
Simulink.sfunction.Analyzer.generateReport |
Simulink.sfunction.Analyzer.run |
Simulink.sfunction.analyzer.BuildInfo |
Simulink.sfunction.analyzer.findSfunctions

Introduced in R2017b

 Simulink.sfunction.analyzer.Options class

5-1003

findSfunctions
Find and return all eligible S-functions in a model

Syntax
sfuns = Simulink.sfunction.analyzer.findSfunctions(model)

Description
sfuns = Simulink.sfunction.analyzer.findSfunctions(model) returns all
eligible S-functions in a model for the S-function checks. Rules are applied to filter out all
ineligible S-functions.

Input Arguments
model — A Simulink model or library in path
Simulink model

A Simulink model or library in path.

Output Arguments
sfuns — A list of all eligible S-functions
cell array

Eligible s-functions in the model, specified as a cell array.

See Also
Simulink.sfunction.Analyzer |
Simulink.sfunction.Analyzer.generateReport |
Simulink.sfunction.Analyzer.run |

5 Simulink Classes

5-1004

Simulink.sfunction.analyzer.BuildInfo |
Simulink.sfunction.analyzer.Options

Introduced in R2017b

 findSfunctions

5-1005

addElement
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Add element to end of data set

Syntax
dataset = addElement(dataset,element)
dataset = addElement(dataset,element,name)

Description
dataset = addElement(dataset,element) adds an element to the
Simulink.SimulationData.Dataset dataset.

dataset = addElement(dataset,element,name) adds an element to the
Simulink.SimulationData.Dataset data set and gives the element the name that
you specify with the name argument. If the object already has a name, the element
instead uses the name you specify by using the name argument.

Input Arguments
dataset — Data set
SimulationData.Dataset object

The data set to which to add the element.

element — Element to add
Simulink.SimulationData.Signal object | Simulink.SimulationData.State
object | Simulink.SimulationData.DataStoreMemory object | timeseries object |
matlab.io.datastore.SimulationDatastore object

5 Simulink Classes

5-1006

Element to add to the data set, specified as a Simulink.SimulationData.Signal,
Simulink.SimulationData.DataStoreMemory, or
matlab.io.datastore.SimulationDatastore object.

name — Name for element
character vector

Name for element, specified as a character vector.

Output Arguments
dataset — Data set
character vector

The data set to which you add the element, returned as a character vector. The new
element is added to the end of the data set.

Examples

Create a Data Set

Create a data set and add three elements to it.

time = 0.1*(0:100)';
ds = Simulink.SimulationData.Dataset;
element1 = Simulink.SimulationData.Signal;
element1.Name = 'A';
element1.Values = timeseries(sin(time),time);
ds = addElement(ds,element1);
element2 = Simulink.SimulationData.Signal;
element2.Name = 'B';
element2.Values = timeseries(2*sin(time),time);
ds = addElement(ds,element2);
element3 = Simulink.SimulationData.Signal;
element3.Name = 'C';
element3.Values = timeseries(3*sin(time),time);
ds = addElement(ds,element3);
ds

 addElement

5-1007

ds =

Simulink.SimulationData.Dataset '' with 3 elements

 Name BlockPath
 ____ _________
 1 [1x1 Signal] A ''
 2 [1x1 Signal] B ''
 3 [1x1 Signal] C ''

 - Use braces { } to access, modify, or add elements using index.

• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Convert Logged Data to Dataset Format”
• “Migrate Scripts That Use Legacy ModelDataLogs API”

Alternative
To streamline indexing syntax, you can use curly braces ({}) to add an element to a
dataset, instead of using addElement. For the index, use a scalar that is greater than the
number of elements by one. The new element becomes the last element of the dataset.

time = 0.1*(0:100)';
ds = Simulink.SimulationData.Dataset;
element1 = Simulink.SimulationData.Signal;
element1.Name = 'A';
element1.Values = timeseries(sin(time),time);
ds{1} = element1;
element2 = Simulink.SimulationData.Signal;
element2.Name = 'B';
element2.Values = timeseries(2*sin(time),time);
ds{2} = element2;
element3 = Simulink.SimulationData.Signal;
element3.Name = 'C';
element3.Values = timeseries(3*sin(time),time);
ds{3} = element3;

5 Simulink Classes

5-1008

See Also
Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.concat |
Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames |
Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Signal |
matlab.io.datastore.SimulationDatastore

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Logged Data to Dataset Format”
“Migrate Scripts That Use Legacy ModelDataLogs API”

Introduced in R2011a

 addElement

5-1009

concat
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Concatenate dataset to another dataset

Syntax
dataset1 = concat(dataset1,dataset2)

Description
dataset1 = concat(dataset1,dataset2) concatenates the elements of dataset2
to dataset1.

Input Arguments
dataset1 — Dataset to concatenate to
data set

Dataset to concatenate to with dataset2, returned as a cell array.

dataset2 — Dataset to concatenate
data set

Data set to concatenate to dataset1, specified as a cell array.

Output Arguments
dataset1 — Concatenated dataset
data set

Concatenated dataset from dataset1 and dataset2.

5 Simulink Classes

5-1010

Examples

Concatenate ds1 to ds

Convert output from two To Workspace blocks to Dataset format and concatenate them.

mdl = 'myvdp';
open_system(mdl);
sim(mdl)
ds = Simulink.SimulationData.Dataset(simout);
ds1 = Simulink.SimulationData.Dataset(simout1);
dsfinal = concat(ds,ds1);

• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Convert Logged Data to Dataset Format”
• “Migrate Scripts That Use Legacy ModelDataLogs API”

See Also
Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames |
Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Signal

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Logged Data to Dataset Format”
“Migrate Scripts That Use Legacy ModelDataLogs API”

 concat

5-1011

Introduced in R2015a

5 Simulink Classes

5-1012

get
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Get element or collection of elements from dataset

Syntax
element = get(dataset,index)
element = get(dataset,name)
element = get(dataset,{name})

Description
element = get(dataset,index) returns the element corresponding to the index.
The getElement method uses the same syntax and behavior as the get method.

element = get(dataset,name) returns the element whose name matches name.
When name is in a cell array, return the index of the element whose name matches name.

element = get(dataset,{name}) returns a single element if only one element name
matches, a SimulationData.Dataset if multiple elements with this name exist.

If you use Log Dataset data to file to create the MAT-file, use getAsDatastore for fast
access to the data.

Input Arguments
dataset — Dataset
SimulationData.Dataset object

The data set from which to get the element.

index — Index value of element to get
scalar numeric

 get

5-1013

Index value of element to get. The index reflects the index value of a data set element.

name — Name for data set element
character array | cell array

Name for a data set element, specified as:

• A character array reflecting the name of the data set element
• A cell array containing one character vector. To return a SimulationData.Dataset

object that can contain one element, use this format. Consider this form when
writing scripts.

Output Arguments
element — Element
element | SimulationData.Dataset object | empty object

The element that the get method finds.

• If index is the first argument after the data set, the method returns the element at
the index.

• If name is the first argument after the data set:

• If the method finds one element, it returns the element.
• If the method finds more than one element, return a Dataset that contains the

elements.
• If the method does not find an element, it returns an empty object.

Examples

Access Dataset Elements

Access Simulink.SimulationData.Dataset elements in the top model of the
ex_bus_logging model. The signal logging dataset is topOut.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_bus_logging')));

5 Simulink Classes

5-1014

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_mdlref_counter_bus')));
sim('ex_bus_logging')
topOut

topOut =

 Simulink.SimulationData.Dataset
 Package: Simulink.SimulationData

 Characteristics:
 Name: 'topOut'
 Total Elements: 4

 Elements:
 1: 'COUNTERBUS'
 2: 'OUTPUTBUS'
 3: 'INCREMENTBUS'
 4: 'inner_bus'

 -Use get or getElement to access elements by index, name or
 block path.
 -Use addElement or setElement to add or modify elements.

 Methods, Superclasses

Access Dataset Elements with Index

Access the element at index if the first argument is a numeric value.

el = logsout.get(1);

Access Dataset Elements with Characters

Access the element whose name matches name.

el = logsout.get('name');

 get

5-1015

Access Dataset Elements with Cell Array

Return a dataset if the first argument is a cell array with a character vector as the first
element.

ds = logsout.get({'my_name'});

• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Convert Logged Data to Dataset Format”
• “Migrate Scripts That Use Legacy ModelDataLogs API”

Alternatives
You can use curly braces to streamline indexing syntax to get an element in a dataset,
instead of using get or getElement. The index must be a scalar that is not greater than
the number of elements in the variable. For example, get the second element of the
logsout dataset.

logsout{2}

Also, you can use the find method to get an element or collection of elements from a
dataset.

See Also
Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat |
Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.getElementNames |
Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Signal

5 Simulink Classes

5-1016

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Logged Data to Dataset Format”
“Migrate Scripts That Use Legacy ModelDataLogs API”

Introduced in R2011a

 get

5-1017

getElementNames
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Return names of all elements in dataset

Syntax
element_list = getElementNames(dataset)

Description
element_list = getElementNames(dataset) returns the names of all of the
elements in the Simulink.SimulationData.Dataset object.

Input Arguments
dataset — Data set
SimulationData.Dataset object

The data set from which to the element name.

Output Arguments
element_list — Data set
cell array

Data set, returned as a cell array of the character vectors containing names of all of the
elements of the dataset.

Examples

5 Simulink Classes

5-1018

Return Names of Elements

Return the names of the elements for the topOut data set (the signal logging data).

open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_bus_logging')));
open_system(docpath(fullfile(docroot,'toolbox','simulink',...
'examples','ex_mdlref_counter_bus')));
sim('ex_bus_logging')
el_names = topOut.getElementNames

el_names =

 'COUNTERBUS'
 'OUTPUTBUS'
 'INCREMENTBUS'
 'inner_bus'

• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Convert Logged Data to Dataset Format”
• “Migrate Scripts That Use Legacy ModelDataLogs API”

See Also
Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat |
Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Signal

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”

 getElementNames

5-1019

“Log Data Stores”
“Convert Logged Data to Dataset Format”
“Migrate Scripts That Use Legacy ModelDataLogs API”

Introduced in R2011a

5 Simulink Classes

5-1020

find
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Get element or collection of elements from dataset

Syntax
[datasetOut,retIndex]=find(datasetIn,Name,Value,…)

[datasetOut,retIndex]=find(datasetIn,Name,Value,'-logicaloperator',…
Name,Value,…)

[datasetOut,retIndex]=find(datasetIn,'-regexp',Name,Value,…)

Description
[datasetOut,retIndex]=find(datasetIn,Name,Value,…) returns a
Simulink.SimulationData.Dataset object and indices of the elements whose
property values match the specified property names and values. Specify optional comma-
separated pairs of Name,Value properties. Name is the property name and Value is the
corresponding value. Name must appear inside single quotes (' '). You can specify
several name-value pair properties in any order as Name1,Value1,...,NameN,ValueN.

[datasetOut,retIndex]=find(datasetIn,Name,Value,'-logicaloperator',…
Name,Value,…) applies the logical operator to the matching property value. You can
combine multiple logical operators. Logical operator can be one of:

• -or
• -and

If you do not specify an operation, the method assumes -and.

[datasetOut,retIndex]=find(datasetIn,'-regexp',Name,Value,…) matches
elements using regular expressions as if the value of the property is passed to the regexp
function as:

 find

5-1021

regexp(element.Name,Value)

The method applies regular expression matching to the name-value pairs that appear
after -regexp. If there is no -regexp, the method matches elements as if the value of
the property is passed as:

isequal(element.Name,Value)

For more information on -regexp, see “-regexp With Multiple Block Paths” on page 5-
1022.

-regexp With Multiple Block Paths
-regexp works with properties of type char. To specify multiple block paths, you can use
Simulink.SimulationData.BlockPath and Simulink.BlockPath. For example,
when a signal is logged in a referenced model, you can use
Simulink.SimulationData.BlockPath to specify multiple block paths.

The method returns elements that contain a BlockPath property where one or more of
the individual block paths match the specified Value path when you use:

• -regexp with the BlockPath Name property.
• Value as a character vector or scalar object of type

Simulink.SimulationData.BlockPath with one block path

Input Arguments
datasetIn — SimulationData.Dataset
SimulationData.Dataset object

SimulationData.Dataset object in which to search for matching elements.

Name — Name of property
character vector

Name of property to find in the element.

Value — Value of property
character vector | double | Simulink.SimulationData.BlockPath

Value of property to find in the element.

5 Simulink Classes

5-1022

Output Arguments
datasetOut — SimulationData.Dataset data set
SimulationData.Dataset

SimulationData.Dataset object that contains the elements that match the specified
criteria. If there is no matching SimulationData.Dataset object, the returned
SimulationData.Dataset object contains no elements.

retIndex — Indices
vector

Indices of the elements datasetIn that match the specified criteria.

Examples

Find Block Path

Find a specific block path (specified by character vector) and port index.

dsOut = find(dsIn, 'BlockPath', 'vdp/x1', 'PortIndex', 1)

Find Elements

Find elements that have either name or propagated name as InValve.

dsOut = find(dsIn, 'Name', 'InValve', '-or', 'PropagatedName', 'InValve')
dsOut = find(dsIn, '-regex','Name', 'In*', '-or', …
 '-regex','PropagatedName', 'In*')

Find and Change Element

Find and replace all elements containing specified_name with a new_name.

[dsOut,idxInDs] = find(ds, 'specified_name');
for idx=1: length(idxInDs)
 % process each element

 find

5-1023

 elm = get(dsOut, idx);
 elm.Name= 'New_Name'
 dsIn = setElement(dsIn, idxInDs(idx), elm);
end

Find Signals in subSys Using -regexp

Find all signals logged in a subSys using -regexp.

dsOut = find(dsIn, '-regexp', 'BlockPath', 'mdl/subSys/.*')

Find Signals in Referenced Model

Find all signals logged in the Model block.

dsOut = find(dsIn, '-regexp', 'BlockPath', 'refmdl/ModelBlk')

• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Convert Logged Data to Dataset Format”
• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Load Big Data for Simulations”

Alternative
You can use curly braces to streamline indexing syntax to get an element in a dataset,
instead of using find. The index must be a scalar that is not greater than the number of
elements in the variable. For example, get the second element of the logsout dataset.

logsout{2}

Also, you can use the get method to get an element or collection of elements from a
dataset.

5 Simulink Classes

5-1024

See Also
Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames |
Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.DatasetRef.getDatasetVariableNames |
Simulink.SimulationData.Signal | findobj | regexp

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Logged Data to Dataset Format”
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Load Big Data for Simulations”

Introduced in R2015b

 find

5-1025

numElements
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Get number of elements in data set

Syntax
length = numElements(dataset)

Description
length = numElements(dataset) gets the number of elements in the top-level
dataset. To get the number of elements of a nested data set, use numElements with the
nested data set.

Input Arguments
dataset — Data set
SimulationData.Dataset object

The data set from which to get the number of elements.

Output Arguments
length — Number of elements
double

Number of elements, returned as a double.

Examples

5 Simulink Classes

5-1026

Get Number of Elements

Get the number of elements in the signal logging data set for the ex_bus_logging.

length = topOut.numElements()

• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Convert Logged Data to Dataset Format”
• “Migrate Scripts That Use Legacy ModelDataLogs API”

See Also
Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat |
Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames |
Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Signal

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Logged Data to Dataset Format”
“Migrate Scripts That Use Legacy ModelDataLogs API”

Introduced in R2011a

 numElements

5-1027

plot
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Plot dataset elements in Signal Preview window or Simulation Data Inspector

Syntax
plot(ds)
plot(ds,viewer)

Description
plot(ds) plots the Simulink.SimulationData.Dataset elements against time and
interpolates values between samples by using either zero-order-hold or linear
interpolation. The plot displays as a read-only plot in the Signal Preview window.

plot(ds,viewer) displays the plot in the Signal Preview window or Simulation Data
Inspector, depending on the viewer value.

Input Arguments
ds — Data set
SimulationData.Dataset object

The data set that contains the elements to plot.

viewer — Viewer to display plot
preview (default) | sdi

Viewer to display the plot, specified as preview (Signal Preview window) or sdi
(Simulation Data Inspector).

5 Simulink Classes

5-1028

Examples

Plot a Data Set

Create a timeseries object ts and add elements to plot in Simulation Data Inspector.

% Create a timeseries object
ts = timeseries([0;20],[0;10]);
% Create a SimulationData.Dataset
ds = Simulink.SimulationData.Dataset();
% Place timeseries object in dataset
ds = ds.addElement(ts,'ts');
% Plot the element
plot(ds,'sdi');

• “View and Inspect Signal Data”
• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Convert Logged Data to Dataset Format”
• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Load Big Data for Simulations”

See Also
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.addElement

Topics
“View and Inspect Signal Data”
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Logged Data to Dataset Format”
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Load Big Data for Simulations”

 plot

5-1029

Introduced in R2016b

5 Simulink Classes

5-1030

setElement
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Change element stored at specified index

Syntax
dataset = setElement(dataset,index,... element)
dataset = setElement(index,element, name)

Description
dataset = setElement(dataset,index,... element) changes the element stored
at the specified index, for an existing index. If index is one greater than the number of
elements in the data set, the function adds the element at the end of the data set.

dataset = setElement(index,element, name) changes the element stored at the
specified index and gives it the name that you specify. You can use name to identify an
element that does not have a name. If the signal already has a name, the element instead
uses the name you specify by using the name argument.

Input Arguments
dataset — Data set
SimulationData.Dataset object

The data set for which to set the element.

index — Index
scalar

Index for the added element, specified as a scalar numeric value. The value must be
between 1 and the number of elements plus 1.

 setElement

5-1031

element — Element to replace existing element
Simulink.SimulationData.Signal object |
Simulink.SimulationData.DataStoreMemory object

Element to replace existing element or to add to the data set, specified as a
Simulink.SimulationData.Signal object or
Simulink.SimulationData.DataStoreMemory object.

name — Element name
character vector

Element name, returned as a character vector.

Output Arguments
dataset — Data set
character vector

Data set in which you change or add an element, specified as a character vector.

Examples

Set Element Name

Set element name.

ds = Simulink.SimulationData.Dataset
element1 = Simulink.SimulationData.Signal
element1.Name = 'A'
ds = ds.addElement(element1)
element2 = Simulink.SimulationData.Signal
element2.Name = 'B'
elementNew = Simulink.SimulationData.Signal
ds = ds.setElement(2,elementNew,'B1')
ds

ds =

 Simulink.SimulationData.Dataset

5 Simulink Classes

5-1032

 Package: Simulink.SimulationData

 Characteristics:
 Name: 'topOut'
 Total Elements: 2

 Elements:
 1: 'A'
 2: 'B1'

 Use getElement to access elements by index, name or
 block path.

 Methods, Superclasses

• “Migrate Scripts That Use Legacy ModelDataLogs API”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate Scripts That Use Legacy ModelDataLogs API”

Alternative
You can use curly braces to streamline indexing syntax to change an element in a dataset,
instead of using setElement. The index must be a scalar that is not greater than the
number of elements in the variable. For example, change the name of second element of
the logsout dataset.

logsout{2}.Name = 'secondSignal'

See Also
Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Dataset |
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat |
Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames |

 setElement

5-1033

Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Signal

Topics
“Migrate Scripts That Use Legacy ModelDataLogs API”
“Export Signal Data Using Signal Logging”
“Log Data Stores”
“Migrate Scripts That Use Legacy ModelDataLogs API”

Introduced in R2011a

5 Simulink Classes

5-1034

coder.BuildConfig class
Package: coder

Build context during code generation

Description
The code generator creates an object of this class to facilitate access to the build context.
The build context encapsulates the settings used by the code generator including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

Use coder.BuildConfig methods in the methods that you write for the
coder.ExternalDependency class.

Construction
The code generator creates objects of this class.

 coder.BuildConfig class

5-1035

Methods
getHardwareImplementation Get handle of copy of hardware implementation object
getStdLibInfo Get standard library information
getTargetLang Get target code generation language
getToolchainInfo Returns handle of copy of toolchain information object
isCodeGenTarget Determine if build configuration represents specified

target
isMatlabHostTarget Determine if hardware implementation object target is

MATLAB host computer

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Use coder.BuildConfig methods to access the build context in
coder.ExternalDependency methods

This example shows how to use coder.BuildConfig methods to access the build
context in coder.ExternalDependency methods. In this example, you use:

• coder.BuildConfig.isMatlabHostTarget to verify that the code generation
target is the MATLAB host. If the host is not MATLAB report an error.

• coder.BuildConfig.getStdLibInfo to get the link-time and run-time library file
extensions. Use this information to update the build information.

Write a class definition file for an external library that contains the function adder.

%==
% This class abstracts the API to an external Adder library.
% It implements static methods for updating the build information
% at compile time and build time.
%==

5 Simulink Classes

5-1036

classdef AdderAPI < coder.ExternalDependency
 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)
 bName = 'AdderAPI';
 end

 function tf = isSupportedContext(buildContext)
 if buildContext.isMatlabHostTarget()
 tf = true;
 else
 error('adder library not available for this target');
 end
 end

 function updateBuildInfo(buildInfo, buildContext)
 % Get file extensions for the current platform
 [~, linkLibExt, execLibExt, ~] = buildContext.getStdLibInfo();

 % Add file paths
 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');
 buildInfo.addIncludePaths(hdrFilePath);

 % Link files
 linkFiles = strcat('adder', linkLibExt);
 linkPath = hdrFilePath;
 linkPriority = '';
 linkPrecompiled = true;
 linkLinkOnly = true;
 group = '';
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files for packaging
 nbFiles = 'adder';
 nbFiles = strcat(nbFiles, execLibExt);
 buildInfo.addNonBuildFiles(nbFiles,'','');
 end

 %API for library function 'adder'
 function c = adder(a, b)

 coder.BuildConfig class

5-1037

 if coder.target('MATLAB')
 % running in MATLAB, use built-in addition
 c = a + b;
 else
 % Add the required include statements to the generated function code
 coder.cinclude('adder.h');
 coder.cinclude('adder_initialize.h');
 coder.cinclude('adder_terminate.h');
 c = 0;

 % Because MATLAB Coder generated adder, use the
 % housekeeping functions before and after calling
 % adder with coder.ceval.

 coder.ceval('adder_initialize');
 c = coder.ceval('adder', a, b);
 coder.ceval('adder_terminate');
 end
 end
 end
end

See Also
coder.ExternalDependency | coder.HardwareImplementation | coder.target

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Customize the Post-Code-Generation Build Process” (MATLAB Coder)

Introduced in R2013b

5 Simulink Classes

5-1038

coder.ExternalDependency class
Package: coder

Interface to external code

Description
coder.ExternalDependency is an abstract class for developing an interface between
external code and MATLAB code intended for code generation. You can define classes that
derive from coder.ExternalDependency to encapsulate the interface to external
libraries, object files, and C/C++ source code. This encapsulation allows you to separate
the details of the interface from your MATLAB code.

To define a class derived from coder.ExternalDependency, create a subclass. For
example:

classdef myClass < coder.ExternalDependency

You must define all of the methods listed in “Methods” on page 5-1040. These methods
are static and are not compiled. The code generator invokes these methods in MATLAB
after code generation is complete to configure the build for the generated code. The
RTW.BuildInfo and coder.BuildConfig objects that describe the build information
and build context are automatically created during the build process. The
updateBuildInfo method provides access to these objects. For more information on
build information customization, see “Customize the Post-Code-Generation Build Process”
(MATLAB Coder).

You also define methods that call the external code. These methods are compiled. For
each external function that you want to call, write a method to define the programming
interface to the function. In the method, use coder.ceval to call the external function.

 coder.ExternalDependency class

5-1039

Methods
getDescriptiveName Return descriptive name for external dependency
isSupportedContext Determine if build context supports external dependency
updateBuildInfo Update build information

Examples

Encapsulate the Interface to an External C Dynamic Library

This example shows how to encapsulate the interface to an external C dynamic linked
library using coder.ExternalDependency.

Write a function adder that returns the sum of its inputs.

function c = adder(a,b)
%#codegen
c = a + b;
end

Generate a library that contains adder.

codegen('adder','-args',{-2,5},'-config:dll','-report')

Write the class definition file AdderAPI.m to encapsulate the library interface.

%==
% This class abstracts the API to an external Adder library.
% It implements static methods for updating the build information
% at compile time and build time.
%==

classdef AdderAPI < coder.ExternalDependency
 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)
 bName = 'AdderAPI';
 end

5 Simulink Classes

5-1040

 function tf = isSupportedContext(buildContext)
 if buildContext.isMatlabHostTarget()
 tf = true;
 else
 error('adder library not available for this target');
 end
 end

 function updateBuildInfo(buildInfo, buildContext)
 % Get file extensions for the current platform
 [~, linkLibExt, execLibExt, ~] = buildContext.getStdLibInfo();

 % Add file paths
 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');
 buildInfo.addIncludePaths(hdrFilePath);

 % Link files
 linkFiles = strcat('adder', linkLibExt);
 linkPath = hdrFilePath;
 linkPriority = '';
 linkPrecompiled = true;
 linkLinkOnly = true;
 group = '';
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files for packaging
 nbFiles = 'adder';
 nbFiles = strcat(nbFiles, execLibExt);
 buildInfo.addNonBuildFiles(nbFiles,'','');
 end

 %API for library function 'adder'
 function c = adder(a, b)
 if coder.target('MATLAB')
 % running in MATLAB, use built-in addition
 c = a + b;
 else
 % Add the required include statements to the generated function code
 coder.cinclude('adder.h');
 coder.cinclude('adder_initialize.h');
 coder.cinclude('adder_terminate.h');
 c = 0;

 coder.ExternalDependency class

5-1041

 % Because MATLAB Coder generated adder, use the
 % housekeeping functions before and after calling
 % adder with coder.ceval.

 coder.ceval('adder_initialize');
 c = coder.ceval('adder', a, b);
 coder.ceval('adder_terminate');
 end
 end
 end
end

Write a function adder_main that calls the external library function adder.

function y = adder_main(x1, x2)
 %#codegen
 y = AdderAPI.adder(x1, x2);
end

Generate a MEX function for adder_main. The MEX Function exercises the
coder.ExternalDependency methods.

codegen('adder_main', '-args', {7,9}, '-report')

Copy the library to the current folder using the file extension for your platform.

For Windows, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.dll'));

For Linux, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.so'));

Run the MEX function and verify the result.

adder_main_mex(2,3)

See Also
coder.BuildConfig | coder.ceval | coder.cinclude | coder.updateBuildInfo

5 Simulink Classes

5-1042

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Customize the Post-Code-Generation Build Process” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

Introduced in R2013b

 coder.ExternalDependency class

5-1043

TimeScopeConfiguration
Control Scope block appearance and behavior

Description
Scope configuration properties control the appearance and behavior of a scope block.
Create a scope configuration object with get_param, and then change property values
using the object with dot notation.

Creation
myScopeConfiguration = get_param(gcbh,'ScopeConfiguration') creates a
scope configuration object for the selected scope block.

Properties
Name — Title on a scope window
block name (default) | character vector

Title on a scope window, specified as a character vector.

NumInputPorts — Number of input ports
'1' (default) | character vector

Number of input ports on a scope block, specified as a character vector. The maximum
number of input ports is 96.

UI Use

Select File > Number of Input Ports.

ActiveDisplay — Display for setting display-specific properties
'1' (default) | character vector

5 Simulink Classes

5-1044

Display for setting display-specific properties, specified as a character vector. The number
of a display corresponds to its column-wise placement index. For multi-column layouts,
the displays are numbered down and then across.
Dependency

Setting this property selects the display for setting the properties ShowGrid,
ShowLegend, Title, PlotAsMagnitudePhase, YLabel, and YLimits.
UI Use

Open the Configuration Properties. On the Display tab, set Active display.

AxesScaling — How to scale y-axes
'Manual' (default) | 'Auto' | 'Updates'

How to scale y-axes, specified as one of these values:

• 'Manual' — Manually scale y-axes with the Scale Y-axis Limits button.
• 'Auto' — Scale y-axes during and after simulation.
• 'Updates' — Scale y-axes after specified number of block updates (time intervals).

Dependency

If this property is set to 'Updates', also specify the property AxesScalingNumUpdates
UI Use

Open the Configuration Properties. On the Main tab, set Axes scaling.

AxesScalingNumUpdates — Number of updates before scaling y-axes
'10' (default) | character vector

Number of updates before scaling y-axes, specified as a character vector.
Dependency

Activate this property by setting AxesScaling to 'Updates'.
UI Use

Open the Configuration Properties. On the Main tab, set Number of updates.

DataLogging — Save scope data
false (default) | true

 TimeScopeConfiguration

5-1045

Set this property to true to save scope data to a variable in the MATLAB workspace.

This property does not apply to floating scopes and scope viewers.

Dependency

If this property is set to true, you must also specify the properties
DataLoggingVariableName and DataLoggingSaveFormat.

UI Use

Open the Configuration Properties. On the Logging tab, set Log data to workspace.

DataLoggingVariableName — Variable name for saving scope data
'ScopeData' (default) | character vector

Variable name for saving scope data in the MATLAB workspace, specified as a character
vector. This property does not apply to floating scopes and scope viewers.

Dependency

Activate this property by setting DataLogging to true.

UI Use

Open the Configuration Properties. On the Logging tab, set Variable name.

DataLoggingSaveFormat — Variable format for saving scope data
'Dataset' (default) | 'Structure With Time' | 'Structure' | 'Array'

Variable format for saving scope data to the MATLAB workspace, specified as one of these
values:

• 'Dataset' — Save data as a dataset object. This format does not support variable-
size data, MAT-file logging, or external mode archiving. See
Simulink.SimulationData.Dataset.

• 'StructureWithTime' — Save data as a structure with associated time information.
This format does not support single- or multiport frame-based data, or multirate data.

• 'Structure' — Save data as a structure. This format does not support multirate
data.

• 'Array' — Save data as an array with associated time information. This format does
not support multiport sample-based data, single- or multiport frame-based data,
variable-size data, or multirate data.

5 Simulink Classes

5-1046

This property does not apply to floating scopes and scope viewers.

Dependency

Activate this property by setting DataLogging to true.

UI Use

Open the Configuration Properties. On the Logging tab, set Save format.

DataLoggingLimitDataPoints — Limit buffered data
false (default) | true

Set to true to limit buffered data before plotting and saving data.

For simulations with Stop time set to inf, always set this parameter to true.

Dependency

If this property is set to true, also specify the number of data values to plot and save
with the property DataLoggingMaxPoints.

UI Use

Open the Configuration Properties. On the Logging tab, set Limit data points to
last.

DataLoggingMaxPoints — Maximum number of data values
'5000' (default) | character vector

Maximum number of data values to plot and save, specified as a character vector. The
data values that are plotted and saved are from the end of a simulation. For example,
setting this property to 100 saves the last 100 data points.

Dependency

Activate this property by setting DataLoggingLimitDataPoints to true. Specifying
this property limits the data values a scope plots and the data values saved in the
MATLAB variable specified in DataLoggingVariableName.

UI Use

Open the Configuration Properties. On the Display tab, set the text box to the right of
Limit data points to last.

 TimeScopeConfiguration

5-1047

DataLoggingDecimateData — Reduce scope data
false (default) | true

Set this property to true to reduce scope data before plotting and saving.

Dependency

If this property is set to true, you must also specify the DataLoggingDecimation
property.

UI Use

Open the Configuration Properties. On the Logging tab, set Decimation.

DataLoggingDecimation — Decimation factor
'1' (default) | character vector

Decimation factor applied to the signal data before plotting and saving, specified as a
character vector. The scope buffers every Nth data point, where N is the decimation factor
you specify. A value of 1 buffers all data values.

Dependency

Activate this property by setting DataLoggingDecimateData to true.

UI Use

Open the Configuration Properties. On the Logging tab, set the text box to the right of
Decimation.

FrameBasedProcessing — Frame-based processing of signals
false (default for Time Scope block) | true (default for Scope block)

Set this property to true to process signals as frame-based.

• false — Process signal values in a channel at each time interval (sample based).
• true — Process signal values in a channel as a group of values from multiple time

intervals (frame based). Frame-based processing is available only with discrete input
signals.

UI Use

Open the Configuration Properties. On the Main tab, set Input processing.

5 Simulink Classes

5-1048

LayoutDimensions — Number of display rows and columns
[1 1] (default) | [numberOfRows numberOfColumns]

Number of display rows and columns, specified with as a two-element vector. The
maximum layout dimension is four rows by four columns.

• If the number of displays is equal to the number of ports, signals from each port
appear on separate displays.

• If the number of displays is less than the number of ports, signals from additional
ports appear on the last y-axis.

UI Use

Open the Configuration Properties. On the Main tab, select the Layout button.

MaximizeAxes — Maximize size of signal plots
'Auto' (default) | 'On' | 'Off'

Specify whether or not to maximize the size of signal plots:

• 'Auto' — If Title and YLabel are not specified, maximize all plots.
• 'On' — Maximize all plots. Values in Title and YLabel are hidden.
• 'Off' — Do not maximize plots.

Each of the plots expands to fit the full display. Maximizing the size of signal plots
removes the background area around the plots.

UI Use

Open the Configuration Properties. On the Main tab, set Maximize axes.

MinimizeControls — Hide menu and toolbar
false (default) | true

Set this property to true to hide the menu and toolbar.

If you dock the scope, this property is inactive.

OpenAtSimulationStart — Open scope when starting simulation
true (default for Time Scope) | false (default for Scope)

Set this property to true to open the scope when the simulation starts.

 TimeScopeConfiguration

5-1049

UI Use

Select File > Open at Start of Simulation

PlotAsMagnitudePhase — Magnitude and phase plots
false (default) | true

Specify whether or not to display the magnitude and phase plots:

• false — Display signal plot.

If the signal is complex, plot the real and imaginary parts on the same y-axis (display).
• true — Display magnitude and phase plots.

If the signal is real, plot the absolute value of the signal for the magnitude. The phase
is 0 degrees for positive values and 180 degrees for negative values.

Dependency

Set the ActiveDisplay property before setting this property.

UI Use

Open the Configuration Properties. On the Display tab, set Plot signals as
magnitude and phase.

Position — Size and location of the scope
[left bottom width height]

Size and location of scope window, specified as a four-element vector consisting of the
left, bottom, width, and height positions, in pixels.

By default, a scope window appears in the center of your screen with a width of 560
pixels and height of 420 pixels.

ShowGrid — Vertical and horizontal grid lines
true (default) | false

Set this property to true to display vertical and horizontal grid lines.

Dependency

Set the ActiveDisplay property before setting this property.

5 Simulink Classes

5-1050

UI Use

Open the Configuration Properties. On the Display tab, set Show grid.

SampleTime — Time interval
'-1' (default) | character vector

Time interval between Scope block updates during a simulation, specified as a character
vector. This property does not apply to floating scopes and scope viewers.
UI Use

Open the Configuration Properties. On the Main tab, set Sample Time.

ShowLegend — Signal legend
false (default) | true

Set this property to true to display the legend.

Names listed in the legend are the signal names from the model. For signals with multiple
channels, a channel index is appended after the signal name. See the Scope block
reference for an example.
Dependency

Set the ActiveDisplay property before setting this property.
UI Use

Open the Configuration Properties. On the Display tab, set Show legend.

ShowTimeAxisLabel — Display or hide x-axis labels
true (default for Time Scope block) | false (default for Scope block)

Set this property to true to display the x-axis labels.
Dependency

Set the ActiveDisplay property before setting this property.

If this property is set to true, also set TimeAxisLabels. If TimeAxisLabels is set to
'None', this property is inactive.
UI Use

Open the Configuration Properties. On the Time tab, set Show time-axis label.

 TimeScopeConfiguration

5-1051

TimeAxisLabels — How x-axis labels display
'All' (default for Time Scope block) | 'Bottom' (default for Scope block) | 'None'

How x-axis labels display, specified as one of these values:

• 'All' — Display x-axis labels on all displays.
• 'Bottom' — Display x-axis labels only on the bottom display.
• 'None' — Do not display labels and deactivate ShowTimeAxisLabel property.

Dependency

Set the ActiveDisplay property before specifying this property.

Set ShowTimeAxisLabel to true and set Maximize axes to 'Off'.

UI Use

Open the Configuration Properties. On the Time tab, set Time-axis labels.

TimeDisplayOffset — x-axis range offset
'0' (default) | character vector

x-axis range offset number, specified as a character vector. For input signals with multiple
channels, enter a scalar or vector of offsets.

• Scalar — Offset all channels of an input signal by the same value.
• Vector — Independently offset the channels.

UI Use

Open the Configuration Properties. On the Time tab, set Time display offset.

TimeSpan — Length of x-axis range to display
'0' (default) | character vector | 'Auto'

Length of x-axis range to display, specified as one of these values:

• Positive real number — Any value less than the total simulation time specified as a
character vector.

• 'Auto' — Difference between the simulation start and stop times.

5 Simulink Classes

5-1052

The block calculates the beginning and end times of the x-axis range using the
TimeDisplayOffset and TimeSpan properties. For example, if you set TimeDisplay to
10 and the TimeSpan to 20, the scope sets the x-axis range from 10 to 30.
UI Use

Open the Configuration Properties. On the Time tab, set Time span.

TimeSpanOverrunAction — How to display data
'Wrap' (default) | 'Scroll'

How to display data beyond the visible x-axis range, specified as one of these values:

• 'Wrap' — Draw a full screen of data from left to right, clear the screen, and then
restart drawing of data.

• 'Scroll' — Move data to the left as new data is drawn on the right. This mode is
graphically intensive and can affect run-time performance.

You can see the effects of this option only when plotting is slow with large models or small
step sizes.
UI Use

Open the Configuration Properties. On the Time tab, set Time span overrun action.

TimeUnits — Units to display on the x-axis
'Metric' (default for Time Scope block) | 'None' (default for Scope block) | 'Seconds'

Units to display on the x-axis, specified as one of these values:

• 'Metric' — Display time units based on the length of the TimeSpan property.
• 'None' — Display Time on the x-axis.
• 'Seconds' — Display Time (seconds) on the x-axis.

UI Use

Open the Configuration Properties. On the Time tab, set Time units.

Title — Title for display
'%<SignalLabel>' (default) | character vector

Title for a display, specified as a character vector. The default value %<SignalLabel>
uses the input signal name for the title.

 TimeScopeConfiguration

5-1053

Dependency

Set the ActiveDisplay property before setting this property.

UI Use

Open the Configuration Properties. On the Display tab, set Title.

Visible — Visibility of scope window
true (default) | false

Set this property to true to make the scope window visible.

YLabel — Y-axis label
'' (default) | character vector

y-axis label for active display, specified as a character vector.

Dependency

Set the ActiveDisplay property before setting this property.

If PlotAsMagnitudePhase is true, the value of YLabel is hidden and plots are labeled
Magnitude and Phase.

UI Use

Open the Configuration Properties. On the Display tab, set Y-label.

YLimits — Minimum and maximum values of y-axis
[-10 10] (default) | [ymin ymax]

Minimum and maximum values of y-axis, specified as a two-element numeric vector.

Dependency

Set the ActiveDisplay property before setting this property.

When PlotAsMagnitudePhase is true, this property specifies the y-axis limits for the
magnitude plot. The y-axis limits of the phase plot are always [-180 180].

UI Use

Open the Configuration Properties. On the Display tab, set Y-limits (Minimum) and
Y-limits (Maximum).

5 Simulink Classes

5-1054

Examples

Create Scope Configuration Object
This example creates a scope configuration object using the 'vdp' model which models
the van der Pol equation.

open_system('vdp')
myScopeConfiguration = get_param('vdp/Scope','ScopeConfiguration');
myScopeConfiguration.NumInputPorts = '2';

See Also
Floating Scope | Scope | Time Scope

Topics
“Control Scopes Programmatically”

Introduced in R2013a

 TimeScopeConfiguration

5-1055

Model and Block Parameters

• “Model Parameters” on page 6-2
• “Common Block Properties” on page 6-111
• “Block-Specific Parameters” on page 6-130
• “Mask Parameters” on page 6-280

6

Model Parameters
In this section...
“About Model Parameters” on page 6-2
“Examples of Setting Model Parameters” on page 6-109

About Model Parameters
You can query and/or modify the properties (parameters) of a Simulink model from the
command line. Parameters that describe a model are model parameters, and parameters
that describe a Simulink block are block parameters. Block parameters that are common
to Simulink blocks are called common block parameters. There are also block-specific
parameters. Masks also have parameters, that is, parameters that describe a masked
block.

The model and block properties can also include callbacks, which are commands that
execute when certain model or block events occur. These events include opening a model,
simulating a model, copying a block, opening a block, and so on.

This table lists, in alphabetical order, parameters that describe a model. You can set these
parameters using the set_param command. The Description column indicates where
you can set the value on a dialog box.

For examples, see “Examples of Setting Model Parameters” on page 6-109. The Values
column shows the type of value required, the possible values (separated with a vertical
line), and the default value enclosed in braces.

The table also includes model callback parameters (see “Callbacks for Customized Model
Behavior”). Do not use model parameters in a PreLoadFcn callback. Instead, use them in
a PostLoadFcn callback.

6 Model and Block Parameters

6-2

Model Parameters in Alphabetical Order

Parameter Description Values
AbsTol Specify the largest acceptable

solver error, as the value of the
measured state approaches
zero.

Set by Absolute tolerance on
the Solver pane of the
Configuration Parameters
dialog box.

{'auto'}

AccelVerboseBuild Controls the verbosity level
during code generation for
Simulink Accelerator mode,
model reference Accelerator
mode, and Rapid Accelerator
mode.

Set by Verbose accelerator
builds on the Configuration
Parameters dialog box.

{'off'} | 'on'

AlgebraicLoopMsg Specifies diagnostic action to
take when there is an
algebraic loop.

Set by Algebraic loop on the
Solver section of the
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

 Model Parameters

6-3

Parameter Description Values
ArrayBoundsChecking Select the diagnostic action to

take when blocks write data to
locations outside the memory
allocated to them.

Set by Array bounds
exceeded on the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ArtificialAlgebraic‐
LoopMsg

Specifies diagnostic action to
take if algebraic loop
minimization cannot be
performed for a subsystem
because an input port of that
subsystem has direct
feedthrough.

Set by Minimize algebraic
loop on the Solver section of
the Diagnostics pane in the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

AssertControl Enable model verification
blocks in the current model
either globally or locally.

Set by Model Verification
block enabling on the
Configuration Parameters
dialog box.

{'UseLocalSettings'} |
'EnableAll' | 'DisableAll'

6 Model and Block Parameters

6-4

Parameter Description Values
AutoInsertRateTranBlk Specify whether Simulink

software inserts hidden Rate
Transition blocks between
blocks that have different
sample rates.

Set by Automatically handle
rate transition for data
transfer on the Solver pane
of the Configuration
Parameters dialog box.

'on' | {'off'}

BlockDescription‐
StringDataTip

Specifies whether to display
the user description for a
block as a data tip.

In the Simulink Editor, set by
Description on the Display >
Blocks > Block Tool Tip
Options menu.

'on' | {'off'}

BlockNameDataTip Specifies whether to display
the block name as a data tip.
In the Simulink Editor, set by
Block Name on the Display >
Blocks > Block Tool Tip
Options menu.

'on' | {'off'}

BlockParametersDataTip Specifies whether to display a
block parameter in a data tip.

In the Simulink Editor, set by
Parameter Names & Values
on the Display > Blocks >
Block Tool Tip Options
menu.

'on' | {'off'}

 Model Parameters

6-5

Parameter Description Values
BlockPriority‐
ViolationMsg

Select the diagnostic action to
take if Simulink software
detects a block priority
specification error.

Set by Block priority
violation on the Solver
section of the Diagnostics
pane of the Configuration
Parameters dialog box.

{'warning'} | 'error'

BlockReduction Enables block reduction
optimization.

Set by Block reduction on
the Configuration Parameters
dialog box.

{'on'} | 'off'

BlockReductionOpt See BlockReduction
parameter for more
information.

BooleanDataType Enable Boolean mode.

Set by Implement logic
signals as Boolean data (vs.
double) on the Configuration
Parameters dialog box.

{'on'} | 'off'

BrowserLookUnderMasks Show masked subsystems in
the Model Browser.

In the Simulink Editor, set by
Include Systems with Mask
Parameters on the View >
Model Browser menu.

'on' | {'off'}

6 Model and Block Parameters

6-6

Parameter Description Values
BrowserShowLibraryLinks Show library links in the

Model Browser.

In the Simulink Editor, set by
Include Library Links on the
View > Model Browser
menu.

'on' | {'off'}

BufferReusableBoundary Insert buffers at reusable
subsystem boundaries if
needed.

'on' | {'off'}

BufferReuse Enable reuse of block I/O
buffers.

Set by “Reuse local block
outputs” (Simulink Coder)
on the Optimization pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

BusNameAdapt Repair broken selections in the
Bus Selector and Bus
Assignment block parameters
dialog boxes that are due to
upstream bus hierarchy
changes.

Set by “Repair bus
selections” on the
Diagnostics > Connectivity
pane of the Configuration
Parameters dialog box.

{'WarnAndRepair'} |
'ErrorWithoutRepair'

 Model Parameters

6-7

Parameter Description Values
BusObjectLabelMismatch Select the diagnostic action to

take if the name of a bus
element does not match the
name specified by the
corresponding bus object.

Set by Element name
mismatch on the Diagnostics
> Connectivity pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

CheckExecutionContext‐
RuntimeOutputMsg

Specify whether to display a
warning if Simulink software
detects potential output
differences from previous
releases.

Set by Check runtime
output of execution context
on the Configuration
Parameters dialog box.

'on' | {'off'}

CheckForMatrix‐
Singularity

See
CheckMatrixSingularityM
sg parameter for more
information.

CheckMatrix‐
SingularityMsg

Select the diagnostic action to
take if the Product block
detects a singular matrix while
inverting one of its inputs in
matrix multiplication mode.

Set by Division by singular
matrix on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

6 Model and Block Parameters

6-8

Parameter Description Values
CheckModelReference‐
TargetMessage

Select the diagnostic action to
take if Simulink software
detects a target that needs to
be rebuilt.

Set by “Never rebuild
diagnostic” on the Model
Referencing pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

CheckSSInitialOutputMsg Enable checking for undefined
initial subsystem output.

Set by Check undefined
subsystem initial output on
the Configuration Parameters
dialog box.

{'on'} | 'off'

CloseFcn Set the close callback function,
which can be a command or a
variable.

Set by Model close function
on the Callbacks pane of the
Model Properties dialog box.

See “Create Model Callbacks”
for more information.

{''}

CompiledBusType Return information about
whether the signal connected
to a port is not a bus, or
whether it is a virtual or
nonvirtual bus.

(Read-only) Get with the
get_param command. Specify
a port or line handle. See
“Display Information About
Buses”.

Return values are'NOT_BUS',
VIRTUAL_BUS, and
NON_VIRTUAL_BUS

 Model Parameters

6-9

Parameter Description Values
CompiledModelBlockNormal
ModeVisibility

For a top model that is being
simulated or that is in a
compiled state, return
information about which
Model blocks have normal
mode visibility enabled.

Return values indicate which
Model blocks have normal mode
visibility enabled.

ConditionallyExecute‐
Inputs

Enable conditional input
branch execution optimization.

Set by Conditional input
branch execution on the
Configuration Parameters
dialog box.

{'on'} | 'off'

ConsecutiveZCsStepRelTol Relative tolerance associated
with the time difference
between zero-crossing events.

Set by Time tolerance on the
Solver pane of the
Configuration Parameters
dialog box.

{'10*128*eps'}

ConsistencyChecking Select the diagnostic action to
take if S-functions have
continuous sample times, but
do not produce consistent
results when executed multiple
times.

Set by Solver data
inconsistency on the Solver
section of the Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

6 Model and Block Parameters

6-10

Parameter Description Values
ContinueFcn Continue simulation callback.

Set by Simulation continue
function on the Callbacks
pane of the Model Properties
dialog box.

{''}

CovCompData If CovHtmlReporting is set
to on and
CovCumulativeReport is set
to on, this parameter specifies
cvdata objects containing
additional model coverage
data to include in the model
coverage report.

Set by Additional data to
include in report (cvdata
objects) on the Reporting
pane of the Configuration
Parameters dialog box.

{''}

 Model Parameters

6-11

Parameter Description Values
CovCumulativeReport If CovHtmlReporting is set

to on, this parameter allows
the CovCumulativeReport
and CovCompData parameters
to specify the number of
coverage results displayed in
the model coverage report.

If set to on, the Simulink
Coverage™ software displays
the coverage results from
successive simulations in the
report.

If set to off, the software
displays the coverage results
for the last simulation in the
report.

Set by the Cumulative runs
(on) / Last run (off) options on
the Reporting pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

CovDataFileName If CovEnable is set to on,
specifies the name of the file to
which Simulink Coverage
saves the coverage data
results.

{''}

CovCumulativeVarName If CovSaveCumulativeTo‐
WorkspaceVar is set to on,
the Simulink Coverage
software saves the results of
successive simulations in the
workspace variable specified
by this property.

{'covCumulativeData'}

6 Model and Block Parameters

6-12

Parameter Description Values
CovEnable Enables coverage analysis for

Simulink Coverage. Set by
Enable coverage analysis on
the Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

CovEnableCumulative Accumulates
model coverage results for
Simulink Coverage from
successive simulations. Set
this and
CovSaveCumulativeToWork
spaceVar to on to collect
model coverage results for
multiple simulations in one
cvdata object.

'on' | {'off'}

CovExternalEMLEnable Enables coverage for any
external MATLAB functions
that MATLAB functions for
code generation call in your
model. The functions can be
defined in a MATLAB Function
block or in a Stateflow chart.
Enable this feature by
checking MATLAB Files on
the Coverage pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

CovForceBlockReductionOf
f

If
CovForceBlockReductionO
ff is set to on, the Simulink
Coverage software ignores the
value of the Simulink Block
reduction parameter. The
software provides coverage
data for every block in the
model that collects coverage.

{'on'} | 'off'

 Model Parameters

6-13

Parameter Description Values
CovHighlightResults Enable model coloring for

coverage results. Enabled by
selecting Display coverage
results using model
coloring on the Coverage >
Results pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

6 Model and Block Parameters

6-14

Parameter Description Values
CovHTMLOptions If CovHtmlReporting is set

to on, use this parameter to
select from a set of display
options for the resulting model
coverage report.

Select these options in the
Results Explorer settings
after you record coverage for a
model.

Character vector of appended
character sets separated by a
space. HTML options are enabled
or disabled through a value of 1
or 0, respectively, in the following
character sets (default values
shown):

• '-sRT=1' — Show report
• '-sVT=0' — Web view mode
• '-aTS=1' — Include each test

in the model summary
• '-bRG=1' — Produce bar

graphs in the model summary
• '-bTC=0' — Use two color

bar graphs (red, blue)
• '-hTR=0' — Display hit/count

ratio in the model summary
• '-xEM=0' — Exclude

execution metric details from
report

• '-nFC=0' — Exclude fully
covered model objects from
report

• '-nFD=1' — Exclude fully
covered model object details
from report

• '-scm=1' — Include
cyclomatic complexity
numbers in summary

• '-bcm=1' — Include
cyclomatic complexity
numbers in block details

• '-xEv=0' — Filter Stateflow
events from report

 Model Parameters

6-15

Parameter Description Values
• '-xEM=0' — Filter Execution

metric from report
CovIncludeTopModel Option to include the top-level

model in the coverage
analysis.

{'on'} | 'off'

CovHtmlReporting Set to on to tell the Simulink
Coverage software to create
an HTML report containing
the coverage data at the end of
simulation.

Set by Generate report
automatically after analysis
on the Coverage > Results
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

CovLogicBlockShortCircui
t

Enables the option to treat
Simulink logic blocks as short-
circuited for coverage analysis.
Enabled by selecting Treat
Simulink logic blocks as
short-circuited on the
Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

6 Model and Block Parameters

6-16

Parameter Description Values
CovMcdcMode Determines the definition of

Modified Condition Decision
Coverage (MCDC) to use
during coverage analysis.

To record model coverage
using the masking MCDC
definition, setCovMcdcMode to
'Masking'. To record model
coverage using the unique-
cause MCDC definition,
setCovMcdcMode to
'UniqueCause'.

{'Masking'} |
'UniqueCause'

 Model Parameters

6-17

Parameter Description Values
CovMetricSettings Selects coverage metrics for a

coverage report.

Coverage metrics are enabled
by selecting the check boxes
for individual coverages in the
Coverage metrics section of
the Coverage pane of the
Configuration Parameters
dialog box.

Enable options 's' and 'w' by
selecting Treat Simulink
Logic blocks as short-
circuited and Warn when
unsupported blocks exist in
model, respectively, on the
Coverage pane of the
Configuration Parameters
dialog box.

Disable option 'e' by
selecting Display coverage
results using model
coloring in the Results
Explorer settings after you
record coverage for a model.

Note The metrics and options
set by this parameter can also
be set by the following
parameters:

• CovHighlightResults
• CovLogicBlockShortCircuit
• CovMetricStructuralLevel
• CovMetricLookupTable

{'dwe'}

Each order-independent value
enables a coverage metric or
option as follows:

• 'd' — Enable decision
coverage

• 'c' — Enable condition
coverage and decision
coverage

• 'm' — Enable MCDC
coverage, condition coverage,
and decision coverage

• 't' — Enable lookup table
coverage

• 'r' — Enable signal range
coverage

• 'z' — Enable signal size
coverage

• 'o' — Enable coverage for
Simulink Design Verifier
blocks

• 'i' — Enable saturation on
integer overflow coverage

• 'b' — Enable relational
boundary coverage

• 's' — Treat Simulink logic
blocks as short-circuited

• 'w' — Warn when
unsupported blocks exist in
model

• 'e' — Eliminate model
coloring for coverage results

6 Model and Block Parameters

6-18

Parameter Description Values
• CovMetricSignalRange
• CovMetricSignalSize
• CovMetricObjectiveConstra

int
• CovMetricSaturateOnInteg
erOverflow

• CovMetricRelationalBound
ary

• CovUnsupportedBlockWarn
ing

CovMetricLookupTable Enable lookup table coverage.
Enabled by selecting Lookup
Table in the Coverage
metrics section of the
Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

CovMetricObjectiveConstr
aint

Enable Simulink Design
Verifier objectives and
constraints coverage. Enabled
by selecting Objectives and
Constraints in the Coverage
metrics section of the
Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

CovMetricRelationalBound
ary

Enable relational boundary
coverage. Enabled by selecting
Relational Boundary in the
Coverage metrics section of
the Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

 Model Parameters

6-19

Parameter Description Values
CovMetricSaturateOnInteg
erOverflow

Enable saturate on integer
overflow coverage. Enabled by
selecting Saturate on
Integer Overflow in the
Coverage metrics section of
the Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

CovMetricSignalRange Enable signal range coverage.
Enabled by selecting Signal
Range in the Coverage
metrics section of the
Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

CovMetricSignalSize Enable signal size coverage.
Enabled by selecting Signal
Size in the Coverage metrics
section of the Coverage pane
of the Configuration
Parameters dialog box.

'on' | {'off'}

CovMetricStructuralLevel Define the level of structural
coverage. Set by Structural
coverage level on the
Coverage pane of the
Configuration Parameters
dialog box.

'BlockExecution' |
{'Decision'} |
'ConditionDecision' |
'MCDC'

6 Model and Block Parameters

6-20

Parameter Description Values
CovModelRefEnable If CovModelRefEnable is set

to on or all, the Simulink
Coverage software generates
coverage data for all
referenced models. If
CovModelRefEnable is set to
filtered, coverage data is
collected for all referenced
models except those specified
by the parameter
CovModelRefExcluded.

Set by Coverage for
referenced models on the
Coverage pane of the
Configuration Parameters
dialog box.

'on' | {'off'} | 'all' |
'filtered'

CovModelRefExcluded If CovModelRefEnable is set
to filtered, this parameter
stores a comma-separated list
of referenced models for which
coverage is disabled.

Set by selecting Coverage for
referenced models on the
Coverage pane of the
Configuration Parameters
dialog box and then clicking
Select Models.

{''}

 Model Parameters

6-21

Parameter Description Values
CovNameIncrementing If

CovSaveSingleToWorkspac
eVar is set to on, setting
CovNameIncrementing to on
causes the Simulink Coverage
software to append numerals
to the workspace variable
names for results so that
earlier results are not
overwritten (for example,
covdata1, covdata2, etc.)

Set by Increment variable
name with each simulation
below the selected Save last
run in workspace variable
check box on the Coverage >
Results pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

CovOutputDir If CovEnable is set to on,
specifies the directory in which
Simulink Coverage saves the
coverage output files.

{''}

CovPath Model path of the subsystem
for which the Simulink
Coverage software gathers
and reports coverage data.

Set by selecting Subsystem
on the Coverage pane of the
Configuration Parameters
dialog box and then clicking
Select Subsystem.

{'/'}

6 Model and Block Parameters

6-22

Parameter Description Values
CovReportOnPause Specifies that when you pause

during simulation, the model
coverage report appears in
updated form, with coverage
results up to the current pause
or stop time.

{'on'} | 'off'

CovSaveCumulativeTo‐
WorkspaceVar

If set to on, the Simulink
Coverage software
accumulates and saves the
results of successive
simulations in the workspace
variable specified by
CovCumulativeVarName.

'on' | {'off'}

CovSaveName If
CovSaveSingleToWorkspac
eVar is set to on, the Simulink
Coverage software saves the
results of the last simulation
run in the workspace variable
specified by this property.

Set by cvdata object name
below the selected Save last
run in workspace variable
check box on the Coverage >
Results pane of the
Configuration Parameters
dialog box.

{'covdata'}

 Model Parameters

6-23

Parameter Description Values
CovSaveSingleTo‐
WorkspaceVar

If set to on, the Simulink
Coverage software saves the
results of the last simulation
run in the workspace variable
specified by CovSaveName.

Set by Save last run in
workspace variable on the
Coverage > Results pane of
the Configuration Parameters
dialog box.

'on' | {'off'}

CovScope Sets the scope of analysis for
coverage recording. Set by the
Scope of analysis section of
the Coverage pane in the
Configuration Parameters
dialog box.

{'EntireSystem'} |
'ReferencedModels' |
'Subsystem'

CovSFcnEnable Enables coverage for C/C++
S-Function blocks in your
model. Enable this feature by
checking C/C++ S-Functions
on the Coverage pane of the
Configuration Parameters
dialog box. For more
information, see “Coverage for
C and C++ S-Functions”
(Simulink Coverage).

'on' | {'off'}

CovShowResultsExplorer Option to shows the results
explorer after simulation.
Enabled by selecting Show
Results Explorer on the
Coverage > Results pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

6 Model and Block Parameters

6-24

Parameter Description Values
CovUnsupportedBlockWarni
ng

Warn when unsupported
blocks exist in model. Enabled
by selecting Warn when
unsupported blocks exist in
model on the Coverage pane
of the Configuration
Parameters dialog box.

'on' | {'off'}

Created Date and time model was
created.

Set by Created on on the
History pane of the Model
Properties dialog box.

See “Model Information and
History” for more information.

character vector

Creator Name of model creator.

Set by Created by on the
History pane of the Model
Properties dialog box.

See “Model Information and
History” for more information.

character vector

CurrentBlock For internal use.
CurrentOutputPort For internal use.
CurrentSimState Save the SimState snapshot of

the simulation if the simulation
is in a paused state.

Simulink.SimState.ModelSim
State object | {[]}

 Model Parameters

6-25

Parameter Description Values
DataDictionary Simulink data dictionary to

which this model is linked.

Set by Data Dictionary and
Base Workspace on the Data
pane of the Model Properties
dialog box.

For basic information about
data dictionaries, see “What Is
a Data Dictionary?”. To use
this parameter
programmatically, see “Store
Data in Dictionary
Programmatically”.

{''}

DataLoggingOverride A
Simulink.SimulationData
.ModelLoggingInfo object
that specifies the signal
logging override settings for a
model.

See “Override Signal Logging
Settings”.

Simulink.SimulationData.Mo
delLoggingInfo —
{'OverrideSignals'} |
'LogAllAsSpecifiedInModel'

DatasetSignalFormat Format for logged Dataset
leaf elements.

For details, see “Dataset signal
format”.

'timetable' |
{'timeseries'}

DataTransfer A Simulink.GlobalDataTransfer
object that configures data
transfers for models
configured for concurrent
execution.

'on' | {'off'}

6 Model and Block Parameters

6-26

Parameter Description Values
DataTypeOverride Specifies data type used to

override fixed-point data types.

Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double'
| 'Single' | 'Off'

Decimation Specify that Simulink software
output only every N points,
where N is the specified
decimation factor.

Set by “Decimation” on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

{'1'}

DefaultParameterBehavior Enable inlining of block
parameters in generated code.

Set by Default parameter
behavior, see “Default
parameter behavior” (Simulink
Coder).

'Inlined' | {'Tunable'}

DefaultAnnotationFontNam
e

DefaultBlockFontName

DefaultLineFontName

Name of font to use for new
annotation text, block text, or
signal line labels and on
existing annotations, block
names, or signal lines whose
FontName property is set to
'auto'.

Set with Diagram > Format
> Font Styles for Model
dialog box.

character vector

 Model Parameters

6-27

Parameter Description Values
DefaultAnnotationFontSiz
e

DefaultBlockFontSize

DefaultLineFontSize

Size of font to use for new
annotation text, block text, or
signal line labels and on
existing annotations, blocks, or
signal lines whose FontSize
property is set to -1.

Set with Diagram > Format
> Font Styles for Model
dialog box.

positive integer

DefaultAnnotationFontAng
le

DefaultBlockFontAngle

DefaultLineFontAngle

Angle of font for new
annotation text, block text, or
signal line labels and on
existing annotations, blocks, or
signal lines whose FontAngle
property is set to 'auto'.

Set with Diagram > Format
> Font Styles for Model
dialog box.

{'normal'} | 'italic'

DefaultAnnotationFontWei
ght

DefaultBlockFontWeight

DefaultLineFontWeight

Weight of font for new
annotation text, block text, or
signal line labels and on
existing annotations, blocks, or
signal lines whose
FontWeight property is set to
'auto'.

Set with Diagram > Format
> Font Styles for Model
dialog box.

{'normal'} | 'bold'

6 Model and Block Parameters

6-28

Parameter Description Values
DefaultUnderspecifiedDat
aType

Specify data type to use if
Simulink cannot infer the type
of a signal during data type
propagation.

Set by “Default for
underspecified data type”
on the Math and Data Types
pane of the Configuration
Parameters dialog box.

{'double'} | 'single'

DeleteChildFcn Delete child callback function.

Created on the Callbacks
pane of the Block Properties
dialog box.

See “Specify Block Callbacks”
for more information.

{''}

Description Description of this model.

Set by Model description on
the Description pane of the
Model Properties dialog box.

{''}

Dirty If the parameter is on, the
model has unsaved changes.

'on' | {'off'}

DiscreteInherit‐
ContinuousMsg

For internal use.

DisplayBdSearchResults For internal use.
DisplayBlockIO For internal use.
DisplayCallgraph‐
Dominators

For internal use

DisplayCompileStats For internal use.
DisplayCondInputTree For internal use.
DisplayCondStIdTree For internal use.

 Model Parameters

6-29

Parameter Description Values
DisplayErrorDirections For internal use.
DisplayInvisibleSources For internal use.
DisplaySortedLists For internal use.
DisplayVectorAnd‐
FunctionCounts

For internal use.

DisplayVect‐
PropagationResults

For internal use.

ExecutionContextIcon Show execution context bars
on conditional subsystems that
do not propagate execution
context across the subsystem
boundaries.

In the Simulink Editor, set by
Execution Context Indicator
on the Display > Signals &
Ports menu.

'on' | {'off'}

ExplicitPartitioning Specifies whether or not to
manually map tasks (explicit
mapping) or use the rate-
based tasks.

'on' | {'off'}

ExpressionFolding Enables expression folding.

Set by “Eliminate
superfluous local variables
(Expression folding)”
(Simulink Coder) on the
Configuration Parameters
dialog box.

{'on'} | 'off'

6 Model and Block Parameters

6-30

Parameter Description Values
ExternalInput Names of MATLAB workspace

variables used to designate
data and times to be loaded
from the workspace.

Set by the Input field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

{'[t, u]'}

ExtMode... Parameters whose names start
with ExtMode apply to
Simulink external mode
simulations.

For more information, see
“Host-Target Communication
with External Mode
Simulation” (Simulink Coder).

ExtrapolationOrder Extrapolation order of the
ode14x implicit fixed-step
solver.

Set by Extrapolation order
on the Solver pane of the
Configuration Parameters
dialog box.

integer — 1 | 2 | 3 | {4}

FastRestart Enable or disable fast restart
mode.

In the Simulink Editor toolbar,
click the Fast restart button
on or off.

{'on'} | 'off'

 Model Parameters

6-31

Parameter Description Values
FcnCallInpInside‐
ContextMsg

Specifies diagnostic action to
take when Simulink software
must compute any function-
call subsystem inputs directly
or indirectly during execution
of a call to a function-call
subsystem.

Set by Context-dependent
inputs on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'Error'} | 'Warning'

FileName For internal use.
FinalStateName Names of final states to save to

the workspace after a
simulation ends.

Set by the Final states field
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

{'xFinal'}

FixedStep Fixed-step size.

Set by Fixed-step size
(fundamental sample time)
on the Solver pane of the
Configuration Parameters
dialog box.

{'auto'}

6 Model and Block Parameters

6-32

Parameter Description Values
FixptConstOverflowMsg Specifies diagnostic action to

take when a fixed-point
constant overflow occurs
during simulation.

Set by Detect overflow on the
Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

FixptConstPrecisionLossM
sg

Specifies diagnostic action to
take when a fixed-point
constant precision loss occurs
during simulation.

Set by Detect precision loss
on the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

FixptConstUnderflowMsg Specifies diagnostic action to
take when a fixed-point
constant underflow occurs
during simulation.

Set by Detect underflow on
the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

FixPtInfo For internal use.
FollowLinksWhen‐
OpeningFromGotoBlocks

Specifies whether to search for
Goto tags in libraries
referenced by the model when
opening the From block dialog
box.

'on' | {'off'}

ForceArrayBoundsChecking For internal use.

 Model Parameters

6-33

Parameter Description Values
ForceConsistencyChecking For internal use.
ForceModelCoverage For internal use.
ForwardingTable Specifies the forwarding table

for this library.

See “Create Forwarding Table”
for more information.

{{'old_path_1',
'new_path_1'} ...
{'old_path_n',
'new_path_n'}}

ForwardingTableString For internal use.
GeneratePreprocessorCond
itionals

When generating code for an
ERT target, this parameter
determines whether variant
choices are enclosed within C
preprocessor conditional
statements (#if).

When you select this option,
Simulink analyzes all variant
choices during an update
diagram or simulation. This
analysis provides early
validation of the code
generation readiness of all
variant choices.

{'off'} | 'on'

GridSpacing Has no effect in Simulink
Editor. This parameter will be
removed in a future release.

integer — {20}

Handle Handle of the block diagram
for this model.

double

HardwareBoard Select the type of hardware on
which to run your model.

Set by “Hardware board” on
the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'none'}

6 Model and Block Parameters

6-34

Parameter Description Values
HideAutomaticNames Hides block names given

automatically by the Simulink
Editor. See “Hide or Display
Block Names”.

{'on'} | 'off'

HiliteAncestors For internal use.
IgnoreBidirectionalLines For internal use.
IgnoredZcDiagnostic Control diagnostic messages

related to zero-crossings that
are being ignored.

'none' | {'warning'} |
'error'

InheritedTsInSrcMsg Message behavior when the
sample time is inherited.

Set by Source block
specifies -1 sample time on
the Sample Time
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

InitFcn Function that is called when
this model is first compiled for
simulation.

Set by Model initialization
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

{''}

InitialState Initial state name or values.

Set by the Initial state field
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

variable or vector —
{'xInitial'}

 Model Parameters

6-35

Parameter Description Values
InitialStep Initial step size.

Set by Initial step size on the
Solver pane of the
Configuration Parameters
dialog box.

{'auto'}

InitialStep Initial step size.

Set by Initial step size on the
Solver pane of the
Configuration Parameters
dialog box.

{'auto'}

InitialStep Initial step size.

Set by Initial step size on the
Solver pane of the
Configuration Parameters
dialog box.

{'auto'}

6 Model and Block Parameters

6-36

Parameter Description Values
InitInArrayFormatMsg Message behavior when the

initial state is an array. You set
with the initial state with the
Initial state configuration
parameter.

Avoid using an array for the
initial state. If the order of the
elements in the array does not
match the order in which
blocks initialize, the simulation
can produce unexpected
results. To promote
deterministic simulation
results, use the default setting
or set the diagnostic to error.

Alternatively, you can set the
message behavior using the
“InitInArrayFormatMsg” on
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

InsertRTBMode Control whether the Rate
Transition block parameter
Ensure deterministic data
transfer (maximum delay) is
set for auto-inserted Rate
Transition blocks.

Set by Deterministic data
transfer on the Solver pane
of the Configuration
Parameters dialog box.

'Always' | {'Whenever
possible'} | 'Never
(minimum delay)'

 Model Parameters

6-37

Parameter Description Values
InspectSignalLogs Enable Simulink software to

display logged signals in the
Simulation Data Inspector tool
at the end of a simulation or
whenever you pause the
simulation.

Set by “Record logged
workspace data in
Simulation Data Inspector”
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

InstrumentedSignals Returns a
Simulink.HMI.Instrument
edSignals object with the
properties of model name and
the number of signals that are
marked for streaming. From
this object, you can control
signal streaming using the
block path and output port
index.

object —
Simulink.HMI.InstrumentedS
ignals

Int32ToFloatConvMsg Specify message behavior
when a 32-bit integer is
converted to a single-precision
float.

Set by 32-bit integer to
single precision float
conversion on the Type
Conversion Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'}

6 Model and Block Parameters

6-38

Parameter Description Values
IntegerOverflowMsg Specify message behavior

when an integer overflow
occurs.

Set by “Wrap on overflow” in
the Signals section on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

IntegerSaturationMsg Specify message behavior
when an integer saturation
occurs.

Set by “Saturate on
overflow” in the Signals
section on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

InvalidFcnCallConnMsg Specify message behavior
when an invalid function-call
connection exists.

Set by Invalid function-call
connection on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

'warning' | {'error'}

Jacobian For internal use.
LastModifiedBy User name of the person who

last modified this model.
character vector

LastModifiedDate Date when the model was last
saved.

character vector

 Model Parameters

6-39

Parameter Description Values
LibraryLinkDisplay Displays the blocks in the

model that are linked or have
disabled or modified links.

In the Simulink Editor, set by
Library Links on the Display
menu.

'none'| {'disabled'}
|'user' | 'all'

Set to none, does not display the
link badge on the block.

Set to disabled, displays the
disabled link badge on the block.

Set to user, displays only links to
the user libraries.

Set to all, displays all links.
LibraryType For internal use.
LifeSpan Specify how long (in days) an

application that contains
blocks depending on elapsed
or absolute time should be
able to execute before timer
overflow.

Set by Application lifespan
(days) on the Math and Data
Types pane of the
Configuration Parameters
dialog box.

{'auto'} | any positive,
nonzero scalar value

LimitDataPoints Specify that the number of
data points exported to the
MATLAB workspace be limited
to the number specified.

Set by the Limit data points
configuration parameter

{'on'} | 'off'

LinearizationMsg For internal use.
Lines For internal use.

6 Model and Block Parameters

6-40

Parameter Description Values
LoadExternalInput Load input from workspace.

Set by the Input check box on
the Data Import/Export pane
of the Configuration
Parameters dialog box.

'on' | {'off'}

LoadInitialState Load initial state from
workspace.

Set by the Initial state check
box on the Data Import/
Export pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

Location For internal use.
Lock Lock or unlock a block library.

Setting this parameter to on
prevents a user from
inadvertently changing a
library.

'on' | {'off'}

LockLinksToLibrary Lock or unlock links to a
library. Setting this parameter
to on prevents a user from
inadvertently changing linked
blocks from the Simulink
Editor.

'on' | {'off'}

LoggingFileName Use when you enable
LoggingToFile parameter
for logging to persistent
storage. Specify the
destination MAT-file for data
logging.

{'out.mat'}

For details, see “Log Data to
Persistent Storage”.

 Model Parameters

6-41

Parameter Description Values
LoggingToFile Store logging data that uses

Dataset format to persistent
storage (MAT-file). Using a
Simulink.SimlationData.
DatasetRef object to access
signal logging and states
logging data loads data into
the model workspace
incrementally. Accessing data
for other kinds of logging loads
all of the data at once.

Use this feature when logging
large amounts of data that can
cause memory issues. For
details, see “Log Data to
Persistent Storage”.

'on' | {'off'}

For details, see “Log Data to
Persistent Storage”.

MAModelExclusionFile Specifies the location of the
Model Advisor exclusion file.

Set by the File Name field on
the Model Advisor Exclusion
Editor dialog box.

{' '}

MaskedZcDiagnostic Control diagnostic messages
related to zero-crossings that
are being masked.

'none' | {'warning'} |
'error'

6 Model and Block Parameters

6-42

Parameter Description Values
MaxConsecutiveMinStep Maximum number of minimum

step size violations allowed
during simulation. This option
appears when the solver type
is Variable-step and the
solver is an ode one.

Set by Number of
consecutive min steps on the
Solver pane of the
Configuration Parameters
dialog box.

{'1'}

MaxConsecutiveZCs Maximum number of
consecutive zero crossings
allowed during simulation.
This option appears when the
solver type is Variable-step
and the solver is an ode one.

Set by Number of
consecutive zero crossings
on the Solver pane of the
Configuration Parameters
dialog box.

{'1000'}

 Model Parameters

6-43

Parameter Description Values
MaxConsecutiveZCsMsg Specifies diagnostic action to

take when Simulink software
detects the maximum number
of consecutive zero crossings
allowed. This option appears
when the solver type is
Variable-step and the
solver is an ode one.

Set by Consecutive zero
crossings violation on the
Solver section of the
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

MaxDataPoints Maximum number of output
data points to save.

Set by the Limit data points
to last field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

{'1000'}

MaxMDLFileLineLength Controls the line lengths in the
model file. Use this to avoid
line-wrapping, which can be
important for source control
tools.

Specifies the maximum length
in bytes, which may different
from the number of characters
in Japanese, and is different
from the number of columns
when tabs are present.

integer — -1 (unlimited) or >=
80.

Default is 120.

6 Model and Block Parameters

6-44

Parameter Description Values
MaxNumMinSteps Maximum number of times the

solver uses the minimum step
size.

{'-1'}

MaxOrder Maximum order for ode15s.

Set by Maximum order on
the Solver pane of the
Configuration Parameters
dialog box.

'1' | '2' | '3' | '4' |
{'5'}

MaxStep Maximum step size.

Set by Max step size on the
Solver pane of the
Configuration Parameters
dialog box.

{'auto'}

MdlSubVersion For internal use
MergeDetectMultiDriving‐
BlocksExec

Select the diagnostic action to
take when the software
detects a Merge block with
more than one driving block
executing at the same time
step.

Set by Detect multiple
driving blocks executing at
the same time step on the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

Metadata Names and attributes of
arbitrary data associated with
the model. To extract this
metadata structure without
needing to load the model, use
the method
Simulink.MDLInfo.getMet
adata.

Structure. Fields can be
character vectors, numeric
matrices of type "double", or
more structures.

 Model Parameters

6-45

Parameter Description Values
MinMaxOverflow‐
ArchiveData

For internal use

MinMaxOverflow‐
ArchiveMode

Logging type for fixed-point
logging.

Set by Overwrite or merge
model simulation results in
the Fixed-Point Tool.

{'Overwrite'} | 'Merge'

MinMaxOverflowLogging Setting for fixed-point logging.

Set by Fixed-point
instrumentation mode in the
Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

MinStep Minimum step size for the
solver.

Set by Min step size on the
Solver pane of the
Configuration Parameters
dialog box.

{'auto'}

MinStepSizeMsg Message shown when
minimum step size is violated.

Set by Min step size
violation on the Solver
section of the Diagnostics
pane of the Configuration
Parameters dialog box.

{'warning'} | 'error'

6 Model and Block Parameters

6-46

Parameter Description Values
ModelBlockNormalModeVisi
bility

Use with set_param to set
normal mode visibility on for
the specified Model blocks.

You can set this parameter
with the Model Block Normal
Mode Visibility dialog box. For
details, see “Specify the
Instance Having Normal Mode
Visibility”.

With set_param, use an array of
Simulink.BlockPath objects or
cell array of cell arrays of
character vectors of paths to
blocks or models.

With set_param, an empty array
specifies to use the Simulink
default selection for the instance
to have normal mode visibility
enabled.

ModelBlockNormaModeVisib
lityBlockPath

Return information about
which Model blocks have
normal mode visibility
enabled. Use with a model that
you are editing.

Return values indicate which
Model blocks have normal mode
visibility enabled. See “Simulate
Models with Multiple Referenced
Model Instances”.

ModelBrowserVisibility Show the Model Browser.

In the Simulink Editor, set by
Model Browser on the View
menu.

'on' | {'off'}

ModelBrowserWidth Width of the Model Browser
pane in the model window. To
display the Model Browser
pane, see the
ModelBrowserVisibility
parameter.

integer — {200}

ModelDataFile For internal use. {''}
ModelDependencies List of model dependencies.

Set by Model dependencies
on the Model Referencing
pane of the Configuration
Parameters dialog box.

{''}

 Model Parameters

6-47

Parameter Description Values
ModelReferenceCS‐
MismatchMessage

This parameter is maintained
for compatibility purposes
only. Do not use this
parameter.

You can use the Model Advisor
to identify models referenced
in Accelerator mode for which
Simulink ignores certain
configuration parameters.

1 In the Simulink Editor,
select Analysis > Model
Advisor.

2 Select By Task.
3 Run the Check

diagnostic settings
ignored during
accelerated model
reference simulation
check.

For more information, see
“Diagnostic Configuration
Parameters Ignored in
Accelerator Mode”.

{'none'} | 'warning' |
'error'

Simulink ignores this parameter if
you set it to warning or error.

ModelReferenceData‐
LoggingMessage

Message shown when there is
unsupported data logging.

Set by Unsupported data
logging on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

6 Model and Block Parameters

6-48

Parameter Description Values
ModelReferenceExtra‐
NoncontSigs

Specifies diagnostic action to
take when a discrete signal
appears to pass through a
Model block to the input of a
block with continuous states.

Set by Extraneous discrete
derivative signals on the
Solver section of the
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

ModelReferenceIO‐
MismatchMessage

Message shown when there is
a port and parameter
mismatch.

Set by Port and parameter
mismatch on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

ModelReferenceIOMsg Message shown when there is
an invalid root Inport or
Outport block connection.

Set by Invalid root Inport/
Outport block connection
on the Model Referencing
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

 Model Parameters

6-49

Parameter Description Values
ModelReferenceMin‐
AlgLoopOccurrences

Toggles the minimization of
algebraic loop occurrences.

Set by Minimize algebraic
loop occurrences on the
Model Referencing pane of
the Configuration Parameters
dialog box.

'on' | {'off'}

ModelReferenceNum‐
InstancesAllowed

Total number of model
reference instances allowed
per top model.

Set by Total number of
instances allowed per top
model on the Model
Referencing pane of the
Configuration Parameters
dialog box.

'Zero' | 'Single' |
{'Multi'}

ModelReferencePass‐
RootInputsByReference

Toggles the passing of scalar
root inputs by value.

Set by “Pass fixed-size scalar
root inputs by value for code
generation”on the Model
Referencing pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

ModelReferenceSim‐
TargetVerbose

This parameter is deprecated
and has no effect. Use
AccelVerboseBuild instead.

ModelReferenceSymbol‐
NameMessage

For referenced models,
specifies diagnostic action to
take when the Maximum
identifier length does not
provide enough space to make
global identifiers unique
across models.

'none' | {'warning'} |
'error'

6 Model and Block Parameters

6-50

Parameter Description Values
ModelReferenceTargetType For internal use.
ModelReferenceVersion‐
MismatchMessage

Message shown when there is
a model block version
mismatch.

Set by Model block version
mismatch on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

ModelVersion Version number of model. {'1.1'}
ModelVersionFormat Format of model's version

number.

Set by Model version on the
History pane of the Model
Properties dialog box.

See “Model Information and
History” for more information.

{'1.%<AutoIncrement: 0>'}

ModelWorkspace References this model's model
workspace object.

an instance of the
Simulink.ModelWorkspace
class

ModifiedByFormat Format for the display of last
modifier.

Set by Last saved by on the
History pane of the Model
Properties dialog box.

See “Model Information and
History” for more information.

Can also be set by Last saved
by on the Model history field
on the History pane of the
Model Explorer.

{'%<Auto>'}

 Model Parameters

6-51

Parameter Description Values
ModifiedComment Field for user comments. {''}
ModifiedDateFormat Format used to generate the

value of the
LastModifiedDate
parameter.

Set by Last saved on on the
History pane of the Model
Properties dialog box.

See “Model Information and
History” for more information.

{'%<Auto>'}

ModifiedHistory Area for keeping notes about
the history of the model.

Set by the Model history field
on the History pane of the
Model Properties dialog box.

See “Model Information and
History” for more information.

Can also be set by the Model
history field on the History
pane of the Model Explorer.

{''}

MultiTaskCondExecSysMsg Select the diagnostic action to
take if Simulink software
detects a subsystem that might
cause data corruption or
nondeterministic behavior.

Set by Multitask
conditionally executed
subsystem on the Sample
Time Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

6 Model and Block Parameters

6-52

Parameter Description Values
MultiTaskDSMMsg Specifies diagnostic action to

take when one task reads data
from a Data Store Memory
block to which another task
writes data.

Set by Multitask data store
on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

MultiTaskRateTransMsg Specifies diagnostic action to
take when an invalid rate
transition takes place between
two blocks operating in
multitasking mode.

Set by Multitask rate
transition on the Sample
Time Diagnostics pane of the
Configuration Parameters
dialog box.

'warning' | {'error'}

Name Model name. character vector
NonBusSignalsTreatedAsBu
s

Detect when Simulink
implicitly converts a non-bus
signal to a bus signal to
support connecting the signal
to a block expecting a bus
signal.

“Non-bus signals treated as
bus signals” on the
Diagnostics > Connectivity
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

 Model Parameters

6-53

Parameter Description Values
NumberNewtonIterations Number of Newton's method

iterations performed by the
ode14x implicit fixed-step
solver.

Set by Number Newton's
iterations on the Solver pane
of the Configuration
Parameters dialog box.

integer — {1}

NumStatesForStiffnessChe
cking

Threshold value of number of
continuous states in model for
stiffness calculation. If the
number of continuous states in
the model exceeds the
NumStatesForStiffnessCh
ecking value, auto solver uses
ode15s.

For more information, see
“Use Auto Solver to Select a
Solver”.

{''}

ObjectParameters Names and attributes of model
parameters.

structure

Open For internal use.
OptimizeBlockIOStorage Enables signal storage reuse

optimization.

Set by Signal storage reuse
on the Configuration
Parameters dialog box.

{'on'} | 'off'

6 Model and Block Parameters

6-54

Parameter Description Values
OutputOption Time step output options for

variable-step solvers.

Set by Output options
parameter under
Configuration Parameters >
Data Import/Export >
Additional parameters.

'AdditionalOutputTimes' |
{'RefineOutputTimes'} |
'SpecifiedOutputTimes'

OutputSaveName Workspace variable to store
the model outputs.

Set by the Output field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

{'yout'}

OutputTimes Output times set when Set by
Output options parameter
under Configuration
Parameters > Data Import/
Export > Additional
parameters is set to Produce
additional output.

Set using the Output times
parameter.

{'[]'}

Note If the value of Output
options is Produce
additional output or
Produce specified output
only, set to a value other than
the default value of '[]'.

PaperOrientation Printing paper orientation. 'portrait' | {'landscape'}
PaperPosition When PaperPositionMode is

set to manual, this parameter
determines the position and
size of a diagram on paper and
the size of the diagram
exported as a graphic file in
the units specified by
PaperUnits.

vector — [left, bottom,
width, height]

 Model Parameters

6-55

Parameter Description Values
PaperPositionMode Paper position mode.

• auto

When printing, Simulink
software sizes the diagram
to fit the printed page.
When exporting a diagram
as a graphic image,
Simulink software sizes the
exported image to be the
same size as the diagram's
normal size on screen.

• manual

When printing, Simulink
software positions and sizes
the diagram on the page as
indicated by
PaperPosition. When
exporting a diagram as a
graphic image, Simulink
software sizes the exported
graphic to have the height
and width specified by
PaperPosition.

• tiled

Enables tiled printing.

See “Tiled Printing” for
more information.

{'auto'} | 'manual' |
'tiled'

PaperSize Size of PaperType in
PaperUnits.

vector — [width height] (read
only)

6 Model and Block Parameters

6-56

Parameter Description Values
PaperType Printing paper type. 'usletter' | 'uslegal' |

'a0' | 'a1' | 'a2' | 'a3'
| 'a4' | 'a5' | 'b0' |
'b1' | 'b2' | 'b3' | 'b4'
| 'b5' | 'arch-A' | 'arch-
B' | 'arch-C' | 'arch-D' |
'arch-E' | 'A' | 'B' | 'C'
| 'D' | 'E' | 'tabloid'

PaperUnits Printing paper size units. 'normalized' | {'inches'}
| 'centimeters' | 'points'

 Model Parameters

6-57

Parameter Description Values
ParallelModelReferenceEr
rorOnInvalidPool

Specify if you want the
Simulink software to perform a
consistency check on the
parallel pool before starting a
parallel build.

If you set the parameter to on,
the client and the remote
workers must meet the
following criteria for the
parallel build to initiate:

• The parallel pool is open.
• The pool is spmd

compatible.
• The platform is consistent

between workers and
client.

• The workers have a
Simulink Real-Time license.

• A common compiler exists
across workers and client.

If you set the parameter to
off, the software displays a
warning for the first condition
that fails and then performs a
sequential build.

{'on'} | 'off'

6 Model and Block Parameters

6-58

Parameter Description Values
ParameterArgumentNames List of parameters used as

arguments when this model is
called as a reference.

Set by checking the
Argument column for
variables in the model
workspace of the referenced
model. See “Parameterize
Instances of a Reusable
Referenced Model”.

{''}

ParameterDowncastMsg Specifies diagnostic action to
take when a parameter
downcast occurs during
simulation.

Set by Detect downcast on
the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

ParameterOverflowMsg Specifies diagnostic action to
take when a parameter
overflow occurs during
simulation.

Set by Detect overflow on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | 'warning' |
{'error'}

 Model Parameters

6-59

Parameter Description Values
ParameterPrecision‐
LossMsg

Specifies diagnostic action to
take when parameter precision
loss occurs during simulation.

Set by Detect precision loss
on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ParameterTunabilityLossM
sg

Specifies diagnostic action to
take when a parameter cannot
be tuned because it uses
unsupported functions or
operators.

Set by Detect loss of
tunability on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ParameterUnderflowMsg Specifies diagnostic action to
take when a parameter
underflow occurs during
simulation.

Set by Detect underflow on
the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ParamWorkspaceSource For internal use.
Parent Name of the model or

subsystem that owns this
object. The value of this
parameter for a model is an
empty character vector.

{''}

6 Model and Block Parameters

6-60

Parameter Description Values
Pause Pause simulation callback.

Set by Simulation pause
function on the Callbacks
pane of the Model Properties
dialog box.

{''}

PortDataTypeDisplayForma
t

When you display port data
types in a model by selecting
Display > Signals and Ports
> Port Data Types, choose
whether to display data type
aliases, base data types, or
both.

In the Simulink Editor, set by
Display > Signals and Ports
> Port Data Type Display
Format.

{'AliasTypeOnly'} |
'BaseTypeOnly' |
'BaseAndAliasTypes'

PositivePriorityOrder Choose the appropriate
priority ordering for the real-
time system targeted by this
model. The Simulink Coder
software uses this information
to implement asynchronous
data transfers.

Set by Higher priority value
indicates higher task
priority on the Solver pane of
the Configuration Parameters
dialog box.

'on' | {'off'}

 Model Parameters

6-61

Parameter Description Values
PostLoadFcn Function invoked just after this

model is loaded.

Set by Model post-load
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

{''}

PostSaveFcn Function invoked just after this
model is saved to disk. Not
executed for blocks inside
library links.

Set by Model post-save
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

{''}

PreLoadFcn Preload callback.

Set by Model pre-load
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

{''}

6 Model and Block Parameters

6-62

Parameter Description Values
PreSaveFcn Function invoked just before

this model is saved to disk. Not
executed for blocks inside
library links, except when you
are breaking the link, e.g.,
with save_system(A, B,
'BreakUserLinks', 'on').

Set by Model pre-save
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

{''}

ProdBitPerChar Describes the length in bits of
the C char data type
supported by the hardware
board to be used by this
model.

Set by Number of bits: char
on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {8}

ProdBitPerInt Describes the length in bits of
the C int data type supported
by the hardware board to be
used by this model.

Set by Number of bits: int on
the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {32}

 Model Parameters

6-63

Parameter Description Values
ProdBitPerLong Describes the length in bits of

the C long data type
supported by the hardware
board to be used by this
model.

Set by Number of bits: long
on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {32}

ProdBitPerLongLong Describes the length in bits of
the C long data type
supported by the hardware
board to be used by this
model.

Set by “Number of bits: long
long” on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

The value of this parameter
must be greater than or equal
to the value of
ProdBitPerLong.

integer — {64}

ProdBitPerShort Describes the length in bits of
the C short data type
supported by the hardware
board to be used by this
model.

Set by Number of bits: short
on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {16}

6 Model and Block Parameters

6-64

Parameter Description Values
ProdEndianess Describes the significance of

the first byte of a data word of
the hardware board to be used
by this model.

Set by Byte ordering on the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

{'Unspecified'} |
'LittleEndian' |
'BigEndian'

ProdEqTarget Specifies that the hardware
used to test the code
generated from this model is
the same as the production
hardware or has the same
characteristics.

{'on'} | 'off'

ProdHWDeviceType Predefined hardware device to
specify the C language
constraints for your
microprocessor.

Set by “Device vendor” and
Device type on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'Generic->Unspecified
(assume 32-bit Generic)'}

ProdIntDivRoundTo Describes how the C compiler
that creates production code
for this model rounds the
result of dividing one signed
integer by another to produce
a signed integer quotient.

Set by Signed integer
division rounds to on the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

'Floor' | 'Zero' |
{'Undefined'}

 Model Parameters

6-65

Parameter Description Values
ProdLargestAtomicFloat Specify the largest floating-

point data type that can be
atomically loaded and stored
on the hardware board.

Set by “Largest atomic size:
floating-point” on the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

'Float' | 'Double' |
{'None'}

ProdLargestAtomicInteger Specify the largest integer
data type that can be
atomically loaded and stored
on the hardware board.

Set this parameter to
'LongLong' only if the
production hardware supports
the C long long data type
and you have set
ProdLongLongMode to 'on'.

Set by “Largest atomic size:
integer” on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'Char'} | 'Short' | 'Int'
| 'Long' | 'LongLong'

ProdLongLongMode Specify that your C compiler
supports the C long long
data type. Most C99 compilers
support long long.

Set by “Support long long”
on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

6 Model and Block Parameters

6-66

Parameter Description Values
ProdShiftRightIntArith Describes whether the C

compiler that creates
production code for this model
implements a signed integer
right shift as an arithmetic
right shift.

Set by Shift right on a
signed integer as arithmetic
shift on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

ProdWordSize Describes the word length in
bits of the hardware board to
be used by this model.

Set by Number of bits:
native on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {32}

Profile Enables the simulation profiler
for this model.

In the Simulink Editor, set by
Show Profiler Report on the
Analysis menu.

'on' | {'off'}

 Model Parameters

6-67

Parameter Description Values
PropagateSignalLabelsOut
OfModel

Pass propagated signal names
to output signals of Model
block.

Set by Propagate all signal
labels out of the model on
the Model Referencing pane
of the Configuration
Parameters dialog box.

See “Propagate all signal
labels out of the model” for
more information.

{'on'} | 'off'

PropagateVarSize Select how variable-size
signals propagate through
referenced models.

Set by Propagate sizes of
variable-size signals on the
Model Referencing pane of
the Configuration Parameters
dialog box.

See “Model Configuration
Parameters: Model
Referencing” for more
information.

| 'Infer from blocks in
model' | 'Only when
enabling' | 'During
execution'

ReadBeforeWriteMsg Specifies diagnostic action to
take when the model attempts
to read data from a data store
before it has stored data at the
current time step.

Set by Detect read before
write on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'UseLocalSettings'} |
'DisableAll' |
'EnableAllAsWarning' |
'EnableAllAsError'

6 Model and Block Parameters

6-68

Parameter Description Values
RecordCoverage If RecordCoverage is set to

on, Simulink collects and
reports model coverage data
during simulation. The format
of this report is controlled by
the values of the following
parameters:

CovCompData

CovCumulativeReport

CovCumulativeVarName

CovHTMLOptions

CovHtmlReporting

CovMetricSettings

CovModelRefEnable

CovModelRefExcluded

CovNameIncrementing

CovPath

CovReportOnPause

CovSaveCumulativeToWork‐
SpaceVar

CovSaveName

CovSaveSingleToWorkspac
eVar

If set to off, no model
coverage data is collected or
reported.

'on' | {'off'}

 Model Parameters

6-69

Parameter Description Values
Set by Entire System on the
Coverage pane of the
Configuration Parameters
dialog box.

Refine Refine factor.

Set by Refine factor
parameter under parameter
under Configuration
Parameters > Data Import/
Export > Additional
parameters.

{'1'}

RelTol Relative error tolerance.

Set by Relative tolerance on
the Solver pane of the
Configuration Parameters
dialog box.

{'1e-3'}

RemoveDisableFunc For model referencing
contexts for ERT targets,
remove the generated disable
functions that cannot be
reached from anywhere in the
generated code.

Set by the “Remove disable
function” (Embedded
Coder) configuration
parameter.

'on' | {'off'}

6 Model and Block Parameters

6-70

Parameter Description Values
RemoveResetFunc For model referencing

contexts for ERT targets,
remove the generated reset
functions that cannot be
reached from anywhere in the
generated code.

Set by the “Remove reset
function” (Embedded
Coder) configuration
parameter.

{'on'} | 'off'

ReportName Name of the associated file for
the Report Generator.

{'simulink-default.rpt'}

ReqHilite Highlights all the blocks in the
Simulink diagram that have
requirements associated with
them.

In the Simulink Editor, set by
Highlight Model on the
Analysis > Requirements
menu.

'on' | {'off'}

RequirementInfo For internal use.
RootOutportRequire‐
BusObject

Specifies diagnostic action to
take when a bus enters a root
model Outport block for which
a bus object has not been
specified.

Set by Unspecified bus
object at root Outport block
on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

 Model Parameters

6-71

Parameter Description Values
RTPrefix Specifies diagnostic action to

take when Simulink software
encounters an object name
that begins with rt.

Set by "rt" prefix for
identifiers on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

RTW... For information about model
parameters beginning with
RTW, see Configuration
Parameters for Simulink
Models and Parameter
Reference in the Simulink
Coder documentation.

SampleTimeAnnotations In the Simulink Editor, set by
Annotations on the Display >
Sample Time menu.

'on' | {'off'}

SampleTimeColors In the Simulink Editor, set by
Colors on the Display >
Sample Time Display menu.

'on' | {'off'}

SampleTimeConstraint This option appears when the
solver type is Fixed-step.

Set by Periodic sample time
constraint on the Solver pane
of the Configuration
Parameters dialog box.

{'Unconstrained'} |
'STIndependent' |
'Specified'

6 Model and Block Parameters

6-72

Parameter Description Values
SampleTimeProperty Specifies and assigns priorities

to the sample times
implemented by the model.
This option appears when
Periodic sample time
constraint is set to
Specified.

Set by Sample time
properties on the Solver
pane of the Configuration
Parameters dialog box.

Structure containing the fields
SampleTime, Offset, and
Priority

SavedCharacterEncoding Specifies the character set
used to encode this model. See
the slCharacterEncoding
command for more
information.

character vector

SaveDefaultBlockParams For internal use.
SavedSinceLoaded Indicates whether the model

has been saved since it was
loaded. 'on' indicates the
model has been saved.

'on' | 'off'

SaveFinalState Save final states to workspace.

Set by the Final states check
box on the Data Import/
Export pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

SaveFormat Format used to save data to
the MATLAB workspace.

Set by Format on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

{'Dataset'} | 'Structure'
| 'StructureWithTime'|
'Array'

 Model Parameters

6-73

Parameter Description Values
SaveOutput Save simulation output to

workspace.

Set by the Output check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

Do not use a variable name
that is the same as a
Simulink.SimulationOutp
ut object function name or
property name.

{'on'} | 'off'

SaveState Save states to workspace.

Set by the States check box on
the Data Import/Export pane
of the Configuration
Parameters dialog box.

'on' | {'off'}

SaveTime Save simulation time to
workspace.

Set by the Time check box on
the Data Import/Export pane
of the Configuration
Parameters dialog box.

Do not use a variable name
that is the same as a
Simulink.SimulationOutp
ut object function name or
property name.

{'on'} | 'off'

6 Model and Block Parameters

6-74

Parameter Description Values
SaveWithDisabledLinksMsg Specifies diagnostic action to

take when saving a block
diagram having disabled
library links.

Set by Block diagram
contains disabled library
links on the Saving
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

SaveWithParameterized‐
LinksMsg

Specifies diagnostic action to
take when saving a block
diagram having parameterized
library links.

Set by Block diagram
contains parameterized
library links on the Saving
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ScreenColor Background color of the model
window.

In the Simulink Editor, set by
Canvas Color on the
Diagram > Format menu.

'black' | {'white'} |
'red' | 'green' | 'blue' |
'cyan' | 'magenta' |
'yellow' | 'gray' |
'lightBlue' | 'orange' |
'darkGreen' | [r,g,b,a]
where r, g, b, and a are the
red, green, blue, and alpha values
of the color normalized to the
range 0.0 to 1.0. The alpha value
is ignored.

ScrollbarOffset For internal use.

 Model Parameters

6-75

Parameter Description Values
SFcnCompatibilityMsg Specifies diagnostic action to

take when S-function upgrades
are needed.

Set by S-function upgrades
needed on the Compatibility
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

SFExecutionAtInitializat
ionDiag

Select the diagnostic action to
take when Stateflow detects
triggered or enabled charts
that are not running at
initialization.

Set by “Execute-at-
Initialization disabled in
presence of input events” on
the Compatibility
Diagnostics pane of the
Configuration Parameters
dialog box.

6 Model and Block Parameters

6-76

Parameter Description Values
SFInvalidInputDataAccess‐
InChartInitDiag

Select the diagnostic action to
take when a chart:

• Has the
ExecuteAtInitializati
on property set to true

• Accesses input data on a
default transition or
associated state entry
actions, which execute at
chart initialization

Set by Invalid input data
access in chart
initialization on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

SFMachineParented‐
DataDiag

Select the diagnostic action to
take when Stateflow detects
machine-parented data that
you can replace with chart-
parented data of scope Data
Store Memory.

Set by “Use of machine-
parented data instead of
Data Store Memory” on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

 Model Parameters

6-77

Parameter Description Values
SFNoUnconditionalDefault‐
TransitionDiag

Select the diagnostic action to
take when a chart does not
have an unconditional default
transition to a state or a
junction.

Set by No unconditional
default transitions on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

SFSelfTransitionDiag Select the diagnostic action to
take when you can remove a
self-transition on a leaf state.

Set by “Self transition on
leaf state” on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

SFSimEcho Enables output to appear in
the MATLAB Command
Window during simulation of a
model that contains MATLAB
Function blocks, Stateflow
charts, or Truth Table blocks.

Set by Echo expressions
without semicolons on the
Simulation Target pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

6 Model and Block Parameters

6-78

Parameter Description Values
SFTemporalDelaySmallerTh
anSampleTimeDiag

Select the diagnostic action to
take when a state or transition
absolute time operator uses a
time value that is shorter than
the sample time for the
Stateflow block.

Set by “Absolute time
temporal value shorter than
sampling period” on the
Simulation Target pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

SFTransitionActionBefore
ConditionDiag

Select the diagnostic action to
take when a transition action
is specified before a condition
action in a transition path
containing multiple segmented
transitions.

Set by “Transition action
specified before condition
action” on the Diagnostics >
Stateflow pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

SFTransitionOutsideNatur
alParentDiag

Select the diagnostic action to
take when a chart contains a
transition that loops outside
the parent state or junction.

Set by Transition outside
natural parent on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

 Model Parameters

6-79

Parameter Description Values
SFUndirectedBroadcast‐
EventsDiag

Select the diagnostic action to
take when a chart contains
undirected local event
broadcasts.

Set by Undirected event
broadcasts on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

SFUnexpectedBacktracking‐
Diag

Select the diagnostic action to
take when a chart junction:

• Does not have an
unconditional transition
path to a state or a terminal
junction

• Has multiple transition
paths leading to it

Set by Unexpected
backtracking on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

SFUnreachableExecution‐
PathDiag

Select the diagnostic action to
take when there are chart
constructs not on a valid
execution path.

Set by “Unreachable
execution path” on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

6 Model and Block Parameters

6-80

Parameter Description Values
SFUnusedDataAndEventsDia
g

Select the diagnostic action to
take for detection of unused
data and events in a chart.

Set by Unused data and
events on the Diagnostics >
Stateflow pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ShapePreserveControl At each time step, use
derivative information to
improve integration accuracy.

Set by Shape preservation on
the Solver pane of the
Configuration Parameters
dialog box.

'EnableAll' |
{'DisableAll'}

ShowGrid Has no effect in Simulink
Editor. This parameter will be
removed in a future release.

'on' | {'off'}

ShowLinearization‐
Annotations

Toggles linearization icons in
the model.

{'on'} | 'off'

ShowLineDimensions Show signal dimensions on
this model's block diagram.

In the Simulink Editor, set by
Signal Dimensions on the
Display > Signal & Ports
menu.

'on' | {'off'}

ShowLineDimensions‐
OnError

For internal use.

ShowLineWidths Deprecated. Use
ShowLineDimensions
instead.

ShowLoopsOnError Highlight invalid loops
graphically.

{'on'} | 'off'

 Model Parameters

6-81

Parameter Description Values
ShowModelReference‐
BlockIO

Toggles display of I/O
mismatch on block.

In the Simulink Editor, set by
Block I/O Mismatch for
Referenced Model on the
Display > Blocks menu.

'on' | {'off'}

ShowModelReference‐
BlockVersion

Toggles display of version on
block.

In the Simulink Editor, set by
Block Version for
Referenced Models on the
Display > Blocks menu.

'on' | {'off'}

Shown For internal use.
ShowPageBoundaries Toggles display of page

boundaries on the Simulink
Editor canvas.

In the Simulink Editor, set by
Show Page Boundaries on
the File > Print menu.

'on' | {'off'}

ShowPortDataTypes Show data types of ports on
this model's block diagram.

In the Simulink Editor, set by
Port Data Types on the
Display > Signals & Ports
menu.

'on' | {'off'}

ShowPortDataTypesOnError For internal use.

6 Model and Block Parameters

6-82

Parameter Description Values
ShowPortUnits Show units of ports,

subsystem, and model block
icons on the model block
diagram.

In the Simulink Editor, set
Port Units on the Display >
Signals & Ports menu.

'on' | {'off'}

ShowStorageClass Show storage classes of
signals on this model's block
diagram.

In the Simulink Editor, set by
Storage Class on the Format
> Signals & Ports menu.

'on' | {'off'}

ShowTestPointIcons Show test point icons on this
model's block diagram.

In the Simulink Editor, set by
Testpoint & Logging
Indicators on the Display >
Signals & Ports menu.

{'on'} | 'off'

ShowViewerIcons Show viewer icons on this
model's block diagram.

In the Simulink Editor, set by
Viewer Indicator on the
Display > Signals & Ports
menu.

{'on'} | 'off'

 Model Parameters

6-83

Parameter Description Values
SignalHierarchy If the signal is a bus, returns

the name and hierarchy of the
signals in the bus.

(Read-only) Get with the
get_param command. Specify
a port or line handle. See
“Display Information About
Buses”.

Return values reflect the
structure of the signal that you
specify.

SignalInfNanChecking Specifies diagnostic action to
take when the value of a block
output is Inf or NaN at the
current time step.

Set by Inf or NaN block
output on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

SignalLabelMismatchMsg Specifies diagnostic action to
take when a signal label
mismatch occurs.

Set by Signal label
mismatch on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

SignalLogging Globally enable signal logging
for this model.

Set by the Signal logging
check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

6 Model and Block Parameters

6-84

Parameter Description Values
SignalLoggingName Name for saving signal logging

data to a workspace.

Set by the Signal logging
field on the Data Import/
Export pane of the
Configuration Parameters
dialog box.

Do not use a variable name
that is the same as a
Simulink.SimulationOutp
ut object function name or
property name.

{'logsout'}

SignalLoggingSaveFormat Format for saving signal
logging data.

{'Dataset'}

'ModelDataLogs' is supported
for backward compatibility.
However, when you open a model
in R2016a or later, signal logging
uses Dataset format, regardless
of the setting of this parameter.

SignalNameFromLabel Propagate signal names for
Bus Creator block input
signals whenever you change
the name of an input signal
programmatically.

Set with the set_param
command, using either a port
or line handle and a character
vector specifying the signal
name to propagate.

{''}

 Model Parameters

6-85

Parameter Description Values
SignalRangeChecking Select the diagnostic action to

take when signals exceed
specified minimum or
maximum values.

Set by Simulation range
checking on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

SignalResolutionControl Control which named states
and signals get resolved to
Simulink signal objects.

Set by Signal resolution on
the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'None' |
{'UseLocalSettings'} |
'TryResolveAll' |
'TryResolveAllWithWarning'

SigSpecEnsureSample‐
TimeMsg

Specifies diagnostic action to
take when the sample time of
the source port of a signal
specified by a Signal
Specification block differs from
the signal's destination port.

Set by Enforce sample times
specified by Signal
Specification blocks on the
Sample Time Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

6 Model and Block Parameters

6-86

Parameter Description Values
SimBuildMode Specifies how you build the

simulation target for a model
that contains MATLAB
Function blocks, Stateflow
charts, or Truth Table blocks.

Set by Simulation target
build mode on the
Simulation Target pane of
the Configuration Parameters
dialog box.

{'sf_incremental_build'} |
'sf_nonincremental_build'
| 'sf_make' |
'sf_make_clean' |
'sf_make_clean_objects'

SimCompilerOptimization Specifies the compiler
optimization level during
acceleration code generation.

Set by Compiler
optimization level on the
Configuration Parameters
dialog box.

'on' | {'off'}

SimCtrlC Enables responsiveness checks
in code generated for MATLAB
Function blocks.

Set by “Ensure
responsiveness” on the
Simulation Target pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

 Model Parameters

6-87

Parameter Description Values
SimCustomHeaderCode Enter code lines to appear

near the top of a generated
header file for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Header file on the
Simulation Target > Custom
Code pane of the
Configuration Parameters
dialog box.

{''}

SimCustomInitializer Enter code statements that
execute once at the start of
simulation for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Initialize function on
the Simulation Target >
Custom Code pane of the
Configuration Parameters
dialog box.

{''}

SimCustomSourceCode Enter code lines to appear
near the top of a generated
source code file for a model
that contains MATLAB
Function blocks, Stateflow
charts, or Truth Table blocks.

Set by Source file on the
Simulation Target > Custom
Code pane of the
Configuration Parameters
dialog box.

{''}

6 Model and Block Parameters

6-88

Parameter Description Values
SimCustomTerminator Enter code statements that

execute at the end of
simulation for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Terminate function on
the Simulation Target >
Custom Code pane of the
Configuration Parameters
dialog box.

{''}

SimIntegrity Detects violations of memory
integrity while building
MATLAB Function blocks and
stops simulation with a
diagnostic.

Set by “Ensure memory
integrity” on the Simulation
Target pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

SimParseCustomCode Specify whether or not to
parse the custom code and
report unresolved symbols in
the model.

Set by Parse custom code
symbols on the Simulation
Target > Custom Code pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

 Model Parameters

6-89

Parameter Description Values
SimReservedNameArray Enter the names of variables

or functions in the generated
code that match the names of
variables or functions specified
in custom code. This action
prevents naming conflicts
between identifiers in the
generated code and in custom
code for a model that contains
MATLAB Function blocks,
Stateflow charts, or Truth
Table blocks.

Set by Reserved names on
the Simulation Target >
Symbols pane of the
Configuration Parameters
dialog box.

character vector array — {{}}

SimulationCommand Executes a simulation
command.

Note You cannot use
set_param to run a
simulation in a MATLAB
session that does not have a
display, i.e., if you used
matlab -nodisplay to start
the session.

'start' | 'stop' | 'pause'
| 'continue' | 'step' |
'update' | 'WriteDataLogs'
| 'SimParamDialog' |
'connect' | 'disconnect' |
'WriteExtModeParamVect' |
'AccelBuild'

SimulationMode Indicates whether Simulink
software should run in Normal,
Accelerator, Rapid Accelerator,
SIL, PIL, or External mode.

In the Simulink Editor, set by
the Simulation > Mode
menu.

{'normal'} | 'accelerator'
| 'rapid-accelerator' |
'external' | 'Software-in-
the-loop (SIL)' |
'Processor-in-the-loop
(PIL)'

6 Model and Block Parameters

6-90

Parameter Description Values
SimulationStatus Indicates simulation status. {'stopped'} | 'updating' |

'initializing' | 'running'
| 'compiled' | 'paused' |
'terminating' | 'external'

SimulationTime Current time value for the
simulation.

double — {0}

SimStateInterfaceChecksu
mMismatchMsg

Check to ensure that the
interface checksum is identical
to the model checksum before
loading the SimState.

'none'|'warning'|error'

SimStateOlderReleaseMsg Check to report that the
SimState was generated by an
earlier version of Simulink. In
the Diagnostics pane of the
Configuration Parameters
dialog box, configure the
diagnostic to allow Simulink to
report the message as error or
warning.

'error'|'warning'

SimUserDefines Enter a space-separated list of
preprocessor macro definitions
to be added to the generated
code for a model that contains
MATLAB Function blocks,
Stateflow charts, or Truth
Table blocks.

Set by Defines on the
Simulation Target > Custom
Code pane of the
Configuration Parameters
dialog box.

{''}

 Model Parameters

6-91

Parameter Description Values
SimUserIncludeDirs Enter a space-separated list of

directory paths that contain
files you include in the
compiled target for a model
that contains MATLAB
Function blocks, Stateflow
charts, or Truth Table blocks.

Set by Include directories on
the Simulation Target >
Custom Code pane of the
Configuration Parameters
dialog box.

{''}

Note If your list includes any
Windows path names that contain
spaces, each instance must be
enclosed in double quotes within
the argument, for example,
'C:\Project "C:\Custom Files"'

SimUserLibraries Enter a space-separated list of
static libraries that contain
custom object code to link into
the target for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Libraries on the
Simulation Target > Custom
Code pane of the
Configuration Parameters
dialog box.

{''}

SimUserSources Enter a space-separated list of
source files to compile and link
into the target for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Source files on the
Simulation Target > Custom
Code pane of the
Configuration Parameters
dialog box.

{''}

6 Model and Block Parameters

6-92

Parameter Description Values
SingleTaskRateTransMsg Specifies diagnostic action to

take when a rate transition
takes place between two
blocks operating in single-
tasking mode.

Set by Single task rate
transition on the Sample
Time Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

Solver Solver used for the simulation.

Set by the Solver drop-down
list on the Solver pane of the
Configuration Parameters
dialog box.

'VariableStepDiscrete' |
{'ode45'} | 'ode23' |
'ode113' | 'ode15s' |
'ode23s' | 'ode23t' |
'ode23tb' |
'FixedStepDiscrete'
|'ode8'| 'ode5' | 'ode4' |
'ode3' | 'ode2' | 'ode1' |
'ode14x'

EnableMultiTasking Solver mode for this model.
This option appears when the
solver type is Fixed-step.

Set by “Treat each discrete
rate as a separate task” on
the Solver pane of the
Configuration Parameters
dialog box.

'On' | {'Off'}

SolverName Solver used for the simulation.
See Solver parameter for
more information.

 Model Parameters

6-93

Parameter Description Values
SolverPrmCheckMsg Enables diagnostics to control

when Simulink software
automatically selects solver
parameters. This option
notifies you if:

• Simulink software changes
a user-modified parameter
to make it consistent with
other model settings

• Simulink software
automatically selects solver
parameters for the model,
such as FixedStepSize

Set by Automatic solver
parameter selection on the
Solver section of the
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

SolverResetMethod This option appears when the
solver type is Variable-step
and the solver is ode15s
(stiff/NDF), ode23t
(Mod. stiff/
Trapezoidal), or ode23tb
(stiff/TR-BDF2).

Set by Solver reset method
on the Solver pane of the
Configuration Parameters
dialog box.

{'Fast'} | 'Robust'

6 Model and Block Parameters

6-94

Parameter Description Values
SolverType Solver type used for the

simulation.

Set by Type on the Solver
pane of the Configuration
Parameters dialog box.

{'Variable-step'} |
'Fixed-step'

SortedOrder Show the sorted order of this
model's blocks on the block
diagram.

In the Simulink Editor, set by
Sorted Execution Order on
the Display > Blocks menu.

'on' | {'off'}

StartFcn Start simulation callback.

Set by Simulation start
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

{''}

StartTime Simulation start time.

Set by Start time on the
Solver pane of the
Configuration Parameters
dialog box.

{'0.0'}

 Model Parameters

6-95

Parameter Description Values
StateNameClashWarn Select the diagnostic action to

take when a name is used for
more than one state in the
model.

Set by State name clash on
the Solver section of the
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'}

StateSaveName State output name to be saved
to workspace.

Set by the States field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

{'xout'}

StatusBar Has no effect in Simulink
Editor. This parameter will be
removed in a future release.

In the Simulink Editor, set by
Status Bar on the View menu.

{'on'} | 'off'

StiffnessThreshold Threshold value to determine
if the model is stiff.

A model is stiff if the stiffness
exceeds the
StiffnessThreshold value.
The default value for this
parameter is 1000. For more
information, see “Use Auto
Solver to Select a Solver”.

{''}

6 Model and Block Parameters

6-96

Parameter Description Values
StopFcn Stop simulation callback.

Set by Simulation stop
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

{''}

StopTime Simulation stop time.

Set by Stop time on the
Solver pane of the
Configuration Parameters
dialog box.

{'10.0'}

StrictBusMsg Specifies diagnostic action to
take when Simulink software
detects a signal that some
blocks treat as a mux or
vector, while other blocks treat
the signal as a bus.

To be enabled, several options
in MathWorks products
require this parameter be set
to 'ErrorLevel1' or
'ErrorOnBusTreatedAsVec
tor'.

Set by Bus signal treated as
vector on the Diagnostics
Connectivity pane of the
Configuration Parameters
dialog box.

{'ErrorLevel1'}
'WarnOnBusTreatedAsVector'
|
'ErrorOnBusTreatedAsVector
'

 Model Parameters

6-97

Parameter Description Values
SupportModelReferenceSim
TargetCustomCode

Use custom C code with
Stateflow or with MATLAB
Function blocks during
referenced model simulation
(SIM) target build for
accelerator mode

Caution Using custom C code
for referenced models in
accelerator mode can produce
different results than if you
simulate the model without
using the custom code. If the
custom code includes
declarations of structures for
buses or enumerations, the
SIM target generation fails if
the build results in duplicate
declarations of those
structures. Also, if the custom
code uses a structure
representing a bus or
enumeration, you could get
unexpected simulation results.

'on' | {'off'}

Tag User-specified text that is
assigned to the model's Tag
parameter and saved with the
model.

{''}

TargetBitPerChar Describes the length in bits of
the C char data type
supported by the hardware
used to test generated code.

integer — {8}

TargetBitPerInt Describes the length in bits of
the C int data type supported
by the hardware used to test
generated code.

integer — {32}

6 Model and Block Parameters

6-98

Parameter Description Values
TargetBitPerLong Describes the length in bits of

the C long data type
supported by the hardware
used to test generated code.

integer — {32}

TargetBitPerLongLong Describes the length in bits of
the C long long data type
supported by the hardware
used to test generated code.

The value of this parameter
must be greater than or equal
to the value of
TargetBitPerLong.

integer — {64}

TargetBitPerShort Describes the length in bits of
the C short data type
supported by the hardware
used to test generated code.

integer — {16}

TargetEndianess Describes the significance of
the first byte of a data word of
the hardware used to test
generated code.

{'Unspecified'} |
'LittleEndian' |
'BigEndian'

TargetHWDeviceType Describes the characteristics
of the hardware used to test
generated code.

{'Generic->Unspecified
(assume 32-bit Generic)'}

TargetIntDivRoundTo Describes how the C compiler
that creates test code for this
model rounds the result of
dividing one signed integer by
another to produce a signed
integer quotient.

'Floor' | 'Zero' |
{'Undefined'}

TargetLargestAtomicFloat Specify the largest floating-
point data type that can be
atomically loaded and stored
on the hardware used to test
code.

'Float' | 'Double' |
{'None'}

 Model Parameters

6-99

Parameter Description Values
TargetLargestAtomicInteg
er

Specify the largest integer
data type that can be
atomically loaded and stored
on the hardware used to test
code.

Set this parameter to
'LongLong' only if the test
hardware supports the C long
long data type and you have
set TargetLongLongMode to
'on'.

{'Char'} | 'Short' | 'Int'
| 'Long' | 'LongLong'

TargetLongLongMode Specify that your C compiler
supports the C long long data
type. Most C99 compilers
support long long.

'on' | {'off'}

TargetShiftRightIntArith Describes whether the C
compiler that creates test code
for this model implements a
signed integer right shift as an
arithmetic right shift.

{'on'} | 'off'

TargetTypeEmulation
WarnSuppressLevel

Specifies whether Simulink
Coder software displays or
suppresses warning messages
when emulating integer sizes
in rapid prototyping
environments.

integer — {0}

TargetWordSize Describes the word length in
bits of the hardware used to
test generated code.

integer — {32}

6 Model and Block Parameters

6-100

Parameter Description Values
TasksWithSamePriorityMsg Specifies diagnostic action to

take when tasks have equal
priority.

Set by Tasks with equal
priority on the Sample Time
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

TiledPageScale Scales the size of the tiled
page relative to the model.

{'1'}

TiledPaperMargins Controls the size of the
margins associated with each
tiled page. Each element in the
vector represents a margin at
the particular edge.

vector — [left, top, right,
bottom]

TimeAdjustmentMsg Specifies diagnostic action to
take if Simulink software
makes a minor adjustment to a
sample hit time while running
the model.

Set by Sample hit time
adjusting on the
Configuration Parameters
dialog box.

{'none'} | 'warning'

TimeSaveName Simulation time name.

Set by the Time field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

variable — {'tout'}

TLC... Parameters whose names
begin with TLC are used for
code generation. See the
Simulink Coder documentation
for more information.

 Model Parameters

6-101

Parameter Description Values
ToolBar Has no effect in Simulink

Editor. This parameter will be
removed in a future release.

In the Simulink Editor, hide or
display all toolbars with
Toolbars on the View menu
or, hide or display specific
toolbars using File >
Simulink Preferences >
Editor Default toolbar
options.

{'on'} | 'off'

TryForcingSFcnDF This flag is used for backward
compatibility with user S-
functions that were written
prior to R12.

'on' | {'off'}

TunableVars List of global (tunable)
parameters.

Set in the Model Parameter
Configuration dialog box.

{''}

TunableVarsStorageClass List of storage classes for their
respective tunable parameters.

Set in the Model Parameter
Configuration dialog box.

{''}

TunableVarsTypeQualifier List of storage type qualifiers
for their respective tunable
parameters.

Set in the Model Parameter
Configuration dialog box.

{''}

Type Simulink object type (read
only).

{'block_diagram'}

6 Model and Block Parameters

6-102

Parameter Description Values
UnconnectedInputMsg Unconnected input ports

diagnostic.

Set by Unconnected block
input ports on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

UnconnectedLineMsg Unconnected lines diagnostic.

Set by Unconnected line on
the Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

UnconnectedOutputMsg Unconnected block output
ports diagnostic.

Set by Unconnected block
output ports on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

UnderSpecifiedData‐
TypeMsg

Detect usage of heuristics to
assign signal data types.

Set by Underspecified data
types on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

 Model Parameters

6-103

Parameter Description Values
UnderspecifiedInitial‐
izationDetection

Select how Simulink software
handles initialization of initial
conditions for conditionally
executed subsystems, Merge
blocks, subsystem elapsed
time, and Discrete-Time
Integrator blocks.

Set by Underspecified
initialization detection on
the Configuration Parameters
dialog box.

{'classic'} | 'simplified'

UniqueDataStoreMsg Specifies diagnostic action to
take when the model contains
multiple Data Store Memory
blocks that specify the same
data store name.

Set by Duplicate data store
names on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

UnknownTsInhSupMsg Detect blocks that have not set
whether they allow the model
containing them to inherit a
sample time.

Set by Unspecified
inheritability of sample
time on the Diagnostics >
Sample Time pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

6 Model and Block Parameters

6-104

Parameter Description Values
UnnecessaryDatatype‐
ConvMsg

Detect unnecessary data type
conversion blocks.

Set by Unnecessary type
conversions on the Type
Conversion Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning'

UpdateHistory Specifies when to prompt the
user about updating the model
history.

Set by Prompt to update
model history on the History
pane of the Model Properties
dialog box or Prompt to
update model history on the
History pane of the Model
Explorer.

See “Model Information and
History” for more information.

{'UpdateHistoryNever'} |
'UpdateHistoryWhenSave'

UpdateModelReference‐
Targets

Specify whether to rebuild
simulation and Simulink Coder
targets for referenced models
before updating, simulating, or
generating code for this
model.

Set by Rebuild on the Model
Referencing pane of the
Configuration Parameters
dialog box.

'IfOutOfDate' | 'Force' |
'AssumeUpToDate' |
{'IfOutOfDateOrStructuralC
hange'}

UseAnalysisPorts For internal use.

 Model Parameters

6-105

Parameter Description Values
UseDivisionForNetSlopeCo
mputation

Use division to handle net
slope computations when
simplicity and accuracy
conditions are met.

{'off'} | 'on' |
'UseDivisionForReciprocals
OfIntegersOnly'

VectorMatrix‐
ConversionMsg

Detect vector-to-matrix or
matrix-to-vector conversions.

Set by Vector/matrix block
input conversion on the Type
Conversion Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

Version Simulink version you are
currently running, e.g., '7.6'.
If you are using a service pack,
the ver function returns an
additional digit, e.g., 7.4.1
(R2009bSP1). To get version
information without loading
the block diagram into
memory, see
Simulink.MDLInfo.

double (read only)

VersionLoaded Simulink version that last
saved the model, e.g., '7.6'.
If you are using a service pack,
the ver function returns an
additional digit, e.g., 7.4.1
(R2009bSP1). See also
SavedSinceLoaded.

To get version information
without loading the block
diagram into memory, see
Simulink.MDLInfo.

double (read only)

6 Model and Block Parameters

6-106

Parameter Description Values
VisualizeLoggedSignalsWh
enLoggingToFile

Control visualization of logged
signals when LoggingToFile
is enabled. The default is
'off', which logs to a MAT-
file without the overhead of
visualizing signals. Set the
value to 'on' to stream
logged data to these
visualization tools also:

• Simulation Data Inspector
• Message Viewer blocks
• Dashboard blocks
• Logic Analyzer

Logging big data to
visualization tools can cause
memory and disk space
overhead.

'on' | {'off'}

WideLines Draws lines that carry vector
or matrix signals wider than
lines that carry scalar signals.

In the Simulink Editor, set by
Wide Nonscalar Lines on the
Display > Signals & Ports
menu.

'on' | {'off'}

WideVectorLines Deprecated. Use WideLines
instead.

 Model Parameters

6-107

Parameter Description Values
WriteAfterReadMsg Specifies diagnostic action to

take when the model attempts
to store data in a data store
after previously reading data
from it in the current time
step.

Set by Detect write after
read on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'UseLocalSettings'} |
'DisableAll' |
'EnableAllAsWarning' |
'EnableAllAsError'

WriteAfterWriteMsg Specifies diagnostic action to
take when the model attempts
to store data in a data store
twice in succession in the
current time step.

Set by Detect write after
write on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'UseLocalSettings'} |
'DisableAll' |
'EnableAllAsWarning' |
'EnableAllAsError'

ZCThreshold Specifies the deadband region
used during the detection of
zero crossings. Signals falling
within this region are defined
as having crossed through
zero.

Set by Signal threshold on
the Solver pane of the
Configuration Parameters
dialog box.

{'auto'} | any real number
greater than or equal to zero

ZeroCross For internal use.

6 Model and Block Parameters

6-108

Parameter Description Values
ZeroCrossAlgorithm Specifies the algorithm to

detect zero crossings when
you select a variable-step
solver.

Set by Algorithm on the
Solver pane of the
Configuration Parameters
dialog box.

{'Nonadaptive'} |
'Adaptive'

ZeroCrossControl Enable zero-crossing
detection.

Set by Zero-crossing control
on the Solver pane of the
Configuration Parameters
dialog box.

{'UseLocalSettings'} |
'EnableAll' | 'DisableAll'

ZoomFactor Zoom factor of the Simulink
Editor window expressed as a
percentage of normal (100%)
or by the keywords
FitSystem or
FitSelection.

In the Simulink Editor, set by
the zoom commands on the
View menu.

{'100'} | 'FitSystem' |
'FitSelection'

Examples of Setting Model Parameters
These examples show how to set model parameters for the mymodel system.

This command sets the simulation start and stop times.

set_param('mymodel','StartTime','5','StopTime','100')

This command sets the solver to ode15s and changes the maximum order.

set_param('mymodel','Solver','ode15s','MaxOrder','3')

 Model Parameters

6-109

This command associates a PostSaveFcn callback.

set_param('mymodel','PostSaveFcn','my_save_cb')

6 Model and Block Parameters

6-110

Common Block Properties
In this section...
“About Common Block Properties” on page 6-111
“Examples of Setting Block Properties” on page 6-128

About Common Block Properties
This table lists the properties common to all Simulink blocks, including block callback
properties (see “Callbacks for Customized Model Behavior”). Examples of commands that
change these properties follow this table (see “Examples of Setting Block Properties” on
page 6-128).

 Common Block Properties

6-111

Common Block Properties

Property Description Values
AncestorBlock Name of the library block that

the block is linked to (for blocks
with a disabled link).

character vector

AttributesFormatString Block annotation text
(corresponds to block
properties).

character vector

BackgroundColor Block background color. color value |'[r,g,b]' |
'[r,g,b,a]'

r, g, and b, are the red, green,
blue values of the color in the
range 0.0 to 1.0. If specified, the
alpha value (a) is ignored.

Possible color values are
'black', 'white', 'red',
'green', 'blue', 'cyan',
'magenta', 'yellow',
'gray', 'lightBlue',
'orange', 'darkGreen'.

BlockDescription Block description shown in the
Block Properties dialog box.

character array

BlockDiagramType Returns model if it is in an open
Simulink block diagram.
Returns library if it is a
Simulink library.

'model' | 'library'

BlockType Block type (read only). character array
ClipboardFcn Function called when block is

copied to the clipboard (Ctrl
+C) or when the menu item
Copy is selected.

function | character vector

CloseFcn Function called when
close_system is run on block.

function | character vector

6 Model and Block Parameters

6-112

Property Description Values
Commented Exclude block from simulation. {'off'} | 'on' |

'through'
CompiledPort‐
ComplexSignals

Complexity of port signals after
updating diagram. You must
compile the model before
querying this property. For
example:

vdp([],[],[],'compile');
d = get_param(gcb,'CompiledPortComplexSignals');
vdp([],[],[],'term');

structure array

CompiledIsActive Specifies whether the block
status is active or not at compile
time.

CompiledIsActive returns
off if any one of these
conditions is true at compile
time:

• Block is inactive path of
Inline Variant.

• Block is inactive choice of
Variant Subsystem.

• Block is commented out is
within a Subsystem block
that is commented out.

• Block is inactive due to
condition propagated from
Variant Subsystem block.

CompiledisActive returns
off for inactive choices and
returns on for active choices of
Variant Subsystem.

'off' | 'on'

 Common Block Properties

6-113

Property Description Values
CompiledPortDataTypes Data types of port signals after

updating diagram. You must
compile the model before
querying this property. See
CompiledPortComplexSigna
ls .

structure array

CompiledPortDesignMin Design minimum of port signals
after updating diagram. You
must compile the model before
querying this property. For
example:

feval(gcs, [],[],[],'compile');
ports = get_param(gcb,'PortHandles');
min = get_param(ports.Outport, 'CompiledPortDesignMin')
feval(model, [],[],[],'term');

structure array

CompiledPortDesignMax Design maximum of port signals
at compile time. You must
compile the model before
querying this property. For
example:

feval(gcs, [],[],[],'compile');
ports = get_param(gcb,'PortHandles');
max = get_param(ports.Outport, 'CompiledPortDesignMax')
feval(model, [],[],[],'term');

structure array

CompiledPortDimensions Dimensions of port signals after
updating diagram. You must
compile the model before
querying this property. For
details, see “Get Compiled Port
Dimensions”.

numeric array

6 Model and Block Parameters

6-114

Property Description Values
CompiledPortDimensionsMo
de

Indication whether the port
signal has a variable size (after
updating diagram). You must
compile the model before
querying this property. See
“Programmatically Determine
Whether Signal Line Has
Variable Size”.

double number. 0 indicates the
signal does not have a variable
size. 1 indicates the signal has a
variable size.

CompiledPortFrameData Frame mode of port signals
after updating diagram. You
must compile the model before
querying this property.

structure array

CompiledPortWidths Structure of port widths after
updating diagram. You must
compile the model before
querying this property.

structure array

CompiledSampleTime Block sample time after
updating diagram. You must
compile the model before
querying this property.

vector [sample time, offset
time]
or

cell {[sample time 1, offset
time 1]; [sample time 2,
offset time 2];.....[sample
time n, offset time n]}

ContinueFcn Function called at the restart of
a simulation (after a pause).

function | character vector

CopyFcn Function called when block is
copied. See “Block Callback
Parameters” for details.

function | character vector

DataTypeOverrideCompiled For internal use.
DeleteFcn Function called when block is

deleted. See “Block Callback
Parameters” for details.

MATLAB expression

 Common Block Properties

6-115

Property Description Values
DestroyFcn Function called when block is

destroyed. See “Block Callback
Parameters” for details.

MATLAB expression

Description Description of block. Set by the
Description field in the
General pane of the Block
Properties dialog box.

text and tokens

Diagnostics For internal use.
DialogParameters List of names/attributes of

block-specific parameters for an
unmasked block, or mask
parameters for a masked block.

structure

DropShadow Display drop shadow. {'off'} | 'on'
ExtModeLoggingSupported Enable a block to support

uploading of signal data in
external mode (for example,
with a scope block).

{'off'} | 'on'

ExtModeLoggingTrig Enable a block to act as the
trigger block for external mode
signal uploading.

{'off'} | 'on'

ExtModeUploadOption Enable a block to upload signal
data in external mode when the
Select all check box on the
External Signal & Triggering
dialog box is not selected. A
value of log indicates the block
uploads signals. A value of none
indicates the block does not
upload signals. The value
monitor is currently not in use.
If the Select all check box on
the External Signal &
Triggering dialog box is
selected, it overrides this
parameter setting.

{'none'} | 'log' |
'monitor'

6 Model and Block Parameters

6-116

Property Description Values
FontAngle Font angle. 'normal' | 'italic' |

'oblique' | {'auto'}
FontName Font name. character array
FontSize Font size. A value of -1 specifies

that this block inherits the font
size specified by the
DefaultBlockFontSize
model parameter.

real {'-1'}

FontWeight Font weight. 'light' | 'normal' |
'demi' | 'bold' |
{'auto'}

ForegroundColor Foreground color of block icon. color value |'[r,g,b]' |
'[r,g,b,a]'

r, g, and b, are the red, green,
blue values of the color in the
range 0.0 to 1.0. The value
changes if it is too similar to the
canvas color (ScreenColor
parameter). Use get_param to
return the actual value. If
specified, the alpha value (a) is
ignored.

Possible color values are
'black', 'white', 'red',
'green', 'blue', 'cyan',
'magenta', 'yellow',
'gray', 'lightBlue',
'orange', 'darkGreen'.

Handle Block handle. real

 Common Block Properties

6-117

Property Description Values
HideAutomaticName Specify whether the block name

given automatically by the
Simulink Editor displays in the
model. To hide automatic
names, use the default setting
of 'on'. (The
HideAutomaticNames
parameter for the model must
also be set to 'on'.) Set to
'off' to display the name, and
also set the block ShowName
parameter to 'on'. Blocks
whose ShowName parameter is
'off' are hidden regardless of
this setting. For more
information on how the
parameters interact, see “Hide
or Display Block Names”.

{'on'} | 'off'

HiliteAncestors For internal use.
InitFcn Initialization function for a

block. Created on the
Callbacks pane of the Model
Properties dialog box. For more
information, see “Create Model
Callbacks”.

On non-masked blocks,
updating the diagram or
running the simulation call this
function.

MATLAB expression

InputSignalNames Names of input signals. cell array

6 Model and Block Parameters

6-118

Property Description Values
IntrinsicDialogParameter
s

List of names/attributes of
block-specific parameters
(regardless of whether the block
is masked or unmasked). Use
instead of DialogParameters
if you want block-specific
parameters for masked or
unmasked blocks.

structure

IOSignalStrings Block paths to objects that are
connected to the Signal &
Scope Manager. Simulink
software saves these paths
when the model is saved.

list

IOType Signal & Scope Manager type.
For internal use.

LibraryVersion For a linked block, the initial
value of this property is the
ModelVersion of the library at
the time the link was created.
The value updates with
increments in the model version
of the library.

character vector — {'1.1'}

LineHandles Handles of lines connected to
block.

structure

LinkData Array of details about changes
to the blocks inside the link that
differ between a parameterized
link and its library, listing the
block names and parameter
values. Use [] to reset to
deparameterized, e.g.,
set_param(gcb,'linkData'
,[]).

See “Restore Disabled or
Parameterized Links”.

cell array

 Common Block Properties

6-119

Property Description Values
LinkStatus Link status of block. Updates

out-of-date linked blocks when
queried using get_param.

See “Control Linked Block
Programmatically”.

'none' | 'resolved' |
'unresolved' |
'implicit' | 'inactive'
| 'restore' |
'propagate' |
'propagateHierarchy' |
'restoreHierarchy'

LoadFcn Function called when block is
loaded.

MATLAB expression

MinMaxOverflow‐
Logging_Compiled

For internal use.

ModelCloseFcn Function called when model is
closed. The ModelCloseFcn is
called prior to the block's
DeleteFcn and DestroyFcn
callbacks, if either are set.

MATLAB expression

ModelParamTableInfo For internal use.
MoveFcn Function called when block is

moved.
MATLAB expression

Name Block name. character vector
NameChangeFcn Function called when block

name is changed.
MATLAB expression

NamePlacement Position of block name. {'normal'} | 'alternate'
ObjectParameters Names/attributes of block's

parameters.
structure

OpenFcn Function called when this Block
Parameters dialog box opens.

MATLAB expression

Orientation Where block faces. {'right'} | 'left' |
'up' | 'down'

OutputSignalNames Names of output signals. cell array
Parent Name of the system that owns

the block.
character vector
{'untitled'}

6 Model and Block Parameters

6-120

Property Description Values
ParentCloseFcn Function called when parent

subsystem is closed. The
ParentCloseFcn of blocks at
the root model level is not
called when the model is closed.

MATLAB expression

PauseFcn Function called at the pause of
a simulation.

function | character vector

 Common Block Properties

6-121

Property Description Values
PortConnectivity The value of this property is an

array of structures, each of
which describes one of the
block's input or output ports.
Each port structure has the
following fields:

• Type

Specifies the port's type
and/or number. The value of
this field can be:

• n, where n is the number
of the port for data ports

• 'enable' if the port is
an enable port

• 'trigger' if the port is
a trigger port

• 'state' for state ports
• 'ifaction' for action

ports
• 'LConn#' for a left

connection port where #
is the port's number

• 'RConn#' for a right
connection port where #
is the port's number

• Position

The value of this field is a
two-element vector, [x y],
that specifies the port's
position.

• SrcBlock

Handle of the block
connected to this port. This

structure array

6 Model and Block Parameters

6-122

Property Description Values
field is null for output ports
and -1 for unconnected
input ports. SrcBlock
property is a valid source
handle for Variant
Subsystem blocks.

• SrcPort

Number of the port
connected to this port,
starting at zero. This field is
null for both output ports
and unconnected input
ports.

• DstBlock

Handle of the block to which
this port is connected. This
field is null for input ports
and contains a 1-by-0 empty
matrix for unconnected
output ports.

• DstPort

Number of the port to which
this port is connected,
starting at zero. This field is
null for input ports and
contains a 1-by-0 empty
matrix for unconnected
output ports.

 Common Block Properties

6-123

Property Description Values
PortHandles The value of this property is a

structure that specifies the
handles of the block's ports. The
structure has the following
fields:

• Inport

Handles of the block's input
ports.

• Outport

Handles of the block's output
ports.

• Enable

Handle of the block's enable
port.

• Trigger

Handle of the block's trigger
port.

• State

Handle of the block's state
port.

• LConn

Handles of the block's left
connection ports (for blocks
that support Physical
Modeling tools).

• RConn

Handles of the block's right
connection ports (for blocks
that support Physical
Modeling tools).

structure array

6 Model and Block Parameters

6-124

Property Description Values
• Ifaction

Handle of the block's action
port.

• Reset

Handle of the block’s reset
port.

PortRotationType Type of port rotation used by
this block. This is a read-only
property.

'default' | 'physical'

Ports A vector that specifies the
number of each kind of port this
block has. The order of the
vector's elements corresponds
to the following port types:

• Inport
• Outport
• Enable
• Trigger
• State
• LConn
• RConn
• Ifaction
• Reset

vector

 Common Block Properties

6-125

Property Description Values
Position Position of block in model

window.

To help with block alignment,
the position you set can differ
from the actual block position
by a few pixels. Use get_param
to return the actual position.

vector of coordinates, in pixels:
[left top right bottom]

The origin is the upper-left
corner of the Simulink Editor
canvas before any canvas
resizing. The maximum absolute
value for a coordinate is 32767.
Positive values are to the right
of and down from the origin.
Negative values are to the left
of and up from the origin.

PostSaveFcn Function called after the block
is saved.

MATLAB expression

PreCopyFcn Function called before the block
is copied. See “Block Callback
Parameters” for details.

MATLAB expression

PreDeleteFcn Function called before the block
is deleted. See “Block Callback
Parameters” for details.

MATLAB expression

PreSaveFcn Function called before the block
is saved. See “Block Callback
Parameters” for details.

MATLAB expression

Priority Specifies the block's order of
execution relative to other
blocks in the same model. Set
by the Priority field on the
General pane of the Block
Properties dialog box.

character vector {''}

ReferenceBlock Name of the library block to
which this block links.

character vector {''}

RequirementInfo For internal use.

6 Model and Block Parameters

6-126

Property Description Values
RTWData User specified data, used by

Simulink Coder software.
Intended only for use with user
written S-functions. See the
section “S-Function RTWdata”
(Simulink Coder) for details.

SampleTime Value of the sample time
parameter. See “Specify Sample
Time” for more details.

character vector

Selected Status of whether or not block is
selected.

{'on'} | 'off'

ShowName Display or hide block name.

To display a block name given
by the Simulink Editor
(automatic names), set the block
'HideAutomaticName'
parameter to 'off' and
ShowName to 'on'. To hide an
automatic block name given by
the Editor, set ShowName to
'on', HideAutomaticName to
'on', and
HideAutomaticNames on the
model to 'on'. For more
information on how the
parameters interact, see “Hide
or Display Block Names”.

{'on'} | 'off'

StartFcn Function called at the start of a
simulation.

MATLAB expression

StatePerturbation‐
ForJacobian

State perturbation size to use
during linearization. See
“Change Perturbation Level of
Blocks Perturbed During
Linearization” (Simulink Control
Design) for details.

character vector

 Common Block Properties

6-127

Property Description Values
StaticLinkStatus Link status of block. Does not

update out-of-date linked blocks
when queried using
get_param. See also
LinkStatus.

'none' | 'resolved' |
'unresolved' |
'implicit' | 'inactive'
| 'restore' |
'propagate' |
'propagateHierarchy' |
'restoreHierarchy'

StopFcn Function called at the
termination of a simulation.

MATLAB expression

Tag Text that appears in the block
label that Simulink software
generates. Set by the Tag field
on the General pane of the
Block Properties dialog box.

character vector {''}

Type Simulink object type (read only). 'block'
UndoDeleteFcn Function called when block

deletion is undone.
MATLAB expression

UserData User-specified data that can
have any MATLAB data type.

{'[]'}

UserDataPersistent Status of whether or not
UserData will be saved in the
model file.

'on' | {'off'}

Examples of Setting Block Properties
These examples illustrate how to change common block properties.

This command changes the orientation of the Gain block in the mymodel system so it
faces the opposite direction (right to left).

set_param('mymodel/Gain','Orientation','left')

This command associates an OpenFcn callback with the Gain block in the mymodel
system.

set_param('mymodel/Gain','OpenFcn','my_open_cb')

6 Model and Block Parameters

6-128

This command sets the Position property of the Gain block in the mymodel system. The
block is 75 pixels wide by 25 pixels high.

set_param('mymodel/Gain','Position',[50 250 125 275])

 Common Block Properties

6-129

Block-Specific Parameters
To write scripts that create and modify models, you can use the get_param and
set_param functions to query and modify the properties and parameters of a block or
diagram. Use the tables to determine the programmatic name of a parameter or property
in a block dialog box.

• Continuous Library Block Parameters on page 6-132
• Discontinuities Library Block Parameters on page 6-137
• Discrete Library Block Parameters on page 6-141
• Logic and Bit Operations Library Block Parameters on page 6-158
• Lookup Tables Block Parameters on page 6-162
• Math Operations Library Block Parameters on page 6-175
• Model Verification Library Block Parameters on page 6-199
• Model-Wide Utilities Library Block Parameters on page 6-203
• Ports & Subsystems Library Block Parameters on page 6-205
• Signal Attributes Library Block Parameters on page 6-240
• Signal Routing LIbrary Block Parameters on page 6-248
• Sinks Library Block Parameters on page 6-258
• Sources Library Block Parameters on page 6-263
• String Block Parameters
• User-Defined Functions Library Block Parameters on page 6-275
• Additional Discrete Block Library Parameters on page 6-276
• Additional Math: Increment - Decrement Block Parameters on page 6-279

Programmatic Parameters of Blocks and Models
Programmatic parameters that describe a model are model parameters (see “Model
Parameters” on page 6-2). Parameters that describe a block are block parameters.
Parameters that are common to all Simulink blocks are common block parameters (see
“Common Block Properties” on page 6-111). Many blocks also have unique block-specific
parameters. A masked block can have mask parameters (see “Mask Parameters” on page
6-280).

6 Model and Block Parameters

6-130

The model and block properties also include callbacks, which are commands that execute
when a certain model or block event occurs. These events include opening a model,
simulating a model, copying a block, opening a block, etc. See “Model, Block, and Port
Callbacks”.

Tip For block parameters that accept array values, the number of elements in the array
cannot exceed what int_T can represent. This limitation applies to both simulation and
Simulink Coder code generation.

The maximum number of characters that a parameter edit field can contain is 49,000.

Block-Specific Parameters and Programmatic Equivalents
The tables list block-specific parameters for Simulink blocks. The type of the block
appears in parentheses after the block name. Some Simulink blocks work as masked
subsystems. The tables indicate masked blocks by adding the designation "masked
subsystem" after the block type.

The type listed for nonmasked blocks is the value of the BlockType parameter (see
“Common Block Properties” on page 6-111). The type listed for masked blocks is the
value of the MaskType parameter (see “Mask Parameters” on page 6-280).

The Dialog Box Prompt column indicates the text of the prompt for the parameter in the
block dialog box. The Values column shows the type of value required (scalar, vector,
variable), the possible values (separated with a vertical line), and the default value
(enclosed in braces).

 Block-Specific Parameters

6-131

Continuous Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Derivative (Derivative)
 CoefficientInTFapproxim
ation

Coefficient c in the transfer
function approximation s/(c*s
+1) used for linearization

{'inf'}

Integrator (Integrator)
 ExternalReset External reset {'none'} | 'rising' |

'falling' | 'either' |
'level' | 'level hold'

 InitialConditionSource Initial condition source {'internal'} |
'external'

 InitialCondition Initial condition scalar or vector — {'0'}
 LimitOutput Limit output {'off'} | 'on'
 UpperSaturationLimit Upper saturation limit scalar or vector — {'inf'}
 LowerSaturationLimit Lower saturation limit scalar or vector — {'-inf'}
 ShowSaturationPort Show saturation port {'off'} | 'on'
 ShowStatePort Show state port {'off'} | 'on'
 AbsoluteTolerance Absolute tolerance character vector, scalar, or

vector — {'auto'} | {'–1'} |
any real scalar or vector

 IgnoreLimit Ignore limit and reset when
linearizing

{'off'} | 'on'

 ZeroCross Enable zero–crossing detection 'off' | {'on'}
 ContinuousStateAttribut
es

State Name {''} | user-defined

 WrapState Wrap state {'off'} | 'on'
 WrappedStateUpperValue Upper value of wrapped state scalar or vector — {'pi'}
 WrappedStateLowerValue Lower value of wrapped state scalar or vector — {'-pi'}
Second-Order Integrator (SecondOrderIntegrator)
 ICSourceX Initial condition source x {'internal'} | 'external'

6 Model and Block Parameters

6-132

Block (Type)/Parameter Dialog Box Prompt Values
 ICX Initial condition x scalar or vector — {'0'}
 LimitX Limit x {'off'} | 'on'
 UpperLimitX Upper limit x scalar or vector — {'inf'}
 LowerLimitX Lower limit x scalar or vector — {'-inf'}
 WrapStateX Enable wrapping of x {'off'} | 'on'
 WrappedUpperValueX Upper value for wrapping x scalar or vector — {'pi'}
 WrappedLowerValueX Lower value for wrapping x scalar or vector — {'-pi'}
 AbsoluteToleranceX Absolute tolerance x character vector, scalar, or

vector — {'auto'} | {'–1'} |
any real scalar or vector

 StateNameX State name x {} | user-defined
 ICSourceDXDT Initial condition source dx/dt {'internal'} | 'external'
 ICDXDT Initial condition dx/dt scalar or vector — {'0'}
 LimitDXDT Limit dx/dt {'off'} | 'on'
 UpperLimitDXDT Upper limit dx/dt scalar or vector — {'inf'}
 LowerLimitDXDT Lower limit dx/dt scalar or vector — {'-inf'}
 AbsoluteToleranceDXDT Absolute tolerance dx/dt character vector, scalar, or

vector — {'auto'} | {'–1'} |
any real scalar or vector

 StateNameDXDT State name dx/dt {} | user-defined
 ExternalReset External reset {'none'} | 'rising' |

'falling' | 'either'
 ZeroCross Enable zero-crossing detection {'on'} | 'off'
 ReinitDXDTwhenXreachesS
aturation

Reinitialize dx/dt when x
reaches saturation

{'off'} | 'on'

 IgnoreStateLimitsAndRes
etForLinearization

Ignore state limits and the reset
for linearization

{'off'} | 'on'

 ShowOutput Show output {'both'} | 'x' | 'dxdt'
State-Space (StateSpace)
 A A matrix — {'1'}

 Block-Specific Parameters

6-133

Block (Type)/Parameter Dialog Box Prompt Values
 B B matrix — {'1'}
 C C matrix — {'1'}
 D D matrix — {'1'}
 InitialCondition Initial conditions vector — {'0'}
 AbsoluteTolerance Absolute tolerance character vector, scalar, or

vector — {'auto'} | {'–1'} |
any real scalar or vector

 ContinuousStateAttribut
es

State Name {''} | user-defined

Transfer Fcn (TransferFcn)
 Numerator Numerator coefficients vector or matrix — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 1]'}
 AbsoluteTolerance Absolute tolerance character vector, scalar, or

vector — {'auto'} | {'–1'} |
any real scalar or vector

 ContinuousStateAttribut
es

State Name {''} | user-defined

Transport Delay (TransportDelay)
 DelayTime Time delay scalar or vector — {'1'}
 InitialOutput Initial output scalar or vector — {'0'}
 BufferSize Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input

during linearization
{'off'} | 'on'

 PadeOrder Pade order (for linearization) {'0'}
Variable Time Delay (VariableTimeDelay)
 VariableDelayType Select delay type 'Variable transport

delay' | {'Variable time
delay'}

 MaximumDelay Maximum delay scalar or vector — {'10'}

6 Model and Block Parameters

6-134

Block (Type)/Parameter Dialog Box Prompt Values
 InitialOutput Initial output scalar or vector — {'0'}
 MaximumPoints Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size {'off'} | 'on'
 ZeroDelay Handle zero delay {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input

during linearization
{'off'} | 'on'

 PadeOrder Pade order (for linearization) {'0'}
 ContinuousStateAttribut
es

State Name {''} | user-defined

Variable Transport Delay (VariableTransportDelay)
 VariableDelayType Select delay type {'Variable transport

delay'} | 'Variable time
delay'

 MaximumDelay Maximum delay scalar or vector — {'10'}
 InitialOutput Initial output scalar or vector — {'0'}
 MaximumPoints Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input

during linearization
{'off'} | 'on'

 PadeOrder Pade order (for linearization) {'0'}
 AbsoluteTolerance Absolute tolerance character vector, scalar, or

vector — {'auto'} | {'–1'} |
any positive real scalar or
vector

 ContinuousStateAttribut
es

State Name {''} | user-defined

Zero-Pole (ZeroPole)
 Zeros Zeros vector — {'[1]'}
 Poles Poles vector — {'[0 -1]'}
 Gain Gain vector — {'[1]'}

 Block-Specific Parameters

6-135

Block (Type)/Parameter Dialog Box Prompt Values
 AbsoluteTolerance Absolute tolerance character vector, scalar, or

vector — {'auto'} | {'–1'} |
any positive real scalar or
vector

 ContinuousStateAttribut
es

State Name {''} | user-defined

6 Model and Block Parameters

6-136

Discontinuities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Backlash (Backlash)
 BacklashWidth Deadband width scalar or vector — {'1'}
 InitialOutput Initial output scalar or vector — {'0'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked subsystem)
 offset Coulomb friction value (Offset) {'[1 3 2 0]'}
 gain Coefficient of viscous friction

(Gain)
{'1'}

Dead Zone (DeadZone)
 LowerValue Start of dead zone scalar or vector — {'-0.5'}
 UpperValue End of dead zone scalar or vector — {'0.5'}
 SaturateOnIntegerOverfl
ow

Saturate on integer overflow 'off' | {'on'}

 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Dead Zone Dynamic (Dead Zone Dynamic) (masked subsystem)
Hit Crossing (HitCross)
 HitCrossingOffset Hit crossing offset scalar or vector — {'0'}
 HitCrossingDirection Hit crossing direction 'rising' | 'falling' |

{'either'}
 ShowOutputPort Show output port 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Quantizer (Quantizer)
 QuantizationInterval Quantization interval scalar or vector — {'0.5'}

 Block-Specific Parameters

6-137

Block (Type)/Parameter Dialog Box Prompt Values
 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Rate Limiter (RateLimiter)
 RisingSlewLimit Rising slew rate {'1'}
 FallingSlewLimit Falling slew rate {'-1'}
 SampleTimeMode Sample time mode 'continuous' |

{'inherited'}
 InitialCondition Initial condition {'0'}
 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
Rate Limiter Dynamic (Rate Limiter Dynamic) (masked subsystem)
Relay (Relay)
 OnSwitchValue Switch on point {'eps'}
 OffSwitchValue Switch off point {'eps'}
 OnOutputValue Output when on {'1'}
 OffOutputValue Output when off {'0'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

back propagation' |
{'Inherit: All ports
same datatype'} |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

6 Model and Block Parameters

6-138

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

Saturation (Saturate)
 UpperLimit Upper limit scalar or vector — {'0.5'}
 LowerLimit Lower limit scalar or vector — {'-0.5'}
 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

back propagation' |
{'Inherit: Same as
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

Saturation Dynamic (Saturation Dynamic) (masked subsystem)
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-139

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Same as

second input'} |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingMo
de

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate on integer overflow {'off'} | 'on'
Wrap To Zero (Wrap To Zero) (masked subsystem)
 Threshold Threshold {'255'}

6 Model and Block Parameters

6-140

Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Delay (Delay)
 DelayLengthSource Delay length > Source {'Dialog'} | 'Input

port'
 DelayLength Delay length > Value {'2'}
 DelayLengthUpperLimit Delay length > Upper limit {'100'}
 InitialConditionSource Initial condition > Source {'Dialog'} | 'Input

port'
 InitialCondition Initial condition > Value {'0.0'}
 ExternalReset External reset {'None'} | 'Rising' |

'Falling' | 'Either' |
'Level' | 'Level hold'

 InputProcessing Input processing 'Columns as channels
(frame based)' |
{'Elements as channels
(sample based)'} |
'Inherited'

 UseCircularBuffer Use circular buffer for state {'off'} | 'on'
 PreventDirectFeedthroug
h

Prevent direct feedthrough {'off'} | 'on'

 RemoveDelayLengthCheckI
nGeneratedCode

Remove delay length check in
generated code

{'off'} | 'on'

 DiagnosticForDelayLengt
h

Diagnostic for delay length {'None'} | 'Warning' |
'Error'

 SampleTime Sample time (–1 for inherited) {'-1'}
 StateName State name {''}
 StateMustResolveToSigna
lObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 Block-Specific Parameters

6-141

Block (Type)/Parameter Dialog Box Prompt Values
 StateStorageClass Code generation storage class {'Auto'} | 'Model

default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

 CodeGenStateStorageType
Qualifier

Code generation storage type
qualifier

{''}

Difference (Difference) (masked subsystem)
 ICPrevInput Initial condition for previous

input
{'0.0'}

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingMo
de

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

6 Model and Block Parameters

6-142

Block (Type)/Parameter Dialog Box Prompt Values
 DoSatur Saturate to max or min when

overflows occur
{'off'} | 'on'

Discrete Derivative (Discrete Derivative) (masked subsystem)
 gainval Gain value {'1.0'}
 ICPrevScaledInput Initial condition for previous

weighted input K*u/Ts
{'0.0'}

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Discrete FIR Filter (Discrete FIR Filter)

 Block-Specific Parameters

6-143

Block (Type)/Parameter Dialog Box Prompt Values
 CoefSource Coefficient source {'Dialog parameters'} |

'Input port'
 FilterStructure Filter structure {'Direct form'} |

'Direct form symmetric'
| 'Direct form
antisymmetric' | 'Direct
form transposed' |
'Lattice MA'

Note You must have a DSP
System Toolbox license to use a
filter structure other than
Direct form.

 Coefficients Coefficients vector — {'[0.5 0.5]'}
 InputProcessing Input processing 'Columns as channels

(frame based)' |
{'Elements as channels
(sample based)'}

 InitialStates Initial states scalar or vector — {'0'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 CoefMin Coefficients minimum {'[]'}
 CoefMax Coefficients maximum {'[]'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 TapSumDataTypeStr Tap sum data type {'Inherit: Same as

input'} | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)'

6 Model and Block Parameters

6-144

Block (Type)/Parameter Dialog Box Prompt Values
 CoefDataTypeStr Coefficients data type {'Inherit: Same word

length as input'} |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16)' |
'fixdt(1,16,0)'

 ProductDataTypeStr Product output data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'Inherit: Same as
product output' | 'int8'
| 'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)'

 StateDataTypeStr State data type 'Inherit: Same as input'
| {'Inherit: Same as
accumulator'} | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)'

 Block-Specific Parameters

6-145

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type 'Inherit: Same as input'

| {'Inherit: Same as
accumulator'} | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)'
| 'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverfl
ow

Saturate on integer overflow {'off'} | 'on'

Discrete Filter (DiscreteFilter)
 Numerator Numerator coefficients vector — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 0.5]'}
 IC Initial states {'0'}
 SampleTime Sample time (-1 for inherited) {'1'}
 a0EqualsOne Optimize by skipping divide by

leading denominator coefficient
(a0)

{'off'} | 'on'

 NumCoefMin Numerator coefficient minimum {'[]'}
 NumCoefMax Numerator coefficient maximum {'[]'}
 DenCoefMin Denominator coefficient

minimum
{'[]'}

 DenCoefMax Denominator coefficient
maximum

{'[]'}

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

6 Model and Block Parameters

6-146

Block (Type)/Parameter Dialog Box Prompt Values
 StateDataTypeStr State data type {'Inherit: Same as

input'} | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 NumCoefDataTypeStr Numerator coefficient data type {'Inherit: Inherit via
internal rule'} | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16)' |
'fixdt(1,16,0)'

 DenCoefDataTypeStr Denominator coefficient data
type

{'Inherit: Inherit via
internal rule'} | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16)' |
'fixdt(1,16,0)'

 NumProductDataTypeStr Numerator product output data
type

{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'int8' | 'int16' |
'int32' |
'fixdt(1,16,0)'

 DenProductDataTypeStr Denominator product output
data type

{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'int8' | 'int16' |
'int32' |
'fixdt(1,16,0)'

 NumAccumDataTypeStr Numerator accumulator data
type

{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'Inherit: Same as
product output' | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16,0)'

 Block-Specific Parameters

6-147

Block (Type)/Parameter Dialog Box Prompt Values
 DenAccumDataTypeStr Denominator accumulator data

type
{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'Inherit: Same as
product output' | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16,0)'

 OutDataTypeStr Output data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'int8' | 'int16' |
'int32' |
'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverfl
ow

Saturate on integer overflow {'off'} | 'on'

 StateName State name {''}
 StateMustResolveToSig
nalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

6 Model and Block Parameters

6-148

Block (Type)/Parameter Dialog Box Prompt Values
 RTWStateStorageTypeQua
lifier

Code generation storage type
qualifier

{''}

Discrete State-Space (DiscreteStateSpace)
 A A matrix — {'1'}
 B B matrix — {'1'}
 C C matrix — {'1'}
 D D matrix — {'1'}
 InitialCondition Initial conditions vector — {'0'}
 SampleTime Sample time (-1 for inherited) {'1'}
 StateName State name {''}
 StateMustResolveToSig
nalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

 RTWStateStorageTypeQu
alifier

Code generation storage type
qualifier

{''}

Discrete Transfer Fcn (DiscreteTransferFcn)
 Numerator Numerator coefficients vector — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 0.5]'}
 InitialStates Initial states {'0'}
 SampleTime Sample time (-1 for inherited) {'1'}

 Block-Specific Parameters

6-149

Block (Type)/Parameter Dialog Box Prompt Values
 a0EqualsOne Optimize by skipping divide by

leading denominator coefficient
(a0)

{'off'} | 'on'

 NumCoefMin Numerator coefficient minimum {'[]'}
 NumCoefMax Numerator coefficient maximum {'[]'}
 DenCoefMin Denominator coefficient

minimum
{'[]'}

 DenCoefMax Denominator coefficient
maximum

{'[]'}

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 StateDataTypeStr State data type {'Inherit: Same as

input'} | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 NumCoefDataTypeStr Numerator coefficient data type {'Inherit: Inherit via
internal rule'} | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16,0)'

 DenCoefDataTypeStr Denominator coefficient data
type

{'Inherit: Inherit via
internal rule'} | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16,0)'

 NumProductDataTypeStr Numerator product output data
type

{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'int8' | 'int16' |
'int32' |
'fixdt(1,16,0)'

6 Model and Block Parameters

6-150

Block (Type)/Parameter Dialog Box Prompt Values
 DenProductDataTypeStr Denominator product output

data type
{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'int8' | 'int16' |
'int32' |
'fixdt(1,16,0)'

 NumAccumDataTypeStr Numerator accumulator data
type

{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'Inherit: Same as
product output' | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16,0)'

 DenAccumDataTypeStr Denominator accumulator data
type

{'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'Inherit: Same as
product output' | 'int8'
| 'int16' | 'int32' |
'fixdt(1,16,0)'

 OutDataTypeStr Output data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Same as input'
| 'int8' | 'int16' |
'int32' |
'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverf
low

Saturate on integer overflow {'off'} | 'on'

 StateName State name {''}

 Block-Specific Parameters

6-151

Block (Type)/Parameter Dialog Box Prompt Values
 StateMustResolveToSigna
lObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

 RTWStateStorageTypeQua
lifier

Code generation storage type
qualifier

{''}

Discrete Zero-Pole (DiscreteZeroPole)
 Zeros Zeros vector — {'[1]'}
 Poles Poles vector — {'[0 0.5]'}
 Gain Gain {'1'}
 SampleTime Sample time (-1 for inherited) {'1'}
 StateName State name {''}
 StateMustResolveToSign
alObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

6 Model and Block Parameters

6-152

Block (Type)/Parameter Dialog Box Prompt Values
 RTWStateStorageType
 Qualifier

Code generation storage type
qualifier

{''}

Discrete-Time Integrator (DiscreteIntegrator)
 IntegratorMethod Integrator method {'Integration: Forward

Euler'} | 'Integration:
Backward Euler' |
'Integration:
Trapezoidal' |
'Accumulation: Forward
Euler' | 'Accumulation:
Backward Euler' |
'Accumulation:
Trapezoidal'

 gainval Gain value {'1.0'}
 ExternalReset External reset {'none'} | 'rising' |

'falling' | 'either' |
'level' | 'sampled
level'

 InitialConditionSource Initial condition source {'internal'} |
'external'

 InitialCondition Initial condition scalar or vector — {'0'}
 InitialConditionSetting Initial condition setting {'State (most

efficient)'} | 'Output'
| 'Compatibility'

 SampleTime Sample time (-1 for inherited) {'1'}
 LimitOutput Limit output {'off'} | 'on'
 UpperSaturationLimit Upper saturation limit scalar or vector — {'inf'}
 LowerSaturationLimit Lower saturation limit scalar or vector — {'-inf'}
 ShowSaturationPort Show saturation port {'off'} | 'on'
 ShowStatePort Show state port {'off'} | 'on'
 IgnoreLimit Ignore limit and reset when

linearizing
{'off'} | 'on'

 Block-Specific Parameters

6-153

Block (Type)/Parameter Dialog Box Prompt Values
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 StateName State name {''}
 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

6 Model and Block Parameters

6-154

Block (Type)/Parameter Dialog Box Prompt Values
 RTWStateStorageType
 Qualifier

Code generation storage type
qualifier

{''}

First-Order Hold (First-Order Hold) (masked subsystem)
 Ts Sample time {'1'}
Memory (Memory)
 InitialCondition Initial condition scalar or vector — {'0'}
 InheritSampleTime Inherit sample time {'off'} | 'on'
 LinearizeMemory Direct feedthrough of input

during linearization
{'off'} | 'on'

 LinearizeAsDelay Treat as a unit delay when
linearizing with discrete sample
time

{'off'} | 'on'

 StateName State name {''}
 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

 RTWStateStorageType
 Qualifier

Code generation storage type
qualifier

{''}

Tapped Delay (S-Function) (Tapped Delay Line) (masked subsystem)
 vinit Initial condition {'0.0'}
 samptime Sample time {'-1'}
 NumDelays Number of delays {'4'}

 Block-Specific Parameters

6-155

Block (Type)/Parameter Dialog Box Prompt Values
 DelayOrder Order output vector starting

with
{'Oldest'} | 'Newest'

 includeCurrent Include current input in output
vector

{'off'} | 'on'

Transfer Fcn First Order (First Order Transfer Fcn) (masked subsystem)
 PoleZ Pole (in Z plane) {'0.95'}
 ICPrevOutput Initial condition for previous

output
{'0.0'}

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Lead or Lag (Lead or Lag Compensator) (masked subsystem)
 PoleZ Pole of compensator (in Z plane) {'0.95'}
 ZeroZ Zero of compensator (in Z

plane)
{'0.75'}

 ICPrevOutput Initial condition for previous
output

{'0.0'}

 ICPrevInput Initial condition for previous
input

{'0.0'}

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Real Zero (Transfer Fcn Real Zero) (masked subsystem)
 ZeroZ Zero (in Z plane) {'0.75'}
 ICPrevInput Initial condition for previous

input
{'0.0'}

6 Model and Block Parameters

6-156

Block (Type)/Parameter Dialog Box Prompt Values
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'

| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Unit Delay (UnitDelay)
 InitialCondition Initial condition scalar or vector — {'0'}
 InputProcessing Input processing 'Columns as channels

(frame based)' |
{'Elements as channels
(sample based)'} |
'Inherited'

 SampleTime Sample time (-1 for inherited) {'-1'}
 StateName State name {''}
 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

 CodeGenStateStorageTy
pe
 Qualifier

Code generation storage type
qualifier

{''}

Zero-Order Hold (ZeroOrderHold)
 SampleTime Sample time (-1 for inherited) {'1'}

 Block-Specific Parameters

6-157

Logic and Bit Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Bit Clear (Bit Clear) (masked subsystem)
 iBit Index of bit (0 is least

significant)
{'0'}

Bit Set (Bit Set) (masked subsystem)
 iBit Index of bit (0 is least

significant)
{'0'}

Bitwise Operator (S-Function) (Bitwise Operator) (masked subsystem)
 logicop Operator {'AND'} | 'OR' | 'NAND'

| 'NOR' | 'XOR' | 'NOT'
 UseBitMask Use bit mask ... 'off' | {'on'}
 NumInputPorts Number of input ports {'1'}
 BitMask Bit Mask {'bin2dec('11011001')'}
 BitMaskRealWorld Treat mask as 'Real World Value' |

{'Stored Integer'}
Combinatorial Logic (CombinatorialLogic)
 TruthTable Truth table {'[0 0;0 1;0 1;1 0;0 1;1

0;1 0;1 1]'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Compare To Constant (Compare To Constant) (masked subsystem)
 relop Operator '==' | '~=' | '<' |

{'<='} | '>=' | '>'
 const Constant value {'3.0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
Compare To Zero (Compare To Zero) (masked subsystem)
 relop Operator '==' | '~=' | '<' |

{'<='} | '>=' | '>'
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
 ZeroCross Enable zero-crossing detection 'off' | {'on'}

6 Model and Block Parameters

6-158

Block (Type)/Parameter Dialog Box Prompt Values
Detect Change (Detect Change) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Decrease (Detect Decrease) (masked subsystem)
 vinit Initial condition {'0.0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Fall Negative (Detect Fall Negative) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Fall Nonpositive (Detect Fall Nonpositive) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Increase (Detect Increase) (masked subsystem)
 vinit Initial condition {'0.0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Rise Nonnegative (Detect Rise Nonnegative) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Rise Positive (Detect Rise Positive) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Extract Bits (Extract Bits) (masked subsystem)
 bitsToExtract Bits to extract {'Upper half'} | 'Lower

half' | 'Range starting
with most significant
bit' | 'Range ending
with least significant
bit' | 'Range of bits'

 numBits Number of bits {'8'}

 Block-Specific Parameters

6-159

Block (Type)/Parameter Dialog Box Prompt Values
 bitIdxRange Bit indices ([start end], 0-based

relative to LSB)
{'[0 7]'}

 outScalingMode Output scaling mode {'Preserve fixed-point
scaling'} | 'Treat bit
field as an integer'

Interval Test (Interval Test) (masked subsystem)
 IntervalClosedRight Interval closed on right 'off' | {'on'}
 uplimit Upper limit {'0.5'}
 IntervalClosedLeft Interval closed on left 'off' | {'on'}
 lowlimit Lower limit {'-0.5'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Interval Test Dynamic (Interval Test Dynamic) (masked subsystem)
 IntervalClosedRight Interval closed on right 'off' | {'on'}
 IntervalClosedLeft Interval closed on left 'off' | {'on'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Logical Operator (Logic)
 Operator Operator {'AND'} | 'OR' | 'NAND'

| 'NOR' | 'XOR' | 'NXOR'
| 'NOT'

 Inputs Number of input ports {'2'}
 IconShape Icon shape {'rectangular'} |

'distinctive'
 SampleTime Sample time (-1 for inherited) {'-1'}
 AllPortsSameDT Require all inputs and output to

have the same data type
{'off'} | 'on'

 OutDataTypeStr Output data type 'Inherit: Logical (see
Configuration
Parameters:
Optimization)' |
{'boolean'} |
'fixdt(1,16)'

6 Model and Block Parameters

6-160

Block (Type)/Parameter Dialog Box Prompt Values
Relational Operator (RelationalOperator)
 Operator Relational operator '==' | '~=' | '<' |

{'<='} | '>=' | '>' |
'isInf' | 'isNaN' |
'isFinite'

 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the

same data type
{'off'} | 'on'

 OutDataTypeStr Output data type 'Inherit: Logical (see
Configuration
Parameters:
Optimization)' |
{'boolean'} |
'fixdt(1,16)'

Shift Arithmetic (ArithShift)
 BitShiftNumberSource Bits to shift > Source {'Dialog'} | 'Input

port'
 BitShiftDirection Bits to shift > Direction 'Left' | 'Right' |

{'Bidirectional'}
 BitShiftNumber Bits to shift > Number {'8'}
 BinPtShiftNumber Binary points to shift > Number {'0'}
 DiagnosticForOORShift Diagnostic for out-of-range shift

value
{'None'} | 'Warning' |
'Error'

 CheckOORBitShift Check for out-of-range 'Bits to
shift' in generated code

{'off'} | 'on'

 nBitShiftRight Deprecated in R2011a
 nBinPtShiftRight Deprecated in R2011a

 Block-Specific Parameters

6-161

Lookup Tables Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Cosine (Cosine) (masked subsystem)
 Formula Output formula 'sin(2*pi*u)' |

{'cos(2*pi*u)'} |
'exp(j*2*pi*u)' |
'sin(2*pi*u) and cos(2*pi*u)'

 NumDataPoints Number of data points for
lookup table

{'(2^5)+1'}

 OutputWordLength Output word length {'16'}
 InternalRulePriority Internal rule priority for

lookup table
{'Speed'} | 'Precision'

Direct Lookup Table (n-D) (LookupNDDirect)
 NumberOfTableDimension
s

Number of table dimensions '1' | {'2'} | '3' | '4'

 InputsSelectThisObject
FromTable

Inputs select this object
from table

{'Element'} | 'Vector' | '2-D
Matrix'

 TableIsInput Make table an input {'off'} | 'on'
 Table Table data {'[4 5 6;16 19 20;10 18 23]'}
 DiagnosticForOutOfRang
eInput

Diagnostic for out-of-range
input

'None' | {'Warning'} |
'Error'

 SampleTime Sample time (-1 for
inherited)

{'-1'}

 TableMin Table minimum {'[]'}
 TableMax Table maximum {'[]'}
 TableDataTypeStr Table data type {'Inherit: Inherit from

'Table data''} | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32' | 'boolean' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-162

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock data type settings

against changes by the
fixed-point tools

{'off'} | 'on'

 maskTabDims Deprecated in R2009b
 explicitNumDims Deprecated in R2009b
 outDims Deprecated in R2009b
 tabIsInput Deprecated in R2009b
 mxTable Deprecated in R2009b
 clipFlag Deprecated in R2009b
 samptime Deprecated in R2009b
Interpolation Using Prelookup (Interpolation_n-D)
 NumberOfTableDimension
s

Number of table dimensions '1' | {'2'} | '3' | '4'

 Table Table data > Value {'sqrt([1:11]' * [1:11])'}
 TableSource Table data > Source {'Dialog'} | 'Input port'
 TableSpecification Specification {'Explicit values'} | |

'Lookup table object'

To set this parameter from
'Explicit values' to 'Lookup
table object', use the same call to
set_param to set the parameter
LookupTableObject. For example:

set_param('myModel/myInterpBlock',...
'TableSpecification',...
'Lookup table object',...
'LookupTableObject','myLUTObject')

 LookupTableObject Name of lookup table object {''}
 InterpMethod Interpolation method 'Flat' | {'Linear point-

slope'} | 'Nearest' | 'Linear
Lagrange'

 ExtrapMethod Extrapolation method 'Clip' | {'Linear'}

 Block-Specific Parameters

6-163

Block (Type)/Parameter Dialog Box Prompt Values
 ValidIndexMayReachLast Valid index input may reach

last index
{'off'} | 'on'

 DiagnosticForOutOfRang
e
 Input

Diagnostic for out-of-range
input

{'None'} | 'Warning' |
'Error'

 RemoveProtectionIndex Remove protection against
out-of-range index in
generated code

{'off'} | 'on'

 NumSelectionDims Number of sub-table
selection dimensions

{'0'}

 SampleTime Sample time (-1 for
inherited)

{'-1'}

 TableDataTypeStr Table data > Data Type 'Inherit: Inherit from 'Table
data'' | {'Inherit: Same as
output'} | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 TableMin Table data > Minimum {'[]'}
 TableMax Table data > Maximum {'[]'}
 IntermediateResultsDat
aTypeStr

Intermediate results > Data
Type

{'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as output' | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-164

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output > Data Type 'Inherit: Inherit via back

propagation' | {'Inherit:
Inherit from table data'} |
'double' | 'single' | 'int8'
| 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32'
| 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output > Minimum {'[]'}
 OutMax Output > Maximum {'[]'}
 InternalRulePriority Internal rule priority {'Speed'} | 'Precision'
 LockScale Lock data type settings

against changes by the
fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' | 'Zero'

 SaturateOnIntegerOverf
low

Saturate on integer
overflow

{'off'} | 'on'

 CheckIndexInCode Deprecated in R2011a
n-D Lookup Table, 1-D Lookup Table, 2-D Lookup Table (Lookup_n-D)
 NumberOfTable‐
Dimensions

Number of table dimensions '1' | '2' | '3' | '4'. Default
is ‘1’ for 1-D Lookup Table, ‘2’ for 2-D
Lookup Table, ‘3’ for n-D Lookup
Table.

 Block-Specific Parameters

6-165

Block (Type)/Parameter Dialog Box Prompt Values
 DataSpecification (n-D Lookup Table) Data

specification
{'Table and breakpoints'} |
'Lookup table object'

To set this parameter from 'Table
and breakpoints' to 'Lookup
table object', use the same call to
set_param to set the parameter
LookupTableObject. For example:

set_param('myModel/myLookupBlock',...
'DataSpecification','Lookup table...
object',...
'LookupTableObject','myLUTObject')

 LookupTableObject Name of lookup table
object.

{''}

 Table Table data {'reshape(repmat([4 5 6;16 19
20;10 18 23],1,2),[3,3,2])'}

 BreakpointsSpecifi‐
cation

Breakpoints specification {'Explicit values'} | 'Even
spacing'

 BreakpointsFor‐
Dimension1FirstPoint

First point {'1'}

 BreakpointsFor‐
Dimension2FirstPoint

First point {'1'}

 BreakpointsFor‐
Dimension3FirstPoint

First point {'1'}

 BreakpointsFor‐
Dimension30FirstPoint

First point {'1'}

 BreakpointsFor‐
Dimension1Spacing

Spacing {'1'}

 BreakpointsFor‐
Dimension2Spacing

Spacing {'1'}

 BreakpointsFor‐
Dimension3Spacing

Spacing {'1'}

6 Model and Block Parameters

6-166

Block (Type)/Parameter Dialog Box Prompt Values

 BreakpointsFor‐
Dimension30Spacing

Spacing {'1'}

 BreakpointsFor‐
Dimension1

Breakpoints 1 {'[10,22,31]'}

 BreakpointsForDimensio
n2

Breakpoints 2 {'[10,22,31]'}

 BreakpointsFor‐
Dimension3

Breakpoints 3 {'[5, 7]'}

 BreakpointsFor‐
Dimension30

Breakpoints 30 {'[1:3]'}

 SampleTime Sample time (-1 for
inherited)

{'-1'}

 InterpMethod Interpolation method 'Flat' | 'Nearest' | {'Linear
point-slope'} | 'Linear
Lagrange' | 'Cubic spline'

 ExtrapMethod Extrapolation method 'Clip' | {'Linear'} | 'Cubic
spline'

 UseLastTableValue Use last table value for
inputs at or above last
breakpoint

{'off'} | 'on'

 DiagnosticForOutOfRang
e
 Input

Diagnostic for out-of-range
input

{'None'} | 'Warning' |
'Error'

 RemoveProtectionInput Remove protection against
out-of-range input in
generated code

{'off'} | 'on'

 IndexSearchMethod Index search method 'Evenly spaced points' |
'Linear search' | {'Binary
search'}

 BeginIndexSearchUsing
 PreviousIndexResult

Begin index search using
previous index result

{'off'} | 'on'

 Block-Specific Parameters

6-167

Block (Type)/Parameter Dialog Box Prompt Values
 UseOneInputPortForAll
 InputData

Use one input port for all
input data

{'off'} | 'on'

 SupportTunableTableSiz
e

Support tunable table size
in code generation

{'off'} | 'on'

 MaximumIndicesForEach
 Dimension

Maximum indices for each
dimension

{'[]'}

 TableDataTypeStr Table data > Data Type 'Inherit: Inherit from 'Table
data'' | {'Inherit: Same as
output'} | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 TableMin Table data > Minimum {'[]'}
 TableMax Table data > Maximum {'[]'}
 BreakpointsForDimensio
n1
 DataTypeStr

Breakpoints 1 > Data Type {'Inherit: Same as
corresponding input'} |
'Inherit: Inherit from
'Breakpoint data'' | 'double'
| 'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 BreakpointsForDimensio
n1
 Min

Breakpoints 1 > Minimum {'[]'}

 BreakpointsForDimensio
n1
 Max

Breakpoints 1 > Maximum {'[]'}

6 Model and Block Parameters

6-168

Block (Type)/Parameter Dialog Box Prompt Values
 BreakpointsForDimensio
n2
 DataTypeStr

Breakpoints 2 > Data Type {'Inherit: Same as
corresponding input'} |
'Inherit: Inherit from
'Breakpoint data'' | 'double'
| 'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 BreakpointsForDimensio
n2
 Min

Breakpoints 2 > Minimum {'[]'}

 BreakpointsForDimensio
n2
 Max

Breakpoints 2 > Maximum {'[]'}

 BreakpointsForDimensio
n30
 DataTypeStr

Breakpoints 30 > Data Type {'Inherit: Same as
corresponding input'} |
'Inherit: Inherit from
'Breakpoint data'' | 'double'
| 'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 BreakpointsForDimensio
n30
 Min

Breakpoints 30 > Minimum {'[]'}

 BreakpointsForDimensio
n30
 Max

Breakpoints 30 > Maximum {'[]'}

 Block-Specific Parameters

6-169

Block (Type)/Parameter Dialog Box Prompt Values
 FractionDataTypeStr Fraction > Data Type {'Inherit: Inherit via

internal rule'} | 'double' |
'single' | 'fixdt(1,16,0)'

 IntermediateResults
 DataTypeStr

Intermediate results > Data
Type

'Inherit: Inherit via
internal rule' | {'Inherit:
Same as output'} | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 OutDataTypeStr Output > Data Type 'Inherit: Inherit via back
propagation' | 'Inherit:
Inherit from table data' |
{'Inherit: Same as first
input'} | 'double' | 'single'
| 'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output > Minimum {'[]'}
 OutMax Output > Maximum {'[]'}
 InternalRulePriority Internal rule priority {'Speed'} | 'Precision'
 InputSameDT Require all inputs to have

the same data type
'off' | {'on'}

 LockScale Lock data type settings
against changes by the
fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
'Floor' | 'Nearest' | 'Round'
| {'Simplest'} | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer
overflow

{'off'} | 'on'

 ProcessOutOfRangeInput Deprecated in R2009b
Lookup Table Dynamic (Lookup Table Dynamic) (masked subsystem)

6 Model and Block Parameters

6-170

Block (Type)/Parameter Dialog Box Prompt Values
 LookUpMeth Lookup Method 'Interpolation-Extrapolation'

| {'Interpolation-Use End
Values'} | 'Use Input
Nearest' | 'Use Input Below'
| 'Use Input Above'

 OutDataTypeStr Output data type {'fixdt('double')'} |
'Inherit: Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type

setting against changes by
the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round'| 'Simplest' | 'Zero'

 DoSatur Saturate to max or min
when overflows occur

{'off'} | 'on'

Prelookup (PreLookup)

 Block-Specific Parameters

6-171

Block (Type)/Parameter Dialog Box Prompt Values
 BreakpointsSpecificati
on

Specification {'Explicit values'} | 'Even
spacing' | 'Breakpoint
object'

To set this parameter from
'Explicit values' or 'Even
spacing' to 'Breakpoint
object', use the same call to
set_param to set the parameter
BreakpointObject. For example:

set_param('myModel/myPrelookupBlock',...
'BreakpointsSpecification',...
'Breakpoint object',...
'BreakpointObject','myBPObject')

 BreakpointObject Name of breakpoint object {''}
 BreakpointsFirstPoint First point {'10'}
 BreakpointsSpacing Spacing {'10'}
 BreakpointsNumPoints Number of points {'11'}
 BreakpointsData Value {'[10:10:110]'}
 BreakpointsDataSource Source {'Dialog'} | 'Input port'
 IndexSearchMethod Index search method 'Evenly spaced points' |

'Linear search' | {'Binary
search'}

 BeginIndexSearchUsing
 PreviousIndexResult

Begin index search using
previous index result

{'off'} | 'on'

 OutputOnlyTheIndex Output only the index {'off'} | 'on'
 ExtrapMethod Extrapolation method 'Clip' | {'Linear'}
 UseLastBreakpoint Use last breakpoint for

input at or above upper
limit

{'off'} | 'on'

 DiagnosticForOutOfRang
e
 Input

Diagnostic for out-of-range
input

{'None'} | 'Warning' |
'Error'

6 Model and Block Parameters

6-172

Block (Type)/Parameter Dialog Box Prompt Values
 RemoveProtectionInput Remove protection against

out-of-range input in
generated code

{'off'} | 'on'

 SampleTime Sample time (-1 for
inherited)

{'-1'}

 BreakpointDataTypeStr Breakpoint > Data Type {'Inherit: Same as input'} |
'Inherit: Inherit from
'Breakpoint data'' | 'double'
| 'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 BreakpointMin Breakpoint > Minimum {'[]'}
 BreakpointMax Breakpoint > Maximum {'[]'}
 IndexDataTypeStr Index > Data Type 'int8' | 'uint8' | 'int16' |

'uint16' | 'int32' |
{'uint32'} | 'fixdt(1,16)'

 FractionDataTypeStr Fraction > Data Type {'Inherit: Inherit via
internal rule'} | 'double' |
'single' | 'fixdt(1,16,0)'

 LockScale Lock output data type
setting against changes by
the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' | 'Zero'

 ProcessOutOfRangeInput Deprecated in R2011a
Sine (Sine) (masked subsystem)
 Formula Output formula {'sin(2*pi*u)'} |

'cos(2*pi*u)' |
'exp(j*2*pi*u)' |
'sin(2*pi*u) and cos(2*pi*u)'

 Block-Specific Parameters

6-173

Block (Type)/Parameter Dialog Box Prompt Values
 NumDataPoints Number of data points for

lookup table
{'(2^5)+1'}

 OutputWordLength Output word length {'16'}
 InternalRulePriority Internal rule priority for

lookup table
{'Speed'} | 'Precision'

6 Model and Block Parameters

6-174

Math Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Abs (Abs)
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' |
'Inherit: Inherit via
back propagation' |
{'Inherit: Same as
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Add (Sum)
 IconShape Icon shape {'rectangular'} |

'round'
 Inputs List of signs {'++'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'

 Block-Specific Parameters

6-175

Block (Type)/Parameter Dialog Box Prompt Values
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the

same data type
{'off'} | 'on'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'Inherit: Same
as accumulator' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

6 Model and Block Parameters

6-176

Block (Type)/Parameter Dialog Box Prompt Values
 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Algebraic Constraint (Algebraic Constraint)
 Constraint Constraint on input signal {'f(z) = 0'} | 'f(z) =

z'
 Solver Algebraic Loop Solver {'auto'} | 'Trust

Region' | 'Line Search'
 Tolerance Solver Tolerance {'auto'}
 InitialGuess Initial guess {'0'}
Assignment (Assignment)
 NumberOfDimensions Number of output dimensions {'1'}
 IndexMode Index mode 'Zero-based' | {'One-

based'}
 OutputInitialize Initialize output (Y) {'Initialize using input

port <Y0>'} | 'Specify
size for each dimension
in table'

 IndexOptionArray Index Option 'Assign all' | {'Index
vector (dialog)'} |
'Index vector (port)' |
'Starting index
(dialog)' | 'Starting
index (port)'

 IndexParamArray Index cell array
 OutputSizeArray Output Size cell array
 DiagnosticForDimensions Action if any output element is

not assigned
'Error' | 'Warning' |
{'None'}

 SampleTime Sample time (-1 for inherited) {'-1'}
 IndexOptions See the IndexOptionArray

parameter for more information.

 Indices See the IndexParamArray
parameter for more information.

 Block-Specific Parameters

6-177

Block (Type)/Parameter Dialog Box Prompt Values
 OutputSizes See the OutputSizeArray

parameter for more information.

Bias (Bias)
 Bias Bias {'0.0'}
 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Complex to Magnitude-Angle (ComplexToMagnitudeAngle)
 Output Output 'Magnitude' | 'Angle' |

{'Magnitude and angle'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Complex to Real-Imag (ComplexToRealImag)
 Output Output 'Real' | 'Imag' | {'Real

and imag'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Divide (Product)
 Inputs Number of inputs {'*/'}
 Multiplication Multiplication {'Element-wise(.*)'} |

'Matrix(*)'
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same

data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

6 Model and Block Parameters

6-178

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Dot Product (DotProduct)
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same

data type
'off' | {'on'}

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-179

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Find (Find)
 IndexOutputFormat Index output format {'Linear indices'} |

'Subscripts'

NumberOfInputDimensions

Number of input dimensions integer — {'1'}

 IndexMode Index mode {'Zero-based'} | 'One-
based'

 ShowOutputForNonzero
InputValues

Show output port for nonzero
input values

{'off'} | 'on'

6 Model and Block Parameters

6-180

Block (Type)/Parameter Dialog Box Prompt Values
 SampleTime Sample time (–1 for inherited) {'-1'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'int8'
| 'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)'

Gain (Gain)
 Gain Gain {'1'}
 Multiplication Multiplication {'Element-wise(K.*u)'} |

'Matrix(K*u)' |
'Matrix(u*K)' |
'Matrix(K*u) (u vector)'

 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as input'
| 'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 Block-Specific Parameters

6-181

Block (Type)/Parameter Dialog Box Prompt Values
 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 ParamMin Parameter minimum {'[]'}
 ParamMax Parameter maximum {'[]'}
 ParamDataTypeStr Parameter data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Same as input'
| 'Inherit: Inherit from
'Gain'' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)'
| 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

Magnitude-Angle to Complex (MagnitudeAngleToComplex)
 Input Input 'Magnitude' | 'Angle' |

{'Magnitude and angle'}
 ConstantPart Magnitude or Angle {'0'}
 ApproximationMethod Approximation method {'None'} | 'CORDIC'
 NumberOfIterations Number of iterations {'11'}
ScaleReciprocalGainFacto
r

Scale output by reciprocal of
gain factor

'off' | {'on'}

 SampleTime Sample time (-1 for inherited) {'-1'}
Math Function (Math)
 Operator Function {'exp'} | 'log' | '10^u'

| 'log10' |
'magnitude^2' | 'square'
| 'pow' | 'conj' |
'reciprocal' | 'hypot' |
'rem' | 'mod' |
'transpose' |
'hermitian'

6 Model and Block Parameters

6-182

Block (Type)/Parameter Dialog Box Prompt Values
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' |
'Inherit: Inherit via
back propagation' |
{'Inherit: Same as first
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

Matrix Concatenate (Concatenate)
 NumInputs Number of inputs {'2'}
 Mode Mode 'Vector' |

{'Multidimensional
array'}

 ConcatenateDimension Concatenate dimension {'2'}
MinMax (MinMax)

 Block-Specific Parameters

6-183

Block (Type)/Parameter Dialog Box Prompt Values
 Function Function {'min'} | 'max'
 Inputs Number of input ports {'1'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the

same data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

MinMax Running Resettable (MinMax Running Resettable) (masked subsystem)
 Function Function {'min'} | 'max'
 vinit Initial condition {'0.0'}
Permute Dimensions (PermuteDimensions)
 Order Order {'[2,1]'}

6 Model and Block Parameters

6-184

Block (Type)/Parameter Dialog Box Prompt Values
Polynomial (Polyval)
 coefs Polynomial Coefficients {'[+2.081618890e-019,

-1.441693666e-014,
+4.719686976e-010,
-8.536869453e-006,
+1.621573104e-001,
-8.087801117e+001]'}

Product (Product)
 Inputs Number of inputs {'2'}
 Multiplication Multiplication {'Element-wise(.*)'} |

'Matrix(*)'
 CollapseMode Multiply over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same

data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 Block-Specific Parameters

6-185

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| 'Floor' | 'Nearest' |
'Round' | 'Simplest' |
{'Zero'}

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Product of Elements (Product)
 Inputs Number of inputs {'*'}
 Multiplication Multiplication {'Element-wise(.*)'} |

'Matrix(*)'
 CollapseMode Multiply over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same

data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-186

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Real-Imag to Complex (RealImagToComplex)
 Input Input 'Real' | 'Imag' | {'Real

and imag'}
 ConstantPart Real part or Imag part {'0'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Reciprocal Sqrt (Sqrt)
 Operator Function 'sqrt' | 'signedSqrt' |

{'rSqrt'}
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-187

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' |
'Inherit: Inherit via
back propagation' |
{'Inherit: Same as first
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Inherit from
input' | 'Inherit:
Inherit from output' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 AlgorithmType Method 'Exact' | {'Newton-
Raphson'}

 Iterations Number of iterations {'3'}

6 Model and Block Parameters

6-188

Block (Type)/Parameter Dialog Box Prompt Values
Reshape (Reshape)
 OutputDimensionality Output dimensionality {'1-D array'} | 'Column

vector (2-D)' | 'Row
vector (2-D)' |
'Customize' | 'Derive
from reference input
port'

 OutputDimensions Output dimensions {'[1,1]'}
Rounding Function (Rounding)
 Operator Function {'floor'} | 'ceil' |

'round' | 'fix'
 SampleTime Sample time (-1 for inherited) {'-1'}
Sign (Signum)
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Signed Sqrt (Sqrt)
 Operator Function 'sqrt' | {'signedSqrt'}

| 'rSqrt'
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-189

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' |
'Inherit: Inherit via
back propagation' |
{'Inherit: Same as first
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Inherit from
input' | 'Inherit:
Inherit from output' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 AlgorithmType Method {'Exact'} | 'Newton-
Raphson'

 Iterations Number of iterations {'3'}

6 Model and Block Parameters

6-190

Block (Type)/Parameter Dialog Box Prompt Values
Sine Wave Function (Sin)
 SineType Sine type {'Time based'} | 'Sample

based'
 TimeSource Time 'Use simulation time' |

{'Use external signal'}
 Amplitude Amplitude {'1'}
 Bias Bias {'0'}
 Frequency Frequency {'1'}
 Phase Phase {'0'}
 Samples Samples per period {'10'}
 Offset Number of offset samples {'0'}
 SampleTime Sample time {'0'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Slider Gain (Slider Gain) (masked subsystem)
 low Low {'0'}
 gain Gain {'1'}
 high High {'2'}
Sqrt (Sqrt)
 Operator Function {'sqrt'} | 'signedSqrt'

| 'rSqrt'
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-191

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' |
'Inherit: Inherit via
back propagation' |
{'Inherit: Same as first
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Inherit from
input' | 'Inherit:
Inherit from output' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 AlgorithmType Method {'Exact'} | 'Newton-
Raphson'

 Iterations Number of iterations {'3'}

6 Model and Block Parameters

6-192

Block (Type)/Parameter Dialog Box Prompt Values
Squeeze (Squeeze) (masked subsystem)
 None None None
Subtract (Sum)
 IconShape Icon shape {'rectangular'} |

'round'
 Inputs List of signs {'+-'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the

same data type
{'off'} | 'on'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-193

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'Inherit: Same
as accumulator' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Sum (Sum)
 IconShape Icon shape 'rectangular' |

{'round'}
 Inputs List of signs {'|++'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the

same data type
{'off'} | 'on'

6 Model and Block Parameters

6-194

Block (Type)/Parameter Dialog Box Prompt Values
 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'Inherit: Same
as accumulator' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Sum of Elements (Sum)

 Block-Specific Parameters

6-195

Block (Type)/Parameter Dialog Box Prompt Values
 IconShape Icon shape {'rectangular'} |

'round'
 Inputs List of signs {'+'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the

same data type
{'off'} | 'on'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} |
'Inherit: Same as first
input' | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input' | 'Inherit: Same
as accumulator' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-196

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock data type settings against

changes by the fixed-point tools
{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Trigonometric Function (Trigonometry)
 Operator Function {'sin'} | 'cos' | 'tan'

| 'asin' | 'acos' |
'atan' | 'atan2' |
'sinh' | 'cosh' | 'tanh'
| 'asinh' | 'acosh' |
'atanh' | 'sincos' |
'cos + jsin'

 ApproximationMethod Approximation method {'None'} | 'CORDIC'
 NumberOfIterations Number of iterations {'11'}
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
Unary Minus (UnaryMinus)
 SampleTime Sample time (-1 for inherited) {'-1'}
 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Vector Concatenate (Concatenate)
 NumInputs Number of inputs {'2'}
 Mode Mode {'Vector'} |

'Multidimensional array'
Weighted Sample Time Math (SampleTimeMath)

 Block-Specific Parameters

6-197

Block (Type)/Parameter Dialog Box Prompt Values
 TsampMathOp Operation {'+'} | '-' | '*' | '/'

| 'Ts Only' | '1/Ts
Only'

 weightValue Weight value {'1.0'}
 TsampMathImp Implement using {'Online Calculations'}

| 'Offline Scaling
Adjustment'

 OutDataTypeStr Output data type {'Inherit via internal
rule'} | 'Inherit via
back propagation'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 OutputDataTypeScaling
 Mode

Deprecated in R2009b

 DoSatur Deprecated in R2009b

6 Model and Block Parameters

6-198

Model Verification Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Assertion (Assertion)
 Enabled Enable assertion 'off' | {'on'}
 AssertionFailFcn Simulation callback when

assertion fails
{''}

 StopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 SampleTime Sample time (-1 for inherited) {'-1'}
Check Dynamic Gap (Checks_DGap) (masked subsystem)
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Dynamic Range (Checks_DRange) (masked subsystem)
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Static Gap (Checks_SGap) (masked subsystem)
 max Upper bound {'100'}
 max_included Inclusive upper bound 'off' | {'on'}
 min Lower bound {'0'}
 min_included Inclusive lower bound 'off' | {'on'}

 Block-Specific Parameters

6-199

Block (Type)/Parameter Dialog Box Prompt Values
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Static Range (Checks_SRange) (masked subsystem)
 max Upper bound {'100'}
 max_included Inclusive upper bound 'off' | {'on'}
 min Lower bound {'0'}
 min_included Inclusive lower bound 'off' | {'on'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Discrete Gradient (Checks_Gradient) (masked subsystem)
 gradient Maximum gradient {'1'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Dynamic Lower Bound (Checks_DMin) (masked subsystem)

6 Model and Block Parameters

6-200

Block (Type)/Parameter Dialog Box Prompt Values
 Enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Dynamic Upper Bound (Checks_DMax) (masked subsystem)
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Input Resolution (Checks_Resolution) (masked subsystem)
 resolution Resolution {'1'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
Check Static Lower Bound (Checks_SMin) (masked subsystem)
 min Lower bound {'0'}
 min_included Inclusive boundary 'off' | {'on'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 Block-Specific Parameters

6-201

Block (Type)/Parameter Dialog Box Prompt Values
 stopWhenAssertionFail Stop simulation when assertion

fails
'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Static Upper Bound (Checks_SMax) (masked subsystem)
 max Upper bound {'0'}
 max_included Inclusive boundary 'off' | {'on'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion
fails

'off' | {'on'}

 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'

6 Model and Block Parameters

6-202

Model-Wide Utilities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Block Support Table (Block Support Table) (masked subsystem)
DocBlock (DocBlock) (masked subsystem)
 ECoderFlag Embedded Coder Flag {''}
 DocumentType Document Type {'Text'} | 'RTF' |

'HTML'
Model Info (CMBlock) (masked subsystem)
 InitialSaveTempField InitialSaveTempField {''}
 InitialBlockCM InitialBlockCM {'None'}
 BlockCM BlockCM {'None'}
 Frame Show block frame 'off' | {'on'}
 SaveTempField SaveTempField {''}
 DisplayStringWithTags DisplayStringWithTags {'Model Info'}
 MaskDisplayString MaskDisplayString {'Model Info'}
 HorizontalTextAlignment Horizontal text alignment {'Center'}
 LeftAlignmentValue LeftAlignmentValue {'0.5'}
 SourceBlockDiagram SourceBlockDiagram {'untitled'}
 TagMaxNumber TagMaxNumber {'20'}
 CMTag1 CMTag1 {''}
 CMTag2 CMTag2 {''}
 CMTag3 CMTag3 {''}
 CMTag4 CMTag4 {''}
 CMTag5 CMTag5 {''}
 CMTag6 CMTag6 {''}
 CMTag7 CMTag7 {''}
 CMTag8 CMTag8 {''}
 CMTag9 CMTag9 {''}
 CMTag10 CMTag10 {''}

 Block-Specific Parameters

6-203

Block (Type)/Parameter Dialog Box Prompt Values
 CMTag11 CMTag11 {''}
 CMTag12 CMTag12 {''}
 CMTag13 CMTag13 {''}
 CMTag14 CMTag14 {''}
 CMTag15 CMTag15 {''}
 CMTag16 CMTag16 {''}
 CMTag17 CMTag17 {''}
 CMTag18 CMTag18 {''}
 CMTag19 CMTag19 {''}
 CMTag20 CMTag20 {''}
Timed-Based Linearization (Timed Linearization) (masked subsystem)
 LinearizationTime Linearization time {'1'}
 SampleTime Sample time (of linearized

model)
{'0'}

Trigger-Based Linearization (Triggered Linearization) (masked subsystem)
 TriggerType Trigger type {'rising'} | 'falling' |

'either' | 'function-
call'

 SampleTime Sample time (of linearized
model)

{'0'}

6 Model and Block Parameters

6-204

Ports & Subsystems Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Action Port (ActionPort)
 InitializeStates States when execution is

resumed
{'held'} | 'reset'

 PropagateVarSize Propagate sizes of variable-size
signals

{'Only when execution is
resumed'} | 'During
execution'

Atomic Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 TreatAsGroupedWhenPropa
gatingVariantConditions

Treat as grouped when
propagating variant conditions

'off' | {'on'}

 MinAlgLoopOccurrences Minimize algebraic loop
occurrences

{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 Block-Specific Parameters

6-205

Block (Type)/Parameter Dialog Box Prompt Values
 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use

subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName File name (no extension) {''}
 FunctionInterfaceSpec Function interface

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'void_void'} | 'Allow
arguments'

 FunctionWithSeparateDat
a

“Function with separate data”
on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'off'} | 'on'

6 Model and Block Parameters

6-206

Block (Type)/Parameter Dialog Box Prompt Values
 RTWMemSecFuncInitTerm “Memory section for initialize/

terminate functions” on page 1-
0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecFuncExecute “Memory section for execution
functions” on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataConstants “Memory section for constants”
on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataInternal “Memory section for internal
data” on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataParameters “Memory section for
parameters” on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 Block-Specific Parameters

6-207

Block (Type)/Parameter Dialog Box Prompt Values
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 SimViewingDevice No dialog box prompt

If set to 'on', designates the
block as a Signal Viewing
Subsystem — an atomic
subsystem that encapsulates
processing and viewing of
signals received from the target
system in External mode. For
more information, see “Signal
Viewing Subsystems” (Simulink
Coder).

{'off'} | 'on'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Code Reuse Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}

6 Model and Block Parameters

6-208

Block (Type)/Parameter Dialog Box Prompt Values
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging 'Auto' | 'Inline' |

'Nonreusable function' |
{'Reusable function'}

 RTWFcnNameOpts Function name options 'Auto' | {'Use subsystem
name'} | 'User
specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options 'Auto' | {'Use subsystem

name'} | 'Use function
name' | 'User specified'

 RTWFileName File name (no extension) {''}

 Block-Specific Parameters

6-209

Block (Type)/Parameter Dialog Box Prompt Values
 RTWMemSecFuncInitTerm “Memory section for initialize/

terminate functions” on page 1-
0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecFuncExecute “Memory section for execution
functions” on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataConstants “Memory section for constants”
on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataInternal “Memory section for internal
data” on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataParameters “Memory section for
parameters” on page 1-0

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

6 Model and Block Parameters

6-210

Block (Type)/Parameter Dialog Box Prompt Values
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Configurable Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {'self'}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit {'off'} | 'on'

 Block-Specific Parameters

6-211

Block (Type)/Parameter Dialog Box Prompt Values
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use

subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

6 Model and Block Parameters

6-212

Block (Type)/Parameter Dialog Box Prompt Values
 SimViewingDevice No dialog box prompt

If set to 'on', designates the
block as a Signal Viewing
Subsystem — an atomic
subsystem that encapsulates
processing and viewing of
signals received from the target
system in External mode. For
more information, see “Signal
Viewing Subsystems” (Simulink
Coder).

{'off'} | 'on'

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual No dialog box prompt boolean — {'on'} | 'off'

Read-only
Enable (EnablePort)
 StatesWhenEnabling States when enabling {'held'} | 'reset'
 PropagateVarSize Propagate sizes of variable-size

signals
{'Only when enabling'} |
'During execution'

 ShowOutputPort Show output port {'off'} | 'on'
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
Enabled and Triggered Subsystem (SubSystem)

 Block-Specific Parameters

6-213

Block (Type)/Parameter Dialog Box Prompt Values
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Function name {''}

6 Model and Block Parameters

6-214

Block (Type)/Parameter Dialog Box Prompt Values
 RTWFileNameOpts File name options {'Auto'} | 'Use

subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Enabled Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 Block-Specific Parameters

6-215

Block (Type)/Parameter Dialog Box Prompt Values
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use

subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

6 Model and Block Parameters

6-216

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
For Each(ForEach)
 InputPartition Partition cell array of character vectors
 InputPartitionDimension Partition dimension for input

signal
cell array of character vectors

 InputPartitionWidth Width of partition for input
signal

cell array of character vectors

 OutputConcatenationDime
nsion

Concatenation dimension of
output signal

cell array of character vectors

For Iterator (ForIterator)
 ResetStates States when starting {'held'} | 'reset'
 IterationSource Iteration limit source {'internal'} |

'external'
 IterationLimit Iteration limit {'5'}
 ExternalIncrement Set next i (iteration variable)

externally
{'off'} | 'on'

 ShowIterationPort Show iteration variable 'off' | {'on'}
 IndexMode Index mode 'Zero-based' | {'One-

based'}
 IterationVariable
 DataType

Iteration variable data type {'int32'} | 'int16' |
'int8' | 'double'

For Iterator Subsystem (SubSystem)

 Block-Specific Parameters

6-217

Block (Type)/Parameter Dialog Box Prompt Values
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Function name {''}

6 Model and Block Parameters

6-218

Block (Type)/Parameter Dialog Box Prompt Values
 RTWFileNameOpts File name options {'Auto'} | 'Use

subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation . Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Function-Call Generator (Function-Call Generator) (masked subsystem)
 sample_time Sample time {'1'}
 numberOfIterations Number of iterations {'1'}
Function-Call Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}

 Block-Specific Parameters

6-219

Block (Type)/Parameter Dialog Box Prompt Values
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use

subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

6 Model and Block Parameters

6-220

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
If (If)
 NumInputs Number of inputs {'1'}
 IfExpression If expression (e.g., u1 ~= 0) {'u1 > 0'}
 ElseIfExpressions Elseif expressions (comma-

separated list, e.g., u2 ~= 0,
u3(2) < u2)

{''}

 ShowElse Show else condition 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
If Action Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 Block-Specific Parameters

6-221

Block (Type)/Parameter Dialog Box Prompt Values
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use

subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

6 Model and Block Parameters

6-222

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'Off'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
In1 (Inport)
 Port Port number {'1'}
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number
and signal name'

 LatchByDelaying
 OutsideSignal

Latch input by delaying outside
signal

{'off'} | 'on'

 LatchInputFor
 FeedbackSignals

Latch input for feedback signals
of function-call subsystem
outputs

{'off'} | 'on'

 Interpolate Interpolate data 'off' | {'on'}
 UseBusObject Specify properties via bus

object
{'off'} | 'on'

 BusObject Bus object for specifying bus
properties

{'BusObject'}

 BusOutputAsStruct Output as nonvirtual bus {'off'} | 'on'
 PortDimensions Port dimensions (-1 for

inherited)
{'-1'}

 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}

 Block-Specific Parameters

6-223

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 Unit Specify physical unit of the
input signal to the block.

{'inherit'}| '<Enter
unit>'

 UnitNoProp Specify physical unit of the
input signal to the block without
propagation. For a list of
acceptable units, see Allowed
Units.

'<Enter unit>'

 SignalType Signal type {'auto'} | 'real' |
'complex'

Model (ModelReference)
 ModelNameDialog The name of the referenced

model exactly as you typed it in,
with any surrounding
whitespace removed. When you
set ModelNameDialog
programmatically or with the
GUI, Simulink automatically
sets the values of ModelName
and ModelFile based on the
value of ModelNameDialog.

{'<Enter Model Name>'}

6 Model and Block Parameters

6-224

matlab:showunitslist
matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 ModelName The value of ModelNameDialog

stripped of any filename
extension that you provided. For
backward compatibility, setting
ModelName programatically
actually sets
ModelNameDialog, which then
sets ModelName as described.
You cannot use get_param to
obtain the ModelName of a
protected model, because the
name without a suffix would be
ambiguous. Use get_param on
ModelFile instead. You can
test ProtectedModel to
determine programmatically
whether a referenced model is
protected.

character vector — Set
automatically when
ModelNameDialog is set.

 ModelFile The value of ModelNameDialog
with a filename extension. The
suffix of the first match
Simulink finds becomes the
suffix of ModelFile. Setting
ModelFile programmatically
actually sets
ModelNameDialog, which then
sets ModelFile as described.

character vector — Set
automatically when
ModelNameDialog is set.

 ProtectedModel Read-only boolean indicating
whether the model referenced
by the block is protected (on) or
unprotected (off).

boolean — 'off' | 'on' —
Set automatically when
ModelNameDialog is set.

 ParameterArgumentNames Names of model arguments that
the referenced model defines.
Corresponds to the Name
column in the table under
Arguments > Model
arguments.

{''}

 Block-Specific Parameters

6-225

Block (Type)/Parameter Dialog Box Prompt Values
 ParameterArgumentValues Values for model arguments.

Corresponds to the Value
column in the table under
Arguments > Model
arguments.

structure with no fields

 SimulationMode Specifies whether to simulate
the model by generating and
executing code or by
interpreting the model in
Simulink software.

{'Normal'} |
'Accelerator' |
'Software-in-the-loop
(SIL)' | 'Processor-in-
the-loop (PIL)'

 Variant Specifies whether the Model
block references variant
models.

Note For new models, use a
Model block for model variants
only if you need to use variants
that are conditionally executed
models (models with control
ports). Model variants are
supported for backward
compatibility. However, support
for model variants will be
removed in a future release.

To convert a Model block that
contains variant models to a
Variant Subsystem block, right-
click the Model block and select
Subsystems & Model
Reference > Convert to >
Variant Subsystem. This
conversion can require that you
update scripts that use the
Variants command-line
parameter.

{'off'} | 'on'

6 Model and Block Parameters

6-226

Block (Type)/Parameter Dialog Box Prompt Values
 Variants An array of variant structures

where each element specifies
one variant. The structure fields
are as follows:

array — []

variant.Name – The name of
the Simulink.Variant object
that represents the variant to
which this element applies.

{''}

variant.ModelName – The
name of the referenced model
associated with the specified
variant object in the Model
block.

{''}

variant.ParameterArgumen
t
 Names – Read-only
character vector containing the
names of the model arguments
for which the Model block must
supply values.

{''}

variant.ParameterArgumen
t
 Values – The values to
supply for the model arguments
when this variant is the active
variant.

{''}

variant.SimulationMode –
The execution mode to use
when this variant is the active
variant.

{'Accelerator'} |
'Normal' | 'Processor-
in-the-loop (PIL)'

 Block-Specific Parameters

6-227

Block (Type)/Parameter Dialog Box Prompt Values
 VariantConfigurationObj
ect

Specifies the variant
configuration object that is
associated with the model.

{''}
The value is an empty character
vector if no configuration object
is associated; otherwise, it is the
name of a
Simulink.VariantConfigur
ationData object.

 OverrideUsingVariant Whether to override the variant
conditions and make a specified
variant the active variant, and if
so, the name of that variant.

{''}
The value is the empty
character vector if no overriding
variant object is specified; or
the name of the overriding
object.

 ActiveVariant The variant that is currently
active, either because its
variant condition is true or
OverrideUsingVariant has
overridden the variant
conditions and specified this
variant.

{''}
The value is the empty
character vector if no variant is
active; or the name of the active
variant.

GeneratePreprocessor
 Conditionals

Locally controls whether
generated code contains
preprocessor conditionals. This
parameter applies only to
Simulink Coder code generation
and has no effect on the
behavior of a model in Simulink.

The parameter is available only
for ERT targets. For more
information, see “Variant
Systems” (Embedded Coder).

{'off'} | 'on'

 DefaultDataLogging {'off'} | 'on'
Out1 (Outport)
 Port Port number {'1'}

6 Model and Block Parameters

6-228

Block (Type)/Parameter Dialog Box Prompt Values
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number
and signal name'

 UseBusObject Specify properties via bus
object

{'off'} | 'on'

 BusObject Bus object for validating input
bus

{'BusObject'}

 BusOutputAsStruct Output as nonvirtual bus in
parent model

{'off'} | 'on'

 PortDimensions Port dimensions (-1 for
inherited)

{'-1'}

 VarSizeSig Variable-size signal {'Inherit'} | 'No' |
'Yes'

 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 Unit Specify physical unit of the
input signal to the block. For a
list of acceptable units, see
Allowed Units.

{'inherit'}| '<Enter
unit>'

 Block-Specific Parameters

6-229

matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 UnitNoProp Specify physical unit of the

input signal to the block without
propagation. For a list of
acceptable units, see Allowed
Units.

'<Enter unit>'

 SignalObject This parameter does not appear
in the block dialog box. Use the
Model Data Editor instead. See
“Design Data Interface by
Configuring Inport and Outport
Blocks” (Simulink Coder).

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StorageClass This parameter does not appear
in the block dialog box. Use the
Model Data Editor instead. See
“Design Data Interface by
Configuring Inport and Outport
Blocks” (Simulink Coder).

{'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

 SignalName Signal name character vector
 SignalType Signal type {'auto'} | 'real' |

'complex'
 OutputWhenDisabled Output when disabled {'held'} | 'reset'
 InitialOutput Initial output {'[]'}
 MustResolveToSignalObje
ct

This parameter does not appear
in the block dialog box. Use the
Model Data Editor instead. See
“For Signals”.

{'off'} | 'on'

Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

6 Model and Block Parameters

6-230

matlab:showunitslist
matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit {'off'} | 'on'
 TreatAsGroupedWhenPropa
gatingVariantConditions

Treat as grouped when
propagating variant conditions

'off' | {'on'}

 VariantControl Variant control {'Variant'} |
'(default)'

 MinAlgLoopOccurrences Minimize algebraic loop
occurrences

{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function

packaging
{'Auto'} | 'Inline' |
'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Code generation function name
options

{'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name

options
{'Auto'} | 'Use
subsystem name' | 'Use
function name' | 'User
specified'

 Block-Specific Parameters

6-231

Block (Type)/Parameter Dialog Box Prompt Values
 RTWFileName Code generation file name (no

extension)
{''}

 DataTypeOverride Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'on'} | 'off'

Read-only
 Virtual For internal use
Switch Case (SwitchCase)
 CaseConditions Case conditions (e.g., {1,[2,3]}) {'{1}'}
 ShowDefaultCase Show default case 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 CaseShowDefault Deprecated in R2009b
Switch Case Action Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}

6 Model and Block Parameters

6-232

Block (Type)/Parameter Dialog Box Prompt Values
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function

packaging
{'Auto'} | 'Inline' |
'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Code generation function name
options

{'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name

options
{'Auto'} | 'Use
subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName Code generation file name (no
extension)

{''}

 Block-Specific Parameters

6-233

Block (Type)/Parameter Dialog Box Prompt Values
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Trigger (TriggerPort)
 TriggerType Trigger type {'rising'} | 'falling' |

'either' | 'function-
call'

 IsSimulinkFunction Configure the Function-call
subsystem to be a Simulink
Function

{'off'} | 'on'

 StatesWhenEnabling States when enabling {'held'} | 'reset' |
'inherit'

 PropagateVarSize Propagate sizes of variable-size
signals

{'During execution'} |
'Only when enabling'

 ShowOutputPort Show output port {'off'} | 'on'
 OutputDataType Output data type {'auto'} | 'double' |

'int8'
 SampleTimeType Sample time type {'triggered'} |

'periodic'
 SampleTime Sample time {'1'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}

6 Model and Block Parameters

6-234

Block (Type)/Parameter Dialog Box Prompt Values
 PortDimensions Port dimensions (-1 for

inherited)
{'-1'}

 TriggerSignalSampleTime Trigger signal sample time {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 Interpolate Interpolate data 'off' | {'on'}
Triggered Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 Block-Specific Parameters

6-235

Block (Type)/Parameter Dialog Box Prompt Values
 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function

packaging
{'Auto'} | 'Inline' |
'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Code generation function name
options

{'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name

options
{'Auto'} | 'Use
subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName Code generation file name (no
extension)

{''}

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

6 Model and Block Parameters

6-236

Block (Type)/Parameter Dialog Box Prompt Values
 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Unit Conversion
 OutDataTypeStr Output data type {'Inherit via internal

rule'} | 'Inherit via
back propagation'

Unit System Configuration
 AllowAllUnitSystems Allow or restrict unit systems. boolean — {'on'} | 'off'
 UnitSystems Displays allowed unit system. cell array of character vectors

— {'SI','English',SI
(extended)','CGS'}

While Iterator (WhileIterator)
 MaxIters Maximum number of iterations

(-1 for unlimited)
{'5'}

 WhileBlockType While loop type {'while'} | 'do-while'
 ResetStates States when starting {'held'} | 'reset'
 ShowIterationPort Show iteration number port {'off'} | 'on'
 OutputDataType Output data type {'int32'} | 'int16' |

'int8' | 'double'
While Iterator Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and
'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'none' |
{'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' |
'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}

 Block-Specific Parameters

6-237

Block (Type)/Parameter Dialog Box Prompt Values
 Permissions Read/Write permissions {'ReadWrite'} |

'ReadOnly' |
'NoReadOrWrite'

 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function

packaging
{'Auto'} | 'Inline' |
'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Code generation function name
options

{'Auto'} | 'Use
subsystem name' | 'User
specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name

options
{'Auto'} | 'Use
subsystem name' | 'Use
function name' | 'User
specified'

 RTWFileName Code generation file name (no
extension)

{''}

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'ScaledDouble' |
'Double' | 'Single' |
'Off'

6 Model and Block Parameters

6-238

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' |
'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only

 Block-Specific Parameters

6-239

Signal Attributes Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Bus to Vector (BusToVector)
Data Type Conversion (DataTypeConversion)
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

back propagation'} |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 ConvertRealWorld Input and output to have equal {'Real World Value
(RWV)'} | 'Stored
Integer (SI)'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 SampleTime Sample time (-1 for inherited) {'-1'}
Data Type Conversion Inherited (Conversion Inherited) (masked subsystem)
 ConvertRealWorld Input and Output to have equal {'Real World Value'} |

'Stored Integer'

6 Model and Block Parameters

6-240

Block (Type)/Parameter Dialog Box Prompt Values
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'

| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Data Type Duplicate (DataTypeDuplicate)
 NumInputPorts Number of input ports {'2'}
Data Type Propagation (Data Type Propagation) (masked subsystem)
 PropDataTypeMode 1. Propagated data type 'Specify via dialog' |

{'Inherit via
propagation rule'}

 PropDataType 1.1. Propagated data type (e.g.,
fixdt(1,16),
fixdt('single'))

{'fixdt(1,16)'}

 IfRefDouble 1.1. If any reference input is
double, output is

{'double'} | 'single'

 IfRefSingle 1.2. If any reference input is
single, output is

'double' | {'single'}

 IsSigned 1.3. Is-Signed 'IsSigned1' |
'IsSigned2' |
{'IsSigned1 or
IsSigned2'} | 'TRUE' |
'FALSE'

 NumBitsBase 1.4.1. Number-of-Bits: Base 'NumBits1' | 'NumBits2'
| {'max([NumBits1
NumBits2])'} |
'min([NumBits1
NumBits2])' |
'NumBits1+NumBits2'

 NumBitsMult 1.4.2. Number-of-Bits:
Multiplicative adjustment

{'1'}

 Block-Specific Parameters

6-241

Block (Type)/Parameter Dialog Box Prompt Values
 NumBitsAdd 1.4.3. Number-of-Bits: Additive

adjustment
{'0'}

 NumBitsAllowFinal 1.4.4. Number-of-Bits: Allowable
final values

{'1:128'}

 PropScalingMode 2. Propagated scaling 'Specify via dialog' |
{'Inherit via
propagation rule'} |
'Obtain via best
precision'

 PropScaling 2.1. Propagated scaling: Slope
or [Slope Bias] ex. 2^-9

{'2^-10'}

 ValuesUsedBestPrec 2.1. Values used to determine
best precision scaling

{'[5 -7]'}

 SlopeBase 2.1.1. Slope: Base 'Slope1' | 'Slope2' |
'max([Slope1 Slope2])' |
{'min([Slope1 Slope2])'}
| 'Slope1*Slope2' |
'Slope1/Slope2' |
'PosRange1' |
'PosRange2' |
'max([PosRange1
PosRange2])' |
'min([PosRange1
PosRange2])' |
'PosRange1*PosRange2' |
'PosRange1/PosRange2'

 SlopeMult 2.1.2. Slope: Multiplicative
adjustment

{'1'}

 SlopeAdd 2.1.3. Slope: Additive
adjustment

{'0'}

6 Model and Block Parameters

6-242

Block (Type)/Parameter Dialog Box Prompt Values
 BiasBase 2.2.1. Bias: Base {'Bias1'} | 'Bias2' |

'max([Bias1 Bias2])' |
'min([Bias1 Bias2])' |
'Bias1*Bias2' | 'Bias1/
Bias2' | 'Bias1+Bias2' |
'Bias1-Bias2'

 BiasMult 2.2.2. Bias: Multiplicative
adjustment

{'1'}

 BiasAdd 2.2.3. Bias: Additive adjustment {'0'}
Data Type Scaling Strip (Scaling Strip) (masked subsystem)
IC (InitialCondition)
 Value Initial value {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Probe (Probe)
 ProbeWidth Probe width 'off' | {'on'}
 ProbeSampleTime Probe sample time 'off' | {'on'}
 ProbeComplexSignal Detect complex signal 'off' | {'on'}
 ProbeSignalDimensions Probe signal dimensions 'off' | {'on'}
 ProbeFramedSignal Detect framed signal 'off' | {'on'}
 ProbeWidthDataType Data type for width {'double'} | 'single' |

'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Same as input'

 ProbeSampleTimeDataType Data type for sample time {'double'} | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Same as input'

 Block-Specific Parameters

6-243

Block (Type)/Parameter Dialog Box Prompt Values
 ProbeComplexityDataType Data type for signal complexity {'double'} | 'single' |

'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

 ProbeDimensionsDataType Data type for signal dimensions {'double'} | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Same as input'

 ProbeFrameDataType Data type for signal frames {'double'} | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

Rate Transition (RateTransition)
 Integrity Ensure data integrity during

data transfer
'off' | {'on'}

 Deterministic Ensure deterministic data
transfer (maximum delay)

'off' | {'on'}

 InitialCondition Initial conditions {'0'}
 OutPortSampleTimeOpt Output port sample time options {'Specify'} | 'Inherit'

| 'Multiple of input
port sample time'

 OutPortSampleTimeMultip
le

Sample time multiple (>0) {'1'}

 OutPortSampleTime Output port sample time {'-1'}
Signal Conversion (SignalConversion)
 ConversionOutput Output {'Signal copy'} |

'Virtual bus' |
'Nonvirtual bus'

6 Model and Block Parameters

6-244

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Data type {'Inherit: auto'} |

'Bus: <object name>'
 OverrideOpt Exclude this block from 'Block

reduction' optimization
{'off'} | 'on'

Signal Specification (SignalSpecification)
 Dimensions Dimensions (-1 for inherited) {'-1'}
 VarSizeSig Variable-size signal {'Inherit'} | 'No' |

'Yes'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 BusOutputAsStruct Require nonvirtual bus {'off'} | 'on'
 Unit Specify physical unit of the

input signal to the block. For a
list of acceptable units, see
Allowed Units.

{'inherit'}| '<Enter
unit>'

 UnitNoProp Specify physical unit of the
input signal to the block without
propagation. For a list of
acceptable units, see Allowed
Units.

'<Enter unit>'

 Block-Specific Parameters

6-245

matlab:showunitslist
matlab:showunitslist
matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 SignalType Signal type {'auto'} | 'real' |
'complex'

Weighted Sample Time (SampleTimeMath)
 TsampMathOp Operation '+' | '-' | '*' | '/' |

{'Ts Only'} | '1/Ts
Only'

 weightValue Weight value {'1.0'}
 TsampMathImp Implement using {'Online Calculations'}

| 'Offline Scaling
Adjustment'

 OutDataTypeStr Output data type {'Inherit via internal
rule'} | 'Inherit via
back propagation'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 OutputDataTypeScaling
 Mode

Deprecated in R2009b

 DoSatur Deprecated in R2009b
Width (Width)
 OutputDataTypeScaling
 Mode

Output data type mode {'Choose intrinsic data
type'} | 'Inherit via
back propagation' | 'All
ports same datatype'

6 Model and Block Parameters

6-246

Block (Type)/Parameter Dialog Box Prompt Values
 DataType Output data type {'double'} | 'single' |

'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

 Block-Specific Parameters

6-247

Signal Routing Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Bus Assignment (BusAssignment)
 AssignedSignals Signals that are being

assigned
{''}

 InputSignals Signals in the bus matrix — {'{}'}
Bus Creator (BusCreator)
 InheritFromInputs Override bus signal names

from inputs
{'on'} | 'off'

If set to 'on', overrides bus signal
names from inputs. Otherwise,
inherits bus signal names from a
bus object.

 Inputs Number of inputs {'2'}
 DisplayOption 'none' | 'signals' |

{'bar'}
 NonVirtualBus Output as nonvirtual bus {'off'} | 'on'
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

Bus Selector (BusSelector)
 OutputSignals Selected signals character vector — in the form

'signal1,signal2'
 OutputAsBus Output as bus {'off'} | 'on'
 InputSignals Signals in bus matrix — {'{}'}
Data Store Memory (DataStoreMemory)
 DataStoreName Data store name {'A'}

6 Model and Block Parameters

6-248

Block (Type)/Parameter Dialog Box Prompt Values
 ReadBeforeWriteMsg Detect read before write 'none' | {'warning'} |

'error'
 WriteAfterWriteMsg Detect write after write 'none' | {'warning'} |

'error'
 WriteAfterReadMsg Detect write after read 'none' | {'warning'} |

'error'
 InitialValue Initial value {'0'}
 StateMustResolveTo
 SignalObject

Data store name must resolve
to Simulink signal object

{'off'} | 'on'

 DataLogging Log Signal Data 'off' | {'on'}
 DataLoggingNameMode Logging Name {'SignalName'} | 'Custom'
 DataLoggingName Logging Name {''}
 DataLoggingLimit
 DataPoints

Limit data points to last 'off' | {'on'}

 DataLoggingMaxPoints Limit data points to last non-zero integer {5000}
 DataLoggingDecimateDat
a

Decimation 'off' | {'on'}

 DataLoggingLimit
 DataPoints

Decimation non-zero integer {2}

 StateStorageClass Storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 StateSignalObject Signal object class

Storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 RTWStateStorageType
 Qualifier

Code generation type
qualifier

{''}

 VectorParams1D Interpret vector parameters
as 1-D

'off' | {'on'}

 Block-Specific Parameters

6-249

Block (Type)/Parameter Dialog Box Prompt Values
 ShowAdditionalParam Show additional parameters {'off'} | 'on'
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 SignalType Signal type {'auto'} | 'real' |
'complex'

Data Store Read (DataStoreRead)
DataStoreElements Corresponds to the

parameters on the Element
Selection tab of the block
dialog box. See “Specification
using the command line”.

 DataStoreName Data store name {'A'}
 SampleTime Sample time {'0'}
Data Store Write (DataStoreWrite)
DataStoreElements Corresponds to the

parameters on the Element
Assignment tab of the block
dialog box. See “Specification
using the command line”.

 DataStoreName Data store name {'A'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Demux (Demux)

6 Model and Block Parameters

6-250

Block (Type)/Parameter Dialog Box Prompt Values
 Outputs Number of outputs {'2'}
 DisplayOption Display option 'none' | {'bar'}
 BusSelectionMode Bus selection mode {'off'} | 'on'
Environment Controller (Environment Controller) (masked subsystem)
From (From)
 GotoTag Goto tag {'A'}
 IconDisplay Icon display 'Signal name' | {'Tag'} |

'Tag and signal name'
Goto (Goto)
 GotoTag Tag {'A'}
 IconDisplay Icon display 'Signal name' | {'Tag'} |

'Tag and signal name'
 TagVisibility Tag visibility {'local'} | 'scoped' |

'global'
Goto Tag Visibility (GotoTagVisibility)
 GotoTag Goto tag {'A'}
Index Vector (MultiPortSwitch)
 DataPortOrder Data port order {'Zero-based contiguous'} |

'One-based contiguous' |
'Specify indices'

 Inputs Number of data ports {'1'}
 zeroidx Deprecated in R2010a
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all data port inputs to

have the same data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-251

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 AllowDiffInputSizes Allow different data input
sizes (Results in variable-size
output signal)

{'off'} | 'on'

Manual Switch (Manual Switch) (masked subsystem)
 varsize Allow different input sizes

(Results in variable-size
output signal)

{'off'} | 'on'

 SampleTime Sample time (-1 for inherited) {'-1'}
Merge (Merge)
 Inputs Number of inputs {'2'}
 InitialOutput Initial output {'[]'}
 AllowUnequalInput
 PortWidths

Allow unequal port widths {'off'} | 'on'

 InputPortOffsets Input port offsets {'[]'}
Multiport Switch (MultiPortSwitch)

6 Model and Block Parameters

6-252

Block (Type)/Parameter Dialog Box Prompt Values
 DataPortOrder Data port order 'Zero-based contiguous' |

{'One-based contiguous'} |
'Specify indices'

 Inputs Number of data ports {'3'}
 zeroidx Deprecated in R2010a
 DataPortIndices Data port indices {'{1,2,3}'}
 DataPortForDefault Data port for default case {'Last data port'} |

'Additional data port'
 DiagnosticForDefault Diagnostic for default case 'None' | 'Warning' |

{'Error'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all data port inputs to

have the same data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 Block-Specific Parameters

6-253

Block (Type)/Parameter Dialog Box Prompt Values
 AllowDiffInputSizes Allow different data input

sizes (Results in variable-size
output signal)

{'off'} | 'on'

Mux (Mux)
 Inputs Number of inputs {'2'}
 DisplayOption Display option 'none' | 'signals' |

{'bar'}
 UseBusObject For internal use
 BusObject For internal use
 NonVirtualBus For internal use
Selector (Selector)
 NumberOfDimensions Number of input dimensions {'1'}
 IndexMode Index mode 'Zero-based' | {'One-

based'}
 IndexOptionArray Index Option 'Select all' | {'Index

vector (dialog)'} | 'Index
vector (port)' | 'Starting
index (dialog)' | 'Starting
index (port)'

 IndexParamArray Index cell array
 OutputSizeArray Output Size cell array
 InputPortWidth Input port size {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 IndexOptions See the IndexOptionArray

parameter for more
information.

 Indices See the IndexParamArray
parameter for more
information.

 OutputSizes See the IndexParamArray
parameter for more
information.

6 Model and Block Parameters

6-254

Block (Type)/Parameter Dialog Box Prompt Values
Switch (Switch)
 Criteria Criteria for passing first input {'u2 >= Threshold'} | 'u2 >

Threshold' | 'u2 ~= 0'
 Threshold Threshold {'0'}
 ZeroCross Enable zero-crossing

detection
'off' | {'on'}

 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all data port inputs to

have the same data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 AllowDiffInputSizes Allow different input sizes
(Results in variable-size
output signal)

{'off'} | 'on'

 Block-Specific Parameters

6-255

Block (Type)/Parameter Dialog Box Prompt Values
Variant Source (tVariantSource)
 VariantControls Variant control {'Variant'} | '(default)'
 OverrideUsingVariant Override variant conditions

and use the following variant
{''}

 AllowZeroVariantContro
ls

Allow zero active variant
controls

{'off'} | 'on'

 ShowConditionOnBlock Show variant condition on
block

{'off'} | 'on'

 GeneratePreprocessorCo
nditionals

Analyze all choices during
update diagram and generate
preprocessor conditionals

{'off'} | 'on'

 CompiledActiveVariantC
ontrol

 string — {''}

The value is a empty string if no
variant is active; or the name of the
active variant. Compile the model
before querying this property.

 CompiledActiveVariantP
ort

 string — {'-1'}

The value is -1 if no variant is
active; or the index of the active
variant. Compile the model before
querying this property.

Variant Sink (VariantSink)
 VariantControls Variant control {'Variant'} | '(default)'
 OverrideUsingVariant Override variant conditions

and use the following variant
{''}

 AllowZeroVariantContro
ls

Allow zero active variant
controls

{'off'} | 'on'

 ShowConditionOnBlock Show variant condition on
block

{'off'} | 'on'

6 Model and Block Parameters

6-256

Block (Type)/Parameter Dialog Box Prompt Values
 GeneratePreprocessorCo
nditionals

Analyze all choices during
update diagram and generate
preprocessor conditionals

{'off'} | 'on'

 CompiledActiveVariantC
ontrol

 string — {''}

The value is a empty string if no
variant is active; or the name of the
active variant. Compile the model
before querying this property.

 CompiledActiveVariantP
ort

 string — {'-1'}

The value is -1 if no variant is
active; or the index of the active
variant. Compile the model before
querying this property.

Vector Concatenate (Concatenate)
 NumInputs Number of inputs {'2'}
 Mode Mode {'Vector'} |

'Multidimensional array'

 Block-Specific Parameters

6-257

Sinks Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Display (Display)
 Format Format {'short'} | 'long' |

'short_e' | 'long_e' |
'bank' | 'hex (Stored
Integer)' | 'binary
(Stored Integer)' |
'decimal (Stored
Integer)' | 'octal
(Stored Integer)'

 Decimation Decimation {'1'}
 Floating Floating display {'off'} | 'on'
 SampleTime Sample time (-1 for inherited) {'-1'}
Floating Scope (Scope)
 Floating 'off' | {'on'}
 Location vector — {'[376 294 700

533]'}
 Open {'off'} | 'on'
 NumInputPorts Do not change this parameter

with the command-line. Instead,
use the Number of axes
parameter in the Scope
parameters dialog.

 TickLabels 'on' | 'off' |
{'OneTimeTick'}

 ZoomMode {'on'} | 'xonly' |
'yonly'

 AxesTitles character vector
 Grid 'off' | {'on'} | 'xonly'

| 'yonly'
 TimeRange {'auto'}
 YMin {'-5'}

6 Model and Block Parameters

6-258

Block (Type)/Parameter Dialog Box Prompt Values
 YMax {'5'}
 SaveToWorkspace {'off'} | 'on'
 SaveName {'ScopeData'}
 DataFormat {'StructureWithTime'} |

'Structure' | 'Array'
 LimitDataPoints 'off' | {'on'}
 MaxDataPoints {'5000'}
 Decimation {'1'}
 SampleInput {'off'} | 'on'
 SampleTime {'0'}
Out1 (Outport)
 Port Port number {'1'}
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number
and signal name'

 BusOutputAsStruct Output as nonvirtual bus in
parent model

{'off'} | 'on'

 PortDimensions Port dimensions (-1 for
inherited)

{'-1'}

 VarSizeSig Variable-size signal {'Inherit'} | 'No' |
'Yes'

 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}

 Block-Specific Parameters

6-259

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 SignalObject This parameter does not appear
in the block dialog box. Use the
Model Data Editor instead. See
“Design Data Interface by
Configuring Inport and Outport
Blocks” (Simulink Coder).

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StorageClass This parameter does not appear
in the block dialog box. Use the
Model Data Editor instead. See
“Design Data Interface by
Configuring Inport and Outport
Blocks” (Simulink Coder).

{'Auto'} | 'Model
default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'
| 'Custom'

 SignalName Signal name character vector
 SignalType Signal type {'auto'} | 'real' |

'complex'
 OutputWhenDisabled Output when disabled {'held'} | 'reset'
 InitialOutput Initial output {'[]'}
 MustResolveToSignalObje
ct

This parameter does not appear
in the block dialog box. Use the
Model Data Editor instead. See
“For Signals”.

{'off'} | 'on'

Scope (Scope)

6 Model and Block Parameters

6-260

Block (Type)/Parameter Dialog Box Prompt Values
 Floating {'off'} | 'on'
 Location vector — {'[188 390 512

629]'}
 Open {'off'} | 'on'
 NumInputPorts Do not change this parameter

with the command-line. Instead,
use the Number of axes
parameter in the Scope
parameters dialog.

 TickLabels 'on' | 'off' |
{'OneTimeTick'}

 ZoomMode {'on'} | 'xonly' |
'yonly'

 AxesTitles character vector
 Grid 'off' | {'on'} | 'xonly'

| 'yonly'
 TimeRange {'auto'}
 YMin {'-5'}
 YMax {'5'}
 SaveToWorkspace {'off'} | 'on'
 SaveName {'ScopeData1'}
 DataFormat {'StructureWithTime'} |

'Structure' | 'Array'
 LimitDataPoints 'off' | {'on'}
 MaxDataPoints {'5000'}
 Decimation {'1'}
 SampleInput {'off'} | 'on'
 SampleTime {'0'}
Stop Simulation
Terminator

 Block-Specific Parameters

6-261

Block (Type)/Parameter Dialog Box Prompt Values
To File (ToFile)
 FileName File name {'untitled.mat'}
 MatrixName Variable name {'ans'}
 SaveFormat Save format {'Timeseries'} | 'Array'
 Decimation Decimation {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
To Workspace (ToWorkspace)
 VariableName Variable name {'simout'}
 MaxDataPoints Limit data points to last {'inf'}
 Decimation Decimation {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 SaveFormat Save format {'Timeseries'} |

'Structure With Time' |
'Structure' | 'Array'

 FixptAsFi Log fixed-point data as an fi
object

{'off'} | 'on'

XY Graph (XY scope) (masked subsystem)
 xmin x-min {'-1'}
 xmax x-max {'1'}
 ymin y-min {'-1'}
 ymax y-max {'1'}
 st Sample time {'-1'}

6 Model and Block Parameters

6-262

Sources Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Band-Limited White Noise (Band-Limited White Noise) (masked subsystem)
 Cov Noise power {'[0.1]'}
 Ts Sample time {'0.1'}
 seed Seed {'[23341]'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Chirp Signal (chirp) (masked subsystem)
 f1 Initial frequency {'0.1'}
 T Target time {'100'}
 f2 Frequency at target time {'1'}
 VectorParams1D Interpret vectors parameters as

1-D
'off' | {'on'}

Clock (Clock)
 DisplayTime Display time {'off'} | 'on'
 Decimation Decimation {'10'}
Constant (Constant)
 Value Constant value {'1'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

 SampleTime Sampling time {'Sample based'} |
'Frame based'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-263

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit from

'Constant value''} |
'Inherit: Inherit via
back propagation' |
'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 SampleTime Sample time {'inf'}
 FramePeriod Frame period {'inf'}
Counter Free-Running (Counter Free-Running) (masked subsystem)
 NumBits Number of Bits {'16'}
 tsamp Sample time {'-1'}
Counter Limited (Counter Limited) (masked subsystem)
 uplimit Upper limit {'7'}
 tsamp Sample time {'-1'}
Digital Clock (DigitalClock)
 SampleTime Sample time {'1'}
Enumerated Constant (EnumeratedConstant)
 OutDataTypeStr Output data type {'Enum: SlDemoSign'}
 Value Value {'SlDemoSign.Positive'}

| 'SlDemoSign.Zero' |
'SlDemoSign.Negative'

 SampleTime Sample time {'inf'}

6 Model and Block Parameters

6-264

Block (Type)/Parameter Dialog Box Prompt Values
From File (FromFile)
 FileName File name {'untitled.mat'}
 ExtrapolationBeforeFirs
tDataPoint

Data extrapolation before first
data point

{'Linear extrapolation'}
| 'Hold first value' |
'Ground value'

 InterpolationWithinTime
Range

Data interpolation within time
range

{'Linear interpolation'}
| 'Zero order hold'

 ExtrapolationAfterLastD
ataPoint

Data extrapolation after last
data point

{'Linear extrapolation'}
| 'Hold last value' |
'Ground value'

 SampleTime Sample time {'0'}
From Workspace (FromWorkspace)
 VariableName Data {'simin'}
 OutDataTypeStr Output Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 SampleTime Sample time {'0'}
 Interpolate Interpolate data 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 OutputAfterFinalValue Form output after final data

value by
{'Extrapolation'} |
'Setting to zero' |
'Holding final value' |
'Cyclic repetition'

Ground
In1 (Inport)

 Block-Specific Parameters

6-265

Block (Type)/Parameter Dialog Box Prompt Values
 Port Port number {'1'}
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number
and signal name'

 BusOutputAsStruct Output as nonvirtual bus {'off'} | 'on'
 PortDimensions Port dimensions (-1 for

inherited)
{'-1'}

 VarSizeSig Variable-size signal {'Inherit'} | 'No' |
'Yes'

 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 Unit Specify physical unit of the
input signal to the block. For a
list of acceptable units, see
Allowed Units.

{'inherit'}| '<Enter
unit>'

 UnitNoProp Specify physical unit of the
input signal to the block without
propagation. For a list of
acceptable units, see Allowed
Units.

'<Enter unit>'

6 Model and Block Parameters

6-266

matlab:showunitslist
matlab:showunitslist
matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 SignalType Signal type {'auto'} | 'real' |

'complex'
 LatchByDelaying
 OutsideSignal

Latch input by delaying outside
signal

{'off'} | 'on'

 LatchInputFor
 FeedbackSignals

Latch input for feedback signals
of function-call subsystem
outputs

{'off'} | 'on'

 OutputFunctionCall

Output a function-call trigger
signal

{'off'} | 'on'

 Interpolate Interpolate data 'off' | {'on'}
Pulse Generator (DiscretePulseGenerator)
 PulseType Pulse type {'Time based'} | 'Sample

based'
 TimeSource Time (t) {'Use simulation time'}

| 'Use external signal'
 Amplitude Amplitude {'1'}
 Period Period {'10'}
 PulseWidth Pulse width {'5'}
 PhaseDelay Phase delay {'0'}
 SampleTime Sample time {'1'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Ramp (Ramp) (masked subsystem)
 slope Slope {'1'}
 start Start time {'0'}
 InitialOutput Initial output {'0'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Random Number (RandomNumber)
 Mean Mean {'0'}

 Block-Specific Parameters

6-267

Block (Type)/Parameter Dialog Box Prompt Values
 Variance Variance {'1'}
 Seed Seed {'0'}
 SampleTime Sample time {'0.1'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Repeating Sequence (Repeating table) (masked subsystem)
 rep_seq_t Time values {'[0 2]'}
 rep_seq_y Output values {'[0 2]'}
Repeating Sequence Interpolated (Repeating Sequence Interpolated) (masked subsystem)
 OutValues Vector of output values {'[3 1 4 2 1].''}
 TimeValues Vector of time values {'[0 0.1 0.5 0.6 1].''}
 LookUpMeth Lookup Method {'Interpolation-Use End

Values'} | 'Use Input
Nearest' | 'Use Input
Below' | 'Use Input
Above'

 tsamp Sample time {'0.01'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

back propagation' |
{'double'} | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b

6 Model and Block Parameters

6-268

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

Repeating Sequence Stair (Repeating Sequence Stair) (masked subsystem)
 OutValues Vector of output values {'[3 1 4 2 1].''}
 tsamp Sample time {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

back propagation' |
{'double'} | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 ConRadixGroup Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

Signal Builder (Sigbuilder block) (masked subsystem)
Signal Editor (SignalEditor)
 Filename File name {'untitled.mat'}
 ActiveScenario Active scenario {'Scenario'}
 ActiveSignal Signals {'Signal 1'}

 Block-Specific Parameters

6-269

Block (Type)/Parameter Dialog Box Prompt Values
 IsBus Output a bus signal 'on' | {'off'}
 OutputBusObjectStr Select bus object {'Bus: BusObject'}
 SampleTIme Sample time {'0'}
 Interpolate Interpolate data {'off'} | 'on'
 ZeroCross Enable zero-crossing detection {'off'} | 'on'
 OutputAfterFinalValue Form output after final data

value by
{'Setting to zero'} |
'Extrapolation' |
'Holding final value'

 Unit Unit {'inherit'}
Signal Generator (SignalGenerator)
 WaveForm Wave form {'sine'} | 'square' |

'sawtooth' | 'random'
 TimeSource Time (t) {'Use simulation time'}

| 'Use external signal'
 Amplitude Amplitude {'1'}
 Frequency Frequency {'1'}
 Units Units 'rad/sec' | {'Hertz'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Sine Wave (Sin)
 SineType Sine type {'Time based'} | 'Sample

based'
 TimeSource Time {'Use simulation time'}

| 'Use external signal'
 Amplitude Amplitude {'1'}
 Bias Bias {'0'}
 Frequency Frequency {'1'}
 Phase Phase {'0'}
 Samples Samples per period {'10'}
 Offset Number of offset samples {'0'}

6 Model and Block Parameters

6-270

Block (Type)/Parameter Dialog Box Prompt Values
 SampleTime Sample time {'0'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Step (Step)
 Time Step time {'1'}
 Before Initial value {'0'}
 After Final value {'1'}
 SampleTime Sample time {'0'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

 ZeroCross Enable zero-crossing detection 'off' | {'on'}
Uniform Random Number (UniformRandomNumber)
 Minimum Minimum {'-1'}
 Maximum Maximum {'1'}
 Seed Seed {'0'}
 SampleTime Sample time {'0.1'}
 VectorParams1D Interpret vector parameters as

1-D
'off' | {'on'}

Waveform Generator (WaveformGenerator)
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-271

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type 'Inherit: Inherit via

back propagation' |
{'Inherit: Inherit from
table data'} | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'boolean' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| 'Floor' | {'Nearest'}
| 'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverfl
ow

Saturate on integer overflow {'off'} | 'on'

 SelectedSignal Output signal {'1'}
 SampleTime Sample time {'0'}

6 Model and Block Parameters

6-272

String Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Compose String (Compose String)
 Format Format input data scalar

{""%d %f""}| ""%d"" | ""%i"" |
""%o"" | ""%x"" | ""%X"" | ""%f""
| ""%e"" | ""%E"" | ""%g"" |
""%G"" | ""%s"" | optional
operators and text

 OutDataTypeStr Output data type {"stringtype(255)"} |
"stringtype(N)" | "string"

Scan String (Scan String)
 Format Format input data scalar

{""%d %f""}| ""%d"" | ""%i"" |
""%o"" | ""%x"" | ""%X"" | ""%f""
| ""%e"" | ""%E"" | ""%g"" |
""%G"" | ""%s"" | optional
operators and text

String Compare (String Compare)
 CaseSensitive Case sensitivity for string

compare
'off' | {'on'}

 CompareOption Amount of string to
compare

{"Entire string"} | "First N
characters"

 NumberOfCharacters Amount of string to
compare

{'1'} | scalar

String Concatenate (String Concatenate)
 Inputs Number of input strings {"2"}
 OutDataTypeStr Output data type {"stringtype(128)"} |

"stringtype(N)" | "string"
String Constant (String Constant)
 String Input string {"Hello!"} | scalar

 Block-Specific Parameters

6-273

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {"stringtype(31)"} |

"stringtype(N)" | "string"
String to ASCII (String to ASCII)
 MaximumLength Maximum length of output

vector
{"31"} | scalar

String to Double (String to Double)
 Format Format input data scalar

{""%d %f""}| ""%d"" | ""%i"" |
""%o"" | ""%x"" | ""%X"" | ""%f""
| ""%e"" | ""%E"" | ""%g"" |
""%G"" | ""%s"" | optional
operators and text

String to Enum (String to Enum)
 OutDataTypeStr Output data type {"Enum: SlDemoSign"} | <data

type expression>
String to Single (String to Single)
 Format Format input data scalar

{""%f""}| ""%d"" | ""%i"" |
""%o"" | ""%x"" | ""%X"" | ""%f""
| ""%e"" | ""%E"" | ""%g"" |
""%G"" | ""%s"" | optional
operators and text

Substring (Substring)
 InheritMaximumLength Use same maximum length

as input string
'off' | {'on'}

 OutDataTypeStr Output data type {"stringtype(31)"} |
"stringtype(N)" | "string"

 StringFromIdxToEnd Extract string from idx to
end

{'off'} | 'on'

6 Model and Block Parameters

6-274

User-Defined Functions Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
MATLAB Function (Stateflow) (masked subsystem)
MATLAB System (MATLABSystem)
 System System object class name {''}
Fcn (Fcn)
 Expr Expression {'sin(u(1)*exp(2.3*(-

u(2))))'}
 SampleTime Sample time (-1 for

inherited)
{'-1'}

Level-2 MATLAB S-Function (M-S-Function)
 FunctionName S-function name {'mlfile'}
 Parameters Arguments {''}
Interpreted MATLAB Function (MATLABFcn)
 MATLABFcn MATLAB function {'sin'}
 OutputDimensions Output dimensions {'-1'}
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 Output1D Collapse 2-D results to 1-D 'off' | {'on'}
 SampleTime Sample time (-1 for

inherited)
{'-1'}

S-Function (S-Function)
 FunctionName S-function name {'system'}
 Parameters S-function parameters {''}
 SFunctionModules S-function modules {''}
S-Function Builder (S-Function Builder) (masked subsystem)
 FunctionName S-function name {'system'}
 Parameters S-function parameters {''}
 SFunctionModules S-function modules {''}

 Block-Specific Parameters

6-275

Additional Discrete Block Library Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Fixed-Point State-Space (Fixed-Point State-Space) (masked subsystem)
 A State Matrix A {'[2.6020 -2.2793

0.6708; 1 0 0; 0 1 0]'}
 B Input Matrix B {'[1; 0; 0]'}
 C Output Matrix C {'[0.0184 0.0024

0.0055]'}
 D Direct Feedthrough Matrix D {'[0.0033]'}
 InitialCondition Initial condition for state {'0.0'}
 InternalDataType Data type for internal

calculations
{'fixdt('double')'}

 StateEqScaling Scaling for State Equation AX
+BU

{'2^0'}

 OutputEqScaling Scaling for Output Equation CX
+DU

{'2^0'}

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'
| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Direct Form II (Transfer Fcn Direct Form II) (masked subsystem)
 NumCoefVec Numerator coefficients {'[0.2 0.3 0.2]'}
 DenCoefVec Denominator coefficients

excluding lead (which must be
1.0)

{'[-0.9 0.6]'}

 vinit Initial condition {'0.0'}

6 Model and Block Parameters

6-276

Block (Type)/Parameter Dialog Box Prompt Values
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'

| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Direct Form II Time Varying (Transfer Fcn Direct Form II Time Varying)
(masked subsystem)
 vinit Initial condition {'0.0'}
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent'

| {'Floor'} | 'Nearest'
| 'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Unit Delay Enabled (Unit Delay Enabled) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay Enabled External IC (Unit Delay Enabled External Initial Condition)
(masked subsystem)
 tsamp Sample time {'-1'}
Unit Delay Enabled Resettable (Unit Delay Enabled Resettable) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay Enabled Resettable External IC (Unit Delay Enabled Resettable External
Initial Condition) (masked subsystem)
 tsamp Sample time {'-1'}
Unit Delay External IC (Unit Delay External Initial Condition) (masked subsystem)
 tsamp Sample time {'-1'}
Unit Delay Resettable (Unit Delay Resettable) (masked subsystem)
 vinit Initial condition {'0.0'}

 Block-Specific Parameters

6-277

Block (Type)/Parameter Dialog Box Prompt Values
 tsamp Sample time {'-1'}
Unit Delay Resettable External IC (Unit Delay Resettable External Initial Condition)
(masked subsystem)
 tsamp Sample time {'-1'}
Unit Delay With Preview Enabled (Unit Delay With Preview Enabled) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Enabled Resettable (Unit Delay With Preview Enabled
Resettable) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Enabled Resettable External RV (Unit Delay With Preview Enabled
Resettable External RV) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Resettable (Unit Delay With Preview Resettable) (masked
subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Resettable External RV (Unit Delay With Preview Resettable
External RV) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}

6 Model and Block Parameters

6-278

Additional Math: Increment - Decrement Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Decrement Real World (Real World Value Decrement) (masked subsystem)
Decrement Stored Integer (Stored Integer Value Decrement) (masked subsystem)
Decrement Time To Zero (Decrement Time To Zero) (masked subsystem)
Decrement To Zero (Decrement To Zero) (masked subsystem)
Increment Real World (Real World Value Increment) (masked subsystem)
Increment Stored Integer (Stored Integer Value Increment) (masked subsystem)

 Block-Specific Parameters

6-279

Mask Parameters

About Mask Parameters
This section lists parameters that describe masked blocks. You can use these descriptive
parameters with get_param and set_param to obtain and specify the properties of a
block mask.

The descriptive mask parameters listed in this section apply to all masks, and provide
access to all mask properties. Be careful not to confuse these descriptive mask
parameters with the mask-specific parameters defined for an individual mask in the Mask
Editor Parameters pane.

See “Masking Fundamentals” and “Mask Editor Overview” for information about block
masks and the Mask Editor.

6 Model and Block Parameters

6-280

Mask Parameters

Parameter Description/Prompt Values
Mask Turns mask on or off. {'on'} | 'off'
MaskCallbackString Mask parameter callbacks that

are executed when the
respective parameter is
changed on the dialog. Set by
the Dialog callback field on
the Parameters pane of the
Mask Editor dialog box.

For more information, see
“Mask Callback Code”.

pipe-delimited character vector
{''}

MaskCallbacks Cell array version of
MaskCallbackString.

cell array {'[]'}

MaskDescription Block description. Set by the
Mask description field on the
Documentation pane of the
Mask Editor dialog box.

character vector {''}

MaskDisplay Drawing commands for the
block icon. Set by the Icon
Drawing commands field on
the Icon & Ports pane of the
Mask Editor dialog box.

character vector {''}

MaskEditorHandle For internal use only.
MaskEnableString Option that determines whether

a parameter is greyed out in the
dialog. Set by the Enable
parameter check box on the
Parameters pane of the Mask
Editor dialog box.

pipe-delimited character vector
{''}

MaskEnables Cell array version of
MaskEnableString.

cell array of character vectors,
each either 'on' or ''off'
{'[]'}

 Mask Parameters

6-281

Parameter Description/Prompt Values
MaskHelp Block help. Set by the Mask

help field on the
Documentation pane of the
Mask Editor dialog box.

character vector {''}

MaskIconFrame Set the visibility of the icon
frame (Visible is on, Invisible is
off). Set by the Block Frame
option on the Icon & Ports
pane of the Mask Editor dialog
box.

{'on'} | 'off'

MaskIconOpaque Set the transparency of the
icon. Set by the Icon
Transparency option on the
Icon & Ports pane of the Mask
Editor dialog box.

{'opaque'} |
'transparent' | 'opaque-
with-ports'

MaskIconRotate Set the rotation of the icon
(Rotates is on, Fixed is off).
Set by the Icon Rotation
option on the Icon & Ports
pane of the Mask Editor dialog
box.

'on' | {'off'}

MaskIconUnits Set the units for the drawing
commands. Set by the Icon
Units option on the Icon &
Ports pane of the Mask Editor
dialog box.

'pixel' | {'autoscale'}
| 'normalized'

MaskInitialization Initialization commands. Set by
the Initialization commands
field on the Initialization pane
of the Mask Editor dialog box.

MATLAB command {''}

MaskNames Cell array of mask dialog
parameter names. Set inside the
Variable column in the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

6 Model and Block Parameters

6-282

Parameter Description/Prompt Values
MaskPortRotate Specify the port rotation policy

for the masked block. Set in the
Port Rotation area on the Icon
& Ports pane of the Mask
Editor dialog box.

For more information, see
“Adjust Visual Presentation to
Improve Model Readability”.

{'default} | 'physical'

MaskPrompts List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area on
the Parameters pane of the
Mask Editor dialog box.

cell array of character vectors
{'[]'}

MaskPromptString List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area on
the Parameters pane of the
Mask Editor dialog box.

character vector {''}

MaskPropertyName Pipe-delimited version of
MaskNames.

character vector {''}

MaskRunInitForIconRedraw Specifies whether Simulink
must run mask initialization
before executing the mask icon
commands.

{'auto'}|'on' |'off'

MaskSelfModifiable Indicates that the block can
modify itself. Set by the Allow
library block to modify its
contents check box on the
Initialization pane of the Mask
Editor dialog box.

'on' | {'off'}

 Mask Parameters

6-283

Parameter Description/Prompt Values
MaskStyles Determines whether the dialog

parameter is a check box, edit
field, or pop-up list. Set by the
Type column in the Parameters
pane of the Mask Editor dialog
box.

cell array {'[]'}

MaskStyleString Comma-separated version of
MaskStyles.

character vector {''}

MaskTabNameString For internal use only.
MaskTabNames For internal use only.
MaskToolTipsDisplay Determines which mask dialog

parameters to display in the
tooltip for this masked block.
Specify as a cell array of 'on'
or 'off' values, each of which
indicates whether to display the
parameter named at the
corresponding position in the
cell array returned by
MaskNames.

cell array of 'on' and 'off'
{''}

MaskToolTipString Comma-delimited version of
MaskToolTipsDisplay.

character vector {''}

MaskTunableValues Allows the changing of mask
dialog values during simulation.
Set by the Tunable column in
the Parameters pane of the
Mask Editor dialog box.

cell array of character vectors
{'[]'}

MaskTunableValueString Comma-delimited character
vector version of
MaskTunableValues.

delimited character vector {''}

MaskType Mask type. Set by the Mask
type field on the
Documentation pane of the
Mask Editor dialog box.

character vector
{'Stateflow'}

MaskValues Dialog parameter values. cell array {'[]'}

6 Model and Block Parameters

6-284

Parameter Description/Prompt Values
MaskValueString Delimited character vector

version of MaskValues.
delimited character vector {''}

MaskVarAliases Specify aliases for a block's
mask parameters. The aliases
must appear in the same order
as the parameters appear in the
block's MaskValues parameter.

cell array {'[]'}

MaskVarAliasString For internal use only.
MaskVariables List of the dialog parameters'

variables (see below). Set inside
the Dialog parameters area on
the Parameters pane of the
Mask Editor dialog box.

character vector {''}

MaskVisibilities Specifies visibility of
parameters. Set with the Show
parameter check box in the
Options for selected
parameter area on the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskVisibilityString Delimited character vector
version of MaskVisibilities.

character vector {''}

MaskWSVariables List of the variables defined in
the mask workspace (read only).

matrix {'[]'}

See Control Masks Programmatically, for more information on setting the mask
parameters from the MATLAB command line.

 Mask Parameters

6-285

Fixed-Point Tool

• “Fixed-Point Tool Parameters and Dialog Box” on page 7-2
• “Advanced Settings” on page 7-20

7

Fixed-Point Tool Parameters and Dialog Box
The Fixed-Point Tool includes the following components:

• Main toolbar
• Model Hierarchy pane
• Contents pane
• Dialog pane

Main Toolbar
The Fixed-Point Tool's main toolbar appears near the top of the Fixed-Point Tool window
under the Fixed-Point Tool's menu.

The toolbar contains the following buttons that execute commonly used Fixed-Point Tool
commands:

Button Usage
Open the Fixed-Point Advisor to prepare the model for conversion to fixed
point.
Simulate a model and store the run results.

Pause a simulation.

Stop a simulation.

Analyze model and store derived minimum and maximum results.

Propose data types. Propose fraction lengths for specified word lengths
or propose word lengths for specified fraction lengths.
Apply accepted data types.

Compare selected runs.
Create a difference plot for the selected signals.

Plot the selected signal.

7 Fixed-Point Tool

7-2

Button Usage
Create a histogram plot for the selected signal.

The toolbar also contains the Show option:

The Show option specifies the type of results to display in the Contents pane. The
Contents pane displays information only after you simulate a system or propose fraction
lengths. If there are no results that satisfy a particular filter option, the list will be blank.

Show Option Result
All results Displays all results for the selected tree node.
Signal Logging results For the selected tree node, displays blocks whose output ports

have logged signal data. The Fixed-Point tool marks these

blocks with the logged signal icon .

Note You can plot simulation results associated with logged
signal data using the Simulation Data Inspector.

Min/Max results For the selected tree node, displays blocks that record design
Min/Max, simulation Min/Max, and overflow data.

Prerequisites: Fixed-point instrumentation mode should
not be set to Force Off.

Overflows For the selected tree node, displays blocks that have non-zero
overflows recorded. If a block has its Saturate on integer
overflow option selected, overflow information appears in the
Saturations column, otherwise it appears in the
OverflowWraps column.

 Fixed-Point Tool Parameters and Dialog Box

7-3

Show Option Result
Conflicts with proposed data
types

For the selected tree node, displays results that have potential
data typing or scaling issues.

Prerequisites: This information is available only after you
propose data types.

The Fixed-Point Tool marks these results with a yellow or red
icon, as shown here:

The proposed data type poses potential issues for this
object. Open the Result Details tab to review these
issues.
The proposed data type will introduce errors if applied to
this object. Open the Result Details tab for details about
how to resolve these issues.

Groups that must share the same
data type

For the selected tree node, displays blocks that must share
the same data type because of data type propagation rules.

Prerequisites: This information is available only after you
propose fraction lengths.

The Fixed-Point Tool allocates an identification tag to blocks
that must share the same data type. This identification tag is
displayed in the DTGroup column as follows:

• If the selected tree node is the model root

All results for the model are listed. The DTGroup column
is sorted by default so that you can easily view all blocks in
a group.

• If the selected tree node is a subsystem

The identification tags have a suffix that indicates the total
number of results in each group. For example, G2(2)
means group G2 has 2 members. This information enables
you to see how many members of a group belong to the
selected subsystem and which groups share data types
across subsystem boundaries.

7 Fixed-Point Tool

7-4

Model Hierarchy Pane
The Model Hierarchy pane displays a tree-structured view of the Simulink model
hierarchy. The first node in the pane represents a Simulink model. Expanding the root
node displays subnodes that represent the model's subsystems, MATLAB Function blocks,
Stateflow charts, and referenced models.

The Fixed-Point Tool's Contents pane displays elements that comprise the object selected
in the Model Hierarchy pane. The Dialog pane provides parameters for specifying the
selected object's data type override and fixed-point instrumentation mode. You can also
specify an object’s data type override and fixed-point instrumentation mode by right-
clicking on the object. The Model Hierarchy pane indicates the value of these
parameters by displaying the following abbreviations next to the object name:

Abbreviation Parameter Value
Fixed-point instrumentation mode
 mmo Minimums, maximums and overflows
 o Overflows only
 fo Force off
Data type override
 scl Scaled double
 dbl Double
 sgl Single
 off Off

Contents Pane
The Contents pane displays a tabular view of objects that log fixed-point data in the
system or subsystem selected in the Model Hierarchy pane. The table rows correspond
to model objects, such as blocks, block parameters, and Stateflow data. The table columns
correspond to attributes of those objects, such as the data type, design minimum and
maximum values, and simulation minimum and maximum values.

The Contents pane displays information only after you simulate a system, analyze the
model to derive minimum and maximum values, or propose fraction lengths.

 Fixed-Point Tool Parameters and Dialog Box

7-5

You can control which of the following columns the Fixed-Point Tool displays in this pane.
For more information, see “Customizing the Contents Pane View” on page 7-8.

Column Label Description
Accept Check box that enables you to selectively accept the Fixed-

Point Tool's data type proposal.
CompiledDesignMax Compile-time information for DesignMax.
CompiledDesignMin Compile-time information for DesignMin.
CompiledDT Compile-time data type. This data type appears on the

signal line in sfix format. See “Fixed-Point Data Type and
Scaling Notation” (Fixed-Point Designer).

DerivedMax Maximum value the Fixed-Point tool derives for this signal
from design ranges specified for blocks.

DerivedMin Minimum value the Fixed-Point tool derives for this signal
from design ranges specified for blocks.

DesignMax Maximum value the block specifies in its parameter dialog
box, for example, the value of its Output maximum
parameter.

DesignMin Minimum value the block specifies in its parameter dialog
box, for example, the value of its Output minimum
parameter.

DivByZero Number of divide-by-zero instances that occur during
simulation.

DTGroup Identification tag associated with objects that share data
types.

InitValueMax Maximum initial value for a signal or parameter. Some
model objects provide parameters that allow you to specify
the initial values of their signals. For example, the
Constant block includes a Constant value that initializes
the block output signal.

Note The Fixed-Point Tool uses this parameter when it
proposes data types.

7 Fixed-Point Tool

7-6

Column Label Description
InitValueMin Minimum initial value for a signal or parameter. Some

model objects provide parameters that allow you to specify
the initial values of their signals. For example, the
Constant block includes a Constant value that initializes
the block output signal.

Note The Fixed-Point Tool uses this parameter when it
proposes data types.

LogSignal Check box that allows you to enable or disable signal
logging for an object.

ModelRequiredMin Minimum value of a parameter used during simulation. For
example, the n-D Lookup Table block uses the
Breakpoints and Table data parameters to perform its
lookup operation and generate output. In this example, the
block uses more than one parameter so the Fixed-Point
Tool sets ModelRequiredMin to the minimum of the
minimum values of all these parameters.

Note The Fixed-Point Tool uses this parameter when it
proposes data types.

ModelRequiredMax Maximum value of a parameter used during simulation. For
example, the n-D Lookup Table block uses the
Breakpoints and Table data parameters to perform its
lookup operation and generate output. In this example, the
block uses more than one parameter so the Fixed-Point
Tool sets ModelRequiredMax to the maximum of the
maximum values of all these parameters.

Note The Fixed-Point Tool uses this parameter when it
proposes data types.

Name Identifies path and name of block.
OverflowWraps Number of overflows that wrap during simulation.
ProposedDT Data type that the Fixed-Point Tool proposes.

 Fixed-Point Tool Parameters and Dialog Box

7-7

Column Label Description
ProposedMax Maximum value that results from the data type the Fixed-

Point Tool proposes.
ProposedMin Minimum value that results from the data type the Fixed-

Point Tool proposes.
Run Indicates the run name for these results.
Saturations Number of overflows that saturate during simulation.
SimDT Data type the block uses during simulation. This data type

appears on the signal line in sfix format. See “Fixed-Point
Data Type and Scaling Notation” (Fixed-Point Designer).

SimMax Maximum value that occurs during simulation.
SimMin Minimum value that occurs during simulation.
SpecifiedDT Data type the block specifies in its parameter dialog box,

for example, the value of its Output data type parameter.

Customizing the Contents Pane View
You can customize the Contents pane in the following ways:

• “Using Column Views” on page 7-8
• “Changing Column Order and Width” on page 7-10
• “Sorting by Columns” on page 7-10

Using Column Views

The Fixed-Point Tool provides the following standard Column Views:

View Name Columns Provided When Does the Fixed-Point
Tool Display this View?

Simulation View (default) Name, Run, CompiledDT,
SpecifiedDT, SimMin,
SimMax, DesignMin,
DesignMax, OverflowWraps,
Saturations

After a simulating minimum and
maximum values.

7 Fixed-Point Tool

7-8

View Name Columns Provided When Does the Fixed-Point
Tool Display this View?

Automatic Data Typing
View

Name, Run, CompiledDT,
CompiledDesignMax,
CompiledDesignMin,Accept,
ProposedDT, SpecifiedDT,
DesignMin, DesignMax,
DerivedMin, DerivedMax,
SimMin, SimMax,
OverflowWraps, Saturations,
ProposedMin, ProposedMax

After proposing data types if
proposal is based on simulation,
derived, and design min/max.

Automatic Data Typing
With Simulation Min/Max
View

Name, Run, CompiledDT,
Accept, ProposedDT,
SpecifiedDT, SimMin,
SimMax, DesignMin,
DesignMax, OverflowWraps,
Saturations, ProposedMin,
ProposedMax

After proposing data types if the
proposal is based on simulation
and design min/max.

Automatic Data Typing
With Derived Min/Max
View

Name, Run,
CompiledDesignMax,
CompiledDesignMin,Accept,
ProposedDT, SpecifiedDT,
DerivedMin, DerivedMax,
ProposedMin, ProposedMax

After proposing data types if the
proposal is based on design
min/max and/or derived min/
max.

Data Collection View Name, Run, CompiledDT,
SpecifiedDT, DerivedMin,
DerivedMax, SimMin,
SimMax, OverflowWraps,
Saturations

After simulating or deriving
minimum and maximum values
if the results have simulation
min/max, derived min/max, and
design min/max.

Derived Min/Max View Name, Run,
CompiledDesignMax,
CompiledDesignMin,
DerivedMin, DerivedMax

After deriving minimum and
maximum values.

By selecting Show Details, you can:

• Customize the standard column views
• Create your own column views

 Fixed-Point Tool Parameters and Dialog Box

7-9

• Export and import column views saved in MAT-files, which you can share with other
users

• Reset views to factory settings

If you upgrade to a new release of Simulink, and the column views available in the
Fixed-Point Tool do not match the views described in the documentation, reset your
views to factory settings. When you reset all views, the Model Explorer removes all the
custom views you have created. Before you reset views to factory settings, export any
views that you will want to use in the future.

You can prevent the Fixed-Point Tool from automatically changing the column view of the
contents pane by selecting View > Lock Column View in the Fixed-Point Tool menu. For
more information on controlling views, see “Customize Model Explorer Views”.

Changing Column Order and Width

You can alter the order and width of columns that appear in the Contents pane as
follows:

• To move a column, click and drag the head of a column to a new location among the
column headers.

• To make a column wider or narrower, click and drag the right edge of a column
header. If you double-click the right edge of a column header, the column width
changes to fit its contents.

Sorting by Columns

By default, the Contents pane displays its contents in ascending order of the Name
column. You can alter the order in which the Contents pane displays its rows as follows:

• To sort all the rows in ascending order of another column, click the head of that
column.

• To change the order from ascending to descending, simply click again on the head of
that column.

Dialog Pane
Use the Dialog pane to view and change properties associated with the system under
design.

7 Fixed-Point Tool

7-10

The Dialog pane includes the following components:

Component Description
System under design Displays the system under design for conversion.

You can change the selected system by clicking
Change.

 Fixed-Point Tool Parameters and Dialog Box

7-11

Component Description
Fixed-point preparation Contains the Fixed-Point Advisor button. Use

this button to open the Fixed-Point Advisor to
guide you through the tasks to prepare your
floating-point model for conversion to fixed
point. For more information, see “Fixed-Point
Advisor” on page 7-12.

Configure model settings Contains default configurations that set up run
parameters, such as the run name and data type
override settings, by clicking a button. For more
information, see “Configure model settings” on
page 7-13.

Range collection Contains controls to collect simulation or derived
minimum and maximum data for your model.

Automatic data typing Contains controls to propose and, optionally,
accept data type proposals.

Result Details tab Use this tab to view data type information about
the object selected in the Contents pane.

Tips

From the Fixed-Point Tool View menu, you can customize the layout of the Dialog pane.
Select:

• Show Fixed-Point Preparation to show/hide the Fixed-Point Advisor button. By
default, the Fixed-Point Tool displays this button.

• Show Dialog View to show/hide the Dialog pane. By default, the Fixed-Point Tool
displays this pane.

• Settings for selected system to show/hide the Settings for selected system pane.
By default, the Fixed-Point Tool displays this pane.

Fixed-Point Advisor
Open the Fixed-Point Advisor to guide you through the tasks to prepare a floating-point
model for conversion to fixed point. Use the Fixed-Point Advisor if your model contains
blocks that do not support fixed-point data types.

7 Fixed-Point Tool

7-12

Configure model settings
Use the configurations to set up model-wide data type override and instrumentation
settings prior to simulation. The Fixed-Point Tool provides:

• Frequently-used factory default configurations
• The ability to add and edit custom configurations

Note The factory default configurations apply to the whole model. You cannot use these
shortcuts to configure subsystems.

Factory Defaults

Factory Default Configuration Description
Range collection using double
override

Use this configuration to observe ideal numeric
behavior of the model and collect ranges for data
type proposals.

This configuration sets:

• Run name to DoubleOverride
• Fixed-point instrumentation mode to

Minimums, maximums and overflows
• Data type override to Double
• Data type override applies to to All

numeric types

By default, a button for this configuration appears
in the Configure model settings pane.

 Fixed-Point Tool Parameters and Dialog Box

7-13

Factory Default Configuration Description
Range collection with specified
data types

Use this configuration to collect ranges of actual
model and to validate current behavior.

This configuration sets:

• Run name to NoOverride
• Fixed-point instrumentation mode to

Minimums, maximums and overflows
• Data type override to Use local settings

By default, a button for this shortcut appears in
the Configure model settings pane.

Remove overrides and disable
range collection

Use this configuration to cleanup settings after
finishing fixed-point conversion and to restore
maximum simulation speed.

This configuration sets:

• Fixed-point instrumentation mode to Off
• Data type override to Use local settings

By default, a button for this shortcut appears in
the Configure model settings pane.

Advanced settings

Use Advanced settings to add new configurations or edit existing user-defined
configurations.

Run name
Specifies the run name

If you use a default configuration to set up a run, the Fixed-Point Tool uses the run name
associated with this configuration. You can override the run name by entering a new
name in this field.

7 Fixed-Point Tool

7-14

Tips

• To store data for multiple runs, provide a different run name for each run. Running
two simulations with the same run name overwrites the original run unless you select
Merge results from multiple simulations.

• You can edit the run name in the Contents pane Run column.

For more information, see “Run Management” (Fixed-Point Designer).

Simulate
Simulates model and stores results.

Action

Simulates the model and stores the results with the run name specified in Run name.
The Fixed-Point Tool displays the run name in the Run column of the Contents pane.

Merge instrumentation results from multiple simulations
Control how simulation results are stored

Settings

Default: Off

 On
Merges new simulation minimum and maximum results with existing simulation
results in the run specified by the run name parameter. Allows you to collect complete
range information from multiple test benches. Does not merge signal logging results.

 Off
Clears all existing simulation results from the run specified by the run name
parameter before displaying new simulation results.

Command-Line Alternative
Parameter: 'MinMaxOverflowArchiveMode'
Type: string
Value: 'Overwrite' | 'Merge'

 Fixed-Point Tool Parameters and Dialog Box

7-15

Default: 'Overwrite'

Tip

Select this parameter to log simulation minimum and maximum values captured over
multiple simulations. For more information, see “Propose Data Types For Merged
Simulation Ranges” (Fixed-Point Designer).

Derive ranges for selected system
Derive minimum and maximum values for signals for the selected system.

The Fixed-Point Tool analyzes the selected system to compute derived minimum and
maximum values based on design minimum and maximum values specified on blocks. For
example, using the Output minimum and Output maximum for block outputs.

Action

Analyzes the selected system to compute derived minimum and maximum information
based on the design minimum and maximum values specified on blocks.

By default, the Fixed-Point Tool displays the Derived Min/Max View with the following
information in the Contents pane.

Command-Line Alternative

No command line alternative available.

Dependencies

Range analysis:

• Requires a Fixed-Point Designer license.

Propose
Signedness

Select whether you want The Fixed-Point Tool to propose signedness for results in your
model. The Fixed-Point Tool proposes signedness based on collected range data and block
constraints. By default, the Signedness check box is selected.

7 Fixed-Point Tool

7-16

When the check box is selected, signals that are always strictly positive get an unsigned
data type proposal. If you clear the check box, the Fixed-Point Tool proposes a signed data
type for all results that currently specify a floating-point or an inherited output data type
unless other constraints are present. If a result specifies a fixed-point output data type,
the Fixed-Point Tool will propose a data type with the same signedness as the currently
specified data type unless other constraints are present.

Word length or fraction length

Select whether you want the Fixed-Point Tool to propose word lengths or fraction lengths
for the objects in your system.

• If you select Word length, the Fixed-Point Tool proposes a data type with the
specified fraction length and the minimum word length to avoid overflows.

• If you select Fraction length, the Fixed-Point Tool proposes a data type with the
specified word length and best-precision fraction length while avoiding overflows.

If a result currently specifies a fixed-point data type, that information will be used in the
proposal. If a result specifies a floating-point or inherited output data type, and the
Inherited and Floating point check boxes are selected, the Fixed-Point Tool uses the
settings specified under Automatic data typing to make a data type proposal.

Propose for
Inherited

Propose data types for results that specify one of the inherited output data types.

Floating-point

Propose data types for results that specify floating-point output data types.

Default fraction length
Specify the default fraction length for objects in your model. The Fixed-Point Tool
proposes a data type with the specified fraction length and the minimum word length that
avoids overflows.

Command-Line Alternative

No command line alternative available.

 Fixed-Point Tool Parameters and Dialog Box

7-17

Default word length
Specify the default word length for objects in your model. The Fixed-Point Tool will
propose best-precision fraction lengths based on the specified default word length.

Command-Line Alternative

No command line alternative available.

When proposing types use
Specify the types of ranges to use for data type proposals.

Design and derived ranges

The Fixed-Point Tool uses the design ranges in conjunction with derived ranges to
propose data types. Design ranges take precedence over derived ranges.

Design and simulation ranges

The Fixed-Point Tool uses the design ranges in conjunction with collected simulation
ranges to propose data types. Design ranges take precedence over simulation ranges.

The Safety margin for simulation min/max (%) parameter specifies a range that
differs from that defined by the simulation range. For more information, see “Safety
margin for simulation min/max (%)” on page 7-18

All collected ranges

The Fixed-Point Tool uses design ranges in addition to derived and simulation ranges to
propose data types.

Design minimum and maximum values take precedence over simulation and derived
ranges.

Command-Line Alternative

No command line alternative available.

Safety margin for simulation min/max (%)
Specify safety factor for simulation minimum and maximum values.

7 Fixed-Point Tool

7-18

Settings

Default: 0

The simulation minimum and maximum values are adjusted by the percentage designated
by this parameter, allowing you to specify a range different from that obtained from the
simulation run. The specified safety margin must be a real number greater than -100. For
example, a value of 55 specifies that a range at least 55 percent larger is desired. A value
of -15 specifies that a range up to 15 percent smaller is acceptable.

Dependencies

Before performing automatic data typing, you must specify design minimum and
maximum values or run a simulation to collect simulation minimum and maximum data, or
collect derived minimum and maximum values.

Command-Line Alternative

No command line alternative available.

 Fixed-Point Tool Parameters and Dialog Box

7-19

Advanced Settings

In this section...
“Advanced Settings Overview” on page 7-20
“Fixed-point instrumentation mode” on page 7-20
“Data type override” on page 7-21
“Data type override applies to” on page 7-23
“Name of shortcut” on page 7-25
“Allow modification of fixed-point instrumentation settings” on page 7-25
“Allow modification of data type override settings” on page 7-26
“Allow modification of run name” on page 7-27
“Run name” on page 7-27
“Capture system settings” on page 7-27
“Fixed-point instrumentation mode” on page 7-27
“Data type override” on page 7-28
“Data type override applies to” on page 7-29

Advanced Settings Overview
Use the Advanced Settings dialog to control the fixed-point instrumentation mode, and
data type override settings. You can also use the Advanced Settings dialog to add or edit
user-defined configurations. You cannot modify the factory default configurations. If you
add a new configuration and want it to appear as a button on the Fixed-Point Tool
Configure model settings pane, use the controls in the Shortcuts tab.

Fixed-point instrumentation mode
Control which objects log minimum, maximum and overflow data during simulation.

Settings

Default: Use local settings

7 Fixed-Point Tool

7-20

Use local settings
Logs data according to the value of this parameter set for each subsystem. Otherwise,
settings for parent systems always override those of child systems.

Minimums, maximums and overflows
Logs minimum value, maximum value, and overflow data for all blocks in the current
system or subsystem during simulation.

Overflows only
Logs only overflow data for all blocks in the current system or subsystem.

Force off
Does not log data for any block in the current system or subsystem. Use this selection
to work with models containing fixed-point enabled blocks if you do not have a Fixed-
Point Designer license.

Tips

• You cannot change the instrumentation mode for linked subsystems or referenced
models.

Dependencies

The value of this parameter for parent systems controls min/max logging for all child
subsystems, unless Use local settings is selected.

Command-Line Alternative
Parameter: 'MinMaxOverflowLogging'
Type: string
Value: 'UseLocalSettings' | 'MinMaxAndOverflow' | 'OverflowOnly' |
'ForceOff'
Default: 'UseLocalSettings'

Data type override
Control data type override of objects that allow you to specify data types in their dialog
boxes.

Settings

Default: Use local settings

 Advanced Settings

7-21

The value of this parameter for parent systems controls data type override for all child
subsystems, unless Use local settings is selected.

Use local settings
Overrides data types according to the setting of this parameter for each subsystem.

Scaled double
Overrides the data type of all blocks in the current system and subsystem with
doubles; however, the scaling and bias specified in the dialog box of each block is
maintained.

Double
Overrides the output data type of all blocks in the current system or subsystem with
doubles. The overridden values have no scaling or bias.

Single
Overrides the output data type of all blocks in the current system or subsystem with
singles. The overridden values have no scaling or bias.

Off
No data type override is performed on any block in the current system or subsystem.
The settings on the blocks are used.

Tips

• Set this parameter to Double or Single and the Data type override applies to
parameter to All numeric types to work with models containing fixed-point
enabled blocks if you do not have a Fixed-Point Designer license.

• You cannot change the Data type override setting on linked subsystems or
referenced models.

• Data type override never applies to boolean data types.
• When you set the Data type override parameter of a parent system to Double,

Single, Scaled double or Off, this setting also applies to all child subsystems and
you cannot change the data type override setting for these child subsystems. When the
Data type override parameter of a parent system is Use local settings, you can
set the Data type override parameter for individual children.

• Use this parameter with the Data type override applies to parameter. The following
table details how these two parameters affect the data types in your model.

7 Fixed-Point Tool

7-22

Fixed-Point Tool Settings Block Local Settings
Data type override Data type override

applies to
Floating-point types Fixed-point types

Use local settings/Off N/A Unchanged Unchanged
Double All numeric types Double Double

Floating-point Double Unchanged
Fixed-point Unchanged Double

Single All numeric types Single Single
Floating-point Single Unchanged

Fixed-point Unchanged Single
Scaled double All numeric types Double Scaled double

equivalent of fixed-
point type

Floating-point Double Unchanged
Fixed-point Unchanged Scaled double

equivalent of fixed-
point type

Dependencies

• The following Simulink blocks allow you to set data types in their block masks, but
ignore the Data type override setting:

• Probe
• Trigger
• Width

Command-Line Alternative
Parameter: 'DataTypeOverride'
Type: string
Value: 'UseLocalSettings' | 'ScaledDouble' | 'Double' | 'Single' | 'Off'
Default: 'UseLocalSettings'

Data type override applies to
Specifies which data types the Fixed-Point Tool overrides

 Advanced Settings

7-23

Settings

Default: All numeric types

All numeric types
Data type override applies to all numeric types, floating-point and fixed-point. It does
not apply to boolean or enumerated data types.

Floating-point
Data type override applies only to floating-point data types, that is, double and
single.

Fixed-point
Data type override applies only to fixed-point data types, for example, uint8, fixdt.

Tips

• Use this parameter with the Data type override parameter.
• Data type override never applies to boolean or enumerated data types or to buses.
• When you set the Data type override parameter of a parent system to Double,

Single, Scaled double or Off, this setting also applies to all child subsystems and
you cannot change the data type override setting for these child subsystems. When the
Data type override parameter of a parent system is Use local setting, you can
set the Data type override parameter for individual children.

• The following table details how these two parameters affect the data types in your
model.

Fixed-Point Tool Settings Block Local Settings
Data type override Data type override

applies to
Floating-point types Fixed-point types

Use local settings/Off N/A Unchanged Unchanged
Double All numeric types Double Double

Floating-point Double Unchanged
Fixed-point Unchanged Double

Single All numeric types Single Single
Floating-point Single Unchanged

Fixed-point Unchanged Single

7 Fixed-Point Tool

7-24

Fixed-Point Tool Settings Block Local Settings
Data type override Data type override

applies to
Floating-point types Fixed-point types

Scaled double All numeric types Double Scaled double
equivalent of fixed-

point type
Floating-point Double Unchanged

Fixed-point Unchanged Scaled double
equivalent of fixed-

point type

Dependencies

This parameter is enabled only when Data type override is set to Scaled double,
Double or Single.

Command-Line Alternative
Parameter: 'DataTypeOverrideAppliesTo'
Type: string
Value: 'AllNumericTypes' | 'Floating-point' | 'Fixed-point'
Default: 'AllNumericTypes'

Name of shortcut
Enter a unique name for your shortcut. By default, the Fixed-Point Tool uses this name as
the Run name for this shortcut.

If the shortcut name already exists, the new settings overwrite the existing settings.

See Also

• “Run Management” (Fixed-Point Designer)

Allow modification of fixed-point instrumentation settings
Select whether to change the model fixed-point instrumentation settings when you apply
this shortcut to the model.

 Advanced Settings

7-25

Settings

Default: On

 On
When you apply this shortcut to the model, changes the fixed-point instrumentation
settings of the model and its subsystems to the setting defined in this shortcut.

 Off
Does not change the fixed-point instrumentation settings when you apply this shortcut
to the model.

Tip

If you want to control data type override settings without altering the fixed-point
instrumentation settings on your model, clear this option.

See Also

• “Run Management” (Fixed-Point Designer)

Allow modification of data type override settings
Select whether to change the model data type override settings when you apply this
shortcut to the model

Settings

Default: On

 On
When you apply this shortcut to the model, changes the data type override settings of
the model and its subsystems to the settings defined in this shortcut .

 Off
Does not change the fixed-point instrumentation settings when you apply this shortcut
to the model.

7 Fixed-Point Tool

7-26

Allow modification of run name
Select whether to change the run name on the model when you apply this shortcut to the
model

Settings

Default: On

 On
Changes the run name to the setting defined in this shortcut when you apply this
shortcut to the model.

 Off
Does not change the run name when you apply this shortcut to the model.

Run name
Specify the run name to use when you apply this shortcut.

By default, the run name uses the name of the shortcut. Run names are case sensitive.

Dependency

Allow modification of run name enables this parameter.

Capture system settings
Copy the model and subsystem fixed-point instrumentation mode and data type override
settings into the Shortcut editor.

Fixed-point instrumentation mode
Control which objects in the shortcut editor log minimum, maximum and overflow data
during simulation.

This information is stored in the shortcut. To use the current model setting, click Capture
system settings.

 Advanced Settings

7-27

Settings

Default: Same as model setting

Use local settings
Logs data according to the value of this parameter set for each subsystem. Otherwise,
settings for parent systems always override those of child systems.

Minimums, maximums and overflows
Logs minimum value, maximum value, and overflow data for all blocks in the current
system or subsystem during simulation.

Overflows only
Logs only overflow data for all blocks in the current system or subsystem.

Force off
Does not log data for any block in the current system or subsystem. Use this selection
to work with models containing fixed-point enabled blocks if you do not have a Fixed-
Point Designer license.

Dependency

Allow modification of fixed-point instrumentation settings enables this parameter.

Data type override
Control data type override of objects that allow you to specify data types in their dialog
boxes.

This information is stored in the shortcut. To use the current model settings, click
Capture system settings.

Settings

Default: Same as model

The value of this parameter for parent systems controls data type override for all child
subsystems, unless Use local settings is selected.

Use local settings
Overrides data types according to the setting of this parameter for each subsystem.

7 Fixed-Point Tool

7-28

Scaled double
Overrides the data type of all blocks in the current system and subsystem with
doubles; however, the scaling and bias specified in the dialog box of each block is
maintained.

Double
Overrides the output data type of all blocks in the current system or subsystem with
doubles. The overridden values have no scaling or bias.

Single
Overrides the output data type of all blocks in the current system or subsystem with
singles. The overridden values have no scaling or bias.

Off
No data type override is performed on any block in the current system or subsystem.
The settings on the blocks are used.

Dependency

Allow modification of data type override settings enables this parameter.

Data type override applies to
Specifies which data types to override when you apply this shortcut.

This information is stored in the shortcut. To use the current model setting, click Capture
system settings.

Settings

Default: All numeric types

All numeric types
Data type override applies to all numeric types, floating-point and fixed-point. It does
not apply to boolean or enumerated data types.

Floating-point
Data type override applies only to floating-point data types, that is, double and
single.

Fixed-point
Data type override applies only to fixed-point data types, for example, uint8, fixdt.

 Advanced Settings

7-29

Dependency

Allow modification of data type override settings enables this parameter.

7 Fixed-Point Tool

7-30

Model Advisor Checks

8

Simulink Checks
In this section...
“Simulink Check Overview” on page 8-4
“Migrating to Simplified Initialization Mode Overview” on page 8-5
“Identify unconnected lines, input ports, and output ports” on page 8-5
“Check root model Inport block specifications” on page 8-6
“Check optimization settings” on page 8-7
“Check diagnostic settings ignored during accelerated model reference simulation” on
page 8-9
“Check for parameter tunability information ignored for referenced models” on page 8-
10
“Check for implicit signal resolution” on page 8-11
“Check for optimal bus virtuality” on page 8-12
“Check for Discrete-Time Integrator blocks with initial condition uncertainty” on page 8-
12
“Identify disabled library links” on page 8-13
“Check for large number of function arguments from virtual bus across model reference
boundary” on page 8-14
“Identify parameterized library links” on page 8-15
“Identify unresolved library links” on page 8-16
“Identify model reference variants and variant subsystems that override variant choice”
on page 8-17
“Identify configurable subsystem blocks for converting to variant subsystem blocks” on
page 8-18
“Identify Variant Model blocks and convert those to Variant Subsystem containing Model
block choices” on page 8-18
“Check usage of function-call connections” on page 8-19
“Check model for upgradable Simulink Scope blocks” on page 8-20
“Check Data Store Memory blocks for multitasking, strong typing, and shadowing
issues” on page 8-20
“Check if read/write diagnostics are enabled for data store blocks” on page 8-22

8 Model Advisor Checks

8-2

In this section...
“Check data store block sample times for modeling errors” on page 8-23
“Check for potential ordering issues involving data store access” on page 8-24
“Check structure parameter usage with bus signals” on page 8-25
“Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition” on page 8-27
“Check for calls to slDataTypeAndScale” on page 8-28
“Check bus signals treated as vectors” on page 8-30
“Check for potentially delayed function-call subsystem return values” on page 8-31
“Identify block output signals with continuous sample time and non-floating point data
type” on page 8-32
“Check usage of Merge blocks” on page 8-33
“Check usage of Outport blocks” on page 8-36
“Check usage of Discrete-Time Integrator blocks” on page 8-48
“Check model settings for migration to simplified initialization mode” on page 8-49
“Check S-functions in the model” on page 8-51
“Check for non-continuous signals driving derivative ports” on page 8-52
“Runtime diagnostics for S-functions” on page 8-53
“Check model for foreign characters” on page 8-54
“Identify unit mismatches in the model” on page 8-55
“Identify automatic unit conversions in the model” on page 8-55
“Identify disallowed unit systems in the model” on page 8-56
“Identify undefined units in the model” on page 8-56
“Check model for block upgrade issues” on page 8-57
“Check model for block upgrade issues requiring compile time information” on page 8-
58
“Check that the model is saved in SLX format” on page 8-59
“Check model for SB2SL blocks” on page 8-60
“Check Model History properties” on page 8-60
“Identify Model Info blocks that can interact with external source control tools” on page
8-61

 Simulink Checks

8-3

In this section...
“Identify Model Info blocks that use the Configuration Manager” on page 8-62
“Check model for legacy 3DoF or 6DoF blocks” on page 8-63
“Check model and local libraries for legacy Aerospace Blockset blocks” on page 8-64
“Check model for Aerospace Blockset navigation blocks” on page 8-64
“Check and update masked blocks in library to use promoted parameters” on page 8-65
“Check and update mask image display commands with unnecessary imread() function
calls” on page 8-66
“Check and update mask to affirm icon drawing commands dependency on mask
workspace” on page 8-67
“Identify masked blocks that specify tabs in mask dialog using MaskTabNames
parameter” on page 8-68
“Identify questionable operations for strict single-precision design” on page 8-69
“Check get_param calls for block CompiledSampleTime” on page 8-70
“Check model for parameter initialization and tuning issues” on page 8-72
“Check for virtual bus across model reference boundaries” on page 8-73
“Check model for custom library blocks that rely on frame status of the signal” on page
8-75
“Check model for S-function upgrade issues” on page 8-76
“Check Rapid accelerator signal logging” on page 8-77
“Check virtual bus inputs to blocks” on page 8-78
“Check for root outports with constant sample time” on page 8-82
“Analyze model hierarchy and continue upgrade sequence” on page 8-83
“Check Access to Data Stores” on page 8-85

Simulink Check Overview
Use the Simulink Model Advisor checks to configure your model for simulation.

See Also

• “Run Model Checks”
• “Simulink Coder Checks” (Simulink Coder)

8 Model Advisor Checks

8-4

• “Simulink Check Checks” (Simulink Check)

Migrating to Simplified Initialization Mode Overview
Simplified initialization mode was introduced in R2008b to improve the consistency of
simulation results. This mode is especially important for models that do not specify initial
conditions for conditionally executed subsystem output ports. For more information, see
“Simplified Initialization Mode” and “Classic Initialization Mode”.

Use the Model Advisor checks in Migrating to Simplified Initialization Mode to help
migrate your model to simplified initialization mode.

See Also

• “Simplified Initialization Mode”
• “Classic Initialization Mode”
• “Underspecified initialization detection”
• “Check usage of Merge blocks” on page 8-33
• “Check usage of Outport blocks” on page 8-36
• “Check usage of Discrete-Time Integrator blocks” on page 8-48
• “Check model settings for migration to simplified initialization mode” on page 8-49

Identify unconnected lines, input ports, and output ports
Check ID: mathworks.design.UnconnectedLinesPorts

Check for unconnected lines or ports.

Description

This check lists unconnected lines or ports. These can have difficulty propagating signal
attributes such as data type, sample time, and dimensions.

Note Ports connected to ground/terminator blocks will pass this test.

 Simulink Checks

8-5

Results and Recommended Actions

Condition Recommended Action
Lines, input ports, or output ports are unconnected. Connect the signals. Double-click

the list of unconnected items to
locate failure.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

Use the PortConnectivity command to obtain an array of structures describing block
input or output ports.

See Also

“Common Block Properties” on page 6-111 for information on the PortConnectivity
command.

“What Is a Model Advisor Exclusion?” (Simulink Check)

Check root model Inport block specifications
Check ID: mathworks.design.RootInportSpec

Check that root model Inport blocks fully define dimensions, sample time, and data type.

Description

Using root model Inport blocks that do not fully define dimensions, sample time, or data
type can lead to undesired simulation results. Simulink software back-propagates
dimensions, sample times and data types from downstream blocks unless you explicitly
assign them values.

8 Model Advisor Checks

8-6

Results and Recommended Actions

Condition Recommended Action
Root-level Inport blocks have undefined attributes. Fully define the attributes of the

root-level Inport blocks.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

Tips

The following configurations pass this check:

• Configuration Parameters > Solver > Periodic sample time constraint is set to
Ensure sample time independent

• For export-function models, inherited sample time is not flagged.

See Also

• “About Data Types in Simulink”.
• “Determine Output Signal Dimensions”.
• “Specify Sample Time”.
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check optimization settings
Check ID: mathworks.design.OptimizationSettings

Check for optimizations that can lead to non-optimal code generation and simulation.

Description

This check reviews the status of optimizations that can improve code efficiency and
simulation time.

 Simulink Checks

8-7

Results and Recommended Actions

Condition Recommended Action
The specified
optimizations are off.

Select the following optimization check boxes on the Optimization pane in
the Configuration Parameters dialog box:

• “Remove root level I/O zero initialization” (Simulink Coder)
• “Remove internal data zero initialization” (Simulink Coder)

Select the following optimization check boxes on the Optimization pane in
the Configuration Parameters dialog box:

• “Inline invariant signals” (Simulink Coder) (only if you have a Simulink
Coder license)

Select the following optimization check boxes in the Configuration
Parameters dialog box:

• “Block reduction”
• “Conditional input branch execution”
• “Implement logic signals as Boolean data (vs. double)”
• “Use memset to initialize floats and doubles to 0.0” (Simulink Coder)
• “Remove code from floating-point to integer conversions that wraps out-

of-range values” (Simulink Coder) (only if you have a Simulink Coder
license)

• “Signal storage reuse”
• “Enable local block outputs” (Simulink Coder)
• “Reuse local block outputs” (Simulink Coder)
• “Eliminate superfluous local variables (Expression folding)” (Simulink

Coder)

Select the following optimization check boxes on the Optimization pane in
the Configuration Parameters dialog box:

Note Model Advisor checks these parameters only if there is a Stateflow
chart in the model.

8 Model Advisor Checks

8-8

Condition Recommended Action
• “Use bitsets for storing state configuration” (Simulink Coder)
• “Use bitsets for storing Boolean data” (Simulink Coder)

“Application lifespan
(days)” is set as
infinite. This could
lead to expensive 64-
bit counter usage.

Choose a stop time if this is not intended.

The specified
diagnostics, which can
increase the time it
takes to simulate your
model, are set to
warning or error.

Select none for:

• Solver data inconsistency
• Array bounds exceeded
• Diagnostics > Data Validity > Simulation range checking

The specified
Embedded Coder
parameters are off.

If you have an Embedded Coder license and you are using an ERT-based
system target file:

• Select Single output/update function. For details, see “Single output/
update function” (Simulink Coder).

• Select Ignore test point signals. For details, see “Ignore test point
signals” (Simulink Coder).

• Set Pass reusable subsystem outputs as to Individual
arguments. For details, see “Pass reusable subsystem outputs as”
(Simulink Coder).

Tips

If the system contains Model blocks and the referenced model is in Accelerator mode,
simulating the model requires generating and compiling code.

See Also

• “Optimization Pane” (Simulink Coder)

Check diagnostic settings ignored during accelerated model
reference simulation
Check ID: mathworks.design.ModelRefSIMConfigCompliance

 Simulink Checks

8-9

Checks for referenced models for which Simulink changes configuration parameter
settings during accelerated simulation.

Description

For models referenced in accelerator mode, Simulink ignores the settings of the following
configuration parameters that you set to a value other than None.

• Array bounds exceeded
• Diagnostics > Data Validity > Inf or NaN block output
• Diagnostics > Data Validity > Division by singular matrix
• Diagnostics > Data Validity > Wrap on overflow

Also, for models referenced in accelerator mode, Simulink ignores the following
Configuration Parameters > Diagnostics > Data Validity > Data Store Memory
block parameters if you set them to a value other than Disable all. For details, see
“Data Store Diagnostics”.

• Detect read before write
• Detect write after read
• Detect write after write

Results and Recommended Actions

Condition Recommended Action
You want to see the results of running the identified
diagnostics with settings to produce warnings or
errors.

Simulate the model in Normal
mode and resolve diagnostic
warnings or errors.

Check for parameter tunability information ignored for
referenced models
Check ID: mathworks.design.ParamTunabilityIgnored

Checks if parameter tunability information is included in the Model Parameter
Configuration dialog box.

8 Model Advisor Checks

8-10

Description

Simulink software ignores tunability information specified in the Model Parameter
Configuration dialog box. This check identifies those models containing parameter
tunability information that Simulink software will ignore if the model is referenced by
other models.

Results and Recommended Actions

Condition Recommended Action
Model contains ignored parameter tunability
information.

Click the links to convert to
equivalent Simulink parameter
objects in the MATLAB workspace.

See Also

“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder).

Check for implicit signal resolution
Check ID: mathworks.design.ImplicitSignalResolution

Identify models that attempt to resolve named signals and states to Simulink.Signal
objects.

Description

Requiring Simulink software to resolve all named signals and states is inefficient and
slows incremental code generation and model reference. This check identifies those
signals and states for which you may turn off implicit signal resolution and enforce
resolution.

Results and Recommended Actions

Condition Recommended Action
Not all signals and states are resolved. Turn off implicit signal resolution

and enforce resolution for each
signal and state that does resolve.

 Simulink Checks

8-11

See Also

“Resolve Signal Objects for Output Data”.

Check for optimal bus virtuality
Check ID: mathworks.design.OptBusVirtuality

Identify virtual buses that could be made nonvirtual. Making these buses nonvirtual
improves generated code efficiency.

Description

This check identifies blocks incorporating virtual buses that cross a subsystem boundary.
Changing these to nonvirtual improves generated code efficiency.

Results and Recommended Actions

Condition Recommended Action
Blocks that specify a virtual bus crossing a
subsystem boundary.

Change the highlighted bus to
nonvirtual.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Signal Basics”.
• “Virtual and Nonvirtual Buses”.
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check for Discrete-Time Integrator blocks with initial
condition uncertainty
Check ID: mathworks.design.DiscreteTimeIntegratorInitCondition

8 Model Advisor Checks

8-12

Identify Discrete-Time Integrator blocks with state ports and initial condition ports that
are fed by neither an Initial Condition nor a Constant block.

Description

Discrete-Time Integrator blocks with state port and initial condition ports might not be
suitably initialized unless they are fed from an Initial Condition or Constant block. This is
more likely to happen when Discrete-Time Integrator blocks are used to model second-
order or higher-order dynamic systems.

Results and Recommended Actions

Condition Recommended Action
Discrete-Time Integrator blocks are not initialized
during the model initialization phase.

Add a Constant or Initial Condition
block to feed the external Initial
Condition port.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• IC block
• Discrete-Time Integrator block
• Constant block
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Identify disabled library links
Check ID: mathworks.design.DisabledLibLinks

Search model for disabled library links.

 Simulink Checks

8-13

Description

Disabled library links can cause unexpected simulation results. Resolve disabled links
before saving a model.

Note This check may overlap with “Check model for block upgrade issues” on page 8-
57.

Results and Recommended Actions

Condition Recommended Action
Library links are disabled. Click the Library Link > Resolve

link option in the context menu.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

• Use the Model Browser to find library links.
• To enable a broken link, right-click a block in your model to display the context menu.

Select Library Link > Resolve link.

See Also

“Restore Disabled or Parameterized Links”

“What Is a Model Advisor Exclusion?” (Simulink Check)

Check for large number of function arguments from virtual
bus across model reference boundary
Check ID: mathworks.design.CheckVirtualBusAcrossModelReferenceArgs

8 Model Advisor Checks

8-14

Checks virtual bus signals that cross model reference boundaries and flags cases where
using virtual buses across a model reference boundary increases the number of function
arguments significantly.

Description

To improve the speed of the code generation process, you can use this check to reduce
the number of generated function arguments. If the check finds a model that where many
arguments will be generated for a function, you can click Update Model to modify the
model so that it generates fewer arguments.

Results and Recommended Action

Methods that generate many function arguments as the result of a virtual bus signal
crossing model reference boundary slow down the code generation process.

Condition Recommended Action
Methods are listed that generate a large number of
arguments for the current the model configuration
that this check can reduce by modifying the model.

Click Update Model.

Clicking Update Model resets Inport and Outport block parameters and inserts Signal
Conversion blocks, as necessary, to reduce the number of generated function arguments
for the model.

See Also

“Bus Data Crossing Model Reference Boundaries”

Identify parameterized library links
Check ID: mathworks.design.ParameterizedLibLinks

Search model for parameterized library links.

Description

Parameterized library links that are unintentional can result in unexpected parameter
settings in your model. This can result in improper model operation.

 Simulink Checks

8-15

Results and Recommended Actions

Condition Recommended Action
Parameterized links are listed. Verify that the links are intended to

be parameterized.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

• Right-click a block in your model to display the context menu. Choose Link Options
and click Go To Library Block to see the original block from the library.

• To parameterize a library link, choose Look Under Mask, from the context menu and
select the parameter.

See Also

“Restore Disabled or Parameterized Links”

“What Is a Model Advisor Exclusion?” (Simulink Check)

Identify unresolved library links
Check ID: mathworks.design.UnresolvedLibLinks

Search the model for unresolved library links, where the specified library block cannot be
found.

Description

Check for unresolved library links. Models do not simulate while there are unresolved
library links.

8 Model Advisor Checks

8-16

Results and Recommended Actions

Condition Recommended Action
Library links are unresolved. Locate missing library block or an

alternative.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

“Fix Unresolved Library Links”

“What Is a Model Advisor Exclusion?” (Simulink Check)

Identify model reference variants and variant subsystems
that override variant choice
Check ID: mathworks.design.VariantOverride

Identify model or subsystem for model reference variants and variant subsystems that
specify variant choice using the override option instead of using the active variant object.

Results and Recommended Actions

Condition Recommended Action
Model reference variants or variant subsystems
that override variant choice are identified.

Specify variant choice using active
variant object.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

 Simulink Checks

8-17

See Also

“Working with Variant Choices”

“What Is a Model Advisor Exclusion?” (Simulink Check)

Identify configurable subsystem blocks for converting to
variant subsystem blocks
Check ID: mathworks.design.CSStoVSSConvert

Search the model to identify configurable subsystem blocks at the model or subsystem
level.

Results and Recommended Actions

Condition Recommended Action
Configurable subsystem blocks are identified. Convert these blocks to variant

subsystem blocks to avoid
compatibility issues. See
Configurable Subsystem.

Capabilities and Limitations

You can run this check on your library models.

See Also

“Set up Model Variants Using a Model Block”

Identify Variant Model blocks and convert those to Variant
Subsystem containing Model block choices
Check ID: mathworks.design.ConvertMdlrefVarToVSS

Search the model to identify Variant Model blocks.

8 Model Advisor Checks

8-18

Results and Recommended Actions

Condition Recommended Action
Variant Model blocks available in the model are
listed.

Convert these blocks to Variant
Subsystem blocks.

See Also

“Convert to Variants”

Check usage of function-call connections
Check ID: mathworks.design.CheckForProperFcnCallUsage

Check model diagnostic settings that apply to function-call connectivity and that might
impact model execution.

Description

Check for connectivity diagnostic settings that might lead to non-deterministic model
execution.

Results and Recommended Actions

Condition Recommended Action
Diagnostics > Connectivity > Invalid
function-call connection is set to
warning. This might lead to non-
deterministic model execution.

Set Diagnostics > Connectivity >
Invalid function-call connection to
error.

Diagnostic > Connectivity > Context-
dependent inputs is set to Disable All
or Use local settings. This might lead
to non-deterministic model execution.

Set Diagnostics > Connectivity >
Context-dependent inputs to Enable
all as errors.

See Also

Function-Call Subsystem

 Simulink Checks

8-19

Check model for upgradable Simulink Scope blocks
Check model for Simulink Scope blocks that you can upgrade to Simulink Time Scope
blocks

Description

In a future release, Simulink Scope blocks will be removed and replaced with Simulink
Time Scope blocks.

Results and Recommended Actions

Condition Recommended Action
Model does not have Simulink Scope
blocks.

No action required.

Model includes at least one Simulink Scope
block.

Select the Check model for upgradable
Simulink Scope blocks check, click the
Run This Check button, review the list of
scope blocks, and then click the Upgrade
button.

Check Data Store Memory blocks for multitasking, strong
typing, and shadowing issues
Check ID: mathworks.design.DataStoreMemoryBlkIssue

Look for modeling issues related to Data Store Memory blocks.

Description

Checks for multitasking data integrity, strong typing, and shadowing of data stores of
higher scope.

8 Model Advisor Checks

8-20

Results and Recommended Actions

Condition Recommended Action
The Duplicate data store names
check is set to none or warning.

Consider setting the “Duplicate data store
names” check to error in the Configuration
Parameters dialog box, on the Diagnostics >
Data Validity pane.

The data store variable names are not
strongly typed in one of the following:

• Signal Attributes pane of the
Block Parameters dialog for the
Date Store Memory block

• Global data store name

Specify a data type other than auto by taking one
of the following actions:

• Choose a data type other than Inherit:
auto on the Signal Attributes pane of the
Block Parameters dialog for the Date Store
Memory block.

• If you are using a global data store name,
then specify its data type in the
Simulink.Signal object.

The Multitask data store check is
set to none or warning.

Consider setting the “Multitask data store” check
to error in the Configuration Parameters dialog
box, on the Diagnostics > Data Validity pane.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “Local and Global Data Stores”
• “Storage Classes for Data Store Memory Blocks” (Simulink Coder)
• Data Store Memory
• Data Store Read
• Data Store Write
• “Duplicate data store names”
• “Multitask data store”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

 Simulink Checks

8-21

Check if read/write diagnostics are enabled for data store
blocks
Check ID: mathworks.design.DiagnosticDataStoreBlk

For data store blocks in the model, enable the read-and-write diagnostics order checking
to detect run-time issues.

Description

Check for the read-and-write diagnostics order checking. By enabling the read-and-write
diagnostics, you detect potential run-time issues.

Results and Recommended Actions

Condition Recommended Action
The Detect read before write check is
disabled.

Consider enabling “Detect read before
write” in the Configuration Parameter
dialog box Diagnostics> Data Validity
pane.

The Detect write after read check is
disabled.

Consider enabling “Detect write after read”
in the Configuration Parameter dialog box
Diagnostics> Data Validity pane.

The Detect write after write check is
disabled.

Consider enabling “Detect write after
write” in the Configuration Parameter
dialog box Diagnostics> Data Validity
pane.

Capabilities and Limitations

Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

.

• The run-time diagnostics can slow simulations down considerably. Once you have
verified that Simulink does not generate warnings or errors during simulation, set
them to Disable all.

8 Model Advisor Checks

8-22

See Also

• “Local and Global Data Stores”
• Data Store Memory
• Data Store Read
• Data Store Write
• “Detect read before write”
• “Detect write after read”
• “Detect write after write”
• “Check for potential ordering issues involving data store access” on page 8-24
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check data store block sample times for modeling errors
Check ID: mathworks.design.DataStoreBlkSampleTime

Identify modeling errors due to the sample times of data store blocks.

Description

Check data store blocks for continuous or fixed-in-minor-step sample times.

Results and Recommended Actions

Condition Recommended Action
Data store blocks in your model have
continuous or fixed-in-minor-step sample
times.

Consider making the listed blocks discrete
or replacing them with either Memory or
Goto and From blocks.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “Local and Global Data Stores”
• Data Store Memory

 Simulink Checks

8-23

• Data Store Read
• Data Store Write
• “Fixed-in-Minor-Step”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check for potential ordering issues involving data store
access
Check ID: mathworks.design.OrderingDataStoreAccess

Look for read/write issues which may cause inaccuracies in the results.

Description

During an Update Diagram, identify potential issues relating to read-before-write, write-
after-read, and write-after-write conditions for data store blocks.

Results and Recommended Actions

Condition Recommended Action
Reading and writing (read-before-write or
write-after-read condition) occur out of
order.

Consider restructuring your model so that
the Data Store Read block executes before
the Data Store Write block.

Multiple writes occur within a single time
step.

Change the model to write data only once
per time step or refer to the following Tips
section.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

Tips

This check performs a static analysis which might not identify every instance of improper
usage. Specifically, Function-Call Subsystems, Stateflow Charts, MATLAB for code
generation, For Iterator Subsystems, and For Each Subsystems can cause both missed
detections and false positives. For a more comprehensive check, consider enabling the
following diagnostics on the Diagnostics > Data Validity pane in the Configuration

8 Model Advisor Checks

8-24

Parameters dialog box: “Detect read before write”, “Detect write after read”, and “Detect
write after write”.

See Also

• “Local and Global Data Stores”
• Data Store Memory
• Data Store Read
• Data Store Write
• “Detect read before write”
• “Detect write after read”
• “Detect write after write”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check structure parameter usage with bus signals
Check ID: mathworks.design.MismatchedBusParams

Identify blocks and Simulink.Signal objects that initialize bus signals by using
mismatched structures.

Description

In a model, you can use a MATLAB structure to initialize a bus signal. For example, if you
pass a bus signal through a Unit Delay block, you can set the Initial condition
parameter to a structure. For basic information about initializing buses by using
structures, see “Specify Initial Conditions for Bus Signals”.

Run this check to generate efficient and readable code by matching the shape and
numeric data types of initial condition structures with those of bus signals. Matching
these characteristics avoids unnecessary explicit typecasts and replaces field-by-field
structure assignments with, for example, calls to memcpy.

Partial Structures

This check lists blocks and Simulink.Signal objects that initialize bus signals by using
partial structures. During the iterative process of creating a model, you can use partial
structures to focus on a subset of signal elements in a bus. For a mature model, use full
structures to:

 Simulink Checks

8-25

• Generate readable and efficient code.
• Support a modeling style that explicitly initializes unspecified signals. When you use

partial structures, Simulink implicitly initializes unspecified signals.

For more information about full and partial structures, see “Create Full Structures for
Initialization” and “Create Partial Structures for Initialization”.

Data Type Mismatches

This check lists blocks and Simulink.Signal objects whose initial condition structures
introduce data type mismatches. The fields of these structures have numeric data types
that do not match the data types of the corresponding bus signal elements.

When you configure an initial condition structure to appear as a tunable global structure
in the generated code, avoid unnecessary explicit typecasts by matching the data types.
See “Generate Tunable Initial Condition Structure for Bus Signal” (Simulink Coder).

Results and Recommended Actions

Condition Recommended Action
Block or signal object uses
partial structure

Consider using the function
Simulink.Bus.createMATLABStructure to create a
full initial condition structure.

Data types of structure fields
do not match data types of
corresponding signal
elements

Consider defining the structure as a
Simulink.Parameter object, and creating a
Simulink.Bus object to use as the data type of the bus
signal and of the parameter object. To control numeric data
types, use the Simulink.BusElement objects in the bus
object.

See Also

• “Specify Initial Conditions for Bus Signals”
• “Generate Tunable Initial Condition Structure for Bus Signal” (Simulink Coder)
• “Data Stores with Signal Objects”
• Simulink.Bus.createMATLABStruct
• Simulink.Signal

8 Model Advisor Checks

8-26

Check Delay, Unit Delay and Zero-Order Hold blocks for rate
transition
Check ID: mathworks.design.ReplaceZOHDelayByRTB

Identify Delay, Unit Delay, or Zero-Order Hold blocks that are used for rate transition.
Replace these blocks with actual Rate Transition blocks.

Description

If a model uses Delay, Unit Delay, or Zero-Order Hold blocks to provide rate transition
between input and output signals, Simulink makes a hidden replacement of these blocks
with built-in Rate Transition blocks. In the compiled block diagram, a yellow symbol and
the letters “RT” appear in the upper-left corner of a replacement block. This replacement
can affect the behavior of the model, as follows:

• These blocks lose their algorithmic design properties to delay a signal or implement
zero-order hold. Instead, they acquire rate transition behavior.

• This modeling technique works only in specific transition configurations (slow-to-fast
for Delay and Unit Delay blocks, and fast-to-slow for Zero-Order Hold block). Set the
block sample time to be equal to the slower rate (source for the Delay and Unit Delay
blocks and destination for the Zero-Order Hold block).

• When the block sample time of a downstream or upstream block changes, these Delay,
Unit Delay and Zero-Order Hold blocks might not perform rate transition. For
example, setting the source and destination sample times equal stops rate transition.
The blocks then assume their original algorithmic design properties.

• The block sample time shows incomplete information about sample time rates. The
block code runs at two different rates to handle data transfer. However, the block
sample time and sample time color show it as a single-rate block. Tools and MATLAB
scripts that use sample time information base their behavior on this information.

An alternative is to replace Delay, Unit Delay, or Zero-Order Hold blocks with actual Rate
Transition blocks.

• The technique ensures unambiguous results in block behavior. Delay, Unit Delay, or
Zero-Order Hold blocks act according to their algorithmic design to delay and hold
signals respectively. Only Rate Transition blocks perform actual rate transition.

• Using an actual Rate Transition block for rate transition offers a configurable solution
to handle data transfer if you want to specify deterministic behavior or the type of
memory buffers to implement.

 Simulink Checks

8-27

Use this check to identify instances in your model where Delay, Unit Delay or Zero-Order
Hold blocks undergo hidden replacement to provide rate transition between signals. Click
Upgrade Model to replace these blocks with actual Rate Transition blocks.

Results and Recommended Actions

Condition Recommended Action
Model has no instances of
Delay, Unit Delay, or Zero-
Order Hold blocks used for
rate transition.

No action required.

Model has instances of Delay,
Unit Delay, or Zero-Order
Hold blocks used for rate
transition.

The check identifies these instances and allows you to
upgrade the model.

1 Click Upgrade Model to replace with actual Rate
Transition blocks.

2 Save changes to your model.

If you do not choose to replace the Delay, Unit Delay, and/or Zero-Order Hold blocks with
actual Rate Transition blocks, Simulink continues to perform a hidden replacement of
these blocks with built-in rate transition blocks.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Run Model Checks”
• “Model Upgrades”
• Rate Transition
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check for calls to slDataTypeAndScale
Check ID: mathworks.design.CallslDataTypeAndScale

8 Model Advisor Checks

8-28

Identify calls to the internal function slDataTypeAndScale.

Description

In some previous versions of Simulink, opening a model that had been saved in an earlier
version triggers an automatic upgrade to code for data type handling. The automatic
upgrade inserts calls to the internal function slDataTypeAndScale. Although Simulink
continues to support some uses of the function, if you eliminate calls to it, you get cleaner
and faster code.

Simulink does not support calls to slDataTypeAndScale when:

• The first argument is a Simulink.AliasType object.
• The first argument is a Simulink.NumericType object with property IsAlias set to

true.

Running Check for calls to slDataTypeAndScale identifies calls to
slDataTypeAndScale that are required or recommended for replacement. In most
cases, running the check and following the recommended action removes the calls. You
can ignore calls that remain. Run the check unless you are sure there are not calls to
slDataTypeAndScale.

Results and Recommended Actions

Condition Recommended Action
Required Replacement Cases Manually or automatically replace calls to

slDataTypeAndScale. Cases listed require you to
replace calls to slDataTypeAndScale.

Recommended Replacement
Cases

For the listed cases, it is recommended that you manually
or automatically replace calls to slDataTypeAndScale.

Manual Inspection Cases Inspect each listed case to determine whether it should
be manually upgraded.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

Tips

• Do not manually insert a call to slDataTypeAndScale into a model. The function was
for internal use only.

 Simulink Checks

8-29

• Running Check for calls to slDataTypeAndScale calls the Simulink function
slRemoveDataTypeAndScale. Calling this function directly provides a wider range
of conversion options. However, you very rarely need more conversion options.

See Also

• For more information about upgrading data types and scales, in the MATLAB
Command Window, execute the following:

• help slDataTypeAndScale
• help slRemoveDataTypeAndScale

• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check bus signals treated as vectors
Check ID: mathworks.design.BusTreatedAsVector

Identify bus signals that Simulink treats as vectors.

Description

You cannot use bus signals that the Simulink software implicitly converts to vectors.
Instead, either insert a Bus to Vector conversion block between the bus signal and the
block input port that it feeds, or use the Simulink.BlockDiagram.addBusToVector
command.

Results and Recommended Actions

Condition Recommended Action
Bus signals are implicitly
converted to vectors.

Use Simulink.BlockDiagram.addBusToVector or
insert a Bus to Vector block.

Model is not configured to
identify bus signals that
Simulink treats as vectors.

In the Configuration Parameters dialog box, on the
Diagnostics > Connectivity pane, set Bus signal
treated as vector to error.

Action Results

Clicking Modify inserts a Bus to Vector block at the input ports of blocks that implicitly
convert bus signals to vectors.

8 Model Advisor Checks

8-30

Tips

• Run this check before running Check consistency of initialization parameters for
Outport and Merge blocks.

• For more information, see “Correct Buses Used as Vectors”.

See Also

• “Correct Buses Used as Vectors”
• Bus to Vector block
• “Bus signal treated as vector”
• “Migrating to Simplified Initialization Mode Overview” on page 8-5
• Simulink.BlockDiagram.addBusToVector

Check for potentially delayed function-call subsystem return
values
Check ID: mathworks.design.DelayedFcnCallSubsys

Identify function-call return values that might be delayed because Simulink software
inserted an implicit Signal Conversion block.

Description

So that signals reside in contiguous memory, Simulink software can automatically insert
an implicit Signal Conversion block in front of function-call initiator block input ports.
This can result in a one-step delay in returning signal values from calling function-call
subsystems. The delay can be avoided by ensuring the signal originates from a signal
block within the function-call system. Or, if the delay is acceptable, insert a Unit Delay
block in front of the affected input ports.

 Simulink Checks

8-31

Results and Recommended Actions

Condition Recommended Action
The listed block input ports could have an implicit
Signal Conversion block.

Decide if a one-step delay in
returning signal values is
acceptable for the listed signals.

• If the delay is not acceptable,
rework your model so that the
input signal originates from
within the calling subsystem.

• If the delay is acceptable, insert
a Unit Delay block in front of
each listed input port.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

Signal Conversion block

Unit Delay block

“What Is a Model Advisor Exclusion?” (Simulink Check)

Identify block output signals with continuous sample time and
non-floating point data type
Check ID: mathworks.design.OutputSignalSampleTime

Find continuous sample time, non-floating-point output signals.

Description

Non-floating-point signals might not represent continuous variables without loss of
information.

8 Model Advisor Checks

8-32

Results and Recommended Actions

Condition Recommended Action
Signals with continuous sample times have a non-
floating-point data type.

On the identified signals, either
change the sample time to be
discrete or fixed-in-minor-step ([0
1]).

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

“What Is Sample Time?”.

“What Is a Model Advisor Exclusion?” (Simulink Check)

Check usage of Merge blocks
Check ID: mathworks.design.MergeBlkUsage

Identify Merge blocks with parameter settings that can lead to unexpected behavior, and
help migrate your model to simplified initialization mode.

Note Run this check along with the other checks in the “Migrating to Simplified
Initialization Mode Overview” on page 8-5.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of
simulation results. For more information, see “Simplified Initialization Mode” and “Classic
Initialization Mode”.

This Model Advisor check identifies settings in the Merge blocks in your model that can
cause problems if you use classic initialization mode. It also recommends settings for
consistent behavior of Merge blocks. The results of the subchecks contain two types of
statements: Failed and Warning. Failed statements identify issues that you must address
manually before you can migrate the model to the simplified initialization mode. Warning
statements identify issues or changes in behavior that can occur after migration.

 Simulink Checks

8-33

Results and Recommended Actions

Condition Recommended Action
Check the run-time diagnostic setting of the
Merge block.

1 In the Configuration Parameters dialog
box, set “Detect multiple driving blocks
executing at the same time step” to
error.

2 Verify that the model simulates without
errors before running this check again.

Check for Model blocks that are using the
PIL simulation mode.

The simplified initialization mode does not
support the Processor-in-the-loop (PIL)
simulation for model references.

Check for library blocks with instances that
cannot be migrated.

Examine the failed subcheck results for
each block to determine the corrective
actions.

Check for single-input Merge blocks. Replace both the Mux block used to
produce the input signal and the Merge
block with one multi-input Merge block.

Single-input Merge blocks are not
supported in the simplified initialization
mode.

Check for root Merge blocks that have an
unspecified Initial output value.

If you do not specify an explicit value for
the Initial output parameter of root Merge
blocks, then Simulink uses the default
initial value of the output data type.

A root Merge block is a Merge block with
an output port that does not connect to
another Merge block. For information on
the default initial value, see “Initializing
Signal Values”.

8 Model Advisor Checks

8-34

Condition Recommended Action
Check for Merge blocks with nonzero input
port offsets.

Clear the Allow unequal port widths
parameter of the Merge block.

Note Consider using Merge blocks only for
signal elements that require true merging.
You can combine other elements with
merged elements using the Concatenate
block.

Check for Merge blocks that have
unconnected inputs or that have inputs
from non-conditionally executed
subsystems.

Set the Number of inputs parameter of
the Merge block to the number of Merge
block inputs. You must connect each input
to a signal.

Verify that each Merge block input is driven
by a conditionally executed subsystem.
Merge blocks cannot be driven directly by
an Iterator Subsystem or a block that is not
a conditionally executed subsystem.

Check for Merge blocks with inputs that are
combined or reordered outside of
conditionally executed subsystems.

Verify that combinations or reordering of
Merge block input signals takes place
within a conditionally executed subsystem.
Such designs may use Mux, Bus Creator, or
Selector blocks.

Check for Merge blocks with inconsistent
input sample times.

Verify that input signals to each Merge
block have the same Sample time.

Failure to do so could result in
unpredictable behavior. Consequently, the
simplified initialization mode does not allow
inconsistent sample times.

Check for Merge blocks with multiple input
ports that are driven by a single source.

Verify that the Merge block does not have
multiple input signals that are driven by the
same conditionally executed subsystem or
conditionally executed Model block.

 Simulink Checks

8-35

Condition Recommended Action
Check for Merge blocks that use signal
objects to specify the Initial output value.

Verify that the following behavior is
acceptable.

In the simplified initialization mode, signal
objects cannot specify the Initial output
parameter of the Merge block. While you
can still initialize the output signal for a
Merge block using a signal object, the
initialization result may be overwritten by
that of the Merge block.

Note Simulink generates a warning that
the initial value of the signal object has
been ignored.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 8-5
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check usage of Outport blocks
Check ID: mathworks.design.InitParamOutportMergeBlk

Identify Outport blocks and conditional subsystems with parameter settings that can lead
to unexpected behavior, and help migrate your model to simplified initialization mode.

Note Run this check along with the other checks in the “Migrating to Simplified
Initialization Mode Overview” on page 8-5.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of
simulation results. This mode is especially important for models that do not specify initial
conditions for conditionally executed subsystem output ports. For more information, see
“Simplified Initialization Mode” and “Classic Initialization Mode”.

8 Model Advisor Checks

8-36

This Model Advisor check identifies Outport blocks and conditional subsystems in your
model that can cause problems if you use the simplified initialization mode. It also
recommends settings for consistent behavior of Outport blocks. The results of the
subchecks contain two types of statements: Failed and Warning. Failed statements
identify issues that you must address manually before you can migrate the model to the
simplified initialization mode. Warning statements identify issues or changes in behavior
can occur after migration.

Results and Recommended Actions

Condition Recommended Action
Check for blocks inside of the Iterator
Subsystem that require elapsed time.

Within an Iterator Subsystem hierarchy, do
not use blocks that require a service that
maintains the time that has elapsed
between two consecutive executions.

Since an Iterator Subsystem can execute
multiple times at a given time step, the
concept of elapsed time is not well-defined
between two such executions. Using these
blocks inside of an Iterator Subsystem can
cause unexpected behavior.

 Simulink Checks

8-37

Condition Recommended Action
Check for Outport blocks that have
conflicting signal buffer requirements.

The Outport block has a function-call
trigger or function-call data dependency
signal passing through it, along with
standard data signals. Some of the standard
data signals require an explicit signal buffer
for the initialization of the output signal of
the corresponding subsystem. However,
buffering function-call related signals lead
to a function-call data dependency
violation.

Consider modifying the model to pass
function-call related signals through a
separate Outport block. For examples of
function-call data dependency violations,
see the example model
sl_subsys_semantics.

A standard data signal may require an
additional signal copy for one of the
following reasons:

• The Outport block is driven by a block
with output that cannot be overwritten.
The Ground block and the Constant
block are examples of such blocks.

• The Outport block shares the same
signal source with another Outport
block in the same subsystem or in one
nested within the current subsystem but
having a different initial output value.

• The Outport block connects to the input
of a Merge block

• One of the input signals of the Outport
block is specifying a Simulink.Signal
object with an explicit initial value.

8 Model Advisor Checks

8-38

Condition Recommended Action
Check for Outport blocks that are driven by
a bus signal and whose Initial output
value is not scalar.

For Outport blocks driven by bus signals,
classic initialization mode does not support
Initial Condition (IC) structures, while
simplified initialization mode does. Hence,
when migrating a model from classic to
simplified mode, specify a scalar for the
Initial Output parameter. After migration
completes, to specify different initial values
for different elements of the bus signal, use
IC structures. For more information, see
“Create Initial Condition Structures”.

 Simulink Checks

8-39

Condition Recommended Action
Check for Outport blocks that require an
explicit signal copy.

An explicit copy of the bus signal driving
the Outport block is required for the
initialization of the output signal of the
corresponding subsystem.

Insert a Signal Conversion block before the
Outport block, then set the Output
parameter of the Signal Conversion block to
Bus copy.

A standard data signal may require an
additional signal copy for one or more of
the following reasons:

• A block with output that cannot be
overwritten is driving the Outport block.
The Ground block and the Constant
block are examples of such blocks.

• The Outport block shares the same
signal source with another Outport
block in the same subsystem or in one
nested within the current subsystem but
having a different initial output value.

• The Outport block connects to the input
of a Merge block

• One of the input signals of the Outport
block is specifying a Simulink.Signal
object with an explicit initial value.

Check for merged Outport blocks that
inherit the Initial Output value from
Outport blocks that have been configured
to reset when the blocks become disabled.

When Outport blocks are driving a Merge
block, do not set their Output when
disabled parameters to reset.

Check for merged Outport blocks that are
driven by nested conditionally executed
subsystems.

Determine if the new behavior of the
Outport blocks is acceptable. If it is not
acceptable, modify the model to account for
the new behavior before migrating to the
simplified initialization mode.

8 Model Advisor Checks

8-40

Condition Recommended Action
Check for merged Outport blocks that reset
when the blocks are disabled.

Set the Output when disabled parameter
of the Outport block to held. This setting is
required because the Outport block
connects to a Merge block.

For more information, see Outport.
Check for Outport blocks that have an
undefined Initial output value with invalid
initial condition sources.

Verify that the following behavior is
acceptable.

When the Initial output parameter is
unspecified ([]), it inherits the initial
output from the source blocks. If at least
one of the sources of the Outport block is
not a valid source to inherit the initial
value, the block uses the default initial
value for that data type.

For simplified initialization mode, valid
sources an Outport blocks can inherit the
Initial output value from are: Constant,
Initial Condition, Merge (with initial
output), Stateflow chart, function-call
model reference, or conditionally executed
subsystem blocks.

Check Outport blocks that have automatic
rate transitions.

Simulink has inserted a Rate Transition
block at the input of the Outport block.
Specify the Initial output parameter for
each Outport block.

Otherwise, perform the following
procedure:

1 In the Configuration Parameters dialog
box, on the Solver pane, clear the
option “Automatically handle rate
transition for data transfer”.

2 Run this Model Advisor check again.

 Simulink Checks

8-41

Condition Recommended Action
Check Outport blocks that have a special
signal storage requirement and have an
undefined Initial output value.

Verify that the following behavior is
acceptable.

Specify the Initial output parameter for
the Outport block. Set this value to []
(empty matrix) to use the default initial
value of the output data type.

Check the Initial output setting of Outport
blocks that reset when they are disabled.

Specify the Initial output parameter of the
Outport block.

You must specify the Initial output value
for blocks that are configured to reset when
they become disabled.

Check the Initial output setting for
Outport blocks that pass through a
function-call data dependency signal.

You cannot specify an Initial output value
for the Outport block because function-call
data dependency signals are passing
through it. To set the Initial output value:

1 Set the Initial output parameter of
the Outport block to [].

2 Provide the initial value at the source
of the data dependency signal rather
than at the Outport block.

8 Model Advisor Checks

8-42

Condition Recommended Action
Check for Outport blocks that use signal
objects to specify the Initial output value.

Verify that the following behavior is
acceptable.

In the simplified initialization mode, signal
objects cannot specify the Initial output
parameter of an Outport block. You can still
initialize the input or output signals for an
Outport block using signal objects, but the
initialization results may be overwritten by
those of the Outport block.

Note If you are working with a
conditionally executed subsystem Outport
block, Simulink generates a warning that
the initial value of the signal object has
been ignored.

Check for library blocks with instances that
have warnings.

Examine the warning subcheck results for
each block before migrating to the
simplified initialization mode.

Check for merged Outport blocks that are
either unconnected or connected to a
Ground block.

Verify that the following behavior is
acceptable.

The Outport block is driving a Merge block,
but its inputs are either unconnected or
connected to Ground blocks. In the classic
initialization mode, unconnected or
grounded outports do not update the merge
signal even when their parent conditionally
executed subsystems are executing. In the
simplified initialization mode, however,
these outports will update the merge signal
with a value of zero when their parent
conditionally executed subsystems are
executing.

 Simulink Checks

8-43

Condition Recommended Action
Check for Outport blocks that obtain the
Initial output value from an input signal
when they are migrated.

Verify that the following behavior is
acceptable.

The Initial output parameter of the
Outport block is not specified. As a result,
the simplified initialization mode will
assume that the Initial output value for
the Outport block is derived from the input
signal. This assumption may result in
different initialization behavior.

If this behavior is not acceptable, modify
your model before you migrate to the
simplified initialization mode.

Check for outer Outport blocks that have an
explicit Initial output.

Verify that the following behavior is
acceptable.

In classic initialization mode, the Initial
output and Output when disabled
parameters of the Outport block must
match those of their source Outport blocks.

In simplified initialization mode, Simulink
sets the Initial output parameter of outer
Outport blocks to [] (empty matrix) and
Output when disabled parameter to
held.

Check for conditionally executed
subsystems that propagate execution
context across the output boundary.

Verify that the following behavior is
acceptable.

The Propagate execution context across
subsystem boundary parameter is
selected for the subsystem. Execution
context will still be propagated across input
boundaries; however, the propagation will
be disabled on the output side for the
initialization in the simplified initialization
mode.

8 Model Advisor Checks

8-44

Condition Recommended Action
Check for blocks that read input from
conditionally executed subsystems during
initialization.

Verify that the following behavior is
acceptable.

Some blocks, such as the Discrete-Time
Integrator block, read their inputs from
conditionally executed subsystems during
initialization in the classic initialization
mode. Simulink performs this step as an
optimization technique.

This optimization is not allowed in the
simplified initialization mode because the
output of a conditionally executed
subsystem at the first time step after
initialization may be different than the
initial value declared in the corresponding
Outport block. In particular, this
discrepancy occurs if the subsystem is
active at the first time step.

Check for a migration conflict for Outport
blocks that use a Dialog as the Source of
initial output value.

Other instances of Outport blocks with the
same library link either cannot be migrated
or are being migrated in a different manner.
Review the results from the Check for
library blocks with instances that
cannot be migrated to learn about the
different migration paths for other
instances of each Outport block.

The Outport block will maintain its current
settings and use its specified Initial
output value.

 Simulink Checks

8-45

Condition Recommended Action
Check for a migration conflict for Outport
blocks that use Input signal as the
Source of initial output value.

Other instances of Outport blocks with the
same library link either cannot be migrated
or are being migrated in a different manner.
Review the results from the Check for
library blocks with instances that
cannot be migrated to learn about the
different migration paths for other
instances of each Outport block.

The Outport block currently specifies an
Initial output of [] (empty matrix), and
the Output when disabled as held. This
means that each outport does not perform
initialization, but implicitly relies on source
blocks to initialize its input signal.

After migration, the parameter Source of
initial output value will be set to Input
signal to reflect this behavior.

Check for a migration conflict for Outport
blocks that have SimEvents semantics.

Other instances of Outport blocks with the
same library link either cannot be migrated
or are being migrated in a different manner.
Review the results from the Check for
library blocks with instances that
cannot be migrated to learn about the
different migration paths for other
instances of each Outport block.

The Outport blocks will continue to use an
Initial output value of [] (empty matrix)
and an Output when disabled setting of
held. Simulink will maintain these settings
because their parent conditionally executed
subsystems are connected to SimEvents
blocks.

8 Model Advisor Checks

8-46

Condition Recommended Action
Check for a migration conflict for innermost
Outport blocks with variable-size input and
unspecified Initial output.

For these Outport blocks, the signal size
varies only when the parent subsystem of
the block is re-enabled. Therefore, Simulink
implicitly assumes that the Initial output
parameter is equal to 0, even though the
parameter is unspecified, []. Consequently,
unless you specify the parameter, the Model
Advisor will explicitly set the parameter to
0 when the model is migrated to the
simplified initialization mode.

Other instances of Outport blocks with the
same library link either cannot be migrated
or are being migrated in a different manner.
Review the results from the Check for
library blocks with instances that
cannot be migrated to learn about the
different migration paths for other
instances of each Outport block.

Check for a migration conflict for Outport
blocks that use a default ground value as
the Initial output.

The parameter Initial output is set to []
(empty matrix) and the source of the
Outport is an invalid initial condition
source. Thus, the block uses the default
initial value as the initial output in the
simplified initialization mode. Other
instances of Outport blocks with the same
library link either have errors or are being
migrated differently.

Check for a migration conflict for merged
Outport blocks without explicit specification
of Initial output.

Review the results from the subcheck
Check for library blocks with instances
that cannot be migrated to learn about
different migration paths for other
instances of each Outport block. For the
remaining Outport blocks, Initial output is
set to [] (empty matrix) and Output when
disabled is set to held respectively, in
simplified initialization mode.

 Simulink Checks

8-47

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 8-5
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check usage of Discrete-Time Integrator blocks
Check ID: mathworks.design.DiscreteBlock

Identify Discrete-Time Integrator blocks with parameter settings that can lead to
unexpected behavior, and help migrate your model to simplified initialization mode.

Note Run this check along with the other checks in the “Migrating to Simplified
Initialization Mode Overview” on page 8-5.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of
simulation results. For more information, see “Simplified Initialization Mode” and “Classic
Initialization Mode”.

This Model Advisor check identifies settings in Discrete-Time Integrator blocks in your
model that can cause problems if you use the simplified initialization mode. It also
recommends settings for consistent behavior of Discrete-Time Integrator blocks. The
results of the subchecks contain two types of statements: Failed and Warning. Failed
statements identify issues that you must address manually before you can migrate the
model to the simplified initialization mode. Warning statements identify issues or changes
in behavior that can occur after migration.

Results and Recommended Actions

Condition Recommended Action
Check for Discrete-Time Integrator blocks
whose parameter Initial condition
setting is set to Output.

Determine if the new behavior of the
Discrete-Time Integrator blocks is
acceptable. If it is not acceptable, modify
the model to account for the new behavior
before migrating to the simplified
initialization mode.

8 Model Advisor Checks

8-48

Condition Recommended Action
Check for Discrete-Time Integrator blocks
whose Initial condition setting
parameter is set to State (most
efficient) and are in a subsystem that
uses triggered sample time.

Use periodic sample time for the block, or
set Initial Condition setting to Output.

Check for blocks inside of the Iterator
Subsystem that require elapsed time.

Within an Iterator Subsystem hierarchy, do
not use blocks that require a service that
maintains the time that has elapsed
between two consecutive executions.

Since an Iterator Subsystem can execute
multiple times at a given time step, the
concept of elapsed time is not well-defined
between two such executions. Using these
blocks inside of an Iterator Subsystem can
cause unexpected behavior.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 8-5
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check model settings for migration to simplified initialization
mode

Note Do not run this check in isolation. Run this check along with the other checks in the
“Migrating to Simplified Initialization Mode Overview” on page 8-5.

Check ID: mathworks.design.ModelLevelMessages

Identify settings in Model blocks and model configuration parameters that can lead to
unexpected behavior, and help migrate your model to simplified initialization mode.

 Simulink Checks

8-49

Description

Simplified initialization mode was introduced in R2008b to improve consistency of
simulation results. For more information, see “Simplified Initialization Mode” and “Classic
Initialization Mode”.

This Model Advisor check identifies issues in the model configuration parameters and
Model blocks in your model that can cause problems when you migrate to simplified
initialization mode. The results of the subchecks contain two types of statements: Failed
and Warning. Failed statements identify issues that you must address manually before you
can migrate the model to simplified initialization mode. Warning statements identify
issues or changes in behavior that can occur after migration.

After running this Model Advisor consistency check, if you click Explore Result button,
the messages pertain only to blocks that are not library-links.

Note Because it is difficult to undo these changes, select File > Save Restore Point As
to back up your model before migrating to the simplified initialization mode.

For more information, see “Model Configuration Parameters: Connectivity Diagnostics”.

Results and Recommended Actions

Condition Recommended Action
Verify that all Model blocks are using the
simplified initialization mode.

Migrate the model referenced by the Model
block to the simplified initialization mode,
then migrate the top model.

Verify simplified initialization mode setting Set Configuration Parameters >
Underspecified initialization detection
to Simplified.

Action Results

Clicking Modify Settings causes the following:

• The Model parameter is set to simplified
• If an Outport block has the Initial output parameter set to the empty character

vector, [], then the SourceOfInitialOutputValue parameter is set to Input
signal.

8 Model Advisor Checks

8-50

• If an Outport has an empty Initial output and a variable-size signal, then the Initial
output is set to zero.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 8-5
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check S-functions in the model
Check ID: mathworks.design.SFuncAnalyzer

Perform quality checks on S-functions in Simulink models or subsystems.

Description

The S-function analyzer performs quality checks on S-functions to identify improvements
and potential problems in the specified model.

Results and Recommended Actions

Condition Recommended Action
Continuous states are modified in
mdlOutputs method.

Modify Continuous States at a major time
step and use ssSetSolverNeedsReset
function in S-function code.

Continuous states are modified in the
mdlUpdate method.

Modify Continuous States only at a major
time step and use
ssSetSolverNeedsReset function in S-
function code.

S-function discrete states are modified in
the mdlOutputs at a minor step.

Modify the discrete states only at a major
step guarded by ssIsMajorTimeStep
function.

S-function mode vector is modified in the
mdlOutputs method at a minor step.

Modify the mode vector only at a major step
guarded by sslsMajorTimeStep function.

S-function is using static or global variables
to declare internal states.

Declare the states explicitly using
ssSetNumDiscStates function or “Model
Global Data by Creating Data Stores”.

 Simulink Checks

8-51

Condition Recommended Action
S-function has continuous states but sample
time is not declared continuous.

Specify continuous sample time using
ssSetSampleTime function.

S-function has discrete states but the
mdlOutputs and mdlUpdate methods are
combined.

Define the mdlOutputs and mdlUpdate
methods separately and modify discrete
states only in mdlUpdate method.

S-function sets the
SS_OPTION_CAN_BE_CALLED_CONDITION
ALLY option when having state-like data or
multiple sample times.

Remove the options when the S-function
has state-like data or multiple sample
times.

MEX compilers do not exist on the machine. Check for the presence or install MEX
compilers on the machine.

S-function encounters errors while
compiling the model.

Check the Diagnostic Viewer output and
recompile the model.

Check for non-continuous signals driving derivative ports
Check ID: mathworks.design.NonContSigDerivPort

Identify noncontinuous signals that drive derivative ports.

Description

Noncontinuous signals that drive derivative ports cause the solver to reset every time the
signal changes value, which slows down simulation.

Results and Recommended Actions

Condition Recommended Action
There are noncontinuous signals in the
model driving derivative ports.

• Make the specified signals continuous.
• Replace the continuous blocks receiving

these signals with discrete state
versions of the blocks.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

8 Model Advisor Checks

8-52

See Also

• “Modeling Dynamic Systems”
• “Simulation Phases in Dynamic Systems”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Runtime diagnostics for S-functions
Check ID: mathworks.design.DiagnosticSFcn

Check array bounds and solver consistency if S-Function blocks are in the model.

Description

Validates whether S-Function blocks adhere to the ODE solver consistency rules that
Simulink applies to its built-in blocks.

Results and Recommended Actions

Condition Recommended Action
Solver data inconsistency is set to none. In the Configuration Parameters dialog box,

set Solver data inconsistency to warning
or error.

Array bounds exceeded is set to none. In the Configuration Parameters dialog box,
set Array bounds exceeded to warning
or error

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “What Is an S-Function?”
• “How S-Functions Work”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

 Simulink Checks

8-53

Check model for foreign characters
Check ID: mathworks.design.characterEncoding

Check for characters that are incompatible with the current encoding

Description

Check for characters in the model file that cannot be represented in the current encoding.
These can cause errors during simulation, and may be corrupted when saving the model.

Results and Recommended Actions

Condition Recommended Action
Incompatible characters found Change the current encoding to the

encoding specified in the model file,
using slCharacterEncoding. To
change the current encoding you
need to close the models, and this
closes the Model Advisor.

Tips

The Upgrade Advisor report shows the encoding you need, or you can retrieve the
encoding from the model using the command:

get_param(modelname,'SavedCharacterEncoding')

Use slCharacterEncoding to change the encoding. This setting applies to the current
MATLAB session, so if you restart MATLAB and want to open the same model, you will
need to make the same change to the current encoding again.

For more information see:

• slCharacterEncoding
• “Open a Model with Different Character Encoding”
• “Save Models with Different Character Encodings”

See Also

• “Consult the Upgrade Advisor”.

8 Model Advisor Checks

8-54

• “Model Upgrades”

Identify unit mismatches in the model
Check ID: mathworks.design.UnitMismatches

Identify instances of unit mismatches between ports in the model.

Description

Check for instances of unit mismatches between ports in the model.

Results and Recommended Actions

Condition Recommended Action
Unit mismatches found Change one of the mismatched unit

settings to match the unit settings
for the other port.

See Also

• “Unit Specification in Simulink Models”.

Identify automatic unit conversions in the model
Check ID: mathworks.design.AutoUnitConversions

Identify instances of automatic unit conversions in the model.

Description

Identify instances of automatic unit conversions in the model.

Results and Recommended Actions

Condition Recommended Action
Automatic unit conversions found Check that the converted units are

expected for the model.

 Simulink Checks

8-55

See Also

• “Unit Specification in Simulink Models”.

Identify disallowed unit systems in the model
Check ID: mathworks.design.DisallowedUnitSystems

Identify instances of disallowed unit systems in the model.

Description

Identify instances of disallowed unit systems in the model.

Results and Recommended Actions

Condition Recommended Action
Disallowed unit systems found Either choose a unit that conforms

to the configured unit system, or
select another unit system. For
more information, see “Restricting
Unit Systems”.

See Also

• “Unit Specification in Simulink Models”.

Identify undefined units in the model
Check ID: mathworks.design.UndefinedUnits

Identify instances of unit specifications, not defined in the unit database, in the model.

Description

Identify instances of unit specifications, not defined in the unit database, in the model.

8 Model Advisor Checks

8-56

Results and Recommended Actions

Condition Recommended Action
Undefined units found Change the unit to one that

Simulink supports.

See Also

• “Unit Specification in Simulink Models”.
• Allowed Units

Check model for block upgrade issues
Check ID: mathworks.design.Update

Check for common block upgrade issues.

Description

Check blocks in the model for compatibility issues resulting from using a new version of
Simulink software.

Results and Recommended Actions

Condition Recommended Action
Blocks with compatibility issues found. Click Modify to fix the detected

block issues.
Check update status for the Level 2 API S-functions. Consider replacing Level 1 S-

functions with Level 2.

Action Results

Clicking Modify replaces blocks from a previous release of Simulink software with the
latest versions.

See Also

• “Write Level-2 MATLAB S-Functions”.
• “Consult the Upgrade Advisor”.

 Simulink Checks

8-57

matlab:showunitslist

• “Model Upgrades”

Check model for block upgrade issues requiring compile time
information
Check ID: mathworks.design.UpdateRequireCompile

Check for common block upgrade issues.

Description

Check blocks for compatibility issues resulting from upgrading to a new version of
Simulink software. Some block upgrades require the collection of information or data
when the model is in the compile mode. For this check, the model is set to compiled mode
and then checked for upgrades.

Results and Recommended Actions

Condition Recommended Action
Model contains Lookup Table or Lookup Table (2-D)
blocks and some of the blocks specify Use Input
Nearest or Use Input Above for a lookup method.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. Do not apply
Use Input Nearest or Use Input
Above for lookup methods; select
another option.

Model contains Lookup Table or Lookup Table (2-D)
blocks and some blocks perform multiplication first
during interpolation.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. However,
because the n-D Lookup Table block
performs division first, this
replacement might cause a
numerical difference in the result.

Model contains Lookup Table or Lookup Table (2-D)
blocks. Some of these blocks specify
Interpolation-Extrapolation as the Lookup
method but their input and output are not the
same floating-point type.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. Then change
the extrapolation method or the
port data types for block
replacement.

8 Model Advisor Checks

8-58

Condition Recommended Action
Model contains Unit Delay blocks with Sample
time set to -1 that inherit a continuous sample
time.

Replace Unit Delay blocks with
Memory blocks.

Check Data Store Memory blocks for multitasking

Action Results

Clicking Modify replaces blocks from a previous release of Simulink software with the
latest versions.

See Also

• n-D Lookup Table
• Unit Delay
• “Consult the Upgrade Advisor”
• “Model Upgrades”

Check that the model is saved in SLX format
Check ID: mathworks.design.UseSLXFile

Check that the model is saved in SLX format.

Description

Check whether the model is saved in SLX format.

Results and Recommended Actions

Condition Recommended Action
Model not saved in SLX format Consider upgrading to the SLX file

format to use the latest features in
Simulink.

Capabilities and Limitations

You can run this check on your library models.

 Simulink Checks

8-59

Tips

Simulink Projects can help you upgrade models to SLX format and preserve file revision
history in source control. See “Upgrade Model Files to SLX and Preserve Revision
History”.

See Also

• “Save Models in the SLX File Format”
• “Consult the Upgrade Advisor”.
• “Model Upgrades”

Check model for SB2SL blocks
Check ID: mathworks.simulink.SB2SL.Check

Check that the model does not have outdated SB2SL blocks.

Description

Check if the model contains outdated SB2SL blocks.

Results and Recommended Actions

Condition Recommended Action
Model contains outdated SB2SL blocks Consider upgrading the model to

current SB2SL blocks.

Action Results

Clicking Update SB2SL Blocks replaces blocks with the latest versions.

See Also

• “Consult the Upgrade Advisor”.

Check Model History properties
Check ID: mathworks.design.SLXModelProperties

Check for edited model history properties

8 Model Advisor Checks

8-60

Description

Check models for edited Model History property values that could be used with source
control tool keyword substitution. This keyword substitution is incompatible with SLX file
format.

In the MDL file format you can configure some model properties to make use of source
control tool keyword substitution. If you save your model in SLX format, source control
tools cannot perform keyword substitution. Information in the model file from such
keyword substitution is cached when you first save the MDL file as SLX, and is not
updated again. The Model Properties History pane and Model Info blocks in your model
show stale information from then on.

Results and Recommended Actions

Condition Recommended Action
Edited model history properties Manually or automatically reset the

properties to the default values.
Click the button to reset, or to
inspect and change these
properties manually, open the
Model Properties dialog and look in
the History pane.

Capabilities and Limitations

You can run this check on your library models.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

Identify Model Info blocks that can interact with external
source control tools
Check ID: mathworks.design.ModelInfoKeywordSubstitution

Use this check to find Model Info blocks that can be altered by external source control
tools through keyword substitution.

 Simulink Checks

8-61

Description

This check searches for character vectors in the Model Info block enclosed within dollar
signs that can be overwritten by an external source control tool. Using third-party source
control tool keyword expansion might corrupt your model files when you submit them.
Keyword substitution is not available in SLX model file format.

For a more flexible interface to source control tools, use a Simulink project instead of the
Model Info block. See “About Source Control with Projects”.

Results and Recommended Actions

Condition Recommended Action
The Model Info block contains fields like this:
$keyword$

Review the list of fields in the
report, then remove the keyword
character vectors from the Model
Info block.

See Also

• “Consult the Upgrade Advisor”.
• “About Source Control with Projects”

Identify Model Info blocks that use the Configuration Manager
Check ID: mathworks.design.ModelInfoConfigurationManager

Use this check to find Model Info blocks that use the Configuration Manager.

Description

Model Info blocks using the Configuration Manager allow risky keyword substitution
using external source control tools. Using third-party source control tool keyword
expansion might corrupt your model files when you submit them. Keyword substitution is
not available in SLX model file format. The Configuration Manager for the Model Info
block will be removed in a future release.

For a more flexible interface to source control tools, use a Simulink project instead of the
Model Info block. See “About Source Control with Projects”.

8 Model Advisor Checks

8-62

Results and Recommended Actions

Condition Recommended Action
A Model Info block is using the Configuration
Manager.

Click Remove the Configuration
Manager.

See Also

• “Consult the Upgrade Advisor”.
• “About Source Control with Projects”

Check model for legacy 3DoF or 6DoF blocks
Check ID: mathworks.design.Aeroblks.CheckDOF

Lists 3DoF and 6DoF blocks are outdated.

Description

This check searches for 3DoF and 6DoF blocks from library versions prior to 3.13
(R2014a).

Results and Recommended Actions

Condition Recommended Action
Blocks configured with old
versions of 3DoF or 6DoF blocks
found.

Click Replace 3DoF and 6DoF Blocks to replace
the blocks with latest versions.

Action Results

Clicking Replace 3DoF and 6DoF Blocks replaces blocks with the latest versions.

See Also

• “Equations of Motion” (Aerospace Blockset)

 Simulink Checks

8-63

Check model and local libraries for legacy Aerospace Blockset
blocks
Check ID: mathworks.design.Aeroblks.CheckFG

Lists blocks configured to use FlightGear versions that are outdated or not supported.

Description

This check searches and lists blocks configured to use FlightGear versions that are
outdated or not supported.

Results and Recommended Actions

Condition Recommended Action
Blocks configured with old
versions of FlightGear are found.

Click Update FlightGear blocks to change block
settings to latest supported version of FlightGear.
Then, download latest version of FlightGear that
MATLAB supports.

Action Results

Clicking Update FlightGear blocks changes block settings to the latest supported
version of FlightGear.

See Also

• “Flight Simulator Interfaces” (Aerospace Blockset)

Check model for Aerospace Blockset navigation blocks
Check ID: mathworks.design.Aeroblks.CheckNAV

Searches for Three-Axis Inertial Measurement Unit, Three-Axis Gyroscope, and Three-
Axis Accelerometer blocks prior to 3.21 (R2018a).

Description

This check searches for Three-Axis Inertial Measurement Unit, Three-Axis Gyroscope, and
Three-Axis Accelerometer blocks that have been updated in R2018a.

8 Model Advisor Checks

8-64

Results and Recommended Actions

Condition Recommended Action
Three-Axis Inertial Measurement
Unit, Three-Axis Gyroscope, and
Three-Axis Accelerometer blocks
prior to R2018a.

In R2018a or later, if you did not previously solve for
steady state conditions, save the model now. If you
previously solved for steady state conditions for the
model, solve for these steady state conditions again,
and then save the model.

See Also

• Three-Axis Accelerometer
• Three-Axis Gyroscope
• Three-Axis Inertial Measurement Unit

Check and update masked blocks in library to use promoted
parameters
Check ID: mathworks.design.CheckAndUpdateOldMaskedBuiltinBlocks

Check for libraries that should be updated to use promoted parameters.

Description

This check searches libraries created before R2011b for masked blocks that should be
updated to use promoted parameters. Since R2011b, if a block parameter is not
promoted, its value in the linked block is locked to its value in the library block. This
check excludes blocks of type Subsystem, Model reference, S-Function and M-S-Function.

Results and Recommended Actions

Condition Recommended Action
Libraries that need to be updated are found Click Update. Once the libraries

have been updated, run the check
again

Capabilities and Limitations

You can:

 Simulink Checks

8-65

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check and update mask image display commands with
unnecessary imread() function calls
Check ID: mathworks.design.CheckMaskDisplayImageFormat

Check identifies masks using image display commands with unnecessary calls to the
imread() function.

Description

This check searches for the mask display commands that make unnecessary calls to the
imread() function, and updates them with mask display commands that do not call the
imread() function. Since 2013a, a performance and memory optimization is available for
mask images specified using the image path instead of the RGB triple matrix.

Results and Recommended Actions

Condition Recommended Action
Mask display commands that make unnecessary
calls to the imread() function are found.

Click Update. Once the blocks
have been updated, run the check
again.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

8 Model Advisor Checks

8-66

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check and update mask to affirm icon drawing commands
dependency on mask workspace
Check ID: mathworks.design.CheckMaskRunInitFlag

Check identifies if the mask icon drawing commands have dependency on the mask
workspace.

Description

This check identifies if the mask icon drawing commands have dependency on the mask
workspace and updates the RunInitForIconRedraw property accordingly. If there is no
mask workspace dependency, the value of RunInitForIconRedraw is set to off,
whereas, if there is mask workspace dependency the values is set to on.

Setting the values of RunInitForIconRedraw to off when there is no mask workspace
dependency optimizes the performance by not executing the mask initialization code
before drawing the block icon.

Results and Recommended Actions

Condition Recommended Action
Mask drawing commands that are dependent or
independent of the mask workspace are found.

Click Update. Once the blocks
have been updated, run the check
again.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

 Simulink Checks

8-67

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Identify masked blocks that specify tabs in mask dialog using
MaskTabNames parameter
Check ID: mathworks.design.CheckAndUpdateOldMaskTabnames

This check identifies masked blocks that specify tabs in mask dialog using the
MaskTabNames parameter.

Description

This check identifies masked blocks that use the MaskTabNames parameter to
programmatically create tabs in the mask dialog. Since R2013b, dialog controls are used
to group parameters in a tab on the mask dialog.

Results and Recommended Actions

Condition Recommended Action
Masked blocks that use the MaskTabNames
parameter to create tabs programmatically in the
mask dialog are found.

Click Upgrade available in the
Action section. Once the blocks
have been updated, run the check
again.

Capabilities and Limitations

You can run this check on your library models.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

8 Model Advisor Checks

8-68

Identify questionable operations for strict single-precision
design
Check ID: mathworks.design.StowawayDoubles

For a strict single-precision design, this check identifies the blocks that introduce double-
precision operations, and non-optimal model settings.

Description

For a strict single-precision design, this check identifies the blocks that introduce double-
precision operations, and non-optimal model settings.

Results and Recommended Actions

Condition Recommended Action
Double-precision floating-point operations found in
model.

Verify that:

• Block input and output data
types are set correctly.

• In the Configuration Parameters
dialog box, Default for
underspecified data type is
set to single.

Model uses a library standard that is not optimal for
strict-single designs.

Verify that:

• All target-specific math libraries
used by the model support
single-precision
implementations.

Set Configuration Parameters
> Standard math library to
C99 (ISO).

 Simulink Checks

8-69

Condition Recommended Action
Logic signals are not implemented as Boolean data. Verify that:

• In the Configuration Parameters
dialog box, Implement logic
signals as Boolean data is
selected.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “Validate a Floating-Point Embedded Model”
• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “What Is a Model Advisor Exclusion?” (Simulink Check)

Check get_param calls for block CompiledSampleTime
Check ID: mathworks.design.CallsGetParamCompiledSampleTime

Use this check to identify MATLAB files in your working environment that contain
get_param function calls to return the block CompiledSampleTime parameter.

Description

For multi-rate blocks (including subsystems), Simulink returns the block compiled sample
time as a cell array of the sample rates in the block. The return value is a cell array of
pairs of doubles. MATLAB code that accepts this return value only as pairs of doubles can
return an error when called with a multi-rate block. Use this check to identify such code
in your environment. Modify these instances of code to accept a cell array of pairs of
doubles instead.

For example, consider a variable blkTs, which has been assigned the compiled sample
time of a multi-rate block.

blkTs = get_param(block,'CompiledSampleTime');

8 Model Advisor Checks

8-70

Here are some examples in which the original code works only if blkTs is a pair of doubles
and the block is a single-rate block:

• Example 1

if isinf(blkTs(1))
 disp('found constant sample time')
end

Since blkTs is now a cell array, Simulink gives this error message:

Undefined function 'isinf' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [inf,0])
 disp('found constant sample time')
end

• Example 2

if all(blkTs == [-1,-1])
 disp('found triggered sample time')
end

For the above example, since blkTs is now a cell array, Simulink gives this error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [-1,-1])
 disp('found triggered sample time')
end

• Example 3

if (blkTs(1) == -1)
 disp('found a triggered context')
end

Again, since blkTs is now a cell array, Simulink gives this error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code.

 Simulink Checks

8-71

if ~iscell(blkTs)
 blkTs = {blkTs};
end
for idx = 1:length(blkTs)
 thisTs = blkTs{idx};
 if (thisTs(1) == -1)
 disp('found a triggered context')
 end
end

The above code checks for a triggered type sample time (triggered or async). In cases
in which a block has constant sample time ([inf,0]) in addition to triggered or async or
when a block has multiple async rates, this alternative property detects the triggered
type sample time.

This check scans MATLAB files in your environment. If the check finds instances of
MATLAB code that contain get_param calls to output the block compiled sample time,
Upgrade Advisor displays these results. It suggests that you modify code that accepts the
block compiled sample time from multi-rate blocks.

Results and Recommended Actions

Condition Recommended Action
No MATLAB files call
get_param(block,CompiledSampleTim
e)

None

Some MATLAB files call
get_param(block,CompiledSampleTim
e)

If files use the block
CompiledSampleTime parameter from
multi-rate blocks, modify these files to
accept the parameter as a cell array of
pairs of doubles.

See Also

• “Sample Times in Subsystems”
• “Block Compiled Sample Time”

Check model for parameter initialization and tuning issues
Check ID: mathworks.design.ParameterTuning

8 Model Advisor Checks

8-72

Use this check to identify issues in the model that occur when you initialize parameters or
tune them.

Description

This check scans your model for parameter initialization and tuning issues like:

• Rate mismatch between blocks
• Divide by zero issue in conditionally executed subsystems
• Invalid control port value in Index Vector blocks

Results and Recommended Actions

Condition Recommended Action
The model has rate transition issues. Select Automatically handle rate

transition for data transfer in the Solver
pane of the model configuration
parameters.

The model has a divide by zero issue in a
conditionally executed subsystem with a
control port.

At the command prompt, run

set_param(control_port,'DisallowConstTsAndPrmTs', 'on')

The model has an invalid control port value
in a conditionally executed subsystem.

At the command prompt, run

set_param(control_port,'DisallowConstTsAndPrmTs', 'on')

Action Results

Select Upgrade model to resolve issues in the model related to parameter initialization
and tuning.

See Also

• “Automatic Rate Transition”

Check for virtual bus across model reference boundaries
Check ID: mathworks.design.CheckVirtualBusAcrossModelReference

Check virtual bus signals that cross model reference boundaries.

 Simulink Checks

8-73

Description

This check identifies root-level Inport and Outport blocks in referenced models and Model
blocks with virtual bus outputs that require updates to change to nonvirtual bus signals.

If the check identifies issues, click Update Model to convert root-level Inport and
Outport blocks configured for virtual buses to use nonvirtual buses in these situations:

• For root-level Inport blocks — Enable the Output as nonvirtual bus parameter and
insert a Signal Conversion block after the Inport block. The Signal Conversion block is
configured to output a virtual bus.

• For root-level Outport blocks — Enable the Output as nonvirtual bus in parent
model parameter.

• For Model blocks — For ports whose Outport blocks were updated to address issues,
insert a Signal Conversion block after the corresponding ports of the Model block. The
Signal Conversion block is configured to output a virtual bus.

Recommended Action and Results

To resolve issues, click Upgrade Model.

Note Run the Analyze model hierarchy and continue upgrade sequence check on
the top-level model and then down through the model reference hierarchy.

Clicking Upgrade Model converts affected root-level Inport and Outport blocks
configured for virtual buses to use nonvirtual buses in models where you:

• Use function prototype control
• Perform C++ code generation with the I/O arguments step method option.

Alternatively, you can change the C++ code generation function specification setting
to Default step method:

1 In the Configuration Parameters > Code Generation > Interface pane, click
Configure C++ Class Interface.

2 In the dialog box, set the Function specification parameter to Default step
method.

• Use buses that have variable-dimension signals

8 Model Advisor Checks

8-74

• Use an associated non-auto storage class for Outport block signals

• The conversion for non-auto storage class occurs only if you have the target
generation license that the model requires. For example, an ERT target requires an
Embedded Coder license.

• Use Export-function models where an Outport block is driven by a nonvirtual bus
• Have Model blocks that reference models containing Outport blocks that have been
fixed — Clicking Upgrade Model updates Model blocks referencing the models that
had Outport blocks fixed by the Analyze model hierarchy and continue upgrade
sequence check.

See Also

• “Bus Data Crossing Model Reference Boundaries”

Check model for custom library blocks that rely on frame
status of the signal
Check ID: mathworks.design.DSPFrameUpgrade

This check identifies custom library blocks in the model that depend on the frame status
of the signal.

Description

This check searches for the custom library blocks in a model that depend on the frame
status of the signal. The check analyzes the blocks, recommends fixes, and gives reasons
for the fixes. You must make the fixes manually.

Results and Recommended Actions

Condition Recommended Action
The check finds custom library blocks that
depend on the frame status of the signal.

Follow the recommendation given by the
Upgrade Advisor.

Capabilities and Limitations

You can run this check only on custom library blocks in your model.

You must make the fixes manually.

 Simulink Checks

8-75

This check appears only if you have the DSP System Toolbox installed.

See Also

“Frame-based processing” (DSP System Toolbox)

Check model for S-function upgrade issues
Check ID: 'mathworks.design.CheckForSFcnUpgradeIssues'

Use this check on your model to identify your S-function's upgrade compatibility issues.
These issues may include the use of 32-bit APIs, compilation with incompatible options, or
use of deprecated separate complex APIs. Some common issues and information related
to the fixes are described in results and recommendations section below.

Description

When upgrading your S-functions to use the features in the latest release, this check
scans your model to warn against S-function upgrade incompatibility issues. If the result
of this check gives a warning or error, fix your C MEX S-functions according to the
description.

Results and Recommended Actions

Condition Recommended Action
Custom-built S-functions are not supported. Recompile your S-function with available

compatible options. See “Custom-built MEX
File Not Supported In Current Release”
(MATLAB) for more information.

S-function is not compiled with the latest
API (mex -R2018a).

Recompile using the latest flag (mex -
R2018a). See “MEX File Is Compiled With
Outdated Option” (MATLAB) for more
information.

S-function uses 32-bit functions. Modify your code according to the
instructions in “MEX File Calls A 32-bit
Function” (MATLAB).

8 Model Advisor Checks

8-76

Condition Recommended Action
S-function is using deprecated separate
complex APIs (mexGetPi, mexSetPi,
mexGetImagData, mexSetImagData).

Use interleaved complex APIs and
recompile your code with the latest flag
(mex -R2018a). See “Upgrade MEX Files
to Use Interleaved Complex API” (MATLAB)
for more information.

S-function is using deprecated type-unsafe
data API (mxGetData, mexSetData).

Use type-safe data APIs and recompile your
code. See “MEX File Calls An Untyped Data
Access Function” (MATLAB) for more
information.

S-function is compiled with a future release
and not supported in current release.

See “MEX File Built In MATLAB Release
Not Supported In Current Release”
(MATLAB) to recompile your files.

See Also

• “MATLAB Data in C S-Functions”

Check Rapid accelerator signal logging
Check ID: mathworks.design.CheckRapidAcceleratorSignalLogging

When simulating your model in rapid accelerator mode, use this check to find signals
logged in your model that are globally disabled. Rapid accelerator mode supports signal
logging. Use this check to enable signal logging globally.

Description

This check scans your model to see if a simulation is in rapid accelerator mode and
whether the model contains signals with signal logging. If the check finds an instance and
signal logging is globally disabled, an option to turn on signal logging globally appears.

Results and Recommended Actions

Condition Recommended Action
Simulation mode is not rapid accelerator. None. You can enable signal logging in

rapid accelerator mode.

 Simulink Checks

8-77

Condition Recommended Action
Simulation mode is rapid accelerator.
Upgrade Advisor did not find signals with
signal logging enabled.

None. The model does not use signal
logging. Enable signal logging for signals
and globally if you want to log signals.

Simulation mode is rapid accelerator.
Upgrade Advisor found signals with signal
logging enabled. However, global setting
for signal logging was disabled.

Enable signal logging globally if you want
to log signals with signal logging enabled.

Signal logging was already globally
enabled.

None.

Action Results

Selecting Modify enables signal logging globally in your model.

See Also

• “Signal Logging in Rapid Accelerator Mode”
• “Consult the Upgrade Advisor”.

Check virtual bus inputs to blocks
Check ID: mathworks.design.VirtualBusUsage

Check bus input signals for a set of blocks.

Description

Check bus input signals for a set of blocks.

Starting in R2015b, virtual bus signal inputs to blocks that require nonbus or nonvirtual
bus input can cause an error. Examples of blocks that can specify a bus object as their
output data type include a Bus Creator block and a root Inport block. The blocks that
cause an error when they have a virtual bus input in this situation are:

• Assignment
• Delay

The Delay block causes an error only if you use the Block Parameters dialog box to:

8 Model Advisor Checks

8-78

• Set an initial condition that is a MATLAB structure or zero.
• Specify a value for State name.

• Permute Dimension
• Reshape
• Selector
• Unit Delay

The Unit Delay block causes an error only if you use the Block Parameters dialog box
to:

• Set an initial condition that is a MATLAB structure or zero.
• Specify a value for State name.

• Vector Concatenate

Results and Recommended Actions

Condition Recommended Action
Virtual bus signal input to these blocks:

• Assignment
• Delay (if you specify an initial condition from

the dialog box that is a MATLAB structure or
zero and the value for State name is not
empty)

• Permute Dimension
• Reshape
• Selector
• Unit Delay (if you specify an initial condition

that is a MATLAB structure or zero and the
value for State name is not empty)

• Vector Concatenate

In the Upgrade Advisor, click Modify.

The check inserts a Bus to Vector block
to attempt to convert virtual bus input
signals to vector signals. For issues
that the Upgrade Advisor identifies but
cannot fix, modify the model manually.
For details, see “Correct Buses Used as
Vectors”.

Action Results

Clicking Modify inserts a Bus to Vector block at the input ports of blocks.

 Simulink Checks

8-79

For many models, running the Upgrade Advisor modifies your model so that bus signals
are not treated as vectors. However, for some models you can encounter compatibility
issues even after running the check. Modify your model manually to address those issues.

After you compile the model using Upgrade Advisor, the Simulink Editor sometimes
indicates that you need to save the model (the model is dirty), even though you did not
make changes. To prevent this issue from reoccurring for this model, save the model.

Modeling Pattern Issue Solution
Data Store Memory
block with Data Type
set to Inherit: auto

A Data Store Memory block
whose associated Data Store
Read or Data Store Write blocks
read or write bus signal data
must use a bus object.

In the Data Store Memory
block, set the Data Type signal
attribute to Bus:
<BusObject>.

Signal Conversion
block Output
parameter matches
input bus type

A Signal Conversion block
whose Output parameter is set
to Nonvirtual bus requires a
virtual bus input.

A Signal Conversion block
whose Output parameter is set
to Virtual bus requires a
nonvirtual bus input.

To create a copy of the input
signal, set Output to Signal
copy.

Merge, Switch, or
Multiport Switch block
with multiple bus
inputs

Merge, Switch, or Multiport
Switch blocks with multiple bus
inputs require those inputs to
have the same names and
hierarchy.

Reconfigure the model so that
the bus inputs have the same
names and hierarchy.

Root Inport block
outputting a virtual
bus and specifying a
value for Port
dimensions

A root Inport block that outputs
to a virtual bus must inherit the
dimensions.

Set the Inport block Port
dimensions signal attribute to
1 or -1 (inherit).

8 Model Advisor Checks

8-80

Modeling Pattern Issue Solution
Mux block with
nonvirtual bus inputs

A Mux block cannot accept
nonvirtual bus signals.

To treat the output as an array,
replace the Mux block with a
Vector Concatenate block.

If you want a virtual bus output,
use a Bus Creator block to
combine the signals.

Bus to Vector block
without a virtual bus
signal input

A nonbus signal does not need a
Bus to Vector block.

Remove the Bus to Vector block.

Assignment block with
virtual bus inputs

The Upgrade Advisor converts
the Assignment block Y0 port
bus input to a vector.

Add a Bus to Vector block
before the Assignment block.

S-function using a
nonvirtual bus

An S-function that is not a
Level-2 C S-function does not
support nonvirtual bus signals.

Change the S-function to be a
Level-2 C S-function.

Consider using an S-Function
Builder block to create a
Level-2 C S-function.

Stateflow chart with
parameterized data
type

In a Stateflow chart, you cannot
parameterize the data type of
an input or output in terms of
another input or output if the
data type is a bus object.

For the parameterized port, set
Data Type to Bus: <object
name>.

Subsystem with bus
operations in a
Stateflow chart

An Inport block inside a
subsystem in a Stateflow chart
requires a bus object data type
if its signal is a bus.

In the Inport block, set Data
type to Bus: <object name>.

Ground block used as a
bus source

The output signal of a Ground
block cannot be a source for a
bus.

Use a Constant block with
Constant value set to 0 and
the Output data type signal
attribute set to Bus: <object
name>.

Root Outport block
with a single-element
bus object data type

The input to the Outport block
must be a bus if it specifies a
bus object as its data type.

In the Outport block, set Data
type to Inherit: auto.

 Simulink Checks

8-81

See Also

• Bus to Vector block
• “Correct Buses Used as Vectors”
• “Migrating to Simplified Initialization Mode Overview” on page 8-5
• Simulink.BlockDiagram.addBusToVector

Check for root outports with constant sample time
Check ID: mathworks.design.CheckConstRootOutportWithInterfaceUpgrade

Use this check to identify root outports with a constant sample time used with an
AUTOSAR target, Function Prototype Control, or the model C++ class interface.

Description

Root outports with constant sample time are not supported when using an AUTOSAR
target, Function Prototype Control, or the model C++ class interface. Use this check to
identify root Outport blocks with this condition and modify the blocks as recommended.

Results and Recommended Actions

Condition Recommended Action
Root outport with constant sample time used with
an AUTOSAR target, Function Prototype Control or
the model C++ class interface.

Consider one of the following:

• Set the sample time of the block
to the fundamental sample time.

• Identify the source of the
constant sample time and set its
sample time to the fundamental
sample time.

• Place a Rate Transition block
with inherited sample time (-1)
before the block.

See Also

• “Consult the Upgrade Advisor”.

8 Model Advisor Checks

8-82

Analyze model hierarchy and continue upgrade sequence
Check ID: com.mathworks.Simulink.UpgradeAdvisor.UpgradeModelHierarchy

Check for child models and guide you through upgrade checks.

Description

This check identifies child models of this model, and guides you through upgrade checks
to run both non-compile and compile checks. The Advisor provides tools to help with
these tasks:

• If the check finds child models, it offers to run the Upgrade Advisor upon each child
model in turn and continue the upgrade sequence. If you have a model hierarchy you
need to check and update each child model in turn.

• If there are no child models, you still need to continue the check sequence until you
have run both non-compile and compile checks.

You must run upgrade checks in this order: first the checks that do not require compile
time information and do not trigger an Update Diagram, then the compile checks.

Click Continue Upgrade Sequence to run the next checks. If there are child models,
this will open the next model. Keep clicking Continue Upgrade Sequence until the
check passes.

Results and Recommended Actions

Condition Recommended Action
Child models found Click Continue Upgrade

Sequence to run the next checks.
If there are child models, this will
close the current Upgrade Advisor
session, and open Upgrade Advisor
for the next model in the hierarchy.

 Simulink Checks

8-83

Condition Recommended Action
No child models, but more checks to run If there are no child models, click

Continue Upgrade Sequence to
refresh the Upgrade Advisor with
compilation checks selected. The
compile checks trigger an Update
Diagram (marked with ^). Run the
next checks and take advised
actions. When you return to this
check, click Continue Upgrade
Sequence until this check passes.

Tips

Best practice for upgrading a model hierarchy is to check and upgrade each model
starting at the leaf end and working up to the root model.

When you click Continue Upgrade Sequence, the Upgrade Advisor opens the leaf
model as far inside the hierarchy as it can find. Subsequent steps guide you through
upgrading your hierarchy from leaf to root model.

When you open the Upgrade Advisor, the checks that are selected do not require compile
time information and do not trigger an Update Diagram. Checks that trigger an Update
Diagram are not selected to run by default, and are marked with ^. When you use the
Upgrade Advisor on a hierarchy, keep clicking Continue Upgrade Sequence to move
through this sequence of analysis:

1 The Upgrade Advisor opens each model and library in turn, from leaf to root, and
selects the non-compile checks. Run the checks, take any advised actions, then click
Continue Upgrade Sequence to open the next model and continue.

2 When you reach the root end of the hierarchy, the Upgrade Advisor then opens each
model again in the same order (but not libraries) and selects only the checks that
require a model compile. Run the checks, take any advised actions, then click
Continue Upgrade Sequence to open the next model. Continue until you reach the
end of the hierarchy and this check passes.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

8 Model Advisor Checks

8-84

Check Access to Data Stores
Check ID: mathworks.design.ConflictsForDataStoreReadWriters

Identify potential execution order sensitivity when reading and writing to data stores.

Description

The execution order of blocks that read and write to the same data store can change the
simulation result. When blocks in the same hierarchy access the same data store, the
execution order is not deterministic.

Results and Recommended Actions

Condition Recommended Action
Data Store Memory block
accessed by multiple blocks in
the same hierarchy.

To enforce execution order for the blocks, consider the
following:

• Add a data dependency between the blocks.
• Set block priority.
• Move blocks into separate Function-Call Subsystem

blocks and schedule them.

See Also

• “Local and Global Data Stores”
• Data Store Memory
• Data Store Read
• Data Store Write

 Simulink Checks

8-85

Model Reference Conversion
Advisor

9

Model Reference Conversion Advisor

Check Conversion Input Parameters
Use input parameters to configure the actions the advisor performs and the output it
produces.

You can use the default parameters to run the advisor without changing any parameters.

Input Parameter Description
New model name The advisor provides a model name that is based on the

Subsystem block name and is unique in the MATLAB path.

The model name cannot exceed 59 characters.

Tip If the advisor generates an error indicating that the target
referenced model already exists, then use the New model name
parameter to specify a new file name.

Conversion data file
name

The advisor creates a file for storing data created during the
conversion. By default, the advisor uses the model name at the
beginning of the file name and appending
_conversion_data.mat. For example, if the subsystem is in a
model named myModel, the conversion file name is
myModel_conversion_data.mat.

You can save the conversion data in a MAT-file (default) or a
MATLAB file. If you use a .m file extension, the advisor serializes
all variables to a MATLAB file.

Note If the top model uses a data dictionary, you cannot select
this option.

Fix errors
automatically

By default, if an advisor check finds any errors and the advisor
can fix the error, the advisor provides a Fix button that you can
click to have the advisor fix the issue.

If you enable this parameter, the advisor fixes all conversion
errors that it can, without displaying the Fix button.

9 Model Reference Conversion Advisor

9-2

Input Parameter Description
Replace content of
a subsystem with a
Model block

By default, the advisor updates the original model by inserting a
Model block in the model. The advisor action depends on whether
you use the automatic fix options.

• If you use the automatic fixes, then the advisor replaces the
Subsystem block with a Model block unless the automatic
fixes change the input or output ports. If the ports change,
then the advisor includes the contents of the subsystem in a
Model block that is inserted in the Subsystem block.

• If you do not use the automatic fixes, then the advisor
replaces the Subsystem block with a Model block.

Clear this parameter to have the advisor open a new Simulink
Editor window that contains only a Model block that references
the newly created referenced model. The advisor does not update
the original model in the other Simulink Editor window.

Note If you are converting a variant subsystem, do not use this
option. See “Convert Each Variant Subsystem”.

 Model Reference Conversion Advisor

9-3

Input Parameter Description
Check simulation
results after
conversion

Compare the results of simulating the top model for the
referenced model to the results of simulating the baseline model
that has the subsystem.

To use this option, before performing the conversion, enable
signal logging for the subsystem output signals of interest in the
model. Set these advisor options:

• Model block simulation mode — Use the same simulation
mode as in the original model.

• Replace content of a subsystem with a Model block —
Enable this option.

• Stop time — Specify when you want the simulations to end.
The default is the stop time of the top model. If the top model
stop time is set to inf, the advisor stops after 10 seconds.

• Absolute tolerance — Specify a value if you do not want to
use the default of '1e-06'.

• Relative tolerance — Specify a value if you do not want to
use the default of '1e-03'.

To see the results after the conversion is complete, click View
comparison results. The advisor displays the results of the
comparison in the Simulation Data Inspector. For more
information, see “Compare Simulation Results Before and After
Conversion”.

Stop time By default, the advisor uses the stop time of the top model,
unless the stop time of the top model is inf. If the stop time of
the top model is inf, the advisor uses a default stop time of 10.
You can specify a different stop time. For details, see “Specify
Simulation Start and Stop Time”.

To use this option, select Check simulation results after
conversion.

9 Model Reference Conversion Advisor

9-4

Input Parameter Description
Absolute tolerance The absolute signal tolerance for the simulation run comparison.

The default is 1e-06.

To use this option, select Check simulation results after
conversion.

Relative tolerance The relative signal tolerance for the simulation run comparison.
The default is 1e-03.

To use this option, select Check simulation results after
conversion.

Model block
simulation mode

Simulation mode for the new Model block that references the
referenced model.

• Normal (default)
• Accelerator

After you configure the advisor, to start the conversion checks, click Run this task.

 Model Reference Conversion Advisor

9-5

Performance Advisor Checks

10

Simulink Performance Advisor Checks
In this section...
“Simulink Performance Advisor Check Overview” on page 10-3
“Baseline” on page 10-3
“Checks that Require Update Diagram” on page 10-3
“Checks that Require Simulation to Run” on page 10-3
“Check Simulation Modes Settings” on page 10-3
“Check Compiler Optimization Settings” on page 10-4
“Create baseline” on page 10-4
“Identify resource-intensive diagnostic settings” on page 10-4
“Check optimization settings” on page 10-5
“Identify inefficient lookup table blocks” on page 10-5
“Check MATLAB System block simulation mode” on page 10-5
“Identify Interpreted MATLAB Function blocks” on page 10-6
“Identify simulation target settings” on page 10-6
“Check model reference rebuild setting” on page 10-7
“Identify Scope blocks” on page 10-7
“Identify active instrumentation settings on the model” on page 10-7
“Check model reference parallel build” on page 10-8
“Check Delay block circular buffer setting” on page 10-10
“Check continuous and discrete rate coupling” on page 10-10
“Check zero-crossing impact on continuous integration” on page 10-11
“Check discrete signals driving derivative port” on page 10-11
“Check solver type selection” on page 10-12
“Select multi-thread co-simulation setting on or off” on page 10-13
“Identify co-simulation signals for numerical compensation” on page 10-13
“Select simulation mode” on page 10-14
“Select compiler optimizations on or off” on page 10-15
“Final Validation” on page 10-15

10 Performance Advisor Checks

10-2

Simulink Performance Advisor Check Overview
Use Performance Advisor checks to improve model simulation time.

See Also

“Improve Simulation Performance Using Performance Advisor”

Baseline
Establish a measurement to compare the performance of a simulation after Performance
Advisor implements improvements.

See Also

“Create a Performance Advisor Baseline Measurement”

Checks that Require Update Diagram
These checks require that Update Diagram occurs in order to run.

See Also

“Improve Simulation Performance Using Performance Advisor”

Checks that Require Simulation to Run
These checks require simulation to run in order to collect sufficient performance data.
Performance Advisor reports the results after simulation completes.

See Also

“Improve Simulation Performance Using Performance Advisor”

Check Simulation Modes Settings
These checks evaluate simulation modes (Normal, Accelerator, Rapid Accelerator, Rapid
Accelerator with up-to-date check off) and identify the optimal mode to achieve fastest
simulation.

 Simulink Performance Advisor Checks

10-3

See Also

“What Is Acceleration?”

Check Compiler Optimization Settings
Use these checks to select compiler optimization settings for improved performance.

See Also

“Compiler optimization level”

Create baseline
Select this check to create a baseline when Performance Advisor runs. You can also create
a baseline manually. A baseline is the measurement of simulation performance before you
run checks in Performance Advisor. The baseline includes the time to run the simulation
and the simulation results (signals logged). Before you create a baseline for a model, in
the Data Import/Export pane of the Configuration Parameters dialog box:

• Select the States check box.
• Set the Format parameter to Structure with time.

See Also

“Create a Performance Advisor Baseline Measurement”

Identify resource-intensive diagnostic settings
To improve simulation speed, disable diagnostics where possible. For example, some
diagnostics, such as Solver data inconsistency or Array bounds exceeded, incur run-
time overheads during simulations.

See Also

• “Diagnostics”
• “Improve Simulation Performance Using Performance Advisor”

10 Performance Advisor Checks

10-4

Check optimization settings
To improve simulation speed, enable optimizations where possible. For example, if some
optimizations, such as Block Reduction, are disabled, enable these optimizations to
improve simulation speed.

You can also trade off compile-time speed for simulation speed by setting the compiler
optimization level. Compiler optimizations for accelerations are disabled by default.
Enabling them accelerates simulation runs but results in longer build times. The speed
and efficiency of the C compiler used for Accelerator and Rapid Accelerator modes also
affects the time required in the compile step.

See Also

• “Optimization Pane” (Simulink Coder)
• “Improve Simulation Performance Using Performance Advisor”

Identify inefficient lookup table blocks
To improve simulation speed, use properly configured lookup table blocks.

See Also

• “Lookup Tables”
• “Optimize Generated Code for Lookup Table Blocks”
• “Optimize Breakpoint Spacing in Lookup Tables”
• “Improve Simulation Performance Using Performance Advisor”

Check MATLAB System block simulation mode
In general, to improve simulation speed, choose Code generation for the Simulate
using parameter of the MATLAB System block. Because data exchange between MATLAB
and Simulink passes through several software layers, Interpreted execution usually
slows simulations, particularly if the model needs many data exchanges.

This check identifies which MATLAB System blocks can generate code and changes the
Simulate using parameter value to Code generation where possible.

 Simulink Performance Advisor Checks

10-5

While Code generation does not support all MATLAB functions, the subset of the
MATLAB language that it does support is extensive. By using this Code generation,
you can improve performance.

See Also

• MATLAB System
• “Simulation Modes”
• “Improve Simulation Performance Using Performance Advisor”

Identify Interpreted MATLAB Function blocks
To improve simulation speed, replace Interpreted MATLAB Function blocks with MATLAB
Function blocks where possible. Because data exchange between MATLAB and Simulink
passes through several software layers, Interpreted MATLAB Function blocks usually slow
simulations, particularly if the model needs many data exchanges.

Additionally, because you cannot compile an Interpreted MATLAB Function, an
Interpreted MATLAB Function block impedes attempts to use an acceleration mode to
speed up simulations.

While MATLAB Function blocks do not support all MATLAB functions, the subset of the
MATLAB language that it does support is extensive. By replacing your interpreted
MATLAB code with code that uses only this embeddable MATLAB subset, you can improve
performance.

See Also

• MATLAB Function
• “Improve Simulation Performance Using Performance Advisor”

Identify simulation target settings
To improve simulation speed, disable simulation target settings where possible. For
example, in the Configuration Parameters dialog box, clear the Simulation Target >
Echo expression without semicolons check box to improve simulation speed.

10 Performance Advisor Checks

10-6

See Also

• “Model Configuration Parameters: Simulation Target”
• “Improve Simulation Performance Using Performance Advisor”

Check model reference rebuild setting
To improve simulation speed, in the Configuration Parameters dialog box, verify that the
Model Referencing > Rebuild parameter is set to If any changes in known
dependencies detected.

See Also

• “Rebuild”
• “Improve Simulation Performance Using Performance Advisor”

Identify Scope blocks
Opened and uncommented Scope blocks can impact simulation performance. To improve
simulation performance, close and comment out Scope blocks. Right-click a scope block,
and then select Comment Out.

For opened Scopes, you can improve simulation speed by reducing updates. From the
Scope Simulation menu, select Reduce Updates to Improve Performance.

See Also

• “Improve Simulation Performance Using Performance Advisor”

Identify active instrumentation settings on the model
Identify active instrumentation settings on the model. The fixed-point instrumentation
mode controls which objects log minimum, maximum, and overflow data during
simulation. Instrumentation is required to collect simulation ranges using the Fixed-Point
Tool. These ranges are used to propose data types for the model (requires Fixed-Point
Designer). When you are not actively converting your model to fixed point, disable the
fixed-point instrumentation to restore the maximum simulation speed to your model.

From the model Analysis menu, select Data Type Design > Fixed-Point Tool. Under
System under design, click Continue.

 Simulink Performance Advisor Checks

10-7

In the Model Hierarchy pane, the Fixed-Point Tool denotes systems that currently have
instrumentation turned on with (mmo), or (o). Right-click the system in the model
hierarchy and, under Fixed-point instrumentation mode, select Use local
settings or Force off.

See Also

• Fixed-Point Instrumentation and Data Type Override (Fixed-Point Designer)

Check model reference parallel build
To improve simulation, verify the number of referenced models in the model. If there are
two or more referenced models, build the model in parallel if possible.

Performance Advisor analyzes the model and estimates the build time on the current
computer as if it were using several cores. It also estimates the parallel build time for the
model in the same way an estimation would be performed if Parallel Computing Toolbox
or MATLAB Distributed Computing Server™ software were installed on the computer.
Performance Advisor performs this estimate as follows:

1 Search the model for referenced models that do not refer to other referenced models.
2 Calculate the average number of blocks in each of the referenced models that do not

refer to other referenced models.
3 Of the list of referenced models that do not refer to others, select a referenced model

whose number of blocks is closest to the calculated average.
4 Build this model to obtain the build time.
5 Based on the number of blocks and the build time for this referenced model, estimate

the build time for all other referenced models.
6 Based on these build times, estimate the parallel build time for the top model.

10 Performance Advisor Checks

10-8

To calculate the overhead time introduced by the parallel build mechanism, set the
Parallel Build Overhead Time Estimation Factor. Performance Advisor calculates the
estimated build time with overhead as:

(1 + Parallel Build Overhead Time Estimation Factor)*(Build time on a single machine)

See Also

• “Enable parallel model reference builds”
• “Improve Simulation Performance Using Performance Advisor”

 Simulink Performance Advisor Checks

10-9

Check Delay block circular buffer setting
To improve simulation, check that each Delay block in the model uses the appropriate
buffer type. By default, the block uses an array buffer (the Use circular buffer for state
option is not selected). However, when the delay length is large, a circular buffer can
improve execution speed by keeping the number of copy operations constant.

If the Delay block is currently using an array buffer, and all of the following conditions are
true, Performance Advisor selects a circular buffer:

• The Delay block is in sample-based mode, i.e,either the Input processing parameter
is set to Elements as channels (sample based), or the input signal type is set
to Sample based.

• The value or upper limit of the delay length is 10 or greater.
• The size of the state—equal to the delay length multiplied by the total of all output

signal widths—is 1000 or greater.

See Also

• Delay
• “Improve Simulation Performance Using Performance Advisor”

Check continuous and discrete rate coupling
If your model contains both discrete and continuous rates, the coupling between these
rates can slow down simulation. Performance Advisor checks for these conditions in your
model.

• The model is using a variable step solver.
• The model contains both continuous and discrete rates.
• The fastest discrete rate is relatively smaller than Max step size determined by the

solver.

Setting the DecoupledContinuousIntegration parameter to on might speed up
simulation.

See Also

• “Solver Types”

10 Performance Advisor Checks

10-10

• “Speed Up Simulation”
• “Improve Simulation Performance Using Performance Advisor”

Check zero-crossing impact on continuous integration
If your model contains zero-crossings which do not impact the continuous integration, the
simulation might slow down when all the following conditions are satisfied:

• The model uses a variable-step solver.
• The model contains blocks that have continuous states and zero-crossings.
• Some of the zero-crossings do not affect the integration of the continuous states.

Setting the MinimalZcImpactIntegration parameter to On might speed up
simulation.

See Also

• “Speed Up Simulation”
• “Solver Types”
• “Improve Simulation Performance Using Performance Advisor”

Check discrete signals driving derivative port
Run this check if your simulation has many unnecessary resets. A discrete signal driving a
block with continuous states triggers a reset at every sample time hit of the block. These
resets are computationally expensive. Performance Advisor checks for these signals and
blocks and provides a list of the same.

You can edit the model around the discovered discrete signals that drive these blocks to
remove such cases. For example, inserting a Zero Order Hold block between the discrete
signal and the corresponding block with continuous states might help resolve the issue.

See Also

• “Speed Up Simulation”
• “Modeling Techniques That Improve Performance”

 Simulink Performance Advisor Checks

10-11

Check solver type selection
To improve simulation, check that the model uses the appropriate solver type.

Explicit vs. Implicit Solvers

Selecting a solver depends on the approximation of the model stiffness at the beginning of
the simulation. A stiff system has both slowly and quickly varying continuous dynamics.
Implicit solvers are specifically designed for stiff problems, whereas explicit solvers are
designed for non-stiff problems. Using non-stiff solvers to solve stiff systems is inefficient
and can lead to incorrect results. If a non-stiff solver uses a very small step size to solve
your model, check to see if you have a stiff system.

Model Recommended Solver
Represents a stiff system ode15s
Does not represent a stiff system ode45

Performance Advisor uses the heuristic shown in the table to choose between explicit and
implicit solvers.

Original Solver Performance Advisor Action
Variable step solver Calculates the system stiffness at 0 first. Then:

• If the stiffness is greater than 1000, Performance
Advisor chooses ode15s.

• If the stiffness is less than 1000, Performance
Advisor chooses ode45.

Fixed-step continuous solver • If the stiffness is greater than 1000, Performance
Advisor chooses ode14x.

• If the stiffness is less than 1000, Performance
Advisor chooses ode3.

This heuristic works best if the system stiffness does not vary during simulation. If the
system stiffness varies with time, choose the most appropriate solver for that system
rather than the one Performance Advisor suggests.

10 Performance Advisor Checks

10-12

See Also

• “Solver Types”
• “Speed Up Simulation”
• “Improve Simulation Performance Using Performance Advisor”

Select multi-thread co-simulation setting on or off
Adjust co-simulation settings for better performance and accuracy.

• Validate and revert changes if simulation time increases — Performance Advisor
reverts previous co-simulation settings when the simulation time increases.

• Validate and revert changes if degree of accuracy is greater than tolerance —
Performance Advisor reverts previous co-simulation settings if the degree of accuracy
is greater than tolerance.

Tip You can use the tic and toc functions to measure the simulation time.

See Also

• tic
• toc
• sim

Identify co-simulation signals for numerical compensation
Identify co-simulation signals that may need explicit numerical compensation.

• Validate and revert changes if time of simulation increases — Performance Advisor
reverts previous co-simulation settings the simulation time increases.

• Validate and revert changes if degree of accuracy is greater than tolerance —
Performance Advisor reverts co-simulations if the degree of accuracy is greater than
tolerance.

Tip You can use the tic and toc functions to measure the simulation time.

 Simulink Performance Advisor Checks

10-13

See Also

• tic
• toc
• sim

Select simulation mode
To achieve fastest simulation time, use this check to evaluate the following modes and
identify the optimal selection:

• Normal
• Accelerator
• Rapid Accelerator
• Rapid Accelerator with up-to-date check off

In Normal mode,Simulink interprets your model during each simulation run. If you
change the model frequently, this is generally the preferred mode to use because it
requires no separate compilation step. It also offers the most flexibility to make changes
to your model.

In Accelerator mode,Simulink compiles a model into a binary shared library or DLL where
possible, eliminating the block-to-block overhead of an interpreted simulation in Normal
mode. Accelerator mode supports the debugger and profiler, but not runtime diagnostics.

In Rapid Accelerator mode, simulation speeds are fastest but this mode only works with
models where C-code is available for all blocks in the model. Also, this mode does not
support the debugger or profiler.

When choosing Rapid Accelerator with up-to-date check off, Performance Advisor does
not perform an up-to-date check during simulation. You can run the Rapid Accelerator
executable repeatedly while tuning parameters without incurring the overhead of up-to-
date checks. For instance, if you have a large model or a model that makes extensive use
of model reference, this method of execution can increase efficiency.

For models with 3–D signals, Normal or Accelerator modes work best.

10 Performance Advisor Checks

10-14

See Also

• “How Acceleration Modes Work”
• “Choosing a Simulation Mode”
• “Comparing Performance”
• “Run Simulations Programmatically”

Select compiler optimizations on or off
Use this check to determine whether performing compiler optimization can help improve
simulation speed. The optimization can only be performed in Accelerator or Rapid
Accelerator modes.

Note This check will be skipped if MATLAB is not configured to use an optimizing
compiler.

See Also

• “How Acceleration Modes Work”
• “Choosing a Simulation Mode”
• “Comparing Performance”
• “Improve Simulation Performance Using Performance Advisor”

Final Validation
This check validates the overall performance improvement of simulation time and
accuracy in a model. If the performance is worse than the original model, Performance
Advisor discards all changes to the model and loads the original model.

Global settings for validation do not apply to this check. If you have not validated the
performance improvement from changes resulting from other checks, use this check to
perform a final validation of all changes to a model.

See Also

• “Comparing Performance”

 Simulink Performance Advisor Checks

10-15

• “Improve Simulation Performance Using Performance Advisor”

10 Performance Advisor Checks

10-16

Simulink Limits

11

Maximum Size Limits of Simulink Models
The following table documents some limits on the size and complexity of Simulink models.

Model Feature Limit
Maximum number of levels in a block
diagram

1024

Maximum number of branches in a line 1024
Maximum length of a parameter name 63
Maximum length of a parameter character
vector value

32768

Maximum value of a model window
coordinate

32768

Maximum number of bytes of logged
simulation data

2^31-1 bytes on 32-bit systems, 2^48-1
bytes on 64-bit systems

Maximum number of bytes for the total
block I/O buffer length in a model

2^31-1 bytes on 32-bit systems and on 64-
bit systems

Maximum length of integer and fixed-point
data types

128 bits

11 Simulink Limits

11-2

Block Reference Page Examples

• “Create Bus Ports in a Subsystem” on page 12-5
• “Convert Bus Signal to a Vector” on page 12-8
• “Assign Signal Values to a Bus” on page 12-9
• “Initialize Your Model Using the Callback Button Block” on page 12-10
• “Control a Parameter Value with Callback Button Blocks” on page 12-12
• “Solve a Linear System of Algebraic Equations” on page 12-15
• “Model a Planar Pendulum” on page 12-16
• “Improved Linearization with Transfer Fcn Blocks” on page 12-20
• “View Dead Zone Output on Sine Wave” on page 12-21
• “View Backlash Output on Sine Wave” on page 12-23
• “Prelookup With External Breakpoint Specification” on page 12-25
• “Prelookup with Evenly Spaced Breakpoints” on page 12-26
• “Configure the Prelookup Block to Output Index and Fraction as a Bus”

on page 12-27
• “Approximating the sinh Function Using the Lookup Table Dynamic Block”

on page 12-29
• “Create a Logarithm Lookup Table” on page 12-31
• “Providing Table Data as an Input to the Direct Lookup Table Block” on page 12-32
• “Specifying Table Data in the Direct Lookup Table Block Dialog Box” on page 12-33
• “Using the Quantizer and Saturation blocks in sldemo_boiler” on page 12-34
• “Scalar Expansion with the Coulomb and Viscous Friction Block” on page 12-35
• “Sum Block Reorders Inputs” on page 12-36
• “Iterated Assignment with the Assignment Block” on page 12-38
• “View Sample Time Using the Digital Clock Block” on page 12-39
• “Bit Specification Using a Positive Integer” on page 12-40
• “Bit Specification Using an Unsigned Integer Expression” on page 12-41

12

• “Track Running Minimum Value of Chirp Signal” on page 12-42
• “Horizontal Matrix Concatenation” on page 12-44
• “Vertical Matrix Concatenation” on page 12-45
• “Multidimensional Matrix Concatenation” on page 12-46
• “Unary Minus of Matrix Input” on page 12-47
• “Sample Time Math Operations Using the Weighted Sample Time Math Block”

on page 12-48
• “Construct Complex Signal from Real and Imaginary Parts” on page 12-49
• “Construct Complex Signal from Magnitude and Phase Angle” on page 12-50
• “Find Nonzero Elements in an Array” on page 12-51
• “Calculate the Running Minimum Value with the MinMax Running Resettable Block”

on page 12-52
• “Find Maximum Value of Input” on page 12-54
• “Permute Array Dimensions” on page 12-56
• “Multiply Inputs of Different Dimensions with the Product Block” on page 12-57
• “Multiply and Divide Inputs Using the Product Block” on page 12-58
• “Divide Inputs of Different Dimensions Using the Divide Block” on page 12-59
• “Complex Division Using the Product of Elements Block” on page 12-60
• “Element-Wise Multiplication and Division Using the Product of Elements Block”

on page 12-61
• “sin Function with Floating-Point Input” on page 12-62
• “sincos Function with Fixed-Point Input” on page 12-63
• “Trigonometric Function Block Behavior for Complex Exponential Output”

on page 12-64
• “Output a Bus Object from the Constant Block” on page 12-65
• “Control Algorithm Execution Using Enumerated Signal” on page 12-66
• “Integer and Enumerated Data Type Support in the Ground Block” on page 12-67
• “Fixed-Point Data Type Support in the Ground Block” on page 12-68
• “Read 1-D Array and Structure From Workspace” on page 12-69
• “Read Structure From Workspace Using Model Sample Time” on page 12-70
• “Read 2-D Signals in Structure Format From Workspace” on page 12-72

12 Block Reference Page Examples

12-2

• “From File Block Loading Timeseries Data” on page 12-73
• “Eliminate Singleton Dimension with the Squeeze Block” on page 12-74
• “Difference Between Time- and Sample-Based Pulse Generation” on page 12-75
• “Specify a Waveform with the Repeating Sequence Block” on page 12-77
• “Tune Phase Delay on Pulse Generator During Simulation” on page 12-79
• “Difference Sine Wave Signal” on page 12-80
• “Discrete-Time Derivative of Floating-Point Input” on page 12-82
• “First-Order Sample-and-Hold of a Sine Wave” on page 12-84
• “Calculate and Display Simulation Step Size using Memory and Clock Blocks”

on page 12-86
• “Capture the Velocity of a Bouncing Ball with the Memory Block” on page 12-87
• “Implement a Finite-State Machine with the Combinatorial Logic and Memory Blocks”

on page 12-89
• “Discrete-Time Integration Using the Forward Euler Integration Method”

on page 12-90
• “Signal Routing with the From, Goto, and Goto Tag Visibility Blocks” on page 12-91
• “Zero-Based and One-Based Indexing with the Index Vector Block” on page 12-94
• “Noncontiguous Values for Data Port Indices of Multiport Switch Block”

on page 12-95
• “Using Variable-Size Signals on the Delay Block” on page 12-96
• “Bus Signals with the Delay Block for Frame-Based Processing” on page 12-98
• “Control Execution of Delay Block with Enable Port” on page 12-99
• “Zero-Based Indexing for Multiport Switch Data Ports” on page 12-101
• “One-Based Indexing for Multiport Switch Data Ports” on page 12-102
• “Enumerated Names for Data Port Indices of the Multiport Switch Block”

on page 12-104
• “Prevent Block Wind-Up in Multiloop Control Approaches” on page 12-105
• “Bumpless Control Transfer” on page 12-106
• “Using a Bit Set block” on page 12-107
• “Using a Bit Clear block” on page 12-108
• “Two-Input AND Logic” on page 12-109

 Maximum Size Limits of Simulink Models

12-3

• “Circuit Logic” on page 12-110
• “Unsigned Inputs for the Bitwise Operator Block” on page 12-111
• “Signed Inputs for the Bitwise Operator Block” on page 12-112
• “Merge Block with Input from Atomic Subsystems” on page 12-113
• “Index Options with the Selector Block” on page 12-114
• “Switch Block with a Boolean Control Port Example” on page 12-116
• “Merge Block with Unequal Input Widths Example” on page 12-117
• “Detect Rising Edge of Signals” on page 12-120
• “Detect Falling Edge Using the Detect Fall Nonpositive Block” on page 12-122
• “Detect Increasing Signal Values with the Detect Increase Block” on page 12-124
• “Extract Bits from Stored Integer Value” on page 12-126
• “Detect Signal Values Within a Dynamically Specified Interval” on page 12-127
• “Model a Digital Thermometer Using the Polynomial Block” on page 12-129

12 Block Reference Page Examples

12-4

Create Bus Ports in a Subsystem
This example shows adding In Bus Element and Out Bus Element blocks to create bus
element ports in a subsystem for selecting signals from an input bus and creating an
output bus signal.

Model Structure

Open the model. The top model has three constant signals combined into a bus that feeds
a subsystem input port and outputs a bus signal to a Scope block.

The subsystem includes two In Bus Element and Out Bus Element blocks.

 Create Bus Ports in a Subsystem

12-5

Set the Port Name and Color for an In Bus Element Block

Open the Block Parameters dialog box for the ConstIn.a block. The Port name parameter
is set to ConstIn, which changes the subsystem input port name from the default InBus.
This block selects the a signal. The block color is set to green instead of the default black.

The In Bus Element block feeds a Gain block, and the Gain block connects to an Out Bus
Element block that includes an a*3 signal in the output bus signal.

Create an In Bus Element Block and an Out Bus Element Block

Create a third In Bus Element block for the c signal. In the Simulink Editor, right-click
and drag the ConstIn.b block to make a copy of the block. Specify to use the existing port.
Edit the block icon text to say ConstIn.c. Select the block and override the green block
color by specifying black. Feed the output of the In Bus Element block to a third Gain
block and set the gain to 10.

Copy the OutBus.b*5 block to create another Out Bus Element block, specifying to use the
same port. Connect the Gain block to the Out Bus Element block that uses the same port.
Connect the Gain block output signal to the Out Bus Element block and edit the icon text
to say OutBus.c*10.

12 Block Reference Page Examples

12-6

Add a Chirp Block and Include Its Output Signal in the Bus Output Signal

Add a Chirp Signal block and connect it to a new Out Bus Element block that uses the
same port as the other Out Bus Element blocks (OutBus). Open the Out Bus Element
dialog box, double-click the selected signal, and change the signal name to chirp.

The virtual bus signal that the subsystem outputs contains the output signals of the three
Gain blocks and the Chirp block.

 Create Bus Ports in a Subsystem

12-7

Convert Bus Signal to a Vector
This example shows how to use a Bus to Vector block to convert a bus signal to a vector,
to provide a signal that the Gain block can accept.

Open a Simulink® model and simulate it.

model = fullfile(matlabroot,'examples','simulink','ex_bus_to_mux_ok');
open_system(model);
sim(model)

The Gain block cannot accept a bus signal. Inserting a Bus to Vector block provides the
type of input signal (a vector) that the Gain block can accept. The Bus to Vector block has
no user-accessible parameters.

12 Block Reference Page Examples

12-8

Assign Signal Values to a Bus
This example shows how to use a Bus Assignment block to change a bus element value
without adding Bus Selector and Bus Creator blocks to select bus elements and
reassemble them into a bus.

Open the model and simulate it.

Initially, the value of signal a is 1. However, the Bus Assignment block replaces that initial
value of signal a with the value of signal c, which is 3. The const_bus output signal has a
value of 3 for signal a, as the Display block shows.

 Assign Signal Values to a Bus

12-9

Initialize Your Model Using the Callback Button Block
This example shows how to use the Callback Button block to perform initialization
routines on your model.

Explore the Model

The example model builds on the sldemo_fuelsys featured model. When you open the
model, to bind the workspace variables to their Dashboard blocks, you have to update the
model diagram. Here, the Callback Button block at the bottom of the Dashboard
subsystem in the model has been configured to update the diagram on the release of the
mouse button when you click the block.

You do not need to start a simulation for the Callback Button to react to your input. Just
select and then click the Callback Button to run the initialization code. Double-click the
Callback Button block to view and edit its parameters, including the press and click
scripts.

12 Block Reference Page Examples

12-10

See Also

Callback Button

“Control a Parameter Value with Callback Button Blocks” on page 12-12

 Initialize Your Model Using the Callback Button Block

12-11

Control a Parameter Value with Callback Button Blocks
This example models control of a system that consists of two masses attached on either
side of a spring. A control loop damps the oscillation of the spring that results when an
external force acts on the system. The model uses Callback Button blocks to provide an
interface for you to adjust the frequency of the external force before and during
simulation.

Explore the Model

The model for this example adds two Callback Button blocks, labeled Frequency + and
Frequency - to the Double Mass-Spring System model. When you simulate the model,
an animation visualizes the system.

12 Block Reference Page Examples

12-12

Click the button labeled Frequency + to increase the oscillation frequency. When you
adjust the frequency of the external force, the Callback Button block displays a message
in the command window indicating the new frequency value. You can adjust the
parameter during a simulation and while the model is idle.

Both Callback Button blocks in this model are configured with a ClickFcn that responds
to your clicks and a PressFcn that executes when you press the Callback Button block.
Double-click the Frequency + Callback Button block to view its parameters.

When you click the Frequency + Callback Button block, the ClickFcn increases the
frequency of the external force by 0.1. If you press the Callback Button block for more
than the 500 ms Press Delay, the PressFcn increases the frequency of the external force
by 0.1 every second.

See Also

Callback Button

 Control a Parameter Value with Callback Button Blocks

12-13

“Initialize Your Model Using the Callback Button Block” on page 12-10

12 Block Reference Page Examples

12-14

Solve a Linear System of Algebraic Equations
Use the Algebraic Constraint block to solve the system

The model represents the problem in a vectorized form as

The signal fed to the Algebraic Constraint block is a vector of the form

The block is configured to constrain to 0. Thus solving for yields the
solution

 Solve a Linear System of Algebraic Equations

12-15

Model a Planar Pendulum
Consider a point mass m suspended by a massless rod of length l under the influence of
gravity. The position of the mass can be expressed in in Cartesian coordinates by (x,y).

Modeling the System

A force balance of the mass gives the equations of motion in the x and y directions.

Let (u, v) be the velocities in (x, y) respectively. The system can be rewritten as a system
of first order ODEs

12 Block Reference Page Examples

12-16

where F is the tension in the rod. The system also possesses the geometric constraint

Differentiate (7) twice with respect to time t to arrive at

This relationship is useful since it allows F to determined at every step for use in
modeling the kinematics of the system.

Simulating the System

The system is simulated as shown in the figure below

Equation (8) contains one unknown F and is of the form f(z) = 0 where
. The Algebraic Constraint block constrains f(z) to 0 and

solves for F in accordance with (8).

 Model a Planar Pendulum

12-17

12 Block Reference Page Examples

12-18

References

Hairer, Ernst, Christian Lubich, and Michel Roche. "The Numerical Solution Of
Differential-Algebraic Systems By Runge-Kutta Methods." Lecture Notes in Mathematics.
Vol. 1409, Berlin: Springer-Verlag, 1989: pp. 8-9.

 Model a Planar Pendulum

12-19

Improved Linearization with Transfer Fcn Blocks
The Laplace domain transfer function for the operation of differentiation is:

This equation is not a proper transfer function, nor does it have a state-space
representation. As such, the Simulink software linearizes this block as an effective gain of
0 unless you explicitly specify that a proper first-order transfer function should be used to
approximate the linear behavior of this block.

To improve linearization, you can also try to incorporate the derivative term in other
blocks. For example, if you have a Derivative block in series with a Transfer Fcn block, try
using a single Transfer Fcn block of the form

For example, you can replace the first set of blocks in this figure with the blocks below
them:

12 Block Reference Page Examples

12-20

View Dead Zone Output on Sine Wave
This example shows the effect of the Dead Zone block on a sine wave. The model uses a
dead zone lower limit of -0.5 and an upper limit as 0.5. Set these values through the
parameters Start of Dead Zone and End of Dead Zone .

 View Dead Zone Output on Sine Wave

12-21

12 Block Reference Page Examples

12-22

View Backlash Output on Sine Wave
This example shows the effect of the Backlash block on a sine wave using default
parameters. The initial Deadband width is 1 and the Initial output is 0.

The initial deadband is centered around 0 and has a width of 1, which extends .5 in each
direction. The output from the Backlash block begins at 0 and does not change until the
input reaches the edge of the deadzone at .5. Then the output engages in a positive
direction and changes an equal amount as the input. After the input reaches a value of 1,
it starts moving in a negative direction. At this point the output disengages and stays flat

 View Backlash Output on Sine Wave

12-23

until the input passes through the deadband width of 1. Once the input reaches the end of
the deadband zone at 0, then the output engages and starts moving in a negative
direction with the input.

12 Block Reference Page Examples

12-24

Prelookup With External Breakpoint Specification
This example shows how to feed a breakpoint dataset from a Constant block to the bp
input port of the Prelookup block.

The Prelookup block inherits the following breakpoint attributes from the bp input port:

• Minimum: Inf
• Maximum: Inf
• Data type: single

Similarly, a Constant block feeds the table data values to the T input port of the
Interpolation Using Prelookup block, which inherits the following attributes:

• Minimum: Inf
• Maximum: Inf
• Data type: single

Simulink® uses double-precision, floating-point data to perform the computations in this
model. However, the model stores the breakpoint and table data as single-precision,
floating-point data. Using a lower-precision data type to store breakpoint and table data
reduces the memory requirement.

 Prelookup With External Breakpoint Specification

12-25

Prelookup with Evenly Spaced Breakpoints
This example shows how to specify evenly spaced breakpoint data in the Prelookup block.

In the Breakpoints data section, the Specification parameter is set to Even spacing.
The parameters First point, Spacing, and Number of points are set to 25, 12, and 4
respectively. Specifying these parameters creates four evenly spaced breakpoints: [25,
37, 49, 61].

An alternative way to specify evenly spaced breakpoints is to set Specification to
Explicit values and set Value to [25:12:61].

Simulink® uses double-precision, floating-point data to perform the computations in this
model. However, the model stores the breakpoints and table data as double.

12 Block Reference Page Examples

12-26

Configure the Prelookup Block to Output Index and
Fraction as a Bus

This example shows how to output a bus containing the index (k) and fraction (f) from
Prelookup block. The bus object can then be used as an input to the Interpolation Using
Prelookup block. The example also shows how to get the same results without using a bus
object.

Open and simulate the model.

At the top of the model, open the Prelookup block parameters dialog box. In the Main
tab, note that Output selection is set to Index and fraction as bus. In the Data
Types tab, note that Output is set to Bus: myBus. In the Simulink® Editor, select
File>Model Properties and open the Callbacks tab. In the model's PreLoadFcn, the
code defines the bus object myBus, which specifies the index as the first bus element and
the fraction as the second element.

 Configure the Prelookup Block to Output Index and Fraction as a Bus

12-27

Open the Interpoloation Using Prelookup block parameters dialog box. In the Main tab,
note that Require index and fraction as bus check box is selected. That option
configures the block to use the bus output from the Prelookup block.

12 Block Reference Page Examples

12-28

Approximating the sinh Function Using the Lookup Table
Dynamic Block

This example shows how to use the Lookup Table Dynamic block to approximate the sinh
function. The breakpoint data is given by the vector [-5:5] and the table data is given by
the vector sinh([-5:5]). The input x is provided by the Constant block as a 1-by-3
vector containing values that are below, within, and above the breakpoint data values.

To see how each lookup method handles input values that are below, within, and above
the breakpoint data values, change the value of the Lookup Method parameter on the
Lookup Table Dynamic block.

The Lookup Table Dynamic block outputs the following values when using the specified
lookup methods and inputs.

 Approximating the sinh Function Using the Lookup Table Dynamic Block

12-29

12 Block Reference Page Examples

12-30

Create a Logarithm Lookup Table
This example shows how to use the n-D Lookup Table block to create a logarithm lookup
table. The lookup table allows you to approximate the common logarithm (base 10) over
the input range [1,10] without performing an expensive computation.

 Create a Logarithm Lookup Table

12-31

Providing Table Data as an Input to the Direct Lookup
Table Block

This example shows how to provide table data as an input to the Direct Lookup Table
block. In the following model, a is a 4-D array of linearly increasing values that you define
with the following model preload function:

a = reshape(1:2800, [4 5 20 7]);

When you run the model, you get the following results:

The block labeled TableData feeds a 4-D array to the Direct Lookup Table (n-D) block,
with a data type of double. Because the Direct Lookup Table (n-D) block uses zero-based
indexing, the output is:

a(:,2,4,3)

The output has the same data type as the table data input signal: double.

12 Block Reference Page Examples

12-32

Specifying Table Data in the Direct Lookup Table Block
Dialog Box

This example shows how to specify table data on the dialog box of the Direct Lookup
Table (n-D) block. In the following model, the table data is a is a 4-D array of linearly
increasing values that you define with the following model preload function:

a = reshape(1:2800, [4 5 20 7]);

When you run the model, you get the following results:

Because the Direct Lookup Table (n-D) block uses zero-based indexing, the output is:

a(:,2,4,3)

The output data type matches the Direct Lookup Table block's Table data type, which is
set to int16.

 Specifying Table Data in the Direct Lookup Table Block Dialog Box

12-33

Using the Quantizer and Saturation blocks in
sldemo_boiler

This example shows how the Quantizer and Saturation blocks are used in the model
ex_sldemo_boiler. The ADC subsystem digitizes the input analog voltage by:

• Multiplying the analog voltage by 256/5 with the Gain block
• Rounding the value to integer floor with the Quantizer block
• Limiting the output to a maximum of 255 (the largest unsigned 8-bit integer value)

with the Saturation block

12 Block Reference Page Examples

12-34

Scalar Expansion with the Coulomb and Viscous Friction
Block

This example shows a model with a scalar input to a Coulomb & Viscous Friction block
that uses scalar expansion to output a vector.

Double click the friction block to see the parameters. Coefficient of viscous friction
(Gain) is a scalar value 2, but Coulomb friction value (Offset) is a vector value [1 3
2 0] . Therefore, the block uses element-wise scalar expansion to compute the output.

Each output is calculated using this formula.

For example, the first offset 1 is calculated as follows.

If the dimensions for the input and Offset are the same, then no expansion is necessary.

 Scalar Expansion with the Coulomb and Viscous Friction Block

12-35

Sum Block Reorders Inputs
This example shows how the Sum block reorders inputs. If you use a - sign as the first
operation, the block reorders the inputs, if possible, to use a + operation. For example, in
the expression output = -a-b+c, the Sum block reorders the input so that output =
c-a-b. To initialize the accumulator, the Sum block uses the first + input port.

The block avoids performing a unary minus operation on the first operand a because
doing so can change the value of a for fixed-point data types. In that case, the output
value differs from the result of accumulating the values for a , b , and c .

Both the constant inputs use int8 data types The Sum block also uses int8 for the
accumulator and output data types and has Saturate on integer overflow turned on.
The Sum block reorders the inputs to give the ideal result of 127.

1 Reorders inputs from (-Input1 + Input2) to (Input2 - Input1).
2 Initializes the accumulator by using the first + input port. Accumulator =

int8(-1) = -1
3 Continues to accumulate values. Accumulator = Accumulator - int8(-12) =

127
4 Caclulates the block output. Output = int8(127) = 127

If the Sum block does not reorder the inputs, then you get the nonideal result of 126.

1 Initializes the accumulator by using the first input port. Accumulator = int8(-
(-128)) = 127

2 Because saturation is on, the initial value of the accumulator saturates at 127 and
does not wrap.

3 Continues to accumulate values. Accumulator = Accumulator + int8(-1) =
126

12 Block Reference Page Examples

12-36

4 Calculates the block output. Output = int8(126) = 126

To explicitly specify a unary minus operation for output = -a-b+c, you can use the
Unary Minus block in the Math Operations library.

 Sum Block Reorders Inputs

12-37

Iterated Assignment with the Assignment Block
This example shows using the Assignment block to assign values computed in a For or
While Iterator loop to successive elements. You can use vector, matrix or
multidemensional signals and do the assignment in a single time step. In this model, the
For Iterator block creates a vector signal each of whose elements equals where is
the index of the element.

The iterator generates indices for the Assignment block. On the first iteration, the
Assignment block copies the first input (Y0) to the output (Y) and assigns the second input
(U) to the output Y(E1). On successive iterations, the Assignment block assigns the
current value of U to Y(Ei), that is, without first copying Y0 to Y. These actions occur in a
single time step.

12 Block Reference Page Examples

12-38

View Sample Time Using the Digital Clock Block
This example shows how to view the simulation sample time at a specified sampling
interval using the Digital Clock block. In this model, the Scope shows the output of a
Digital Clock block with the Sample time set to 0.2.

In this configuration, the Digital Clock block outputs the simulation time every 0.2
seconds. Otherwise, the block holds the output at the previous value.

 View Sample Time Using the Digital Clock Block

12-39

Bit Specification Using a Positive Integer
This example shows how to specify the Number of bits in the Counter Free-Running
block as a positive integer.

At t = 255, the counter reaches the maximum value of (2^8)-1. If you increase the stop
time of the simulation to 256, the counter wraps to zero.

12 Block Reference Page Examples

12-40

Bit Specification Using an Unsigned Integer Expression
This example shows how to specify the Number of bits in the Counter Free-Running
block as an unsigned integer expression.

At t = 254, the counter reaches the maximum value of uint8(2^(uint8(8))-1). If you
increase the stop time of the simulation to 255, the counter wraps to zero.

 Bit Specification Using an Unsigned Integer Expression

12-41

Track Running Minimum Value of Chirp Signal
This example shows how to track the running minimum value of a signal generated by the
Chirp Signal block.

The Chirp Signal block generates a sine wave whose frequency increases at a linear rate
with time. The MinMax Running Resettable block tracks the minimum value of that chirp

12 Block Reference Page Examples

12-42

signal over time. The running minimum value is reset every 5 seconds by the Pulse
Generator block.

 Track Running Minimum Value of Chirp Signal

12-43

Horizontal Matrix Concatenation
This example shows how to perform a horizontal matrix concatenation with the Matrix
Concatenate block. When you set the Concatenate dimension parameter to 2 and the
inputs are 2-D matrices, the block performs horizontal matrix concatenation and places
the input matrices side-by-side to create the output matrix.

12 Block Reference Page Examples

12-44

Vertical Matrix Concatenation
This example shows how to perform a vertical matrix concatenation with the Matrix
Concatenate block. When you set the Concatenate dimension parameter to 1 and the
inputs are 2-D matrices, the block performs vertical matrix concatenation and places the
input matrices on top of each other to create the output matrix.

 Vertical Matrix Concatenation

12-45

Multidimensional Matrix Concatenation
This example shows how to perform multidimensional matrix concatenation with the
Matrix Concatenate block. When you set the Concatenate dimension parameter to 3
and the inputs are 2-D matrices, the block performs multidimensional matrix
concatenation.

12 Block Reference Page Examples

12-46

Unary Minus of Matrix Input
This example shows how to compute the unary minus of a matrix input.

 Unary Minus of Matrix Input

12-47

Sample Time Math Operations Using the Weighted
Sample Time Math Block

This example shows how to add the sample time value to a signal using the Weighted
Sample Time Math block.

Using the Probe block, you can see the sample time of this model is 0.2. When you set
the Operation to + and the Weight value to 1 on the Weighted Sample Time Math block,
the block adds the sample time value of 0.2 to the input signal. When you set the Weight
value to 3, the Weighted Sample Time Math block adds Ts*3 to the input signal, thus
increasing each value by 0.6.

12 Block Reference Page Examples

12-48

Construct Complex Signal from Real and Imaginary
Parts

This example shows how to use the Real-Imag to Complex block to construct a complex-
valued signal from real and imaginary parts. You can provide both the real and imaginary
parts as block inputs, or provide one value as an input, and the other on the block dialog
box.

 Construct Complex Signal from Real and Imaginary Parts

12-49

Construct Complex Signal from Magnitude and Phase
Angle

This example shows how to use the Magnitude-Angle to Complex block to construct a
complex-valued signal. You can provide both the magnitude and phase angle as block
inputs, or provide one value as an input, and the other on the block dialog box.

12 Block Reference Page Examples

12-50

Find Nonzero Elements in an Array
This example shows how to use the Find block to find nonzero elements in an array. In the
following model, the block is configured to output both the one-based linear index and the
value of each nonzero element.

 Find Nonzero Elements in an Array

12-51

Calculate the Running Minimum Value with the MinMax
Running Resettable Block

This example shows how to use the MinMax Running Resettable block to calculate the
running minimum value. To watch how the running minimum value changes at each time
step, you can use the Step Forward button to advance the simulation one step at a time.

After running the full simulation, you can view the results in the Scope. The initial value
of the running minimum is 0. It begins tracking the Sine Wave signal when the sine wave
values turn negative. When the MinMax Running Resettable block receives a reset signal
at T=8, the block resets the running minimum value to 0. The running minimum value
tracks at 0 for a few time steps, until the sine wave values turn negative again.

12 Block Reference Page Examples

12-52

 Calculate the Running Minimum Value with the MinMax Running Resettable Block

12-53

Find Maximum Value of Input
This example shows how to use the MinMax block to output the maximum value of two
sine waves.

After running the full simulation, you can view the results in the Scope. Initially, the
maximum value (orange line) tracks SineWave2. When the SineWave2 values turn
negative, the maximum value begins tracking SineWave1. When the SineWave2 values
become positive again, the maximum value resumes tracking SineWave2.

12 Block Reference Page Examples

12-54

 Find Maximum Value of Input

12-55

Permute Array Dimensions
This example shows how to use the Permute Dimensions block to permute the first and
third dimensions of a 3-by-4-by-5 input array.

When you set the Order parameter to [3,2,1], the block permutes the first and third
dimensions, and outputs a 5-by-4-by-3 array.

12 Block Reference Page Examples

12-56

Multiply Inputs of Different Dimensions with the Product
Block

This example shows how to perform element-wise (.*) multiplication of inputs using the
Product block. In this example, the Product block multiplies two scalars, a scalar and a
vector, and two 2x2 matrices.

 Multiply Inputs of Different Dimensions with the Product Block

12-57

Multiply and Divide Inputs Using the Product Block
This example shows how to multiply and divide several input signals using the Product
block.

12 Block Reference Page Examples

12-58

Divide Inputs of Different Dimensions Using the Divide
Block

This example shows how to perform element-wise (.*) division of two inputs using the
Divide block. In this example, the Divide block divides two scalars, a vector by a scalar, a
scalar by a vector, and two matrices.

 Divide Inputs of Different Dimensions Using the Divide Block

12-59

Complex Division Using the Product of Elements Block
This example shows how to perform element-wise complex division using the Product of
Elements block.

The top Product of Elements block collapses the matrix input to a scalar by taking
successive inverses of the four elements:

• y = ((((1/2+i)/3)/4-i)/5)

The bottom Product of Elements block collapses the matrix input to a vector by taking
successive inverses along the second dimension:

• y(1) = ((1/2+i)/3)
• y(2) = ((1/4-i)/5)

12 Block Reference Page Examples

12-60

Element-Wise Multiplication and Division Using the
Product of Elements Block

This example shows how to use the Product of Elements block to perform element-wise
multiplication and division of inputs.

 Element-Wise Multiplication and Division Using the Product of Elements Block

12-61

sin Function with Floating-Point Input
This example shows how to use the Trigonometric Function block to compute the sine of a
floating-point input. The output of the Trigonometric Function block has the same data
type as the input because the input data type is floating-point and the Approximation
method is none.

12 Block Reference Page Examples

12-62

sincos Function with Fixed-Point Input
This example shows how to use the Trigonometric Function block to compute the CORDIC
approximation of sincos for a fixed-point input signal.

The Trigonometric Function block parameters are:

• Function: sincos
• Approximation method: CORDIC
• Number of iterations: 11

When using the CORDIC approximation method, the input to the Trigonometric Function
block must be in the range [-2pi,2pi). The output type of the Trigonometric Function
block is fixdt(1,13,11) because the input is a fixed-point signal and the
Approximation method is set to CORDIC. The output fraction length equals the input
word length minus two.

 sincos Function with Fixed-Point Input

12-63

Trigonometric Function Block Behavior for Complex
Exponential Output

This example compares the complex exponential output for two different configurations of
the Trigonometric Function block.

When the Approximation method is CORDIC, the input data type can be fixed point, in
this case: fixdt(1,16,2). The output data type is fixdt(1,16,14) because the output
fraction length equals the input word length minus two.

When the Approximation method is None, the input data type must be floating point.
The output data type is the same as the input data type.

12 Block Reference Page Examples

12-64

Output a Bus Object from the Constant Block
This example shows how to output a bus object from the Constant block. The six Constant
blocks used to create a bus object in the ex_busic example (see “Create Partial
Structures for Initialization”) are replaced by a single constant block in this example.

To verify that the output from the Constant block reflects the values from the
constant_value_struct, enter the following at the MATLAB command line:

constant_value_struct

constant_value_struct =

 struct with fields:

 A: [1x1 struct]
 B: 5
 C: [1x1 struct]

Examine the logged data in the logsout variable, focusing on the A1 bus signal. The
constant_value_struct structure sets the B element to 5.

logsout.get('A1').Values.B.Data(1)

ans =

 5

 Output a Bus Object from the Constant Block

12-65

Control Algorithm Execution Using Enumerated Signal

12 Block Reference Page Examples

12-66

Integer and Enumerated Data Type Support in the
Ground Block

This example shows how to use the Ground block to ground block input ports that have
integer and enumerated data types. In top row of this example, the output of the Constant
block determines the data type (int8) of the port to which the Ground block is
connected. That port determines the output data type of the Ground block, and the
Ground block outputs a signal with zero value, and data type int8.

In the bottom row of this example, the Ground block is connected to a port with an
enumerated data type. For enumerated data types, the Ground block outputs the default
value of the enumeration. This behavior applies whether or not:

• The enumeration can represent zero
• The default value of the enumeration is zero

If the enumerated type does not have a default value, the Ground block outputs the first
enumeration value in the type definition.

 Integer and Enumerated Data Type Support in the Ground Block

12-67

Fixed-Point Data Type Support in the Ground Block
This example shows how to use the Ground block to ground block input ports that have
fixed-point data types. The top row of this example illustrates the Ground block behavior
when the fixed-point data type can represent zero. In that case, the Ground block outputs
a signal with zero value, and the same fixed-point data type as the port it is connected to.

In the bottom row of this example, the output of the Constant block determines the data
type of the port to which the Ground block is connected (fixdt(0,8,1,1)). Because
zero cannot be represented exactly by the data type fixdt(0,8,1,1), the Ground block
outputs a nonzero value that is the closest possible value to zero (in this case, 1).

12 Block Reference Page Examples

12-68

Read 1-D Array and Structure From Workspace
This example shows how to read 1-D signals from the MATLAB workspace. When you
open the model, the following code is executed by a PreLoadFcn callback:

t = 0.2 * [0:49]';
x = sin(t);
y = 10*sin(t);
wave.time = t;
wave.signals.values = [x,y];
wave.signals.dimensions =2;

In the top row of the model, the From Workspace block reads the array [t,x,y] from the
MATLAB workspace.

In the bottom row of the model, the From Workspace block reads the same values from
the workspace, but this time they are read from a structure named wave.

 Read 1-D Array and Structure From Workspace

12-69

Read Structure From Workspace Using Model Sample
Time

This example shows how to read a structure from the MATLAB workspace using a sample
time specified in the From Workspace block. When you open the model, the following
code is executed by a PreLoadFcn callback:

t = 0.2 * [0:49]';
x = sin(t);
y = 10*sin(t);
wave.time = [];
wave.signals.values = [x,y];
wave.signals.dimensions =2;

The From Workspace block is configured as follows:

• Sample time: 0.2
• Interpolate data: off
• Form output after final value by: Setting to zero

When you run the model, the From Workspace block reads the structure wave from the
workspace. After the last time hit for which workspace data is available, the block outputs
0.

12 Block Reference Page Examples

12-70

 Read Structure From Workspace Using Model Sample Time

12-71

Read 2-D Signals in Structure Format From Workspace
This example shows how to read a 2-D structure from the MATLAB workspace. When you
open the model, the following code is executed by a PreLoadFcn callback:

t1 = 0.2 * [0:49]';
m = magic(10);
M = repmat(m,[1 1 length(t1)]);
data.time=t1;
data.signals.values = M;
data.signals.dimensions=[10 10];

This code creates 10-by-10 matrix (2-D signal) by using the magic function, and then
creates a 3-D matrix by adding a time vector. The time vector must be a column vector.
The signals.values field is a 3-D matrix where the third dimension corresponds to
time. The signals.dimensions field is a two-element vector. The first element is the
number of rows and the second element is the number of columns in the
signals.values field.

When you run the model, the From Workspace block reads the structure data from the
workspace.

12 Block Reference Page Examples

12-72

From File Block Loading Timeseries Data
Create a MATLAB® timeseries object with time and signal values. Save the timeseries
object to a MAT-file and load into a model using a From File block.

Create an array with the time and signal data, specifying signal data for 10 time steps.

t = .1*(1:10);
d = .2*(1:10);
x = [t;d];

Create a MATLAB timeseries object.

ts = timeseries(x(2:end,:),x(1,:))

 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [10x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [1x1x10 double]
 DataInfo: tsdata.datametadata

Save the timeseries object in a Version 7.3 MAT-file.

save('mySignals','ts','-v7.3')

Add a From File block and set the File name parameter of that block to
mySignals.mat.

Simulate the model. The Scope block reflects the data loaded from the mySignals.mat
file.

 From File Block Loading Timeseries Data

12-73

Eliminate Singleton Dimension with the Squeeze Block
This example shows a model using the Squeeze block to eliminate a dimension of size 1.

The Squeeze block converts a multidimensional array from the Constant block of size 3-
by-1-by-2 into a 3-by-2 signal.

12 Block Reference Page Examples

12-74

Difference Between Time- and Sample-Based Pulse
Generation

This example shows the difference in behavior of the Pulse Generator block in time-based
and sample-based modes.

Consider this model, with two Pulse Generator blocks. One block has the Pulse type
parameter set to Time based, and the other to Sample based. Both blocks are configured
to output a pulse with an amplitude of one that is on for five seconds, followed by off for
five seconds. The simulation time runs from three seconds to a stop time of 18 seconds.
Notice the time offset notice in the lower right corner.

 Difference Between Time- and Sample-Based Pulse Generation

12-75

Notice that the time-based Pulse Generator produces an on signal for only two seconds
and then switches to off. This is due to the block starting to compute the output from
t=0 even though it does not output the simulation until t=3. The sample-based block
outputs a pulse of five seconds on followed by five seconds off. In this case, the block
output does not depend on simulation time and starts only when the simulation starts.

12 Block Reference Page Examples

12-76

Specify a Waveform with the Repeating Sequence Block
This example shows how you specify a waveform with the Repeating Sequence block. In
this model, the block defines the Time values parameter as [0:0.1:0.5] and the
Output values parameter as [0 15 25 09 13 17]. The stop time of the simulation is
0.7 second.

 Specify a Waveform with the Repeating Sequence Block

12-77

• Input period is 0.5.
• Output at any time t is the output at time t = t-0.5n, where n = 0,1,2, and so on.
• Sequence repeats at t = 0.5n.

At t = 0.5, the expected output is equal to the output at t = 0, which is 0. Therefore,
the last value in the Output values parameter vector [0 15 25 09 13 17] does not
appear.

12 Block Reference Page Examples

12-78

Tune Phase Delay on Pulse Generator During Simulation
This example shows how to modify a model so that you can change a phase delay for a
Pulse Generation block during simulation. You cannot tune the value of the Phase delay
parameter during simulation. As a workaround, add a Constant block and a Variable Time
Delay block.

In the Pulse Generator block, set the value of the Phase delay parameter to zero. Use the
Constant block to specify the delay time in seconds. To tune the delay time during
simulation, change the value stored in the Constant block.

 Tune Phase Delay on Pulse Generator During Simulation

12-79

Difference Sine Wave Signal
This example shows how to calculate the difference in a sine wave signal at each time
step. The input is a 1-by-2 vector of sine waves, with amplitude 1 and 3. The difference
block calculates the difference in each sine wave signal at every time step. The Scope
block displays both the original sine waves and the output of the difference block.

12 Block Reference Page Examples

12-80

 Difference Sine Wave Signal

12-81

Discrete-Time Derivative of Floating-Point Input
This example shows how to use the Discrete Derivative block to compute the discrete-
time derivative of a floating-point input signal. The unfiltered discrete-time derivative is
compared to a filtered discrete-time derivative that is computed by the Discrete Filter
block.

12 Block Reference Page Examples

12-82

 Discrete-Time Derivative of Floating-Point Input

12-83

First-Order Sample-and-Hold of a Sine Wave
This example shows how to perform a first-order sample-and-hold of a sine wave signal
using the First-Order Hold block.

12 Block Reference Page Examples

12-84

 First-Order Sample-and-Hold of a Sine Wave

12-85

Calculate and Display Simulation Step Size using
Memory and Clock Blocks

This example shows how to use the Memory and Clock blocks to calculate and display the
step size in a simulation. The Sum block subtracts the time at the previous time step,
which the Memory block generates, from the current time, which the Clock block
generates.

Because Inherit sample time is not selected for the Memory block, the block sample
time depends on the type of solver for simulating the model. In this case, the model uses a
fixed-step solver. Therefore, the sample time of the Memory block is the solver step size,
or 1.

If you replace the Memory block with a Unit Delay block, you get the same results. The
Unit Delay block inherits a discrete sample time of 1.

12 Block Reference Page Examples

12-86

Capture the Velocity of a Bouncing Ball with the Memory
Block

The sldemo_bounce example shows how to use the Second-Order Integrator and
Memory blocks to capture the velocity of a bouncing ball just before it hits the ground.

Because Inherit sample time is not selected for the Memory block, the block sample
time depends on the type of solver for simulating the model. In this case, the model uses a
variable-step (ode23) solver. Therefore, the sample time of the Memory block is
continuous but fixed in minor time step: [0, 1]. When you run the model, you get the
following results:

 Capture the Velocity of a Bouncing Ball with the Memory Block

12-87

If you replace the Memory block with a Unit Delay block, you get the same results.
However, a warning also appears due to the discrete Unit Delay block inheriting a
continuous sample time.

For more information, see the model description.

12 Block Reference Page Examples

12-88

matlab:showExample('simulink_general/sldemo_bounceExample')

Implement a Finite-State Machine with the
Combinatorial Logic and Memory Blocks

The sldemo_clutch example shows how you can use the Memory block with the
Combinatorial Logic block to implement a finite-state machine. This construct appears in
the Friction Mode Logic/Lockup FSM subsystem:

Because Inherit sample time is not selected for the Memory block, the block sample
time depends on the type of solver for simulating the model. In this case, the model uses a
variable-step (ode23) solver. Therefore, the sample time of the Memory block is
continuous but fixed in minor time step: [0, 1].

For more information, see the model description.

 Implement a Finite-State Machine with the Combinatorial Logic and Memory Blocks

12-89

matlab:showdemo('sldemo_clutch')

Discrete-Time Integration Using the Forward Euler
Integration Method

The sldemo_fuelsys model uses a Discrete-Time Integrator block in the
fuel_rate_control/airflow_calc subsystem. This block uses the Forward Euler
integration method.

When the Switch block feeds a nonzero value into the Discrete-Time Integrator block,
integration occurs. Otherwise, integration does not occur.

For more information, see the model description.

12 Block Reference Page Examples

12-90

matlab:open_system('sldemo_fuelsys')
matlab:showdemo('sldemo_fuelsys')

Signal Routing with the From, Goto, and Goto Tag
Visibility Blocks

This example shows how to use the From, Goto, and Goto Tag Visibility blocks to route
signals in your model. The GotoGlobal block at the top-level of the model has the Goto
tag parameter set to G and the Tag visibility set to global. Thus, the G tag can be seen
by From and Goto blocks at any level of the model hierarchy, except locations that span
nonvirtual subsystem boundaries (like the Atomic Subsystem in this model). The From
block at the top level of the model can see and connect to the global G tag, but cannot see
or connect to the scoped S tag or L local tag that are specified on Goto blocks further
down in the model hierarchy.

Inside of the Main Subsystem, the Goto block with Goto tag set to S has a Tag visibility
of scoped. The Goto Tag Visibility block placed at the same level as that Goto block
indicates the S tag can be seen by all From and Goto blocks at that level and below,
except for locations that cross a nonvirtual subsystem boundary (i.e. the boundary with
the Atomic Subsystem). Inside of Subsystem1 and Subsystem2, the From blocks can see
and connect to the global Goto tag G, and the scoped Goto tag S.

 Signal Routing with the From, Goto, and Goto Tag Visibility Blocks

12-91

12 Block Reference Page Examples

12-92

 Signal Routing with the From, Goto, and Goto Tag Visibility Blocks

12-93

Zero-Based and One-Based Indexing with the Index
Vector Block

This example shows how the Index Vector block works with zero-based and one-based
indexing.

The Index Vector block is from the Simulink Signal Routing library. It is a special
configuration of the Multiport Switch block. To configure the Multiport Switch block as an
Index Vector block, set the Number of data ports to 1 and Data port order to Zero-
based contiguous.

12 Block Reference Page Examples

12-94

Noncontiguous Values for Data Port Indices of Multiport
Switch Block

This example shows how to use a Multiport Switch block that specifies noncontiguous
integer values for data ports. The values of the indices are visible on the data port labels.
You do not have to open the block dialog box to determine which value maps to each data
port.

When you set Data port for default case to Additional data port, an extra port
with a * label appears. This port corresponds to the default case, which applies when the
control input does not match the data port indices 3, 5, 0, or 18. When that happens in
this example, the Multiport Switch block outputs a value of 1.

 Noncontiguous Values for Data Port Indices of Multiport Switch Block

12-95

Using Variable-Size Signals on the Delay Block
This example shows how the Delay block supports vairable-size signals for sample-based
processing. The Switch block controls whether the input signal to the enabled subsystem
is a 3-by-3 or 3-by-2 matrix.

The Delay block appears inside the enabled subsystem.

The model follows these rules for variable-size signals while using sample-based
processing.

• Signal dimensions change only during state reset when the block is enabled.

12 Block Reference Page Examples

12-96

• Initial condition must be scalar.

The rules are implemented by these blocks.

• Enable block sets Propagate sizes of variable-size signals to Only when
enabling.

• Delay block sets the Initial condition to the scalar value 0.0.

 Using Variable-Size Signals on the Delay Block

12-97

Bus Signals with the Delay Block for Frame-Based
Processing

This example shows how the Delay block supports bus signals for frame-based processing.

Each Constant block supplies an input signal to the Bus Creator block, which outputs a
two-dimensional bus signal. After the Delay block delays the bus signal by three sample
periods, the Bus Selector block separates the bus back into the two original signals.

The model follows these rules for bus signals.

• For the initial condition, set the value on the dialog box.
• For frame-based processing, signal dimensions of the data input port u cannot be

larger than two.

The model implements the rules by:

• Setting the Initial condition to a scalar value of 0.
• Setting bus input to the Delay block as two dimensions.

12 Block Reference Page Examples

12-98

Control Execution of Delay Block with Enable Port
This example shows how you can enable or disable the execution of the Delay block using
an enable port. In this model, a ramp input signal feeds into a Delay block. The execution
of the block is controlled by an enabling signal from the Pulse Generator block.

The blue line shows that the Delay block outputs the input signal value delayed by one
time step while the enabling signal has a value of one. At t=5 the enabling signal

 Control Execution of Delay Block with Enable Port

12-99

transitions to zero and the Delay block stops executing. The output is held at the last
value until the block is enabled again.

12 Block Reference Page Examples

12-100

Zero-Based Indexing for Multiport Switch Data Ports
The sf_aircontrol model uses a Multiport Switch block in the Physical Plant
subsystem. This block uses zero-based indexing for contiguous ordering of three data
ports.

The indices are visible on the data port labels. You do not have to open the block dialog
box to determine if the data ports use zero-based or one-based indexing.

When you set Data port for default case to Last data port, the last data port
includes a * on the label (in this case, the label is *,2). The comma after the * indicates
that the data port index has a value. This port corresponds to the default case, which
applies when the control input does not match the data port indices. In this example, the
Multiport Switch block outputs a value of -0.1 when the control input does not match the
data port indices of 0, 1, or 2.

 Zero-Based Indexing for Multiport Switch Data Ports

12-101

matlab:open_system('sf_aircontrol')

One-Based Indexing for Multiport Switch Data Ports
The sf_semantics_hotel_checkin model uses a Multiport Switch block. This block uses one-
based indexing for contiguous ordering of three data ports.

12 Block Reference Page Examples

12-102

matlab:open_system('sf_semantics_hotel_checkin')

When you increase the size of the block icon, the indices are visible on the data port
labels. You do not have to open the block dialog box to determine whether the data ports
use zero-based or one-based indexing.

 One-Based Indexing for Multiport Switch Data Ports

12-103

Enumerated Names for Data Port Indices of the
Multiport Switch Block

The sldemo_fuelsys model uses a Multiport Switch block in the fuel_rate_control/
fuel_calc/feedforward_fuel_rate subsystem. This block uses the enumerated type
sld_FuelModes to specify three data port indices: LOW, RICH, and DISABLED.

When you set Data port for default case to Last data port, the last data port
includes a * on the label. The comma and ellipsis after the * indicate that the data port
index has a value. This port corresponds to the default case, which applies when the
control input does not match the data port indices LOW, RICH, or DISABLED. In this case,
the Multiport Switch block outputs a value of 0.

12 Block Reference Page Examples

12-104

matlab:open_system('sldemo_fuelsys')

Prevent Block Wind-Up in Multiloop Control Approaches
This example shows how to use signal tracking to prevent block wind-up in multiloop
control approaches.

The Inner-Loop subsystem contains the following blocks:

In this example, the inner loop has an effective gain of 1 when it does not saturate.
Without signal tracking, the inner loop winds up in saturation. Signal tracking ensures
that the PID Controller output does not exceed the saturated output of the inner loop.

 Prevent Block Wind-Up in Multiloop Control Approaches

12-105

Bumpless Control Transfer
This example shows how to use signal tracking to achieve bumpless control transfer in
systems that switch between two controllers. You can make one controller track the
output of the other controller by connecting the TR port to the signal you want to track.
For example:

The outputs Out1 and Out2 can drive a controlled system (not shown) through a switch
that transfers control between the Active controller (a Zero-Pole block) and the PID
Controller. The signal tracking feature of the PID Controller block provides smooth
operation upon transfer of control from one controller to another, ensuring that the two
controllers have the same output at the time of transfer.

12 Block Reference Page Examples

12-106

Using a Bit Set block
If the Bit Set block is turned on for bit 2 bit 2 is set to 1.

A vector of constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100
01000 10000].

With bit 2 set to 1, the result is [00101 00110 00100 01100 10100], which is represented
in decimal as [5 6 4 12 20].

 Using a Bit Set block

12-107

Using a Bit Clear block
If the Bit Clear block is turned on for bit 2, bit 2 is set to 0.

A vector of constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100
01000 10000].

With bit 2 set to 1, the result is [00101 00110 00100 01100 10100], which is represented
in decimal as [5 6 4 12 20].

With bit 2 set to 0, the result is [00001 00010 00000 01000 10000], which is represented
in decimal as [1 2 0 8 16]

12 Block Reference Page Examples

12-108

Two-Input AND Logic
This example builds a two-input AND function, which returns 1 when both input elements
are 1, and 0 otherwise. To implement this function, specify the Truth table parameter
value as [0; 0; 0; 1] The portion of the model that provides the inputs to and the output
from the Combinatorial Logic block might look like this:

The following table indicates the combination of inputs that generate each output. The
input signal labeled Input corresponds to the column in the table labeled Input 1.
Similarly, the input signal Input 2 corresponds to the column with the same name. The
combination of these values determines the row of the Output column of the table that is
passed as block output. For example, if the input vector is [1 0], the input references the
third row:

(2^1*1 + 1) The output value is 0.

 Two-Input AND Logic

12-109

Circuit Logic
This sample circuit has three inputs: the two bits (a and b) to be summed and a carry-in
bit (c). It has two outputs: the carry-out bit (c') and the sum bit (s).

The truth table and corresponding outputs for each combination of input values for this
circuit appear in the following table.

To implement this adder with the Combinatorial Logic block, you enter the 8-by-2 matrix
formed by columns c' and s as the Truth table parameter. You can also implement
sequential circuits (that is, circuits with states) with the Combinatorial Logic block by
including an additional input for the state of the block and feeding the output of the block
back into this state input.

12 Block Reference Page Examples

12-110

Unsigned Inputs for the Bitwise Operator Block
The following model shows how the Bitwise Operator block works for unsigned inputs.

Each Constant block outputs an 8-bit unsigned integer (uint8). To determine the binary
value of each Constant block output, use the dec2bin function. The results for all logic
operations appear in the next table.

 Unsigned Inputs for the Bitwise Operator Block

12-111

Signed Inputs for the Bitwise Operator Block
The following model shows how the Bitwise Operator block works for signed inputs.

Each Constant block outputs an 8-bit signed integer (int8) . To determine the binary
value of each Constant block output, use the dec2bin function. The results for all logic
operations appear in the next table.

12 Block Reference Page Examples

12-112

Merge Block with Input from Atomic Subsystems
This example shows a Merge block with inputs from two atomic subsystems.

Each Atomic Subsystem block contains an enabled subsystem. This satisfies the
requirement that inputs to a Merge block are from a conditionally executed subsystem.

 Merge Block with Input from Atomic Subsystems

12-113

Index Options with the Selector Block
This example shows two Selector blocks with the same kind of input signals, but two
different Index Option settings.

12 Block Reference Page Examples

12-114

Both Selector blocks select 7 values from the input signal that feeds the input port. The
Selector1 block outputs a fixed-size signal, whereas the Selector2 block outputs a
variable-size signal whose compiled signal dimension is 10 instead of 7.

The Selector1 block sets Index Option to Index vector (port), which uses the
input signal from Constant1 as the index vector. The dimension of the input signal is 7,
so the Display block shows the 7 values of the Constant1 block. The Selector2 block
sets the Input port size parameter to 10, which is the size of the largest input signal to
the Selector2 block.

The Selector2 block also sets the Index Option to Starting and ending indices
(port). The output is then set to the size of Input port size parameter (10), even
though the size of the input signal is 7.

 Index Options with the Selector Block

12-115

Switch Block with a Boolean Control Port Example
This example shows a Switch block with a Boolean input for the control port.

open_system('sldemo_fuelsys');
open_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

The value of the control port on the Switch block determines whether or not the feedback
correction occurs. The control port value depends on the output of the Logical Operator
block. When the Logical Operator block out is true, then the Switch block control port is
1 and the feedback control occurs. If the Logical Operator block outout is false then the
feedback control does not occur.

12 Block Reference Page Examples

12-116

Merge Block with Unequal Input Widths Example
This example shows how to use the Merge block with inputs ports that have different
widths. If you select Allow unequal port widths, the block accepts scalar and vector
inputs having differing numbers of elements. You can specify an offset for each input
signal relative to the beginning of the output signal. The width of the output signal is:

where are the widths of the input signals, and are the offsets.

 Merge Block with Unequal Input Widths Example

12-117

The Merge block has the following output width.

In this example, the offset of is 0 and the offset of is 1. The Merge block maps the
elements of to the first two elements of and the elements of to the last two

12 Block Reference Page Examples

12-118

elements of . Only the second element of is effectively merged, as show in the scope
output.

If you use Simplified Initialization Mode, you must clear the Allow unequal port
widths check box. The input port offsets for all signals must be zero.

 Merge Block with Unequal Input Widths Example

12-119

Detect Rising Edge of Signals
This example shows how to detect the rising edge of a signal using the Detect Rise
Nonnegative and Detect Rise Positive blocks.

12 Block Reference Page Examples

12-120

With a fixed-step size of 0.25, this example illustrates the difference between the Detect
Rise Nonnegative and Detect Rise Positive blocks. The Detect Rise Nonnegative block
outputs true (1) at t=1 because the input signal increased from a negative value to a
nonnegative value (0). The Detect Rise Positive block outputs true (1) at t=1.25 because
the input signal increased from a nonpositive value (0) to a strictly positive value.

 Detect Rising Edge of Signals

12-121

Detect Falling Edge Using the Detect Fall Nonpositive
Block

This example shows how to use the Detect Fall Nonpositive block to detect a falling edge
in the input signal. The block detects a falling edge when the signal value decreases from
a strictly positive value to a nonpositive value. In this example, the Initial condition of
the Detect Fall Nonpositive block is set to 1. This means that the Boolean expression U/z
<= 0 evaluates to true and the block assumes the initial value of the input signal is
nonpositive.

12 Block Reference Page Examples

12-122

 Detect Falling Edge Using the Detect Fall Nonpositive Block

12-123

Detect Increasing Signal Values with the Detect
Increase Block

This example shows how to use the Detect Increase Block to detect increasing signal
values. Because the Initial condition is set to -1, the block detects an increasing signal
value starting at time t=0. If you change the Initial condition parameter to a
nonnegative value, the block detects the first increasing signal value at t=0.25.

12 Block Reference Page Examples

12-124

 Detect Increasing Signal Values with the Detect Increase Block

12-125

Extract Bits from Stored Integer Value
This example shows how to extract specific bits from the stored integer value of an input
signal.

12 Block Reference Page Examples

12-126

Detect Signal Values Within a Dynamically Specified
Interval

This example shows how to detect when an input signal falls within a dynamically
specified interval. The interval is defined by two Sine Wave blocks. When the input to the
Interval Test Dynamic block falls between those sine waves, the Interval Test Dynamic
block outputs true (1).

 Detect Signal Values Within a Dynamically Specified Interval

12-127

12 Block Reference Page Examples

12-128

Model a Digital Thermometer Using the Polynomial
Block

This example shows how the sldemo_boiler uses the Polynomial block.

In the Boiler Plant model/digital thermometer subsystem, the Polynomial Block
models a first-order polynomial using the coefficients [0.05 0.75]

For more information, see the model description.

 Model a Digital Thermometer Using the Polynomial Block

12-129

matlab:open_system('sldemo_boiler')
matlab:showdemo('sldemo_boiler')

Model Parameter Configuration
Dialog Box

13

Model Parameter Configuration Dialog Box
The Model Parameter Configuration dialog box allows you to declare specific tunable
parameters when you set Default parameter behavior to Inlined. The parameters
that you select appear in the generated code as tunable parameters. For more
information about Default parameter behavior, see “Default parameter behavior”
(Simulink Coder).

To declare tunable parameters, use Simulink.Parameter objects instead of the Model
Parameter Configuration dialog box. See “Create Tunable Calibration Parameter in the
Generated Code” (Simulink Coder).

Note Simulink Coder software ignores the settings of this dialog box if a model contains
references to other models. However, you can still generate code that uses tunable
parameters with model references, using Simulink.Parameter objects. See “Create
Tunable Calibration Parameter in the Generated Code” (Simulink Coder).

The dialog box has the following controls.

13 Model Parameter Configuration Dialog Box

13-2

Source list
Displays a list of workspace variables. The options are:

• MATLAB workspace — Lists all variables in the MATLAB workspace that have numeric
values.

• Referenced workspace variables — Lists only those variables referenced by the model.

Refresh list
Updates the source list. Click this button if you have added a variable to the workspace
since the last time the list was displayed.

Add to table
Adds the variables selected in the source list to the adjacent table of tunable parameters.

New
Defines a new parameter and adds it to the list of tunable parameters. Use this button to
create tunable parameters that are not yet defined in the MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB workspace.
You must create the variable yourself.

Storage class
Used for code generation. For more information, see “Storage class”.

Storage type qualifier
Used for code generation. For more information, see “Type qualifier”.

 Model Parameter Configuration Dialog Box

13-3

See Also

Related Examples
• “Optimization Pane” (Simulink Coder)
• “How Generated Code Stores Internal Signal, State, and Parameter Data” (Simulink

Coder)

13 Model Parameter Configuration Dialog Box

13-4

